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Abstract

1. Populations of the European flat oyster Ostrea edulis have experienced cata-

strophic declines across Europe and subsequent spread of the non-native species

Crepidula fornicata has led to its occurrence in exceptionally high densities in some

areas previously dominated by O. edulis.

2. Spatial and temporal concurrence of C. fornicata larvae within the zooplankton

community occurs throughout the O. edulis spawning season. A C. fornicata larval

peak density of 374.7 ± 96.5 larvae/ml (mean ± SD) was observed in Langston

Harbour sympatrically with O. edulis density of 45.7 ± 20.1 larvae/ml in early

August. Overall oyster larvae contribution to the zooplankton community was

higher in Portsmouth Harbour (12%) than C. fornicata contribution (9.6%), whilst

the opposite occurred in Langstone (oysters, 11.7%; C. fornicata, 12%).

3. Larval abundance is not reflected in recruitment on the seabed, owing to the con-

specific substrate preference of O. edulis. Settlement of O. edulis spat was signifi-

cantly greater on settlement discs covered with recently deceased oyster shells;

6.7 ± 1.2 (mean ± SE) spat/disc vs old smooth oyster shells, 2.7 ± 1.3, C. fornicata

shell 1.7 ± 0.3, cemented discs 2 ± 1 or the plastic control disc 0.7 ± 0.7.

4. Settlement substrate type matters in the presence of high benthic and larval den-

sities of C. fornicata. The Solent has become a substrate-limited system for

O. edulis; substrate management or reef deployment is required to restore a self-

recruiting population.

5. Finally, although C. fornicata may provide functional equivalence in terms of filter-

ing services, it supports a significantly different and less biodiverse faunal commu-

nity from that of O. edulis. Therefore C. fornicata does not provide equivalence as

an ecosystem engineer and mechanisms of ecological phase shift are occurring

within areas dominated by this invasive species.
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1 | INTRODUCTION

1.1 | The loss of an ecosystem engineer

The term ‘ecosystem engineer’ is used to describe any organism

that directly or indirectly modulates the availability of resources to

other species, by causing physical state changes in biotic or abiotic

materials. The European flat oyster Ostrea edulis (along with other

oyster species), epitomizes the classification of an autogenic

engineer, whereby the physical structure provided whilst alive

and by the remaining shells when deceased change the

environment (Jones, Lawton, & Shackak, 1994). Typically, O. edulis

inhabits coastal and estuarine environments, which range from the

intertidal down to 80 m depth, within a salinity range of 18–40‰

(Jackson, 2007).

Historically, O. edulis populated extensive areas of seabed in

European waters, equating to over 25,000 km2 (Olsen, 1883) of dense

aggregations in bed and reef structures. These, once abundant,

populations provided a source of sustenance for human populations

for centuries, with the earliest shell midden records dating back to the

Mesolithic period (Gutiérrez-Zugasti et al., 2011).

Large-scale cultivation and management of the species extend

back to the Roman Empire (Günther, 1897) and the continued large-

scale extraction throughout the industrial revolution is highlighted by

the 120,000-strong fleet of oyster dredgers that, in 1864, supplied

700 million oysters to London alone (Philpots, 1890). The 80 million

oysters harvested annually in the Bay of Biscay, prior to 1859, were

valued at £10,000 (Sullivan, 1870), equivalent to £1.2 million today.

The long-standing impression that the ocean provided an inexhaust-

ible source of fish and shellfish can be seen elsewhere, including the

historical shell piles that are estimated to contain 5 × 1012 shells in

France (Gruet & Prigent, 1986 as cited by Goulletquer & Heral, 1997).

The unsustainable extraction resulted in catastrophic declines across

all of Europe; the situation is arguably most severe in Germany where

O. edulis is now classified as extinct and requires a reintroduction

(Pogoda, 2019).

Until recently, the Solent contained one of the largest remaining

self-sustaining O. edulis fisheries in Europe, with populations forming

dense aggregations, predominantly occurring in the areas around Sta-

nswood and Calshot (Key & Davidson, 1981; Palmer & Firmin, 2011).

Between 1979 and 1980, 15 million oysters (650–850 tonnes) were

landed by 450 vessels and recorded seabed densities were as high as

32/m2 (Key & Davidson, 1981). This extraction was not sustainable

and resulted in the collapse of the fishery as the biological limit of the

species was exceeded, in part owing to the removal of the reproduc-

tively viable population but also the settlement substratum for their

larvae, provided by those mature oysters.

The availability of suitable substrata is key for the completion of

the O. edulis life cycle. The veliger larvae display gregarious behaviour,

preferentially settling and metamorphosing on conspecifics and other

hard, clean substrata that has a high surface heterogeneity

(Bayne, 1969; Cole & Knight-Jones, 1939; Cole & Knight-Jones, 1949;

Walne, 1964; Walne, 1974). The nature of the settlement surface,

biofilm formation and other cues may influence settlement behaviour

(Walne, 1974). However, Smyth, Mahon, Roberts, and Kregting (2018)

reported the availability of hard substrata rather than its type deter-

mined the settlement by O. edulis in Strangford Lough. Other research

suggests that cultch (disarticulated shell) is an outcome of a self-

recruiting oyster reef and the presence of live or box shell (dead but

not disarticulated cultch) is key to recruitment for some species of

oyster (Powell, Hofmann, & Klinck, 2018). The invasive American slip-

per limpet Crepidula fornicata is also suggested as a suitable substrate

for O. edulis within fisheries management (T. Cameron, pers. comm.,

2019). The large-scale extraction of O. edulis habitat and associated

substrate remains a serious concern for the recruitment and survival

of this species.

1.2 | Ecosystem functions and services of native
oyster reefs

Ostrea edulis provides benefits to commercial fisheries, and provides an

important ecological role in providing habitat for other organisms

(Korringa, 1946; Mistakidis, 1951). Facilitation of increased species

diversity and abundance is one of the major and most relevant func-

tions native oysters provide. Korringa (1946) and Mistakidis (1951)

conducted studies to detail the associated epibiota. They found numer-

ous species regularly inhabiting shells ofO. edulis, considered as charac-

teristic epifauna of the native oyster. The three-dimensional structures

created by years of successive settlement of oyster larvae on adult

shells provide structural complexity in systems dominated by soft, flat-

bottom habitats (Bartol, Mann, & Luckenbach, 1999; Micheli &

Peterson, 1999). Mobile fish and decapod crustacean species utilize

oyster reefs for numerous reasons, consuming the oysters or their asso-

ciated epibiont community, using oyster shells as surfaces for spawning

and finding refuge from predation within the oyster reef (Tolley &

Volety, 2005), whereas sessile species use the reefs for settlement and

attachment (Boudreaux, Stiner, & Walters, 2006). Fish produced on

oyster reefs have significant economic value to coastal communities

(Grabowski & Peterson, 2007). The lost habitats caused by decline in

oyster reefs have a negative economic impact as they are linked to

decreases in overall coastal and shelf sea biodiversity (Airoldi, Balata, &

Beck, 2008; Lotze et al., 2006). Although there is an increasing

acknowledgement that oyster reefs provide multiple ecosystem
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services, management objectives beyond harvest are not yet wide-

spread (Beck et al., 2011). Many European oyster restoration projects

go beyond biodiversity conservation as their focus; the Native Oyster

Network, UK, and Ireland (2020) and European Native Oyster Restora-

tion Alliance (2020) are jointly creating monitoring guidelines that

includemetrics that quantify ecosystem functions and services.

Oyster reef habitat provides a wide range of ecosystem services

including water filtration, food, shoreline stabilization, coastal defence

and fisheries (Grabowski & Peterson, 2007; Newell, Fisher, Holyoke, &

Cornwell, 2005; NRC, 2010). As filter-feeders, particulate matter

resuspended by tidal currents and storms is an important food source

to O. edulis (Grant, Enright, & Griswold, 1990). By removing suspended

solids from the water, the oysters increase water clarity. Although diffi-

cult to quantify in large bodies of water, localized effects of filtration,

such as reduced turbidity, have been observed (Coen et al., 2007;

Grabowski & Peterson, 2007). Indeed, oysters are able to reduce the

volume of suspended solids and phytoplankton (Grizzle, Greene,

Luckenbach, & Coen, 2006; Nelson, Leonard, Posey, Alphin, &

Mallin, 2004). Healthy oyster reefs can therefore reduce the likelihood

of harmful algal blooms occurring and prevent the negative economic

and ecological impacts associated with harmful algal blooms, especially

at the local scale (Cerrato, Caron, Lonsdale, Rose, & Schaffner, 2004;

Newell & Koch, 2004). The improvement to water quality can increase

recreational activities such as sport fisheries and tourism to the area

(Lipton, 2004). Shellfish are also associated with nutrient remediation

in coastal bays via denitrification in surrounding sediments (Newell

et al., 2005). The nutrient remediation potential of oysters could trans-

late into a high economic value (Watson, Preston, Beaumont,

& Watson, 2020) since nutrient removal and achieving nitrate

neutrality is a high priority for coastal stakeholders, including public

bodies, housing developers and policy makers (Natural England, 2020).

Oyster reefs serve as natural coastal defences absorbing wave

energy thus reducing erosion caused by boat waves, sea-level rise and

storms (Meyer, Townsend, & Thayer, 1997; Piazza, Banks, & La

Peyre, 2005). Currently ecosystem services provided by O. edulis are

yet to be quantified. The potential services of a healthy oyster reef are

widely understood from the quantification of ecosystem services of

other oyster species. Quantifying services and functions of O. edulis

reefs will be a key step in shifting the focus of management objectives.

1.3 | Ecological invasion by the American slipper
limpet

Non-native marine species are of special concern when they become

invasive and displace native species. Negative impacts include biotic

homogenization, modification of habitats and alteration of community

structures and ecosystem functions (Bax, Williamson, Aguero,

Gonzalez, & Geeves, 2003; Katsanevakis et al., 2014; Viard, David, &

Darling, 2016). When these impacts impede the provision of

ecosystem services it can detrimentally affect human health and

cause substantial economic losses (Grosholz, 2002; Perrings, 2002;

Wallentinus & Nyberg, 2007).

The American slipper limpet C. fornicata was accidentally intro-

duced with imports of the Eastern oyster Crassostrea virginica

(Dodd, 1893; Hoagland, 1985; McMillan, 1938; Minchin, McGrath, &

Duggan, 1995; Utting & Spencer, 1992) and the Pacific oyster

Crassostrea gigas (Blanchard, 1997). First appearing in Liverpool during

the 1880s (Moore, 1880 in McMillan, 1938) and the east coast and

Thames estuary in the 1890s (Cole, 1915; Crouch, 1893), C. fornicata

is now a well-established invasive non-native species. The loss of oys-

ter habitat has further exacerbated the spread and the abundance of

C. fornicata and is a major concern across Europe (Blanchard, 1997;

Boyle, 1981), particularly in the Solent (Helmer et al., 2019). In rare

instances C. fornicata ‘stimulates zoobenthic community diversity and

abundance’ in muddy sediments (de Montaudouin & Sauriau, 1999).

However, its rapid expansion throughout the UK (Barnes, Goughlan, &

Holmes, 1973; Chipperfield, 1951; Cole & Baird, 1953; Minchin

et al., 1995; Orton, 1950) and Europe (Blanchard, 1997, 2009; Davis &

Thompson, 2000; Thieltges, Strasser, & Reise, 2003), including oyster

beds (Crouch, 1893), has had serious ecological and economic impacts

(see Blanchard, 1997).

In contrast to the wide range of ecological benefits provided by

O. edulis, C. fornicata has been shown to be detrimental to habitat

suitability for juvenile fish (Le Pape, Guérault, & Désaunay, 2004; Le

Pape et al., 2007) and suprabenthic biodiversity (Vallet, Dauvin,

Hamon, & Dupuy, 2001). The shell growth and survival of other com-

mercially important bivalves, such as Mytilus edulis (Thieltges, 2005),

are also impacted. Habitat modification in the presence of C. fornicata

is also an issue in many areas. This occurs through the production of

mucoidal pseudofaeces, which converts predominantly sandy sub-

strata into mud-dominated substrata with a high organic content that

rapidly becomes anoxic and unsuitable for other species (Streftaris &

Zenetos, 2006). This includes oysters that prefer less silty and muddy

waters (Barnes et al., 1973; Bromley, McGonigle, Ashton, &

Roberts, 2016; Fulford, Breitburg, & Luckenbach, 2011; Walne, 1979).

Ostrea edulis populations are also negatively impacted through a

reduction in suitable substrata available for larval settlement

(Blanchard, 1997), hindering recruitment and potentially oyster resto-

ration efforts on the seabed.

1.4 | Interspecific competition between O. edulis
and C. fornicata

An association of species characterizes benthic fauna in the Solent,

with C. fornicata dominating the benthic community in many locations

throughout the area, regardless of depth and substratum (Barnes

et al., 1973). It is well known that invasive species have detrimental

effects on the growth and survival of native species (Thieltges,

Strasser, & Reise, 2006), especially if they occupy the same niche.

Owing to C. fornicata’s suspension feeding regime and preference

for similar habitats to O. edulis, this invasive species can quickly

exert a detrimental effect on oyster populations and habitat

(de Montaudouin, Audemard, & Labourg, 1999): ‘they have a detri-

mental effect upon oyster culture’ (Chipperfield, 1951); ‘Crepidula is
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an oyster-pest’ (Korringa, 1951; Walne, 1956). It is essential to under-

stand the ecological interactions between the two species to recog-

nize the negative effects caused by the presence of C. fornicata. This

will help restoration efforts, by enabling adaptive management strate-

gies in locations where C. fornicata are present and informing site

selection criteria for restoration projects.

Current research investigating competition between C. fornicata and

O. edulis is limited, especially at the planktonic larval stage, but the topic

receives increasing attention for its ecological consequences. Blanchard,

Pechenik, Giudicelli, Connan, and Robert (2008) found that C. fornicata

larvae ingested phytoplankton over a larger range of cell sizes and at

increased rates compared with C. gigas. This laboratory study was a com-

parison with C. gigas; therefore, interactions with O. edulis in the natural

environment may vary. However, when larvae of both species are present

in summer, intensive grazing by C. fornicata larvae could out-compete

O. edulis larvae, reducing the chances of their survival.

The present study addresses a number of interactions between

O. edulis and C. fornicata within a coastal system home to extensive

historical oyster populations and current oyster restoration initiatives:

(i) the settlement preference of wild O. edulis larvae between conspe-

cific and invasive shells and two common types of artificial hard sub-

strata; (ii) the abundance of oyster and C. fornicata larvae within the

water column across two harbours within the Solent; and (iii) the fau-

nal community assemblages associated with in situ live O. edulis and

C. fornicata assessed as a proxy of their function as benthic ecosystem

engineers. By determining if C. fornicata populations are detrimental

to O. edulis and the localized biodiversity, restoration efforts can begin

to address the issue by incorporating active management strategies.

2 | MATERIALS AND METHODS

2.1 | Recruitment substrate characterization

Settlement substrata availability for, and preference of, O. edulis and

C. fornicata in the eastern Solent harbours (Portsmouth, Langstone

and Chichester, Figure 1) were assessed. Settlement substratum was

recorded for each individual O. edulis from the three harbours, all of

which were purchased from the commissioned fisheries. Settlement

substratum of C. fornicata chains was recorded for individuals col-

lected during surveys of the three harbours (see Helmer et al., 2019

for collection methods and locations). The settlement substratum was

determined for O. edulis as the organism or material the oyster was

attached to near the hinge/umbo. When a clear scar was present but

no material remained, it was recorded as ‘absent’. The attachment sub-

stratum for each individual chain of C. fornicata was recorded as the

substratum that the last living individual at the base of the chain was

settled upon. Chains were considered separate when the substratum

had multiple chains attached to it and live individuals did not intercon-

nect these chains.

2.2 | Ostrea edulis larval settlement

Settlement plates deployed in May 2016 consisted of 15 discs with

three replicates of five alternative substrata: (i) plain plastic discs (con-

trol); (ii) plastic discs dipped in cement (Blue Circle Mastercrete);

(iii) plastic discs covered in old and smooth O. edulis shells (collected

from Langstone Harbour intertidal zone); (iv) plastic discs covered in

recently deceased and rough O. edulis shells (sourced from mortalities

in broodstock cage system trials; Helmer et al., 2019); and (v) plastic

discs covered in C. fornicata shells collected from Langstone Harbour

(Figure 2). The settlement plates were deployed for one year, enabling

any oyster larvae to settle and develop to a size whereby adult mor-

phological features could be used to distinguish between O. edulis and

C. gigas spat. Samples were fixed in 4% formalin in seawater (borax

buffered 5 g/L) for 2 weeks and then transferred to 70% ethanol prior

to analysis. A Leica EZ4W stereo microscope with camera mounting

was used for identification of oyster spat and image collection. Mea-

surements were taken from the images using the open source soft-

ware ImageJ (Rueden et al., 2017).

F IGURE 1 The wider Solent, including
locations within the eastern Solent harbours
(Portsmouth, Langstone and Chichester) from
which seabed samples were collected as well as
cage sampling locations in the Camber Dock (blue
square) and on the University of Portsmouth
research platform (green circle)
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2.3 | Zooplankton community composition

2.3.1 | Sample collection and preservation

Seawater samples were collected using a plankton net (300 mm diam-

eter, 64 μm mesh, NHBS). Surface tows were conducted at high tide

±1 h at a speed of 1.5 kn for 1 min, with three replicate samples

collected at each location. Using this method, a volume of 3.27 m3 of

seawater was filtered by the plankton net during each tow. Plankton

sampling was carried out at two locations (Langstone and Portsmouth)

at approximately weekly intervals throughout the spawning season

(May to August 2016; Table 1). Immediately after collection samples

were filtered across a 64 μm sieve and fixed in 4% formalin in seawa-

ter (borax-buffered 5 g/L), stained with Rose Bengal (0.05 g/L), then

preserved in 70% ethanol after 1 week (Goswami, 2004). Once in eth-

anol, samples were split into two sub-samples to be used for larval

quantification and scanning electron microscopy (SEM).

2.3.2 | Sample analysis

A 1 ml aliquot of the first sub-sample from each collection

date/location was placed onto a S50 plastic Sedgewick-Rafter Cou-

nting Cell and viewed under a compound microscope (Leica, Ger-

many). Larval abundance was recorded for 100 randomly selected

squares on each slide (Conway, 2012a, 2012b, 2015), for both oyster

species, O. edulis and C. gigas (Hu, Fuller, Castagna, Vrisenhoek, &

Lutz, 1993; Le Pennec, 1980; Loosanoff, Davis, & Chanley, 1966;

Pascual, 1972; Tanaka, 1981; Waller, 1981) and C. fornicata (Figure 3).

This procedure was replicated in triplicate for each sampling

F IGURE 2 Settlement plates
deployed in 2016 comprising
(a) blank plastic discs, (b) plastic
discs dipped in cement, (c) plastic
discs covered in old, smooth
Ostrea edulis valves, (d) plastic
discs covered in recently
deceased O. edulis valves and
(e) plastic discs covered in

Crepidula fornicata shells. (f) Each
structure contained three
replicates of each substratum
placed in random order. Photos:
Luke Helmer. Schematic of disc
deployment provided on the
right

TABLE 1 Sample collection dates and labels for both Portsmouth
and Langstone harbours

Sample Langstone Portsmouth

1 31/05/16

2 08/06/16

3 23/06/16

4 30/06/16 30/06/16

5 07/07/16 07/07/16

6 28/07/16 28/07/16

7 04/08/16 04/08/16

8 12/08/16 12/08/16

9 19/08/16

10 24/08/16

F IGURE 3 Planktonic larvae; (a) C. fornicata (slipper limpet), (b) oyster veliger, (c) barnacle nauplius, (d) Decapoda (Carcinus maenas)
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period/location. The values of larval abundance were then averaged

and used to calculate the larval density (larvae/ml).

2.3.3 | SEM of oyster larvae

Larval analysis by SEM was used to confirm the light microscope

identification of oyster larvae and monitor O. edulis larval survival

and growth in the column water. Larval measurements were used to

calculate the percentage frequency of each shell size class in both

locations. The two species, O. edulis and C. gigas, were distinguished

using morphological features clearly visible from the micrographs.

Five to 10 oyster larvae were selected from each sample and placed

in sodium hypochlorite (5%) for 48 h to disarticulate the two valves

of each individual (Rees, 1950). Samples were then dehydrated

through a series of increasing ethanol concentrations (50, 60, 70, 80,

90 and 100%), followed by submersion in hexamethyldisilazane

(100% HMDS solution).

Samples were mounted on 12 mm SEM stubs, which were then

coated in gold/palladium (Leica EM ACE600; Turner & Boyle, 1975).

Electron micrographs of the larval shells were obtained using a Zeiss

Evo MA10 SEM. Identification was confirmed morphologically using

the features of the D veliger, umbo and left valve hinge, according to

Hu et al. (1993) and Waller (1981). The maximum shell length and

height (μm) of each larva were calculated using ImageJ software

(Figure 4). The percentage frequency of each shell size was also calcu-

lated for each location and each time point.

2.3.4 | Associated epibiont diversity and
abundance

The epibiont succession and community assemblage supported by

O. edulis and C. fornicata populationswere assessed using in situ benthic

experiments. Live samples of O. edulis and C. fornicata were collected,

cleaned of any epibiota and placed into cages composed of 35.5 × 9 cm

circular plastic sieves (5 mmmesh) enclosed with 200 deer fencing mesh.

Two population densities were trialled; high-density (1,000–1,050 g of

O. edulis or C. fornicata/cage) and low-density (500–550 g of O. edulis

or C. fornicata/cage), with three replicates of each density and species.

The experiment was deployed at two locations: the Camber Dock,

Portsmouth Harbour (50�47032.5200N, 1�6025.9300W) and University of

Portsmouth research platform in Langstone Harbour (50�48023.7300N,

1� 1020.5600W; Figure 1). Oysters were obtained from the Solent fishery

and were selected according to the minimum landing size, using a

70 mm diameter ring (Helmer et al., 2019; Southern Inshore Fisheries

and Conservation Authority (IFCA), 2018a). Crepidula fornicata were

also collected from Langstone Harbour (Figure 1), using a 0.1 m2 Van

Veen grab onboard the 10.6 m University of Portsmouth research ves-

sel Chinook II (Offshore 105 Pilothouse). The epibiota was monitored

bi-weekly at each site between May and August 2016; all organisms

were identified to species level.

2.4 | DATA ANALYSES

2.4.1 | Planktonic larval abundance

Univariate analysis on two different variables (V1, larval density of

O. edulis; V2, larval density of C. fornicata) was performed using a

general linear model of two-way ANOVA with two factors: site

(two levels – Langstone and Portsmouth) and date (six shared date

levels – 30 June, 7 and 28 July and 4, 12 and 24 August). The

data were transformed by square root and the post-hoc Tukey’s

pairwise tests performed (Minitab® v.18). Multivariate analysis of

planktonic larval communities was performed using Primer 6.1.10

and PERMANOVA ß 20 (Primer-E Ltd: Plymouth Routines in Multi-

variate Ecological Research). Taxonomic groups were grouped as

barnacle larvae, Bryozoa larvae, Cnidaria, Copepoda larvae and

adults, C. fornicata larvae, Decapoda larvae, Foraminifera, Nematoda

larvae, oyster larvae (O. edulis and C. gigas), Ostracoda adults, Poly-

chaeta larvae and Tunicata. Data were transformed by the fourth

root. The factors site (two levels – Langstone and Portsmouth) and

date (six shared levels) were used in a PCO (principal coordinate

analysis) with data constrained using an S17 Bray Curtis similarity

matrix. A PERMANOVA main test (number of permutations 9,999)

was performed to confirm the significance of the dissimilarities

illustrated by the PCO, and a post-hoc pair-wise test to determine

which levels of factors are responsible for the differences. A SIM-

PER analysis (similarity percentage analysis) was used to assess the

degree of similarity within and between levels of both factors,

assessing the percentage contribution of each taxonomic group,

including O. edulis and C. fornicata contributions.

Since Langstone Harbour had more time points, the same multi-

variate analysis was performed but using only the samples from this

location. The same taxonomic groups represented multiple variables,

with one factor considered: date (10 levels: 31 May, 8, 23 and 30 June,

7 and 28 July and 4, 12, 19 and 24 August).

F IGURE 4 Electron
micrographs of oyster veliger
shells obtained by scanning
electron microscopy.
Measurements were collected for
shell (a) length and (b) height,
whilst the (c) umbo was used for
species identification
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2.5 | Ostrea edulis larval settlement

Analysis was conducted in IBM® SPSS® Statistics 25 (IBM Analyt-

ics, USA). Data were tested for normality and homogeneity, owing

to a non-normal distribution; a Kruskal–Wallis H test was used to

analyse the spat settlement between locations and between species

and orientation.

2.5.1 | Associated epibiont diversity and
abundance

The univariate and non-parametric multivariate techniques using ordi-

nation from PCO with S17 Bray Curtis similarity matrices contained in

Primer v.6 (Clarke & Gorley, 2006) were used to explore similarities

between the two localities, and of faunal communities removed from

two habitats: (i) live O. edulis; and (ii) live C. fornicata. Differences in

faunal communities removed from oysters and limpets were tested

using SIMPER and ANOSIM tests to determine which faunal commu-

nities contributed to each site and habitat. A DIVERSE test was

employed to determine which habitat had the greatest number and

abundance of fauna, followed by PCO analyses to visualize the results

as an ordination, constrained to linear combinations of the localities,

habitats and fauna. Similarities of fauna between localities were exam-

ined using PERMANOVA main tests and post-hoc pairwise tests.

All parametric statistical analyses were performed using Minitab

(Minitab Inc, v. 13.20). Spatial differences of faunal abundance were

examined using a general linear model (GLM) with site, species and

abundance (Portsmouth and Langstone harbours, oysters and limpets,

and high and low, respectively) as factors. A one-way ANOVA was

used to analyse differences of faunal abundance and numbers of spe-

cies, and biodiversity (Shannon Wiener) between oysters and limpets,

as well as any differences between the number of oyster spat settled

on the two substrata. All count data were square root transformed.

Post-hoc Tukey’s pairwise comparison tests separated values into sta-

tistically distinct subsets in all ANOVAs.

3 | RESULTS

3.1 | Benthic settlement substrata of O. edulis and
C. fornicata

Of the O. edulis assessed within Portsmouth, Langstone and Chiches-

ter, 80.3, 90.3 and 65.6%, respectively, did not display any distinguish-

able attachment point around the hinge area. Crepidula fornicata shell

accounted for 11.3, 8.6 and 30.4% of attachment points within Ports-

mouth, Langstone and Chichester harbours, respectively. In all cases,

attachment was to a deceased C. fornicata with the majority attaching

to the ventral surface of the shell, only exposed when no flesh was

present. Ostrea edulis shell accounted for 8.4, 1.1 and 4.0% of attach-

ment points within the Portsmouth, Langstone and Chichester

O. edulis populations, respectively (Figure 5a).

The main settlement substratum for C. fornicata within all three

harbours was found to be dead C. fornicata shell with 92.8, 75.6 and

95.5% of chains settled on this substratum within Portsmouth,

Langstone and Chichester harbours, respectively (Figure 5b). The per-

centage of live C. fornicata at the base of the chain varied across the

harbours, with Portsmouth and Chichester having relatively few, 0.9

and 1.4%, respectively, and Langstone Harbour having 10.2%. Very

few chains of limpets, <0.5%, were attached to oyster shells within

each harbour. Attachment to stone accounted for the second highest

percentage within all three harbours – 5, 14.2 and 1.4% within Ports-

mouth, Langstone and Chichester, respectively. All other attachments

accounted for <1% in each harbour. Settlement on dead C. fornicata

shell accounted for 92.2% within all harbours (pooled data), with

attachment to stone accounting for 4.0%, live C. fornicata 2.5%, oyster

shell 0.3%, cockle shell 0.6%, whelk shell 0.3% and periwinkle 0.1%

(Figure 5b).

F IGURE 5 (a) Proportion of O. edulis (n/harbour = 700) retrieved
from the fisheries within Portsmouth, Langstone and Chichester
harbours, as well as the total (n = 2,100), settled to C. fornicata shell,
oyster shell or with no obvious attachment point observed.
(b) Proportion of attachment substrata for live C. fornicata chains
observed within Portsmouth (n = 221), Langstone (n = 127) and
Chichester (n = 584) harbours, as well as the total for all locations
(n = 932). Each chain of C. fornicata was defined as the individuals
attached to one another in a single mass, irrespective of the direction
of attachment and excluding any deceased shells used as attachment
substratum. Chains were considered separate when the substratum
had multiple chains attached to it and these chains were not
interconnected by live individuals
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3.2 | Planktonic larval densities

Since the percentage contribution of C. gigas to the total abundance

of oyster larvae was very low in both sites (<5.5%), the overall oyster

densities are referred to as O. edulis larval densities.

In Langstone Harbour C. fornicata larvae dominated, contributing

the highest density at 374.7 ± 96.5 (mean ±SD) larvae/ml, whilst

O. edulis was lowest at 1 ± 0 larvae/ml (Figure 6a). In Portsmouth Har-

bour, O. edulis occurred at the highest density at 67.7 ± 29.3 larvae/ml

and C. fornicata was lowest at 6 ± 4.6 larvae/ml (Figure 6b). In

Langstone, during the entire spawning season (June to August 2016),

O. edulis larval density varied between 8 ± 1.7 and 92.3 ± 12.9

larvae/ml. Two possible spawning events are suggested by peaks in

O. edulis, on 28 July (92.3 ± 12.9 larvae/ml) and 12 August

(45.7 ± 20.1 larvae/ml). Crepidula fornicata larval density ranged

between 6 ± 3 and 374.7 ± 96.5 larvae/ml. This last value indicates

that a massive spawning event took place around 12 August. The

65.3 ± 14.2 (mean ±SD) larvae/ml observed on 19 August could be a

second event, or more likely larvae still present in the water column

from a previous spawning event.

In Portsmouth, between the end of June and the end of August,

O. edulis larval density ranged between 6.7 ± 3.5 and 67.7 ± 29.3

(mean ±SD) larvae/ml. A first spawning event on 30 June and a possi-

ble second one on 12 August corresponded to peaks of 67.7 ± 29.3

and 38.7 ± 26.8 larvae/ml respectively. Crepidula fornicata larval den-

sity was lower in Portsmouth than in Langstone, ranging between

6 ± 4.6 and 44 ± 18.1 larvae/ml, respectively. The only peak in larval

density corresponding to a probable spawning event was found in

Portsmouth on 12 August, with 44 ± 18.1 larvae/ml.

From the two-way ANOVA performed on O. edulis larval density

(variable V1), no significant differences were found between the two

sites, except on the 30 June and 28 July, with significantly higher den-

sities in Portsmouth and Langstone, respectively (Figure 7a). The dif-

ference of larval density was significant between dates (F5, 35 = 13.6,

P ≤ 0.001) and for the combination of factors (site × date) (F5,35 = 7.8,

P ≤ 0.001), with levels 6 and 7 of the factor ‘Date’ (28 July and

4 August) mostly responsible for this significant difference (post-hoc

Tukey’s pairwise test, P ≤ 0.05). Larval density of C. fornicata (variable

V2) did not vary significantly between sites and dates, except on

12 August (Figure 7), when a massive spawning event occurred, par-

ticularly in Langstone Harbour. Significant differences were found

between sites (F1,35 = 70.3, P ≤ 0.001), dates (F5,35 = 71.5, P ≤ 0.001)

and for the combination of factors (site × date) (F5,35 = 26.5,

P ≤ 0.001) (PERMANOVA main test), with level 8 of the factor ‘date’

(12 August) accounting for these significant differences (post-hoc

Tukey’s pairwise test, P ≤ 0.05).

The PCO analysis, explaining 64.6% of the total variation

between sites and dates, showed a clear separation between the

planktonic communities sampled on 12 August (date 8) at both sites

and the rest of the samples (Figure 8a – solid circle). Most of the sam-

ples from Langstone (date 4, 30 June; date 6, 28 July; date 7, 4 August)

could also be grouped into another cluster, revealing a slight differ-

ence in planktonic communities between the two locations (Figure 8a

– dashed circle). Significant differences in community composition

between sites (pseudo-F1,24 = 5.8, P ≤ 0.001), dates (pseudo-

F IGURE 6 Larval densities (mean ± SD) of O. edulis and
C. fornicata in (a) Langstone Harbour and (b) Portsmouth Harbour
during 2016. Dashed circles indicate potential spawning events

F IGURE 7 Larval densities (mean ± SE) of (a) O. edulis and
(b) C. fornicata within Langstone and Portsmouth harbours during
2016. Differences between data labels indicate significant differences
(two-way ANOVA, P < 0.05)
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F5,24 = 6.9, P ≤ 0.001) and for the combination of factors were found

(pseudo-F5,24 = 2.55, P ≤ 0.05). No significant differences were found

either between sites within each level of factor ‘date’ and between

dates within both levels of factor ‘site’ (post-hoc pair-wise test).

The average similarity of community composition was >80%

within each level of both factors (SIMPER analysis). This is mainly due

to the presence of Copepoda (larvae and adults), since their contribu-

tion to the similarity of each level ranged between 40 and 50%. The

dissimilarity between either dates and sites was no higher than 27%.

In particular the average dissimilarity percentage between Langstone

and Portsmouth was 15.97%, with three taxonomic groups mainly

contributing (Barnacle larvae 11.2%, Bryozoa larvae 10.8%, Copepoda

larvae 10.4% and adults 10.3%). The same three taxonomic groups

contributed to 66–67% of the planktonic community composition at

both sites: Copepoda (larvae and adults), C. fornicata and oysters. In

Portsmouth the contribution of oysters (12%) was higher than that of

C. fornicata (9.6%), whilst the opposite occurred in Langstone (oysters,

11.7%; C. fornicata, 12%).

The PCO analysis, explaining 72.2% of the total variation

between dates in Langstone Harbour, showed a separation of the

planktonic communities sampled on 31 May and 12 August from the

rest of the samples (Figure 8b – solid circles). Significant differences in

community composition were found between dates (F9,20 = 11.08,

P ≤ 0.001) in Langstone (PERMANOVA main test performed with one

factor). Nonetheless the post-hoc pair-wise test did not produce any

significant difference between each level of factor ‘date’.

The average dissimilarity was <25% between most of the dates. It

was slightly higher (25–35%) between 12 August and the other dates,

with three taxonomic groups mainly contributing (�60%): Copepoda

(larvae and adults), barnacle larvae and C. fornicata. Greater dissimilar-

ity (35–45%) was found between 31 May and the other dates, with

the main contribution (�60%) coming from Copepoda (larvae and

adults), barnacles and oysters. The greatest dissimilarity was found

between 31 May and 12 August (53%). Copepoda (larvae and adults)

contributed 40–45% of the planktonic community composition in

Langstone Harbour during the whole spawning season. On dates 1, 4

and 7–9 the contribution of C. fornicata (C) was higher than that of

oysters (O) (date 1 – C 14.2%, O 12.9%; date 4 – C 14.1%, O 12.8%;

date 7 – C 10.7%, O 9.6%; date 8 – C 15%, O 8.5%; date 9 – C 14%,

O 8.8%; SIMPER analyses).

The SEM analysis of planktonic O. edulis veligers revealed that in

Langstone Harbour the greatest length and height, 125.5 ± 27 μm (all

values mean ±SD) and 147.2 ± 31.2 μm, respectively, were found on

4 August, whilst the lowest values, 73 ± 0 and 97 ± 0 μm, were found

on 31 May. In Portsmouth Harbour the greatest length and height,

115.7 ± 16.8 and 145.2 ± 13.7 μm, respectively, were found on 7 July,

whilst the lowest values, 94 ± 17.7 and 114.7 ± 20.6 μm, were found

on 28 July. The length of larval oyster shells varied between 60 and

>200 μm in Langstone Harbour with the most frequent size class

being 100–110 μm (19.4%). In Portsmouth Harbour the length ranged

between 60 and 170 μm, with the most frequent size class also

100–110 μm (25.5%). The height of oyster shells varied between

70 and >200 μm in Langstone Harbour with the most frequent size

classes being 100–110 and 110–120 μm (both 16.7%), whilst in Ports-

mouth Harbour it ranged between 70 and 180 μm, with the most fre-

quent size class being 140–150 μm (25.5%).

3.3 | Epibiont biodiversity and settlement
substrate preference of O. edulis

In Portsmouth Harbour Palaemon serratus (31.2%), Pomatoceros

triqueter (16.4%) and Ascidiella scabra (13.7%) accounted for >50% of

the community (SIMPER analyses). In Langstone Harbour, 50% of the

F IGURE 8 Principal coordinate analysis
(PCO), S17 Bray Curtis similarity. (a) Distribution
of planktonic larval communities in Langstone and
Portsmouth harbours and the taxonomic groups
that best characterize the planktonic
communities. (b) Distribution of planktonic larval
communities in Langstone Harbour and the
taxonomic groups that best characterize the
planktonic communities
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community was again made up of three species; however, P. serratus

(25.6%), Tubularia indivisa (16.3%) and A. scabra (12.9%) were the

dominant species. No significant differences were observed between

the high- and low-density populations (GLM, F1, 77 = 4.5, P > 0.05).

The cages were grouped together to increase the replicates (Table 2).

Neither of the sites yielded an even population of rank abundance.

Both sites were dominated by a few species.

Species diversity was significantly different between location

(Langstone Harbour vs Portsmouth Harbour) and species (O. edulis vs

C. fornicata) (GLM, F1, 77 = 11.2 and 23.2, P ≤ 0.01 and P ≤ 0.001,

respectively). No significant differences were found with species

diversity in high- and low-density populations of oysters and limpets

(GLM, F1, 77 = 2.6 and 0.5, P ≥ 0.05, respectively). A one-way ANOVA

demonstrated that the number of associated faunal species, per indi-

vidual, was significantly greater for O. edulis (9.4 ± 1.3, mean ± SE)

compared with C. fornicata (5.2 ± 0.9; F1, 80 = 37, P ≤ 0.001;

Figure 9a).

No significant differences were observed between the epibiont

species abundance associated with C. fornicata at either location

(Langstone Harbour vs Portsmouth Harbour) or in either density (high

vs low; GLM, F1, 77 = 1.3 and 3.5, P ≥ 0.05, respectively; PER-

MANOVA pairwise test, t = 1.5, P ≥ 0.05). However, significant differ-

ences were observed between the faunal species abundance

associated with O. edulis and C. fornicata (GLM, F1, 77 = 22.5,

P ≤ 0.001). Ostrea edulis supported more than double the number of

organisms than C. fornicata (37.7 ± 2.9 vs 16.5 ± 1.8 individuals; mean

±SE), respectively; one-way ANOVA, F1, 80 = 31.3, P ≤ 0.001). In addi-

tion, O. edulis had the greatest measure of biodiversity compared with

C. fornicata (one-way ANOVA, Shannon Wiener vs. oysters and lim-

pets: F1, 10 = 10, P ≤ 0.05).

A PCO analysis explaining 53.6% of the variation in Portsmouth

Harbour revealed a significant difference between the faunal com-

munity associated with O. edulis and C. fornicata (PERMANOVA main

test, F1, 50 = 8.2, P ≤ 0.001), also corroborated by an ANOSIM test

(R = 0.28, P ≤ 0.001). Twenty species characterized the faunal com-

munity associated with O. edulis, and 16 species characterized the

faunal community associated with C. fornicata (SIMPER). Four

TABLE 2 Mean number of species and total abundance found
associated with Ostrea edulis and Crepidula fornicata, showing the
results of the high- and low-density conditions and then an average as
there was found to be no significant difference between the two
densities

Mean number
of species

Mean total
abundance

High-density oysters 10.1 42.9

Low-density oysters 8.7 30.9

High-density limpets 5.4 17.3

Low-density limpets 4.9 15.4

All oysters 9.4 37.4

All limpets 5.2 16.5

F IGURE 9 (a) Species diversity and abundance associated with O. edulis and C. fornicata. Data labels indicate significant differences between
diversity and abundance associated with the two species (P < 0.05). (b) Principal component analysis illustrating the distribution of species
abundance associated with O. edulis and C. fornicata populations in Langstone Harbour, and the faunal species that best characterize the
respective communities
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species contributed to 70% of the faunal community on O. edulis,

with P. serratus, P. triqueter, A. scabra and T. indivisa contributing

31.2, 16.4, 13.7 and 9.4%, respectively (SIMPER). Two species con-

tributed to 70% of the faunal community associated with

C. fornicata, with P. serratus and Spirorbis spirorbis (contributing 53.3

and 15.6%, respectively).

A PCO explaining 46.1% of the variation in Langstone Harbour

revealed a significant difference between the faunal community asso-

ciated with O. edulis and C. fornicata (PERMANOVA main test F1,

28 = 5, P ≤ 0.001), also corroborated by an ANOSIM test (R = 0.47,

P ≤ 0.001; Figure 9b). Twenty-five species characterized the faunal

community associated with O. edulis, and eight species characterized

the faunal communities associated with C. fornicata (DIVERSE Test).

Five species contributed to 70% of the faunal community associated

with O. edulis, with P. serratus, T. indivisa, A. scabra, P. triqueter and

Dendrodoa grossularia contributing 25.6, 16.3, 12.9, 10.6 and 5.1%,

respectively (SIMPER analyses). Two species contributed almost 70%

of the faunal community associated with C. fornicata, with P. serratus

and T. indivisa contributing 41.2 and 22.1%, respectively.

Settlement of O. edulis spat was significantly greater on settle-

ment discs covered with recently deceased oyster shells, with

6.7 ± 1.2 (mean ± SE) spat/disc, more than double the number of spat

associated with old smooth oyster shells, 2.7 ± 1.3. No significant

difference in the number of settled spat was found between old

smooth oyster shells, C. fornicata shell (1.7 ± 0.3), cemented discs

(2 ± 1) or the plastic control disc (0.7 ± 0.7; Figure 10; one-way

ANOVA, F4, 10 = 5.6, P ≤ 0.05).

4 | DISCUSSION

Surveys of the benthic composition combined with data on recruit-

ment substrate utilized by O. edulis and C. fornicata larvae depict an

ecologically concerning picture for the native oyster. A long-term

study by Helmer et al. (2019) revealed that, over a 19-year period,

O. edulis populations within Chichester Harbour (Solent, UK)

decreased by 96%, and populations of C. fornicata increased by

68.9%. Extremely high densities of C. fornicata were found within the

Solent [84.1 ± 24.5, 174.3 ± 34.5 and 306 ± 106 individuals per m2

(mean ±SE) for Portsmouth, Langstone and Chichester harbours,

respectively]. Both Langstone and Chichester harbours contained sig-

nificantly more individuals than Portsmouth Harbour. During the sur-

vey, no oysters were found in Portsmouth Harbour, two were found

in Langstone Harbour and one was found in Chichester Harbour,

which led to concern about mechanisms of competitive ecological

exclusion of O. edulis by the invasive C. fornicata.

In the absence of plentiful live oyster substrate (1–8% were found

associated with conspecific shells), a relatively low percentage

(8–30%) of the Solent O. edulis population was observed to have set-

tled on the ventral surface of dead C. fornicata shell. No oysters were

found settled on live C. fornicata. This is in contrast to the 75–98% of

C. fornicata found settled on conspecific shells. This suggests that

there are strong competitive interactions at the settlement stage dur-

ing which C. fornicata outcompetes O. edulis larvae for available domi-

nant substrate, thereby perpetuating the negative feedback loop and

furthering the exclusion of the native species. This is suggested as

one of the main mechanisms of the ecological phase shift occurring in

the Solent from mixed sediment featuring O. edulis reefs to

C. fornicata-associated silty mud.

The zooplankton analysis also suggests that in areas where high

densities of C. fornicata are present, native oyster larvae are facing sig-

nificant competition for food resources in the water column during

the prodissoconch free-swimming feeding stage. Within Portsmouth

Harbour, abundances of C. fornicata and O. edulis were largely similar,

with an O. edulis spawning event occurring in late June, almost a

month earlier than the Langstone spawning event in late July. This

supports the occurrence of geographic population structure in

O. edulis over very small spatial scales observed in the adult

populations of these harbours (Helmer et al., 2019). A second

spawning event for both species was observed in both harbours in

early August.

This was confirmed for O. edulis by the demographic analysis of

larval size as a proxy for growth using the SEM images, as is the earlier

spawning event in Portsmouth Harbour. In the present study plankton

sampling was conducted on the surface, allowing the collection of

only the small shell size classes (maximum 190 μm), but it must be

considered that oyster larvae usually move deeper in the water during

their growth, ending up near the substrate, seeking a suitable settle-

ment surface. Therefore, it is recommended to repeat plankton sam-

pling at different depths in order to collect all shell size classes, and

follow the spatio-temporal growth pattern of oyster larvae. A more

thorough sampling, including greater depths, and the combination

with the recruitment data, could provide a wider overall view on

O. edulis reproduction in the Solent.

Understanding the spawning phenology of O. edulis and

C. fornicata is of critical importance for the development and imple-

mentation of any restoration strategy and management. Of ecological

significance are both the timing and magnitude of the C. fornicata

spawning event that occurred in Langstone Harbour concurrently

with the second peak in O. edulis larval density. These harbours are

eutrophic (Environment Agency, 2016a, 2016b) and therefore food is

unlikely to be a limiting factor for feeding planktonic larvae. However,
F IGURE 10 Number of O. edulis spat (mean ± SE) settled to the
various settlement substrata provided
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the effect of simultaneous spawning in these sympatric species on lar-

val energetics, development and food resource partitioning is not cur-

rently known. It is feasible that the extremely high densities of

C. fornicata larvae, eight times greater than the O. edulis larval density,

could have a negative competitive effect both in the nekton and at

the benthic boundary layer during settlement, particularly when the

conspecific shell abundance is stacked firmly in favour of C. fornicata

recruitment. Further investigation is required, but the O. edulis larvae

size class analysis suggests that larvae are remaining and growing in

the water column over 3–4 weeks. The cumulative impact of interspe-

cific competition and lack of substrate availability on larval fitness

could lead to delayed onset of pediveliger development and success-

ful metamorphosis. These factors will create a barrier to healthy

recruitment in O. edulis.

The relatively complex life history of O. edulis makes it a particu-

larly vulnerable species. As a viviparous species, the success of wild

population reproduction depends on broodstock density to a greater

degree than oviparous species reproducing by broadcast spawning. In

many areas, broodstock density might be too low to ensure synchro-

nous spawning, leading to sporadic spawning events and insufficient

production of larvae. In 2016, spawning events and relatively high

densities of O. edulis larvae were found in both Langstone and Ports-

mouth harbours, indicating a successful production of native oyster

larvae in the Solent. This could be related to, or enhanced by, the

presence of broodstock cages installed during this time, acting as

larval pumps.

Despite the O. edulis population successfully breeding in 2016

and the presence of larvae in the water column, there has been no

substantial recruitment in the Solent since then (Southern Inshore

Fisheries and Conservation Authority (IFCA), 2014, 2015, 2017,

2018b; Sussex IFCA, 2018). To increase the chance of successful

O. edulis spat settlement there needs to be an increase in the presence

of either live O. edulis or recently deceased empty shells. One current

plan for increasing the successful settlement of O. edulis involves

dredging C. fornicata from the seabed and returning the empty shells

as a substrate for O. edulis settlement (Harding, Nelson, &

Glover, 2016). However, this present study suggests that this method

would be ineffective as the O. edulis spat did not preferentially settle

on C. fornicata shells; in fact the levels of settlement were not signifi-

cantly different from those on plain plastic or cement-covered discs.

Successful settlement of O. edulis larvae depends on the presence

of suitable substrata. The significantly higher settlement of O. edulis

larvae on new conspecific shells than on old eroded shells or

C. fornicata shells confirms recent findings of the importance of con-

specifics in settlement cues (Rodriguez-Perez et al., 2019). Although

O. edulis larvae will settle on other available hard substrata, they are a

gregarious species that prefer to settle on adult shells, especially the

new growth (Bayne, 1969; Perry & Tyler-Walters, 2016). The surface

heterogeneity could be driving this difference in settlement: O. edulis

shells are rough and scaly in appearance (Perry & Jackson, 2017),

whereas C. fornicata shells are much smoother (Rayment, 2008). Dif-

ferences in CaCO3 mineral composition may also explain this

settlement preference by O. edulis larvae; C. fornicata shells are

predominantly aragonitic (Pilkey & Goodell, 1964), whereas the domi-

nant component of the outer prismatic foliated shell layers of O. edulis

is calcite, with traces of aragonite and halite (Medakovi�c, Traverso,

Bottino, & Popovi�c, 2006). Ostrea edulis valves usually consist of three

layers, the first being the periostracum, a thin outer layer which sits

on the middle section or prismatic layer of calcite. The innermost

layer, normally pearly white in colour, is formed from aragonite

(Walne, 1974). This study disputes the finding that settlement is

determined by the availability of hard substrata alone (Smyth

et al., 2018), but rather the properties of the hard strata are important

factors in determining settlement in O. edulis.

The diminished seabed O. edulis populations in the Solent and

throughout Europe mean that there is a lack of suitable settlement

substrate even when locations are not recruitment limited. The evi-

dence presented here makes it clear that the native oyster population

requires conspecific or other appropriate settlement substrate. The

extremely high densities of live C. fornicata do not provide suitable

substrate for successful settlement of native O. edulis larvae and are a

barrier to the recovery of the European native oyster. In areas of high

slipper limpet densities, deploying recently deceased oyster cultch on

top of the C. fornicata could be an effective strategy to mitigate the

inhibition of O. edulis settlement by increasing the quantity of suitable

substrate whilst reducing predation and competition.

The lack of suitable settlement sites for O. edulis larvae, owing to

the presence of C. fornicata shells and lack of O. edulis shells on the

seabed, could lead to delayed metamorphosis of the oyster larvae

while they look for a suitable settlement substrate. The delaying of

metamorphosis is likely to have negative impacts on the larvae,

whether that be degeneration of the foot or starvation, both leading

to reduced survival. Withholding suitable settlement sites for M. edulis

resulted in delayed metamorphosis, during which the velum

degenerated and the foot grew larger, there was also a decline in

feeding rate and eventually the larvae were no longer able to feed

(Bayne, 1965). In the polychaete Hydroides elegans, metamorphosis

cannot be delayed without measurable negative effects on juvenile

survival and growth (Qian & Pechenik, 1998). Echinometra larvae that

experienced a prolonged delay in metamorphosis also had a reduced

chance of survival, metamorphosis success and survival to juvenile

stage (Rahman, Boon, Muntohar, Tanim, & Pakrashi, 2014). There is

currently no evidence that delayed metamorphosis in O. edulis has

these adverse effects; however, it is likely that there will be negative

effects as observed in other species.

Both O. edulis and C. fornicata are filter feeding molluscs that

potentially offer functional equivalence in their nutrient assimilation

or water filtration services. They do not, however, provide ecological

equivalence in terms of the ecological niche and suprabenthic commu-

nities they support. De Montaudouin et al. (1999) found that the pres-

ence of C. fornicata had no effect on the benthic community;

however, this study demonstrates that the presence of C. fornicata

has a significant negative effect on the epibiont biodiversity. Specifi-

cally, the biodiversity decreased in the presence of C. fornicata. As

well as supporting a lower total abundance of species, in relation to

O. edulis, C. fornicata also supported a significantly different
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community. It is now widely accepted that oyster shells show higher

diversity than non-living hard substrata, and as oysters grow older and

therefore larger, epibiotic diversity will increase (Smyth &

Roberts, 2010). However, this study is one of the first (at least in

recent years) to show that O. edulis substrate supports higher levels of

biodiversity than C. fornicata.

As well as an increase in biodiversity, O. edulis also provides an

increase in overall biomass, which in turn improves the health and

quality of an ecosystem. Although increases in biomass and biodiver-

sity themselves do not necessarily make an ecosystem more resilient

to change, they are driving factors. The three main factors required to

facilitate ecosystem resilience are diversity, connectivity within the

ecosystem and adaptive capacity (Bernhardt & Leslie, 2013). There-

fore, an increase in trophic complexity associated with O. edulis, com-

pared with C. fornicata, will also increase the resilience and health of

an ecosystem.

Non-native invasive species are a threat to the conservation of

biodiversity and can negatively impact ecosystem services, with both

ecological and economic impacts (Katsanevakis et al., 2014). Phase-

shifts caused by the introduction of invasive species are becoming

increasingly common, for example the introduction of Arcuatula sen-

housia (Asian date mussel) to San Diego, USA, changed the entire

community composition (Grosholz, 2002; Lambert, Levin, &

Berman, 1992). The mats of byssal threads produced by the mussel

created a unique habitat that was not present in the otherwise largely

unstructured mudflats, which as a result encouraged the development

of a new community assemblage (Crooks, 1998; Crooks &

Khim, 1999). Crepidula fornicata is a threat to native habitats and spe-

cies; as a habitat engineer it has been reported to cause substantial

large-scale changes in the recipient ecosystems, which could lead to

phase shifts. These include modification of the trophic structure,

changes in phytoplankton composition, enhanced siltation owing to

accumulation of faeces and pseudofaeces, and changes in benthic

sediments and near-bottom currents (Thieltges et al., 2006). This

study demonstrates that the species assemblage of the community

associated with C. fornicata was significantly different from the com-

munity associated with the native keystone species O. edulis, causing

a shift in the coastal benthic biodiversity and ecosystem structure.

It can be concluded that, as an ecosystem engineer, O. edulis pro-

vides three-dimensional complex habitat in an otherwise sparse envi-

ronment, increasing potential ecological niches. The native oyster

O. edulis facilitates an increase in biodiversity of epibiont communi-

ties, especially when compared with the invasive C. fornicata. This

study finds newly deceased conspecific cultch to be the most suitable

for O. edulis spat settlement, although surface complexity and material

composition are likely to be important drivers. Live C. fornicata sub-

strate both inhibits O. edulis settlement and significantly changes the

benthic community. Settlement substrate type matters in the pres-

ence of high benthic and larval densities of C. fornicata and is a limit-

ing factor to recruitment of O. edulis. It is clear that the Solent is now

a substrate-limited system for O. edulis, lacking the reef structure to

which shellfish larvae can attach (Westby, Geselbracht, &

Pogoda, 2019). Substrate management is required to provide reef

substrate in areas of high C. fornicata if the aim is to restore self-

recruiting populations of O. edulis.

Although C. fornicata may provide functional equivalence in terms of

filtering services, its associated species community is distinct from that of

O. edulis and it is not equivalent as an ecosystem engineer. This study

identifies the mechanisms of ecological phase shift occurring within areas

dominated by the invasive species C. fornicata. This intensifies the need

to manage C. fornicata benthic populations to enable recovery of O. edulis

and its associated ecosystem services and functions.
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