Intelligent Exploration and Autonomous Navigation in Confined Spaces

Aliakbar Akbari, ! Puneet S Chhabra,? Ujjar Bhandari ? and Sara Bernardini 4

Abstract— Autonomous navigation and exploration in con-
fined spaces are currently setting new challenges for robots.
The presence of narrow passages, flammable atmosphere, dust,
smoke, and other hazards makes the mapping and navigation
tasks extremely difficult. To tackle these challenges, robots
need to make intelligent decisions, maximising information
gain while maintaining the safety of the system and their
surroundings. In this paper, we present a suite of reasoning
mechanisms along with a software architecture for exploration
tasks that can be used to underpin the behavior of a broad
range of robots operating in confined spaces. We present an
autonomous navigation module that allows the robot to safely
traverse known areas of the environment and extract features
of the unknown frontier regions. An exploration component,
by reasoning about these frontiers, provides the robot with the
ability to venture into new spaces. From low-level sensory input
and contextual information, the robot incrementally builds a
semantic network that represents known and unknown parts
of the environment and then uses a logic-based, high-level
reasoner to interrogate such a network and decide the best
course of actions. We evaluate our approach against several
mine-like challenging scenarios with different characteristics
using a small drone. The experimental results indicate that our
method allows the robot to make informed decisions on how to
best explore the environment while preserving safety.

I. INTRODUCTION

Confined spaces are characterized by two features: i) They
are substantially (or fully) enclosed, with limited access of
entry and egress; and ii) They present one of more risks
for operators specified among fire and explosions, presence
of gases, vapours, fumes, dust, and flowing solid, increase
in body temperature and drowning. Examples are chambers,
silos, tanks, mines, pits, pipes, sewer and similar spaces. The
use of robotic systems to assist or remove human operators
working in such restricted and hazardous environments can
prove highly beneficial to minimize health & safety risks and
make operations in such spaces more time and cost effective.

Several tasks that need to be performed in confined spaces
require an initial exploration and mapping of them. Given the
possible extreme conditions that can be encountered, robot
navigation and exploration become challenging problems in
such spaces. In maximising the acquired knowledge, robots
need to take into account the conditions of the environment,
e.g., presence of multiple and narrow junctions, toxic and
flammable gases, and poor visibility (e.g., fog or dust) as
well as their available resources to be able to safely leave

*This work is partially supported by the Innovate UK.

Aliakbar Akbari' and Sara Bernardini* are with Department of Com-
puter Science, Royal Holloway University of London, Egham, UK.
ali.akbari@rhul.ac.uk, sara.bernardini@rhul.ac.uk

Puneet S Chhabra? and Ujjar Bhandari® are with Headlight AI Ltd.,
London, UK. puneet@eadlight.ai, ujjar@headlight.ai

Fig. 1: (Left) A real-world example of confined space, an actual
mine. Source: Network Rail, UK. (Right, Top) - A simulated
environment with multiple entry and exit points. (Right, Bottom) -
Inside view of the simulated scene used for experiments.

the space when necessary. To tackle such issues, higher levels
of autonomy along with advanced sensing are needed.

Intelligent exploration demands robots to sense, localize,
map and navigate in a 3D space by making use of semantic
and contextual knowledge. The 3D map of the environment
can be constructed using sensors and robot localization soft-
ware, e.g., simultaneous localization and mapping (SLAM)
system. A SLAM system is capable of providing the in-
formation on free and occupied spaces or grids around the
robot. Autonomous navigation finds collision-free paths by
employing motion planning algorithms that take into account
the 3D map and localization information. Finally, semantic
knowledge processing deals with representing knowledge
(e.g., connected regions and their state) and reasoning over it
to enable the robots to take smart decisions while exploring.

To deal with the challenges posed by using robotic sys-
tems in confined spaces, this paper presents a semantic
and intelligent exploration approach which aims to provide
autonomous navigation and smart decision making for robots
tasked with surveying unknown regions and confined spaces.
The main contributions of this work are:

e Advanced sensing. We used a light-weight (< 60gms)
360° time-of-flight (ToF) imaging solution that pro-
duces infra-red (IR) and 3D point cloud data in a single
snap-shot. We apply and test our algorithms on sparse
point cloud data collected using the Dragonfly system.

o Autonomous navigation. Robot navigation in unknown
environments involves continuous mapping, localisation
and path planning. We propose a reasoning module that
selects goals intelligently.

o Semantic knowledge processing. We use semantic net-

works to represent the robot’s knowledge. The network
is incrementally built using the low-level information
collected when a robot explores an area. A set of logic-
based reasoning process, along with environmental
knowledge, are used to explore the surroundings. Upon
mission termination, this knowledge is then provided to
the operator.

o High-level reasoner. We propose a high-level reasoner
that aims to make the best decisions for the robot.
This module employs semantic knowledge processing
using the latest environment conditions (measured using
sensors) and the robot’s contextual information, e.g.,
regions with fog or smoke. This kind of intelligent
awareness enables the robots to explore confined spaces
even in the presence of multiple, complex branches.

II. RELATED WORKS

Robot exploration has been studied in the context of
various applications. Frontier exploration is one of the most
popular approaches [1]. A frontier region is the boundary
between explored and unexplored region. The frontier explo-
ration algorithm drives the robot to visit the areas that have
not been explored. Selin ef al. [2] concentrate on exploring
large areas, while Ravankar et al. [3] focus on exploration
using low-cost sensors. The approach in Bachrach er al. [4]
also employs a modified version of the frontier exploration
method to choose possible poses in the free space where a
robot should y to to observe previously unexplored regions
and remain well-localized.

The work Vanegas et al. [5] present navigation in unknown
and GPS-denied environments. Mainly, the approach com-
bines the use of Simultaneous Localization and Mapping
(SLAM) with Partially Observable Markov Decision Pro-
cesses (POMDP) algorithms into a framework in which the
navigation and exploration tasks are modeled as sequential
decision problems under uncertainty. Shim et al [6] offer
an autonomous exploration algorithm for urban navigation
by building local obstacle maps and looking for conflict-
free trajectories by using a model predictive control (MPC)
framework. There are some other approaches, e.g., [7],
[8], [9], that enhance exploration using different versions of
perception and localization systems with path planning in
confined spaces. In this direction, the work Thrun et al. [10]
discuss the software architecture of an autonomous robotic
system designed to explore and map abandoned mines. A
set of software tools is presented, enabling robots to acquire
maps of unprecedented size and accuracy.

Most approaches focus on exploring unknown regions with
no high-level smart decision making capabilities or consider-
ation of the robot’s resources. However, there are some chal-
lenging applications in confined-space environments where
a robot needs to be smart enough to take the effective
decisions in the presence of multiple options, motion dif-
ficulties, fog, dust, and similar factors. This paper addresses
these challenges by proposing an integrated approach to
embrace autonomous navigation, semantic knowledge, and

Fig. 2: (Center) A light-weight 360° time-of-flight (ToF) 3D camera
system used to capture a confined space (a basement). (Left) An
example point cloud generated using the Dragonfly system. (Right)
A simulated robot in Gazebo carrying the 3D ToF camera system.

logic-based reasoning augmented with a context and vehicle
health system that results in intelligent exploration.

III. 3D SENSING AND LOCALIZATION

To create a 3D map and perform localization, a robot
should be able to carry out SLAM while it is navigating.
The 3D camera system Dragonfly (shown in Figure 2) that
we use can generate point cloud data at 45fps, producing
15Mil points. However, in our experiments, we down-sample
and capture data at 5fps, producing 2Mil points. Figure
2 illustrates how the Dragonfly system is integrated with a
drone and an example point cloud data captured using the
system.

The Dragonfly SDK allows the robot to localise itself in
the world coordinates, in the absence of GPS. This is further
used to produce a fused 360deg point cloud. The Dragonfly
SDK also provides a 3D map along with the borders. The
nodes that belong to the border regions are wrapped into
frontier regions. Finally, the SDK identifies voxel regions,
both free and occupied, along with their boundaries (see
Figure 3).

We developed a reasoning mechanism based on the per-
ception system to identify region boundaries in confined
spaces. The boundaries could be barriers and entries that
branch out a space to a new environment. Regions are
classified into branches and voids. A ray casting technique is
used to identify whether a robot is located within the barriers
or not according to the sensors range. If a robot is surrounded
by obstacles, the region is labelled as a branch; when it is
obstacle free, the region is labelled as void. In addition, our
perception system allows us to measure the closest distance
between a frontier node and obstacles.

Fig. 3: An example point cloud (captured using the Dragonfly
system), segmented into regions (various colors) and the region
boundaries highlighted in yellow.

IV. SEMANTIC KNOWLEDGE PROCESSING

We now show how the robot makes use of high-level
knowledge to make intelligent decisions. Our approach
consists of two main steps: i) knowledge representation;
and ii) reasoning over that knowledge. Knowledge can be
structured through a semantic network providing relations
between different concepts. It is composed of nodes, which
are either concepts or objects, and links which express the
relations between them. The semantic network is incremen-
tally constructed and expanded using low-level information.
After a robot explores an area, sensor measurements and
contextual information is extracted and semantically laid over
the network. The main templates proposed for the nodes are:

o Agent: robots acting in the environment.

o Region: regions of explored and unexplored space.

« Vision: values of sensory information, e.g., clear, fog,
dust.

o Gas: different gases that are in the environment.

In addition, the predicates corresponding to the links are:

e Loc: loc (rob,rgn) links the current location of a robot
rob with a region rgn.

e Conn: conn(rgnX,rgnY) represents that region
rgnX is connected to another region rgnY inside the
environment.

o Exp: exp (rgn,value) says that region rgn has explo-
ration value value.

o Gas: gas(rgn,value) shows that region rgn has a
flammable gas value wvalue, which could be either
flammable or not.

e Vis: vis (rgn,vision) links region rgn with the vision
value vision, which can be dust, smoke, dirt, and clear.

o Visit: visit (rgnX,rgnY’) says that region rgnX is the
visited region for the region rgnY.

e Pot: pot (rgnX,rgnY’) says that region rgnX is one of
the candidate regions to be explored after region rgnY .

o Best: best (rgnX,rgnY’) says that region rgnX is the
best next region to explore after region rgnY.

o BestNeigh: bestNeigh (rgnX,rgnY’) says that region
rgnX is the best neighbouring region for region rgnY .

o BestHome: best Home (rgnX,rgnY’) says that region
rgnX is the best region towards the robot home position
for the region rgnY .

We propose a set of logic-based reasoning processes to
extract semantic information from the knowledge base. This
information is then fed into the exploration module. The
reasoning process uses the syntax of first-order logic. This
includes quantifiers, predicates, functions, variables, as well
as constants. We show some of our formulas in what follows.
To find the next feasible region to explore, the following
reasoning is applied:

1 : Jz Jy {conn(z,y) A exp(x, not Explored)
Awvis(z, clear) A gas(x, not Flammable) (1)
A fSize(z) > fDim(rob)) = pot(z,y)}

The functions fSize() and fDim() in (1) return the size
of an entrance and the dimension of a robot, respectively.

Formula (1) says that, if region y is connected with region
z, and x is unexplored, has clear vision, is not flammable,
and the size is greater than the dimension of a robot, = a
potential candidate region that could be explored next.

After finding all the candidate regions to explore next,
the robot decides which one is the best option using the
following reasoning process:

@2 : Jwy 32" Iy{pot(zn, y))
A @' = fMinDist(z,,rob) = best(z',y)}

The function fMinDist in (2) gets the list of all candidate
regions x,, and the current robot location, rob and returns the
region z’ which has the minimum distance to 70b. The region
2’ becomes the best next region to explore.

If all the regions around the robot are visited, the robot
should determine which one of the visited regions is the best
one to traverse to perform further exploration. The following
formula defines how the robot can do that:

3 1 3wy, 2!, Jy Iz, {visit (z,,y) A pot (x,, 1)
A zn = fMinNeigh (), rob) 3)
= bestNeigh(zn,y)}

In (3), the predicate visit lists all the explored regions
T, adjacent to a region y using the predicate exp. The
function fMinNeigh gets the potential regions z/, and the
current robot position and returns the list of regions z,
connecting the current location to the next best unexplored
area through neighbouring regions with minimal cost. The
best neighbouring regions for an area are returned by the
predicate bestNeigh.

The following formula reasons about how a robot can
select the shortest sequence of regions in order to get back
to the home position from the current location:

4 : FxTyn{loc (rob, £)A (y, = fMinCost (x,rob))

“4)
= bestHome (yn,)}

In (4), the function fMinCost lists all the regions that
connect the robot’s location to the home position. The
formula stores in bestHome the list of the regions with the
minimum cost to home.

V. AUTONOMOUS NAVIGATION

Planning collision free paths is integral to autonomous
navigation. Motion Planning deals with detecting collision-
free paths and generating a set of way-points. It is mostly
done in the configuration space [11]. The configuration space
has as many dimensions as the degrees of freedom a robot
has, and therefore each point represents a configuration
(state) of the robot. The subspace corresponding to collision-
free configurations is called the free space and the subspace
corresponding to collision configurations is called the colli-
sion space. Motion planning consists in finding a path in the
free space between two robot configurations.

Recent research is centered around sampling-based motion
planning to provide efficient solutions to path planning

by avoiding the need to compute the whole configuration
space. In this work, we employ the RRT-Connect motion
planner [12]. Two trees are rooted at the start and goal
configurations, requiring to meet. One tree is extended and
attempts to connect to the closest node of the other tree in
each iteration. Next, the procedure is reversed by swapping
both trees. A greedy heuristic method is applied to traverse
the two trees.

In an unknown environment, with limited or incomplete
information about the free and collision space, a robot should
be integrated with re-planning capability in order to traverse
the space safely. Via navigation, more information can be
perceived and knowledge added through the robot vision
system. This allows the robot to apply collision checking
for the rest of configurations found in the path. Once any
collision is detected, re-planning is applied to look for a new
path from the current configuration. Algorithm 1 details the
steps of the proposed autonomous navigation module. First,
the type of region is returned using EvalRgn. It can be an entry
region, a branch or a void. Frontier nodes are then laid on it
[line 2]. The goal configuration is chosen by SetGoal, taking
into account the region type [line 3]. If the type is void, the
function selects the frontier node nearest to the obstacles.
A safety distance from them is maintained to stabilize the
robot within the barriers (obstacles or walls). If the type is a
branch (multiple entry/exit points), we select the best frontier
node (from a list of all the nodes as far away as possible
from the current robot location and the obstacles). Finally,
in case of entry/exit region, the mean value (in meters) of the
entry/exit is computed and returned. The function SetMPQuery
is in charge of setting and returning all motion planning
parameters containing planning time, goal state, initial state
(using the SDK), step size, etc [line 4].

Motion planning is then called by CallMP and a collision-
free path is reported [line 5]. If a path is found, the status
of the robot power is determined by CheckPower to check
that there is sufficient power to follow the path [line 9].
Each configuration of the path is evaluated against collisions
with the environment by CheckCollision. If it is collision free,
a robot moves to the configuration using MoveToConf and
the map M is updated from the current position using the
SDK; otherwise, the function Navigate is again called and
re-planning takes place from the current state [line 15].

VI. INTELLIGENT EXPLORATION

The robotics exploration problem deals with maximizing
knowledge of an unknown environment and is highly chal-
lenging when applied to confined spaces. We have developed
an intelligent exploration planner which creates and exploits
semantic knowledge of the unknown regions. It employs the
proposed autonomous navigation technique enabling a robot
to smartly define a goal configuration and avoid obstacles
while exploring.

Algorithm 2 depicts the proposed exploration function that
is mainly responsible to explore an unknown region and
propagate knowledge to the semantic network. It gets the

Algorithm 1: Navigate(M, Rgn, G)

1 Res + ()

2 T <+ EvalRgn(Rgn)

3 G < SetGoal(Rgn, T)

4 P < SetMPQuery(G)

Q « CallMP(M, P)

if Q=0 then
Res = PathNotFound
return {Res, M}

® 9 S W

9 if CheckPower(G, Q) then

10 foreach { g€ Q } do

11 if /CheckCollision(q, M) then
12 MoveToConf(q)

13 M <+ ExpandMap()

14 else

15 | return Navigate(M, Rgn, G)
16 Res = Executed

17 else

18 L Res = BatteryLimit
19 return {Res, M}

current occupancy map M and the semantic map knowl-
edge G and returns the status of exploration, the updated
knowledge (semantic graph) and the map. The algorithm
looks for frontier regions by FindFrontier [line 4]. To make
this process efficient, a bounding box is considered around
the current location of the robot and frontier nodes are then
computed within the box. The new nodes are appended to
the list of frontiers computed at the previous stage. Using
this information, a Navigate function is called, which reports
the new map as well as the status of the navigation module
[line 5]. If navigation is executed and a new entry region is
identified, such a region will become part of the high-level
knowledge. If there is no path, a new frontier region is again
computed excluding the infeasible frontier nodes. Navigate
can fail due to the limited robot power, in which case the
Explore returns the corresponding values, i.e., the current state
of exploration. The RegionExplored function evaluates whether
the current region is completely explored or not [line 15]. If
there is no frontier regions left in the space, the function
returns true, and eventually the map is updated and set to
explored using the predicate exp by the function UpdateGraph
[line 16].

Example in Figure 4 illustrates how a semantic graph is
created. After exploration, region Rgnl is marked explored
using the function UpdateGraph. While the region is being
scanned, the robot identifies two more regions, Rgn2 and
Rgn3, connected to the current one. The corresponding vision
values are also added to the graph. All the new nodes and
edges are added by the functions AddNode and AddEdge,
respectively.

Algorithm 2: Explore(M, G)

1 RgnFEzxplored < False
2 Res+ ()
3 while /RgnExplored do
4 F <« FindFrontier(M)
{ResN, M’} = Navigate(M, F , G)
if ResN = Executed then

if NewEntry(M’, S) then

G + AddNode(M’, S)
L G + AddEdge(M’, S)

e e NN W»n

10 else if ResN = PathNotFound then

1 | Continue

12 else

13 | return {ResN, M, G}
14 M~ M

15 if RegionExplored(M) then
16 G + UpdateGraph(M))
17 Res = Explored

18 RgnFExplored < True

19 return {Res, M, G}

VII. HIGH-LEVEL REASONER

We use a high-level reasoner module to guide the robot
exploration mission. It takes the best decisions using the
proposed reasoning processes as described in Algorithm 3.
In particular, it gets all the point clouds PC published by
the sensors and returns the computed 3D occupancy map
M along with a semantic graph G. All the point clouds are
fused together by the function FusePC [line 1] and the initial
3D Map is constructed using GetlnitMap [line 2] using the
SDK. The semantic graph is then initialized by the function
InitGraph [line 3]. A robot implements the mission exploring
all the feasible areas [lines 5 - 19]. At each iteration, the
function Explore [line 6] is called to compute unexplored
areas.

Next, the robot tries to identify the best region(s) to
explore using the functions NextBestRgn [lines 8], defined as
follows:

notExplored notExplored

Exp Exp
Conn Conn

Vis Exp

P e R

Fig. 4: An example to represent some parts of the semantic graph.

BR iff vy holds;
Result(NextBestRgn, (G)) = < NR iff w3 holds;
U otherwise;

To find the next best region(s), the formula ¢, is first
called to identify the best neighbouring unexplored region.
If it does not hold, the formula @3 is called to determine
the next best regions through all the neighbouring visited
regions. If both ¢, and (3 do not hold, the function returns
null. In the latter case, the robot tries to find all the regions
that are at an intermediate distance between the current one
and the initial one using the function BestRgnHome [line 10].
The function GoHome [line 11] uses the formula (4 in order
to get back to the home position. If instead the next region
to explore is identified, the function Navigate is called [line
14] and the robot goes to that region.

If exploration does not terminate due to battery limits or
other failures, the robot tries to identify the best regions to
traverse to get back to the initial region and then moves
through them [lines 20-22].

Algorithm 3: High-level reasoner
inputs : PC
outputs: M, G
1 FPC + FusePC(PC)
2 M « GetlInitMap(F PC)
3 G « InitGraph(M)
4 Mission < False
5 while /Mission do
6
7
8
9

{ResE, M', G} = Explore(M, G)
if ResE = Explored then

N + NextBestRgn(G)
if V' = () then
10 N’ + BestRgnHome(G)
1 GoHome(N’, M)
12 Mission < True
13 else
14 {ResN, M'} = Navigate(M, N, G)
15 M= M
16 if ResN = BatteryLimit then
17 L break
18 else
19 | break

20 if?Mission then
21 N’ « BestRgnHome(G)
2 | GoHome(\N', M)

23 return {M,G};

VIII. IMPLEMENTATION AND RESULTS

We now describe the main tools that we employed to
implement the proposed framework. For motion planning,
we use the Movelt software!, one of the most widely utilized
software for path planning in robotics. It is well integrated
with ROS (Robot Operating System) 2 and includes the

Uhttp://moveit.ros.org
Zhttps://www.ros.org/

http://moveit.ros.org
https://www.ros.org/

Problem Geometric and Execution Time (s) Region Information Explored Volume (m"3) Exploration Time (s)
Frontier | MP Execution Explored | Infeasible | Discovered | Free | Occupied | Total
Problem-1 46 31 450 5 2 7 1273 147 1420 571
Problem-2 37 20 368 4 2 7 1219 126 1345 464
Problem-3 17 15 269 2 1 4 1162 130 1292 333
Problem-4 7 8 190 2 0 3 866 92 958 231
Problem-5 24 20 299 6 2 8 559 76 635 379

TABLE I: The system performance of different problems in terms of geometric reasoning and execution time, regions information, and

exploration information. MP stands for motion planning.

Fig. 5: Accessible explored areas. Top and bottom pictures show
the fused point cloud and the occupancy 3D Map respectively.

Open Motion Planning Library (OMPL), an open source
path planning library that implements state-of-the-art path
planning algorithms. We adopt Movelt for our robotic system
for point cloud fusion, geometric reasoning (to define a goal)
and the re-planning capability.

As for the robot model and localization, we use the Hector
Quadrotor tools, which are also available online®. We employ
the Dragonfly system (shown in Figure 2), with a 360deg
field-of-view (FoV), to sense and gather information around
the robot. We integrated the Octomap library [13] into our
system for the construction of the 3D Map.

We implemented the semantic knowledge template and the
reasoning processes by using the Prolog language, which
provides rule-based logical queries, with the SWI-Prolog
library*. We defined an interface for communication between
the geometric reasoner and the high-level information.

The proposed approach has been tested against several
scenarios with different characteristics. Figure 5 represents
the fused point cloud as well as the 3D Map of the feasible
areas of the environment in Figure 1. We consider problems
with different exploration times and complexities in our
experimentation: Problem-1: unlimited time; Problem-2: 470
(8); Problem-3: 340 (s); Problem-4: 240 (s); and Problem-5:
exploration of areas with multiple loops and infeasible areas
with unlimited time (see Figure 6). The performance of the

3https://github.com/tahsinkose/hector-moveit
“https://www.swi-prolog.org/

Fig. 6: The result of the explored areas. Left and right pictures show
the simulated world (yellow arrows show the infeasible regions) and
the occupancy 3D Map respectively.

robot for each of the above problems has been reported in
Table 1. We detail geometric reasoning and execution time,
region information, explored volume, and exploration time.
As we expected, the solutions to Problems 2 to 4 indicate
that, under battery constraints, the robot explores smaller
spaces. The table (Problem-1 and Problem-5) also shows
that if the robot has unlimited exploration time, it is able
to explore all the feasible areas. In Problem-5, the robot
needs to identify different loops, which are captured by the
reasoning processes, to avoid to explore the visited region.
Figure 7 compares the performance of our approach with
a simplified one for the scenarios represented in Figure 1
(Example 1) and Figure 6 (Example 2). Appl indicates our
full approach, while App2 represents the same approach, but
we deactivate our smart reasoning process for selecting fron-
tier nodes to show the efficiency of the proposed reasoner.
In particular, in App2, we disable the following components:

o The functions EvalRgn and SetGoal in Algorithm 1.
o The function NextBestRgn using the formulas 2 and 3
in Algorithm 3.

App2 also computes frontier nodes throughout the occu-
pancy 3D Map. In consequence, it is only able to identify
infeasible regions and navigate randomly to any frontier
nodes using the motion planner. Geometric reasoning and
execution time in App2 increase. The main reason is that
more calls to the motion planner are required to complete
the mission. Figure 7 shows that the robot requires to spend
significant amount of time to explore the whole environment
with App2, whereas, in Appl, the robot is able to perform
the exploration task efficiently.

Figure 8 represents the total volume of the explored
areas for Problems I to 5 and the two different approaches.
The problems consider battery constraints by limiting the
exploration time. All the cases demonstrate that App] is able
to cover more space compared to App2.

https://github.com/tahsinkose/hector-moveit
https://www.swi-prolog.org/

Example 1

Geometric Reasoning Execution Exploration

Example 2

Execution

Geometric Reasoning

Exploration

Fig. 7: Performance comparison of approaches Appl and App2,
which shows the significance of the proposed reasoning processes
in terms of time efficiency. App1 is the proposed approach and App2
is the same one with no smart reasoning processes over frontier
nodes.

1400 { A N A Appl
A v App2
12001 o
. v
£ 1000
° A
£
5
§ 800
v
600 A
v
400 v

1 2 3 4
Problems

Fig. 8: The comparison of the approaches in terms of covering the
space of explored areas.

The proposed approach is capable to recognise and avoid
infeasible regions as well as to explore the confined spaces
smartly using the embedded reasoning processes. Once the
robot has explored a region, it decides to go to explore the
next best region near to the current location. This makes the
exploration process efficient as the robot avoids to navigate
on the visited regions as much as possible. For instance,
Figure 9 shows the robot is currently located at Region
6 (Rgn6) after exploring Regions 1 and 3 and discovering
other regions. The key question is which region is the best
to explore next. When making this decision, the robot knows
that the adjacent region (Rgn3) has been explored and looks

Fig. 9: An example of the robot’s intelligent decision making to
find and explore the next best region. Top picture shows the current
location of the robot. Yellow arrows specify the infeasible regions.
Regions in green color are the explored ones. Regions in white
color are unexplored ones. Bottom picture shows the perception
and navigation of the robot from Rgn6 to Rgn7.

for another candidate in the semantic graph. It finds that Rgn5
is the next nearest region, but it is an infeasible region. In
consequence, it chooses Rgn7 for exploration. This process
makes the robot capable of exploring the environments
efficiently, while avoiding hazardous areas. Figure 10 also
shows our results with real sensory data and autonomous
navigation planning where the robot explores a corridor in a
basement.

IX. CONCLUSION

We present an intelligent exploration approach for applica-
tions in confined spaces. The proposed approach consists of
advanced sensing, autonomous navigation, semantic knowl-
edge processing, and high-level reasoning. Our approach
enables the robot to maximize the information acquired

Fig. 10: We use real-world scans captured using the Dragonfly
system. This data was then imported in Gazebo and used for drone
navigation (shown in Figure 2). (Left) Original point cloud. (Right)
Voxelized visualisation of obstacles and drone path.

during exploration while, at the same time, considering
environmental factors that can affect its fitness and resources
available. We evaluate our approach against several mine-
like applications with various characteristics and present
our results in terms of system performance for the mapped
environments. We, moreover, compared the proposed ap-
proach, against the basic version of our planning to show
the significance and efficiency of the presented approach
in terms of making intelligent decisions as well as saving
exploration time. Future work will focus on defining proba-
bility distribution over the semantic network and considering
knowledge-based reasoning under uncertainty.

REFERENCES

[1] B. Yamauchi, “A frontier-based approach for autonomous exploration.”
in cira, vol. 97, 1997, p. 146.

[2] M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt, “Efficient
autonomous exploration planning of large-scale 3-d environments,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1699-1706,
2019.

[3] A. A. Ravankar, A. Ravankar, Y. Kobayashi, and T. Emaru, “Au-
tonomous mapping and exploration with unmanned aerial vehicles us-
ing low cost sensors,” in Multidisciplinary Digital Publishing Institute
Proceedings, vol. 4, no. 1, 2018, p. 44.

[4] A. Bachrach, S. Prentice, R. He, and N. Roy, “Range-robust au-
tonomous navigation in gps-denied environments,” Journal of Field
Robotics, vol. 28, no. 5, pp. 644-666, 2011.

[5] F. Vanegas, K. J. Gaston, J. Roberts, and F. Gonzalez, “A framework
for uav navigation and exploration in gps-denied environments,” in
2019 IEEE Aerospace Conference. IEEE, 2019, pp. 1-6.

[6] D. Shim, H. Chung, H. J. Kim, and S. Sastry, “Autonomous exploration
in unknown urban environments for unmanned aerial vehicles,” in
AIAA Guidance, Navigation, and Control Conference and Exhibit,
2005, p. 6478.

[7]1 C. Papachristos, S. Khattak, and K. Alexis, “Autonomous exploration
of visually-degraded environments using aerial robots,” in 2017 Inter-
national Conference on Unmanned Aircraft Systems (ICUAS). 1EEE,
2017, pp. 775-780.

[8] F. Mascarich, S. Khattak, C. Papachristos, and K. Alexis, “A multi-
modal mapping unit for autonomous exploration and mapping of
underground tunnels,” in 2018 IEEE aerospace conference. IEEE,
2018, pp. 1-7.

[9]1 C. Papachristos, S. Khattak, F. Mascarich, and K. Alexis, “Au-
tonomous navigation and mapping in underground mines using aerial
robots,” in 2019 IEEE Aerospace Conference. 1EEE, 2019, pp. 1-8.

[10] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Fer-
guson, D. Hahnel, D. Montemerlo, A. Morris, Z. Omohundro, et al.,
“Autonomous exploration and mapping of abandoned mines,” IEEE
Robotics & Automation Magazine, vol. 11, no. 4, pp. 79-91, 2004.

[11] T. Lozano-Perez, “Spatial planning: A configuration space approach,”
IEEE transactions on computers, vol. C-32, pp. 108-120, 1983.

[12] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995-1001.

[13] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, 2013, software
available at http://octomap.github.com. [Online]. Available: http:
/loctomap.github.com

http://octomap.github.com
http://octomap.github.com
http://octomap.github.com

	Introduction
	Related Works
	3D Sensing and Localization
	Semantic Knowledge Processing
	Autonomous Navigation
	Intelligent Exploration
	High-Level Reasoner
	Implementation and Results
	Conclusion
	References

