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Abstract

We note that in environments such as exploration problems, in which

agents have to choose a single action out of several in each period, an

agent’s preferences over different strategies can only reveal the mar-

gins of her beliefs. However, classical notions of Bayesian updating

regard the joint distribution. We develop the relevant environment

and tools to solve this issue: We introduce a necessary and sufficient

condition on the margins of an agent’s beliefs to be consistent with

an exchangeable process. Such a consistent process is typically not

unique; contemporaneous correlation cannot be identified. We con-

clude that contemporaneous correlations do not affect the optimal

strategy in classical bandit problems.
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1 Introduction

This paper studies the structure of beliefs revealed by the preferences of an economic

agent who chooses a single action out of several in every period, and determines under

what conditions these beliefs are compatible with an exchangeable process.

A leading example for such an economic environment are exploration problems,1

where an agent has to choose, every period, one project out of several. By observing

the outcome of a chosen project, the agent learns both about the chosen project and,

in case the outcomes across different projects are correlated, about other projects as

well. Therefore, the agent’s optimal strategy is a function of the history of observed

outcomes, and her beliefs regarding the true process generating the outcomes of each

project.

While the generating process jointly determines all projects’ outcomes each pe-

riod, when considering a choice strategy, an expected utility maximizing agent cares

only about the outcome of the chosen project. As such, the agent’s behavior in ex-

ploration problems can reveal only the margins of her beliefs—her beliefs about each

individual project conditional on the history.2 Determining whether these marginals

are “consistent”—if the agent’s beliefs at different times are related via Bayesian up-

dating and information arrival—requires a richer understanding of the agent’s beliefs.

Classical statistical tools regard the full joint distribution over the projects’ outcomes.

Hence, without the analysis that follows, an analyst would not be able to determine if

the agent in an exploration problem is statistically sophisticated.

By considering the proper environment and developing the relevant tools we answer

the following three questions: (i) What restrictions on the marginal beliefs ensure

they are consistent with an exchangeable process jointly determining the projects’

outcomes? (ii) When the marginals are consistent with an exchangeable process, is

such a process unique? and (iii) Can we draw insights from our identification on the

theory of exploration problems?

Recall, an exchangeable process is one in which the belief does not depend on the

order of information arrival. Exchangeability has long been the cornerstone of the

1The modern treatment of exploration models were introduced by Robbins (1952), building on
earlier ideas of Thompson (1933), and have since been extensively studied in the statistics literature
(as bandit problems), and widely incorporated in economic models (as search problems, stopping
problems, research and development, experimentation, portfolio design, etc). See Berry and Fristedt
(1985) for an overview of classic results within the statistics literature. For a survey of economic
applications see Bergemann and Välimäki (2008).

2In Appendix A, we provide a theoretical framework substantiating this observation.
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subjectivist, Bayesian paradigm in the context of repeated experimentation,3 and our

interest in exchangeability is tantamount to an assumption that the agent places no

special importance to the period in which an outcome was observed. Note, however,

that de Finetti’s exchangeability condition can not be directly tested in our framework,

since the agent does not observe the outcomes of different projects simultaneously.

Thus, to answer (i), we provide a condition termed Across-Marginal Exchangeability

(AM-EXCH), which dictates that the marginal beliefs are invariant to jointly permuting

both the order in which projects are chosen and the corresponding outcomes. Across-

Marginal Exchangeability is clearly necessary for the agent’s beliefs (i.e., the marginal

beliefs assessable to the modeler) to coincide with the marginals of an exchangeable

process. We here show that it is also sufficient, generalizing de Finetti’s representation

result to frameworks (such as the exploration environment) in which only marginals

can be observed.

The answer to (ii) is more subtle. In the subsequent Section 2, we show that in

the finite horizon case, where the agent chooses strategies over n-periods, her beliefs

are sometimes (but not always) uniquely identified. When considering the infinite

horizon, the identification problem is more severe despite the fact that the modeler

has access to more data. This is because Across-Marginal Exchangeability imparts

more constraints as the horizon is longer, excluding the cases where identification is

possible. For infinite exploration problems, the consistent exchangeable model is never

completely identified. In particular, contemporaneous correlation (i.e., the likelihood of

an outcome of project a in a period given the outcome of project b in the same period)

carries no economic content in such exploration problems. Nevertheless, we can still

point to a meaningful representative even under the partial identification: within the

class of exchangeable processes consistent with the agent’s marginal beliefs there is a

unique process for which outcomes are contemporaneously independent.

And so, to answer (iii), the optimal strategy in infinite horizon bandit problems do

not depend on contemporaneous correlations if the ex-ante description of the problem is

exchangeable. While this is a negative result from the modeler’s vantage—the general

stochastic process governing beliefs can only be partially identified—it is a boon to

the agent: when solving an exploration problem, contemporaneous correlations can

be ignored without changing the set of optimal strategies, simplifying her decision

problem.

3See for example de Finetti (1972); Diaconis (1977); Schervish (2012).
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2 Beliefs and the Value of Strategies

Consider a standard exploration problem. There is a finite set of consumption outcomes

X, over which a utility function u : X Ñ R is defined, and a compact, metrizable set

of actions A, where each action a P A can yield any of the outcomes in Sa Ď X.

Each period the agent has to choose one (and only one) action, the outcomes of which

she observes and derives utility from. A history of length n P N is a sequence of

n action-outcome pairs, h “ pa1, x1; a2, x2; ¨ ¨ ¨ ; an, xnq, where xi P Sai for every i P
n. The set of finite histories is denoted by H. Similarly, an infinite history is an

infinite sequence of action-outcome pairs, pa1, x1; a2, x2; ¨ ¨ ¨ ; ai, xi; ¨ ¨ ¨ q, where xi P Sai

for every i P N. Future payoffs are discounted by δ P p0, 1q, thus an infinite history

ĥ “ pa1, x1; a2, x2; ¨ ¨ ¨ q is valued according to discounted utility,

Upĥq “
ÿ
iPN

δi´1upxiq.

A strategy in this environment is a function, σ : H Ñ A, determining which action

to take following every possible finite history. Since the outcome of a given action is

uncertain, the agent’s beliefs determine which action she prefers to take following every

history, and in sum, her optimal strategy. Towards formalizing this, let SA ” ś
aPA Sa,

and S ” ś
ně1 SA (when considering a finite horizon problem, S refers to the n-fold

product of SA). The set S represents the grand state-space; a state determines the

realization of each action in each period. The uncertainty over the state space, that is

the agent’s beliefs over what is the state generating the actions’ outcomes, is typically

captured in applications through a probability ζ P ΔpSq.
Given such a belief, ζ, every strategy, σ, induces a unique countably additive prob-

ability Pσ over the set of infinite histories.4 The agent values a strategy according

to its expected utility with respect to the probability it induces over infinite histories.

That is,

V pσq “ Eσ

´
Upĥq

¯
, (1)

where Eσ denotes the expectation operator with respect to Pσ. The agent’s optimal

strategy, if such exists, is the one maximizing V p¨q.
Remark 1. Denote by μh,apxq the ζ-probability, that conditional on an n-period history

4Endowed with the Borel sigma-algebra generated by all finite histories. We identify each finite
history with the set of infinite histories that extend it.
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n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb 0 0 0 1
2

sa, fb 0 0 0 0

fa, sb 0 0 0 0

fa, fb
1
2 0 0 0

(1A:J)

n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb 0 0 0 1
4

sa, fb 0 0 1
4 0

fa, sb 0 1
4 0 0

fa, fb
1
4 0 0 0

(1B:J)

Figure 1: Figure 1A:J shows the joint distribution for Example 1.A and 1B:J shows
the joint distribution for Example 1.B.

h, action a yields outcome x in period n ` 1. Given two agents pU, ζq and pU, ζ 1q such

that tμh,auhPH,aPA “ tμ1
h,auhPH,aPA then V “ V 1: the agents rank strategies identically.

In other words, while the probability ζ completely specifies the underlying uncer-

tainty over the joint realization of all actions following every history, the agent’s valu-

ations are determined entirely by the margins of this process: tμh,auhPH,aPA. To obtain

Remark 1, notice that for a finite history, h P H, and an action, a P A, Pσph; a, xq is

defined by

Pσph; a, xq “ Pσphqμh,apxq (2)

if σphq “ a and x P Sa. Otherwise, the probability is 0. By standard arguments Pσ

is uniquely determined by its measure of finite histories. By examining (2) it is clear

that Pσ, and therefore Eσ, depends only on tμh,auhPH,aPA.
Remark 1 indicates that an analyst with access to data regarding choice or pref-

erence over strategies in an exploration problem—no matter how detailed—can never

identify more than the marginals of the agent’s beliefs. The remainder of this paper ex-

plores the limits of inference that can be made when the marginals, but nothing more,

are identified. Of course, Remark 1 does not ensure that tμh,auhPH,aPA are themselves

identifiable from any type of observable data. This latter question is formally answered

in the affirmative in the supplemental appendix—we conduct a decision theoretic ex-

ercise, construct the set of expoloration strategies, and provide the axioms allowing

us to determine whether the agent is indeed a discounted subjective expected utility

maximizer, as in Eq. (1). We uniquely identify the marginals, tμh,auhPH,aPA (and the

utility parameters, u and δ).
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Example 1.A. Consider a two-period problem where in each period the agent has to

choose between two projects, a and b, each of which can either succeed or fail: Sa “
tsa, fau and Sb “ tsb, fbu. The agent believes that each project will have exactly one

success, equally likely to be in either period, and, moreover, believes the two projects

will succeed and fail jointly.5

The corresponding process ζ P ΔpSq is given by the table in Figure 1A:J; a row

corresponds to a joint outcome of the two projects in period n “ 1, and a column to

a joint outcome of the two projects in period n “ 2. By Remark 1, we assume the

modeler cannot observe ζ itself but instead the marginals,

μHphxq “ 1

2
μpx,hxqpgyq “ 1 μpx,hxqphyq “ 0. (1A:M)

Where x, y P ta, bu and h, g P ts, fu with h ‰ g.

Assume further that the per-period utility associated with each outcome is upsaq “ 9,

upfaq “ ´9, upsbq “ 18, and upfbq “ ´18. The agent is an expected utility maximizer,

and her total utility is the sum across the two periods. Given these restrictions on

preferences, (1A:M) determines the agent’s valuation of strategies. Indeed, for x, y, z P
ta, bu, let px, py, zqq denote the strategy in which the agent takes action x in the first

period, and y conditional on x’s success and z on x’s failure. The agent’s valuations

for strategies are given as follows: V px, py, zqq “ 0 if y “ z, and

V pa, pa, bqq “ V pb, pa, bqq “ 9

2

V pa, pb, aqq “ V pb, pb, aqq “ ´9

2
.

(1A:P)

The exchangeable belief, ζ as defined by (1A:J), is in fact uniquely determined by

the marginal beliefs. Although we do not assume that ζ is observed, it is identified by

the agent’s preferences over strategies. In particular, we can identify that the agent

believes the two projects are perfectly correlated.

5Examples 1.A and 1.B would have similar implications if we considered a somewhat less extreme
point of view in terms of the probabilities. For instance, the same conclusions would have been
reached had we considered projects yielding s or f in the first period with equal probability, while in
the second period, a project that was a success in the first period also yields s in the second period with
probability 4

9 , and given a failure in the first period, a project yields s in the second with probability
5
9 . Such negative auto-correlated processes are the typical representative of exchangeability in finite
horizon models, and have been used extensively in the finance literature (see for example Poterba and
Summers (1988); Berk and Green (2004) and references therein.)

6



n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb
5
16 0 0 3

16

sa, fb 0 0 0 0

fa, sb 0 0 0 0

fa, fb
3
16 0 0 5

16

n “ 2

sa, sb sa, fb fa, sb fa, fb

n “ 1

sa, sb
41
256

15
256

15
256

9
256

sa, fb
15
256

9
256

9
256

15
256

fa, sb
15
256

9
256

9
256

15
256

fa, fb
9

256
15
256

15
256

41
256

Figure 2: Two alternative joint distributions discussed in Example 2.

Example 1.B. If, instead, the agent believed each project will have exactly one suc-

cess, equally likely to be in either period (as above), but unlike the previous example

believed that the projects were independent of each other, she would entertain the joint

distribution given by Figure 1B:J, the marginals of which are,

μHphxq “ 1

2
μpx,hxqpgxq “ 1 μpx,hxqphxq “ 0

μpx,hxqpgyq “ 1

2
μpx,hxqphyq “ 1

2
.

(1B:M)

Where x, y P ta, bu with x ‰ y and h, g P ts, fu with h ‰ g. This of course has a

corresponding change in the agent’s valuations: V px, py, zqq “ 0 if y “ z, and

V pa, pa, bqq “ ´9

2
V pb, pa, bqq “ 9

V pa, pb, aqq “ 9

2
V pb, pb, aqq “ ´9.

(1B:P)

While the above example shows that the correlation between projects can po-

tentially affect (or, be recovered from) the agent’s preferences—or equivalently her

marginal beliefs—it is not typical. The inherent observability constraint in the stan-

dard framework of experimentation generally bears a cost; the exchangeable process

with which our observables are consistent is often non-unique.

Example 2. Let the actions and outcomes be the same as Example 1.A. The agent

considers two equally probable possibilities: in the first both projects have a 1
4
likelihood

of succeeding in both periods (i.e, i.i.d over time, with probability 1
4
) and in the second

the likelihood of success is 3
4
. Consider the two joint distributions in Figure 2. The left

panel is the joint distribution when the agent believes the two projects intra-period suc-
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cesses and failures are perfectly correlated, whereas the right is when they are perfectly

independent.

Under the case of perfect correlation, the outcome of project a in period 0 perfectly

identifies what would have happened had project b been chosen instead. At first glance,

this information seems valuable for the agent’s exploration problem, however, both joint

distributions impart the exact same restrictions on marginal beliefs:

μHphxq “ 1

2
μpx,hxqpgxq “ 3

16
μpx,hxqphxq “ 5

16
(2:M)

Where x, y P ta, bu and h, g P ts, fu with h ‰ g. Therefore, the agent’s valuation of

all strategies, and in particular her optimal strategy, is unaffected by the correlation

between the two actions.

In Example 1 the agent’s preferences over strategies perfectly revealed her perceived

contemporaneous correlation between the two projects. In Example 2, we can infer

nothing about how the agent perceives the contemporaneous correlation. The latter

proves to be the rule. In the sequel, we show that in the infinite horizon problem, beliefs

can never be fully identified. Fortunately, the obstruction can be precisely delineated;

contemporaneous correlations stand as the only obstacle thwarting the identification

of the agent’s joint beliefs.

3 The Statistical Framework

In order for a modeler to understand the DM’s updating process, and whether it

follows Bayes rule, we need to construct her beliefs regarding not only each action

individually but also her beliefs regarding the possibly joint outcomes across all actions

(in particular, the correlation between actions). As we will see, in the generic case we

have insufficient data to uniquely identify a (subjective) joint distribution. We will

still, however, be able to identify a representative with unique properties.

Observable Processes. Consider the family T of all sequences of individual ex-

periments (i.e., individual actions), where different experiments can be taken in the

different periods. Let T “ pT1, T2, ...q where Ti P tSa : a P Au for every i ě 1; so,

each Ti corresponds to taking an action, say a, and expecting one of its outcomes, Sa.

(Like before Sa corresponds to the set of possible outcomes.) T is then the collection

of all such T’s. For each T “ pSa1 , Sa2 , ...q let ζT P ΔBpTq be a process over T; a

distribution over all possible outcomes when taking action a1, followed by a2, followed

8



by a3, etc.
6 For a given history of action-outcomes pairs, h P pa1, x1 . . . an, xnq, we

say h P T “ pT1, ..., Tn, Tn`1, ...q whenever Sai “ Ti for 1 ď i ď n (and maintaining

the above assumption that xi P Sai). In a slight abuse of notation, we can identify

each h “ pa1, x1 . . . an, xnq P T with the event in T such that first n outcomes are

px1 . . . xnq, so as to make sense of ζTphq and ζTp¨ | hq. Lastly, for a sequence of exper-

iments T “ pT1, ..., Tn, Tn`1, ...q and a permutation π : t1, ..., nu Ñ t1, ..., nu, denote
πT “ pTπp1q, ..., Tπpnq, Tn`1, ...q.

A Subjective Expected Experimentation (SEE) belief structure is a family

of processes tζTuTPT , such that for any T,T1 P T and h P H if h P T and h P T1, then
ζTphq “ ζT1phq. This condition imposes that the probability of outcomes today do not

depend on which experiments are to be conducted in the future.

Remark 1 in the previous section shows that the DM’s belief over S, ζ, is identified
only up to the marginal beliefs, tμh,auhPH,aPA (and this identification is tight, as shown

in the appendix). Each such family of marginals uniquely determines an SEE belief

structure in the obvious manner. Given tμh,auhPH,aPA and a sequence T “ pSa1 , Sa2 , ...q,
ζT is the unique (countably additive) process satisfying

ζTphq “ μH,a1px1q ¨ μpa1,x1q,a2px2q ¨ ¨ ¨μpa1,x1,...,an´1,xn´1q,anpxnq

for all h P H. In fact, SEE belief structures are exactly the set of processes that can

be constructed from a family of marginal beliefs, tμh,auhPH,aPA.

Exchangeable Processes and Consistency. Recall, SA ” ś
aPA Sa, and S ”ś

ně0 SA. S represents the grand state-space; a state determines the realization of

each action in each period.

Now, we say that an SEE belief structure tζTuTPT is consistent with ζ P ΔBpSq
if ζ|T (that is, the marginal of ζ to T) coincides with ζT, for every T P T . In such a

case the processes ζ, which we cannot observe, explains all our data.

Because it forms the basis subjective Bayesianism and for the statistical literature

on exploration problems, we will pay particular attention to the class of exchangeable

processes.

Definition. Let Ω be a probability space and Ω̂ “ ś
ně1 Ω. The process ζ P ΔBpΩ̂q is

exchangeable if for any finite permutation π : N Ñ N and event E “ ś
nPNEn, we

6For any metric space M , denote ΔBpMq as the set of Borel probability distributions over M ,
endowed with the weak*-topology.
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have

ζpEq “ ζp
ź
nPN

Eπpnqq. (3)

From the economic vantage, a DM who understands there to be an exchangeable

process governing the outcome of actions would be considered Bayesian. A DM with

exchangeable beliefs (acts as if she) entertains a prior on the data generating parameter

and updates her beliefs following every observation. This interpretation is due to the

fundamental results of de Finetti (1931, 1937) and later extensions of Hewitt and Savage

(1955).

Remark 2 (de Finetti). The process ζ P ΔBpΩ̂q is exchangeable if and only if there

exists a probability measure θ over ΔBpΩq, such that

ζpEq “
ż
ΔBpΩq

D̂pEqdθpDq, (4)

where for any D P ΔBpΩq, D̂ is the corresponding product measure over Ω̂. Moreover,

θ is unique.

We would like to understand under what circumstances an SEE belief structure is

a result of Bayesian updating. If we could infer from preferences the beliefs over the

joint realizations of all actions, that is
ś

aPA Sa, then our questions would boil down

to verifying whether this process satisfies exchangeability. However, we can only infer

the beliefs over each action separately, and thus, our task remains. We need to find a

condition on the family of ζT’s that determines whether it follows Bayes rule.

Definition. An SEE belief structure tζTuTPT is Across-Marginal Exchangeability

(AM-EXCH) if

ζTphq “ ζπTpπhq
for every T P T , h P T and a finite permutation π : N Ñ N.

Intuitively, AM-EXCH requires that if we consider a different order of experiments,

then the probability of outcomes (in the appropriate order) does not change. The

next theorem states that Across-Marginal Exchangeability is a necessary and sufficient

condition for an SEE belief structure to be consistent with Bayesian updating of some

belief over the joint realizations of all actions.

10



Theorem 1. An SEE belief structure tζTuTPT satisfies AM-EXCH if and only if it is

consistent with an exchangeable process ζ P ΔBpSq.
Theorem 1 is stated without proof. Necessity is trivial and sufficiency will be a straight-

forward application of Theorem 2. Although the theorem as stated concerns only

infinite-horizon processes, AM-EXCH is also a necessary and sufficient condition for

an finite horizon process to be consistent with some exchangeable process, provided

there exists some consistent joint distribution.7

4 Strong Exchangeability

In this section we introduce a strengthening of exchangeability, aptly called strong

exchangeability, that corresponds to the maximal preservation of symmetry implied

by AM-EXCH. Strongly exchangeable process are those under which each dimension

can be permuted independently. It will turn out, in the infinite horizon, strongly ex-

changeable processes can be characterized as those in which stochastic independence

is preserved both inter-temporally (as in vanilla exchangeability) and contemporane-

ously.8 Putting these results together: if a modeler can only observe the marginals

of a DM’s beliefs, and those marginals are consistent with any exchangeable process

(i.e, satisfy AM-EXCH), then the modeler identify nothing about the DM’s perceived

correlation between projects.

Definition. A process ζ P ΔBpSq is strongly exchangeable if for any set of finite

permutations tπa : N Ñ NuaPA and event E “ ś
nPN

ś
aPA En,a, we have

ζpEq “ ζp
ź
nPN

ź
aPA

Eπapnq,aq. (5)

Setting πa “ πb for all a, b P A, delivers the definition of exchangeability. Following

the intuition above, it should come as no surprise that under AM-EXCH, strong ex-

changeability can never be ruled out. In other words, there is no SEE belief structure—

therefore no preference over exploration problems—that distinguishes exchangeability

7The proof in the finite horizon case is quite intuitive. Let η be a consistent joint distribution.
For each event E let E‹ denote the union of πE for all n! permutations π : n Ñ n, where n is the

number of periods. Construct ζ as follows: ζpEq “ ηpE‹q
n! . The process ζ is well defined and it is

clearly exchangeable. Moreover, tζTuTPT = tηTuTPT , since for all E P T , ηpEq is equal to ηpπEq and
therefore also to ζpEq.

8We feel reasonably certain that strong exchangeability must have been studied previously in the
statistics literature. However, we have found no references.
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from strong exchangeability. Strongly exchangeable processes are especially relevant

with respect to the current focus because they act as representative members to the

equivalence classes of exchangeable processes consistent with the same SEE belief struc-

ture.

Theorem 2. An SEE belief structure tζTuTPT satisfies AM-EXCH if and only if it

is consistent with a strongly exchangeable process. Furthermore, such a strongly ex-

changeable process is unique.

Proof. In Section 6. �

While there are obvious conceptual similarities, Theorem 2 (and by proxy, Theorem

1) do not straightforwardly follow from the extant results regarding exchangeability.

Because only the marginals of the DM’s beliefs are observable, the standard definitions

of symmetry (or other characterizations of exchangeability) cannot be directly applied.

The proof of Theorem 2 explicitly constructs a consistent, strongly exchangeable pro-

cess.

Briefly: consider an event, E Ă S for which En “ SA for all sufficiently large n—E

only places restrictions on the observations for a finite number of periods. The set of

all such events generate the relevant σ-algebra over S, and so determining the value of

a process on all such events uniquely determines the process. For any such event, E,

we can permute E in each dimension to construct another event Ê, for which at most

one action is restricted at any given time (that is ta P A | Ên,a ‰ Sau has at most one

element for each n). Since only one action is restricted per period, the probability of

Ê can be identified by the SEE belief structure, and, under the assumption of strong

exchangeability, we know this also determines the probability of E. The proof shows

this process is well defined.

Just as infinite horizon exchangeable processes can be characterized as being a mix-

ture of i.i.d. distributions, infinite horizon strongly exchangeable are exactly mixtures

of distributions that are both inter-temporally i.i.d. and lack any correlation between

different projects within the same period.

Theorem 3. The process ζ P ΔBpSq is strongly exchangeable if and only if there exists

a probability measure θ over ΔIN ” ś
aPA ΔpSaq, such that

ζpEq “
ż
ΔIN

D̂pEqdθpDq,

12



where for any D P ΔIN , D̂ is the corresponding product measure over S.

Proof. In Section 6. �

Under a strongly exchangeable process, the DM believes the outcomes of actions

that occur at the same time are independently resolved. Of course, this does not

impose that there is no informational cross contamination between actions. Information

regarding the distribution of action a is informative about the underlying parameter

governing the exchangeable process, and therefore, also about the distribution of action

b.

5 A Comment on Bayesianism in Environments of

Experimentation

The results in Section 4 have two related implications to Bayesianism in general models

of experimentation. First, it is well known that the beliefs of two Bayesians observing

the same sequence of signals will converge in the limit. Our results imply that in a

setup of experimentation, different Bayesians obtaining the same information, might

still hold different views of the world in the limit. Their beliefs over the uncertainty

underlying each action will be identical, but they can hold different beliefs over the

joint distribution.

The second point has to do with the possible equivalence with non-Bayesian DMs.

Theorem 2 states that AM-EXCH is necessary and sufficient for an SEE belief system

to be consistent with some exchangeable process—but it might also be consistent with

a non-exchangeable process. Consider the following example of a stochastic process.

In every period two coins are flipped. In odd periods the coins are perfectly correlated

(with equal probability on HH and TT ), and in even periods the coins are identical and

independent (and both have equal probability on H and T ). The associated observable

processes satisfy AM-EXCH, but the process itself is clearly not exchangeable. Never-

theless, Theorem 2 guarantees that there is a (unique) strongly exchangeable process

that is consistent with the SEE belief structure.

6 Proofs

Proof of Theorem 2. Fix an SEE belief structure tζTuTPT . We first construct a

pre-measure ζ̂ on the semi-algebra of cylinder sets. Fix any well-ordering over A. Set

ζ̂pøq “ 0 and ζ̂pSq “ 1. Let E ‰ S be an arbitrary cylinder, i.e., E “ ś
nPN

ś
aPA En,a,
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such that for only finitely many pn, aq, is En,a ‰ Sa. Clearly, there are a finite number

of a P A such that Ek,a ‰ Sa for any k. By the ordering on A denote these a1 . . . an.

For each ai let mi denote the number of components such that Ek,ai ‰ Ssi , and for

j “ 1 . . .mi, let ki,j denote the j
th such component. Finally, for each ai, let πai denote

any permutation such that πaipki,jq “ j ` ř
i1ăi mi1 . Consider Ê “ ś

nPN
ś

aPA Eπapnq,a,
where πa “ πai if a P a1 . . . an and the identity otherwise. That is, for n P 1 . . .m1,

Ên,a “ Sa for all a except a1, for n P m1 ` 1 . . .m1 ` m2, Ên,a “ Sa for all a except a2,

etc. Let TpEq denote any sequence such that Tn “ Sai for
ř

i1ăi mi1 ă n ď ř
i1ďi mi1 .

Again that is, for n P 1 . . .m1, Tn “ Sa1 , for n P m1 ` 1 . . .m1 ` m2, T2 “ Sa2 , etc.

For the remainder of this proof, for any cylinder E, Ê denotes the corresponding

cylinder generated by the above process, in which at most a single action is restricted

in each period. Let TpEq denote any observable process which observes the sequence

of restricted actions. Finally, for any cylinder, E, which is restricted in most one action

each period, and any T which observes each restricted set, identify E the relevant event

in T. So, set ζ̂pEq “ ζTpEqpÊq. This is well defined by the restriction of SEE belief

structures.

To apply the Carathéodory extension theorem for semi-algebras, we need to show

that for any sequence of disjoint cylinders tEkukPN such that E “ Ť
kPNE

k is a cylinder,

ζ̂pEq “ ř
kPN ζ̂pEkq. Towards this, assume that E,E 1 are disjoint cylinders such that

E Y E 1 is a cylinder. Then it must be that there exists a unique pn, aq such that

En,a X E 1
n,a “ ø and for all other pm, bq, Em,b “ E 1

m,b. Indeed, if this was not the

case, then there exists some pm, bq and some x such that (WLOG) x P Em,bzE 1
m,b. But

then, for all s P E Y E 1, sm,b “ x ùñ sn,a P En,a ‰ pE Y E 1qn,a a contradiction

to E Y E 1 being a cylinder. But this implies Ê and Ê 1 induce the same sequence of

restricted coordinates, differing on the restriction of single coordinate, and therefore,

TpEq “ TpE 1q. This implies that Ê Y Ê 1 Ď TpEq. Since ζTpEq is finitely additive, so

therefore ζ̂pE Y E 1q “ ζTpEqpÊ Y Ê 1q “ ζTpEqpÊq ` ζTpEqpÊ 1q “ ζ̂pEq ` ζ̂pE 1q.
Since ζ̂ is finitely additive over cylinder sets, countable additivity follows if we show

that for all decreasing sequences of cylinders tEkukPN, such that infk ζ̂pEkq “ ε ą 0,

we have
Ş

kPNE
k ‰ ø. But this follows immediately from the finiteness of Sa. Since

Ek`1 Ď Ek, it must be that Ek
n,a Ď Ek

n,a. But each Ek
n,a is finite, hence compact, and

nonempty, because ζpEkq ě ε. Therefore
Ş

kPNE
k
n,a ‰ ø. The result follows by noting

that the intersection of cylinder sets is the cylinder generated by the intersection of the

respective generating sets. Let ζ denote the unique extension of ζ̂ to the σ-algebra on
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S.
That ζ is consistent with tζTuTPT is immediate. We need to show that ζ is strongly

exchangeable. Let E be a cylinder. Let π̄a denote a finite permutation for each a P A.

Let F “ ś
nPN

ś
aPA Eπ̄apnq,a. Let πai denote the permutation given by the construction

of F̂ . Then F̂ “ ś
nPN

ś
aPA Eπapπ̄apnqq,a. This implies there exists some permutation

π˚ such that F̂ “ ś
nPN

ś
aPA Eπ˚pnq,a. By AM-EXCH, ζTpÊqpÊq “ ζπ˚TpÊqpπ˚Êq “

ζTpF̂ qpF̂ q. Therefore, ζpEq “ ζpF q and so, ζ is strongly exchangeable.

Finally, the similar logic show that ζ is unique. Towards a contradiction, as-

sume there was some distinct, strongly exchangeable ζ 1, also consistent with tζTuTPT .
Then, since the cylinder sets form a π-system, there must be some cylinder such that

ζpEq ‰ ζ 1pEq. But, by strong exchangeability, ζpÊq “ ζpEq and ζ 1pÊq “ ζ 1pEq, so
ζpÊq ‰ ζ 1pÊq –a contradiction to their joint consistency with tζTuTPT . �

Proof of Theorem 3. First we show that if a process ζ over S is both i.i.d (with

marginal D P ΔpSAq) and strongly exchangeable, then it must be that the marginals

of D (on tSauaPA) are independent, that is D P ΔIN . Indeed, consider two non-empty,

disjoint collection of actions, Â, Â1 Ă A. Let E,F P SÂ, E
1, F 1 Ď SÂ1 , be measurable

events. Identify En with the cylinder in S: En “ ts P S|sn P Eu. Since ζ is strongly

exchangeable we have that

ζ
`
En X E 1n X F n`1 X F 1n`1

˘ “ ζ
`
En X F 1n X F n`1 X E 1n`1

˘
. (2Sym)

We will refer to the latter weaker property as two symmetry. Now, since ζ is i.i.d

generated by D, we have that (abusing notation by identifying E with the cylinder it

generates in SA)

DpE X E 1q ¨ DpF X F 1q “ DpE X F 1q ¨ DpF X E 1q.
Substituting via the rule of conditional probability:

DpE|E 1q ¨ DpE 1q ¨ DpF |F 1q ¨ DpF 1q “ DpE|F 1q ¨ DpF 1q ¨ DpF |E 1q ¨ DpE 1q.
This implies that

DpE|E 1q
DpE|F 1q “ DpF |E 1q

DpF |F 1q .
Since this is true for all events, we have that DpE|E 1q “ DpE|F 1q for every E Ď SÂ
and E 1, F 1 Ď SÂ1 , implying Â and Â1 are independent.

We now move to show that strong exchangeability is sufficient for the representation

specified in the statement of the result. Since strong exchangeability implies exchange-
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ability, we can apply a version de Finetti’s theorem (Schervish (2012) Theorem 1.49)

and represent the process ζ by

ζp¨q “
ż
ΔpSAq

D̂p¨qdψpDq.

We need to show that ψ’s support lies in ΔIN .

For s P S and t P N let st be the projection of s into the first t periods. Now,

let ζp¨|stq : SA Ñ r0, 1s be the one period ahead predictive probability, given that the

history of realizations in the first t periods is st. Since ζ is exchangeable, ζp¨|stq con-

verges (as t Ñ 8) with ζ probability 1. Moreover, the set of all limits is the support of

ψ. Denote the limit for a particular s by Ds. Of course, the exchangeability of ζ also

guarantees that ζp¨, ¨|stq : SAˆSA Ñ r0, 1s, that is the two period ahead predictive prob-

ability, converges to Ds ˆ Ds. Furthermore, ζ is strongly exchangeable; the limit itself

satisfies (2Sym), and the arguments above imply thatDs P ΔIN with ζ probability 1. �
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Dirk Bergemann and Juuso Välimäki. Bandit Problems. In Steven N. Durlauf and

Lawrence E. Blume, editors, The New Palgrave Dictionary of Economics. Second

edition, 2008.

Jonathan B Berk and Richard C Green. Mutual fund flows and performance in rational

markets. Journal of political economy, 112(6):1269–1295, 2004.

Donald A Berry and Bert Fristedt. Bandit problems: sequential allocation of experi-

ments (Monographs on statistics and applied probability). Springer, 1985.

Adam Brandenburger and Eddie Dekel. Hierarchies of Beliefs and Common Knowledge.

Journal of Economic Theory, 59(1):189–198, 1993.

Bruno de Finetti. Funzione caratteristica di un fenomeno aleatorio. 1931.
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