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Abstract 

Although Facioscapulohumeral Muscular Dystrophy (FSHD) was first described in 1885, an 

effective treatment is yet to be developed. FSHD is an autosomal dominant disorder 

characterized by distinct chromatin changes including DNA hypomethylation of the D4Z4 

macrosatellite repeat array on a disease-permissive 4qA allele and aberrant expression of the 

D4Z4-embedded DUX4 retrogene in skeletal muscle. Compelling evidence indicates that this 

mutation-induced DUX4 expression plays a key role in disease pathogenesis.  

We initially performed bioinformatic studies which predicted the presence of novel nucleic 

acid regulatory elements, namely G-quadruplexes (GQs), in the DUX4 genomic locus and 

transcript. GQ motifs were identified in transcriptional regulatory elements such as DUX4 

myogenic enhancer and promoter regions, as well as near splice sites of DUX4 transcript. The 

structural characteristics of these putative GQs were characterised and confirmed using 

circular dichroism and nuclear magnetic resonance spectroscopy. Using a reporter gene 

system and cell transfection, mutation of GQ sequences in the DUX4 promoter led to 

decreased reporter gene expression indicating a role in transcription. In addition, when 

expression from the DUX4 genomic sequence was driven by the CMV promoter (lacking GQs) 

expression was also downregulated when transfected cells were treated with the GQ specific, 

small-molecule drug, berberine. The downregulation of DUX4 mRNA expression by berberine 

treatment was also confirmed in FSHD patient muscle cell cultures. High affinity of berberine 

binding to the GQ sequences within the DUX4 enhancer, promoter and transcript, was 

determined using UV, visible light and fluorescence spectroscopic techniques. Although the 

specific molecular mechanisms involved remain as yet to be fully unravelled, these data 

demonstrate for the first time that GQs are present in DUX4 locus sequences and that 
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targeting them can reduce DUX4 expression, and thus that their pharmacological modulation 

may provide a novel therapeutic strategy for the treatment of FSHD. 
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1. Introduction 

1.1. Facioscapulohumeral muscular dystrophy: clinical description 

 Disease discovery 

The first picture published of an affected Facioscapulohumeral (FSHD) patient was 

reported by Duchenne de Boulogne in his Album de photographies pathologiques in 

1862 (Duchenne 1862). Later, in 1869 Duchenne released a more detailed description 

of the disease in Archives of General Medicine (Duchenne 1869), which is often regarded 

as the first reference of FSHD. However, the term Facioscapulohumeral was first devised 

in 1885, when Landouzy and Dejerine described cases of more advanced stages of the 

disease (Landouzy and Dejerine 1885). They highlight the progressive muscle atrophy of 

the face, shoulder girdle and upper arms, followed by weakening of abdominal muscles 

resulting in lumbar hyperlordosis, and of tibialis anterior muscles with steppage gait. 

The first modern clinical characterisation of FSHD was performed by Padberg in 1982 

that involved 107 individuals from 19 families of which 73 subjects showed clinical 

hallmarks of FSHD. Padberg’s studies give the first evidence for extensive clinical 

variability of patients with FSHD, even from the same family (Padberg 1982). 

 Clinical features 

FSHD is a progressive disease that weakens and destroys skeletal muscles. The typical 

clinical manifestation at first involve facial weakness that progresses to shoulder girdle, 

humeral, truncal and anterior leg muscles.  
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Facial weakness is reported in up to 90% of patients, of which over 50% of cases show 

to have the facial muscle affected in an asymmetrical fashion- a trait found useful in 

differential diagnosis of FSHD (Figure 1.1.D) (Padberg 1982). Shoulder girdle weakens is 

reported as the first symptom by around 80% of patients (Padberg 1982) and it is a result 

of atrophy of the scapula fixator and pectoralis muscles (Figure 1.1). The scapula 

weakness is usually asymmetrical and locates to the right side of the body, 

independently of the handedness (Brouwer et al. 1993). Significant number of patients 

(up to 30%) do not develop further symptoms past the shoulder weakness. (Padberg 

1982). In the next stage of the disease a foot extensor or pelvic girdle weakness is 

reported in 80% and 20% of cases, respectively (Padberg 1982). Usually, abdominal 

muscle weakness is reported at this stage that results in lumbar lordosis. Roughly 10% 

of all the patients and 20% of patients past their 50’s will become wheelchair-bound. 

Extraocular, masticatory and cardiac muscles are not considered to be involved in FSHD 

and should be considered for other diagnoses (Padberg 1982; Laforet et al. 1998; A. J. 

van der Kooi et al. 2000). Serum creatine kinase (CK) level is typically less than five times 

the upper limit. Electromyography (EMG) and muscle histology examination show 

myopathic changes that are not FSHD specific (Padberg 2004; Dorobek et al. 2013).  

Non-muscular disease manifestations, include: scoliosis that is present in around 30% of 

patients and might lead to respiratory problems; retinal vasculopathy found in 

approximately 60% of patients that leads to visual loss in less than 1% of cases; high-

tone hearing loss which occurs prominently in early-onset patients (Padberg 1982; 

Padberg et al. 1995; Rogers et al. 2002).  



3 
 

FSHD is an autosomal dominant disease with an age dependent penetrance estimate of 

>95% at 20 years of age (Lemmers and van der Maarel 1993). The prevalence of the 

condition was calculated to be around 1 in 8000 persons (Deenen et al. 2014). However, 

the disease pattern of progression can vary as infantile cases have been reported (Bailey, 

Marzulo, and Hans 1986). In addition, a gender bias manifested by higher penetrance in 

males (95%) vs. females (65%) that carry the FSHD allele has also been found (Zatz et al. 

1998). The underlying reasons why the FSHD does not follow a classical autosomal 

dominant Mendelian chronology is not clearly understood.
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 Figure 1.1 Clinical manifestations of FSHD 

(A.) asymmetrical facial weakness; (B.) and (C.) elevated scapulae and shoulder girdle weakness; D) asymmetric muscle wasting. Images 

were acquired from Padberg, 2004 
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1.2. Genetic basis of FSHD 

The genetic mechanisms behind FSHD are as fascinating as they are complex. This 

autosomal dominant disorder originates from the loss of epigenetic marks within the 

polymorphic D4Z4 macrosatellite repeat on a FSHD-permissive haplotype located at the 

telomeric end of chromosome 4q. The most common form of the disease (FSHD1) is 

caused by a deletion of a large region of the D4Z4 repeat array. In rare cases, mutations 

in Structural Maintenance of Chromosomes Hinge Domain Containing 1 (SMCHD1) gene 

that methylates the D4Z4 region leads to FSHD2. The mutations in both forms of the 

disease results in partial relaxation of D4Z4 chromatin that consequently allows 

expression of a DUX4 transcription factor found to be extremely toxic in skeletal muscle.  

 Contraction of D4Z4 repeat array in FSHD1 

The polymorphic D4Z4 macrosatellite repeat array consist of GC-rich 3.3 kb D4Z4 units 

arranged in head-to-tail fashion in the subtelomeric region of chromosome 4q located 

around 40kb from the telomere repeat (Figure 1.2) (van Deutekom et al. 1993; 

Wijmenga et al. 1992; R. J. L. F. Lemmers et al. 2002). In non-affected individuals, the 

size of the D4Z4 array ranges from 11 to 100 units. A virtually identical repeat array 

localizes to the subtelomeric region of chromosome 10q. In addition, two major variants 

of distant chromosome 4q have been identified, namely 4qA and 4qB. However, only 

contracted 4qA form, with 1-10 repeat units left, can lead to FSHD1. This D4Z4 repeat 

contraction causes chromatin structure relaxation in somatic cells as demonstrated by 

the decreased levels of CpG methylation and loss of histone modification markers within 
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the array (Balog et al. 2012; Zeng et al. 2009). Within each of the D4Z4 unit an open 

reading frame sequence for a retrogene called DUX4 is present. Interestingly, only the 

distal unit can produce a stable DUX4 transcript, since only the last D4Z4 unit is directly 

proceeded by the pLAM region that provides two facultative introns and a crucial 

polyadenylation sequence (ATTAAA) that is specific to 4qA variant only. D4Z4 repeat 

present in other than 4qA chromosome configurations and the homologous sequences 

located at the chromosome 10q that lack the pLAM sequence, even when contracted, 

do not express the DUX4 in somatic skeletal muscle and therefore do not result in FSHD.  

 Role of SMCHD1 in FSHD2 

The FSHD2 term is used to ascribe 5% of FSHD that do not exhibit the D4Z4 repeat 

contraction in the permissive chromosome 4. Despite normal size of the D4Z4 array, 

DNA methylation of D4Z4 is strongly reduced in FSHD2, just as it is in FSHD1, indicating 

a similar epigenetic silencing impairment in both forms of the disease. Whole exome 

sequencing in selected FSHD2 patients has recently identified mutations in (SMCHD1) 

gene located in the chromosome 18 (R. J. L. F. Lemmers et al. 2012). FSHD2 is a complex 

digenic disease where the SMCHD1 mutations are segregated independently from the 

FSHD-permissive chromosome 4q that encodes stable DUX4 transcript. Interestingly, 

SMUCH1 mutations account for approximately 85% of all FSHD2 patients, indicating that 

an FSHD3 locus may be yet to be discovered (Winston et al. 2015; Tawil et al. 2014).  

SMCHD1 is a member of a condensin/cohesin protein complex mediating chromatin 

compaction and has been found to directly bind to D4Z4 repeat array, indicating its 

important role in epigenetic suppression of the FSHD-permissive chromosome 4q (R. J. 
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L. F. Lemmers et al. 2012). SMDCH1 shows preferential binding to longer telomeres in 

human cell lines. A similar mechanism of binding of the protein with affinities dictated 

by the size of the D4Z4 repeats was proposed (Daxinger et al. 2015). However, the exact 

molecular mechanism of SMCH1 binding to D4Z4 repeat array is to be established. 

Interestingly, recent studies suggest that SMCHD1 can act as a disease severity 

regulator, especially in FSHD families that carry the upper-limit of 7-10 within their 

permissive alleles (Sacconi et al. 2013). In these cases, the combined effect of a D4Z4 

array contraction with SMCUH1 mutation results in faster disease progression and 

earlier onset (Sacconi et al. 2013). 
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Figure 1.2 The genetic and molecular mechanism behind the FSHD1 and 2 

In normal, unaffected cases there are 11-100 tightly condensed D4Z4 microsatellite repeat units (triangles) on the sub-telomeric region of 4q35 

chromosome. Large deletion of the D4Z4 repeat units in FSHD1 leaving only 10-1 repeats, leads to chromatin relaxation and allows expression of DUX4 

from the last D4Z4 repeat unit. Non-permissive chromosome alleles do not carry a functional poly(A) signal (green bar) that is essential for transcription 

of a stable DUX4 mRNA. Only the alleles that carry the functional poly(A) sequence (red box) distal to the repeat array can produce stable DUX4 

transcripts that can be translated into toxic DUX4 transcription factor protein. Methylation of D4Z4 repeat array is regulated by SMCHD1. In FSHD2, 

the SMCHD1 becomes mutated and unable to methylate the D4Z4 region, resulting in open chromatin conformation and consequently DUX4 

expression. Abbreviations: FSHD, facioscapulohumeral dystrophy; DUX4, double homeobox 4; SMCHD1, structural maintenance of chromosomes 

flexible hinge domain-containing protein. Images of the patient and muscle histology acquired from the FSH Society website. 
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1.3. DUX4 gene, transcript and protein.  

FSHD1 and FSHD2 are clinically indistinguishable (de Greef et al. 2010). Despite the 

differences in the underlying genetic mechanism behind the FSHD1 and FSHD2, they 

both seem to be a result of an impaired suppression of DUX4 expression in skeletal 

muscle (R. J. L. F. Lemmers et al. 2012). However, due to the complex nature of DUX4 

transcription, it took over a decade to determine its expression by RT-PCR after its open 

reading frame (ORF) was first found within the D4Z4 repeat unit (Hewitt et al. 1994; Dixit 

et al. 2007a).  

 DUX4 gene 

Until relatively recently, repeated DNA elements have been considered as ‘junk’ DNA. 

However, due to recent advances in high throughput technologies, a range of RNAs 

expressed from these repeat elements have been found to play an important role in cell 

biology (Trofimova and Krasikova 2016). Similarly, initial sequence analysis of D4Z4 

region revealed a large ORF of a double homeodomain protein that however lacked a 

promoter, introns and polyadenylation sequences, indicating that it most likely encoded 

a non-functional retrotransposed pseudogene (Hewitt et al. 1994; Lyle et al. 1995; Yip 

and Picketts 2003; Alexiadis et al. 2007). However, subsequent studies have identified a 

functional promoter within the larger ORF and suggested a smaller double homeobox 

DUX4 transcription factor (TF) gene (Gabriels et al. 1999b). Since homeodomain-

containing TFs bind DNA and often regulate embryonic development (Gehring et al. 

1994), and a large number of genes have been found misregulated in FSHD patient 
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muscle cells in initial studies, and the DUX4 gene has become an interesting candidate 

that could help explain genetic mechanism behind the disease (Tupler et al. 1996).  

Detection of a specific DUX4 mRNA has proven to be extremely difficult due to its high 

GC content, very low expression in skeletal muscles and high level of sequence 

alignment with other DUX homologous genes distributed across the human genome 

(Beckers et al. 2001). The first RT-PCR study that could reliably detect DUX4 expression 

in FSHD myoblast confirmed that the gene is expressed from the distal D4Z4 unit 

extending to the pLAM region that contain an intron and a critical polyadenylation 

sequence (Figure 1.3.1) uu. Further publications have provided a detailed standardised 

protocol for RT-PCR that has proven useful to others in the field in confirming expression 

of a stable DUX4 transcript (Snider et al. 2009a; R. J. L. F. Lemmers et al. 2010). The 

complexity of DUX4 detection was also demonstrated by a dilution series experiment 

showing that a small fraction of 1 in a 1000 FSHD myoblasts express DUX4 in vitro (Snider 

et al. 2010).  

Expression of DUX4 mRNA seems to be induced after initiation of the differentiation 

process, as all FSHD myotubes and only a fraction of proliferating cells shows to be 

positive for DUX4 in proliferating myoblast cultures (Dixit et al. 2007a; Snider et al. 

2010a). Interestingly, expression of DUX4 mRNA could not be found in the patient 

muscle biopsies (Snider et al. 2010a), most likely confirming a low abundance of the 

transcript. It was proposed that DUX4 might be preferentially expressed during 

regeneration process, in activated satellite cells and their progenitors that constitute a 

small minority of the total muscle biopsy (Saccone and Puri 2010). Therefore, it would 

be considerably more challenging to detect DUX4 in the adult FSHD biopsies, compared 
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to pathological, highly regenerating or foetal muscles (Richards et al. 2012). Since 

nucleosomes become disrupted during DNA replication in some of the activated satellite 

cells and their progenitors, it could contribute to the relaxed chromatin structure that 

leads to DUX4 de-repression in FSHD cells (Richards et al. 2012). 
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Figure 1.3 DUX4 genomic features and its mRNA variants 

(Top) Schematic representation of the most distal D4Z4 repeat unit, followed by the 

adjacent pLAM region and distal exons. The DUX4 ORF was mapped to the first exon. 

Two poly-A signals were found to be present in exon 3 and distal exon 7, respectively. 

The pLAM region provides an intron and a functional poly-A signal on chromosome 4, 

whereas on chromosome 10 the poly-A sequence is lost. Stop codon maps at the end 

of the exon 1.  

(Bottom) Graphic representation of DUX4 mRNA variants. In all currently investigated 

FSHD myoblasts, only the full length DUX4 (DUX4-fl) ending in exon 3 could be found. 

In addition, DUX4-fl was reported in FSHD embryoid bodies, FSHD fibroblast, and in 

control and FSHD fibroblast-derived IPSC. Germ line tissue also expresses some DUX4-

fl ending in exon 3 and others ending in exon 7. The shorter DUX4 (DUX4-s) isoform 

was reported in muscle and other somatic tissues. All of the above DUX4 mRNA variants 

derive specifically from the chromosome 4 
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 DUX4 transcript 

Increasing evidence indicates that DUX4 transcripts could also play a role in FSHD. It has 

been found that the D4Z4 repeat array is transcribed in bi-directional fashion that forms 

sense and antisense DUX4 mRNA as well as additional small RNAs (Snider et al. 2009a). 

These types of transcript have been implicated in recruitment of Heterochromatin 

Protein 1 that could be involved in maintenance of heterochromatic state of the D4Z4 

repeat unit (Snider et al. 2009a). Moreover, the bi-directional transcription was also 

reported in mouse DUX paralogue (Clapp et al. 2007).  

Location of introns within the 3’UTR of DUX4 could also indicate that levels of the 

transcript might be regulated by the process of nonsense-mediated decay (NMD), as 

suggested by the recent experiments showing that NMD endogenously downregulates 

the DUX4 mRNA levels in muscle (Feng et al. 2015). An increased level of RNAs with 

premature stop codon has been found by the RNA-seq analysis in DUX4-induced 

myoblast cells implying defective NMD. The increased DUX4 expression has also resulted 

in downregulation of UPF1 that most likely directly led to the NMD-mediated 

downregulation (Feng et al. 2015).  

Three DUX4 isoforms have been reported and these include: two full length transcripts 

(DUX4-fl) alternatively spliced in the 3’UTR that encode the complete DUX4 protein; and 

a short splice variant (DUX4-s) that utilises a splice donor site from the exon 1 of the 

coding sequence (Figure 1.3). The translated DUX4-s would produce a protein that                                                                                                                                                                                                                                       

contains the homeodomain (i.e., DNA binding domanin), but lacks the transactivation 

domain of the C-terminal (Figure 1.3)(Dixit et al. 2007; Snider et al. 2009).  
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The process of transcriptional silencing via siRNA has been well understood over the 

years (Holoch and Moazed 2015), and has been also found to be relevant in the context 

of DUX4 expression (Lim et al. 2015). A number of small RNAs have been mapped 

upstream of DUX4 coding sequences and were suggested to mediate silencing of D4Z4 

repeat array (Lim et al. 2015; Snider et al. 2009). Targeting of this distal D4Z4 region with 

exogenous siRNA resulted in augmented H3K9me2 methylation and consequent 

downregulation of DUX4 through Argonaut (AGO)-dependent pathway in FSHD cells 

(Lim et al. 2015). Non-FSHD muscle cells that possess 13 permissive repeat units and 

were subjected to DICER or AGO2 knockdown become positive for DUX4. However, 

when the same approach of DICER or AGO2 downregulation was performed in the cells 

that carried 4 D4Z4 units on a permissive haplotype, there was no apparent induction of 

DUX4 expression, further highlighting the importance of D4Z4 endogenous silencing 

(Lim et al. 2015). This also aligns with the findings showing that SMCHD1 

haploinsufficiency results in limited repression of shorter repeat arrays (Lemmers et al. 

2012). Since AGO proteins regulate elongation rate of RNA polymerase II that influences 

alternative splicing (Ameyar-Zazoua et al. 2012), it would be interesting to determine if 

it also plays a role in splicing regulation of DUX4-fl and -s isoforms. Indeed, finding these 

novel silencing processes of D4Z4 provides a platform for development of new siRNA-

mediated oligonucleotide therapeutic strategies (Lim et al. 2015).  

 DUX4 protein 

DUX4 protein is around 55kDa in size and was first detected in human testis via 

immunodetection on a western blot (Snider et al. 2010). After the first specific 

monoclonal antibody for DUX4 has been developed, studies by Dixit et al., 2007 have 
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managed to detect the protein in FSHD myoblast but not in control samples. The same 

antibody was subsequently used to stain nuclear DUX4 using immunofluorescence and 

the protein has been found to be expressed in approximately 1 in 1000 myoblast, which 

corresponds to the previous RNA data (Snider et al. 2010). However, since DUX4 protein 

levels appear to be extremely low, a number of groups have failed to reproduce the 

above experiments in muscle tissue (personal communication with Dr J. Dumonceaux). 

Another factor considered to be related to low abundance of DUX4 is its poor stability, 

as it has been reported that proteasome inhibition greatly facilitated detection of DUX4 

(Dixit et al. 2007). Also DUX4-induced cell death seems to be much more pronounced in 

myoblast rather than in myotubes, leaving virtually no DUX4-positive myoblasts that can 

be utilised for the protein detection, and few DUX4 expressing nuclei found in 

differentiated myotubes (Bosnakovski et al. 2008). Finally, there are currently no 

positive outcomes from the immunohistochemical experiments that have attempted to 

detect the DUX4 in muscle sections, which makes it difficult to establish whether the 

expression of DUX4 is specific to regenerating fibres or satellite cells (Richards et al. 

2012).  

A lot of scientific effort has recently gone into trying to better understand the biological 

role of DUX4 transcript, its encoded protein and how these potentially lead to FSHD 

pathology. Since DUX4 has been identified as a TF, it was believed that it is most likely 

involved in deregulation of an array of downstream genes. An example of a gene that 

becomes upregulated in FSHD patients by binding of DUX4 to its promoter was PITX1 

(paired-like homeodomain transcription factor 1) (Dixit et al. 2007). PITX1 TF has been 

found to play an important role in limb development and establishment of left/right 
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symmetry, and is frequently found disturbed in FSHD patients (Figure 1.4 B) (see section 

1.1). Furthermore, DUX4 expression in muscle cell culture leads to increased toxicity 

thought to be mediated by the caspase-3 upregulation that subsequently leads to cell 

death (Kowaljow et al. 2007). MyoD levels are also downregulated in DUX4-transfected 

C2C12 cells, which results in impaired differentiation of these cells (Bosnakovski et al. 

2008). PAX3 and PAX7 genes that have been found to regulate muscle regeneration and 

myogenesis have a highly homologous DNA-binding homeodomain to the DUX4 DNA-

binding domain, and it was suggested that these TFs can act as mutual competitors 

(Figure 1.3.1) (Bosnakovski et al. 2008; Buckingham and Relaix 2007). DUX4 could 

therefore interfere with PAX3/7 downstream genes such as MyoD and MYF5 that are 

responsible for normal myogenic signalling (Bosnakovski et al. 2008). A recent RNA-seq 

study show that 118 genes are dysregulated in FSHD muscle biopsies, of which 68% are 

directly regulated by DUX4 expression (Yao et al. 2014), providing a partial explanation 

how a protein expressed in such an extremely low abundance can have such a dramatic 

impact on the muscle cell function. Another mechanism explaining DUX4 potency was 

provided by the study that found the ability of DUX4 TF to diffuse from a single nucleus 

into a larger portion of the myotube affecting gene expression in neighbouring nuclei 

(Figure 1.4 A)(Tassin et al. 2013). 

Development of FSHD transgenic mouse models that use human equivalent genetic 

and/or epigenetic mechanism to drive DUX4 expression has proven to be extremely 

challenging. However, studies that used vector-induced DUX4 expression in mice and 

fish do report myopathic changes in these animals (Snider et al. 2009; Wallace et al. 

2011). Interestingly, knock-out mice for Tp53 shows reduced DUX4-related myotoxicity 
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(Wallace et al. 2011). This data aligns with the previous findings showing p53 pathway 

activation in FSHD muscle tissue (Figure 1.4 B) (Sandri et al. 2001). The p53 as well as 

being implicated in apoptosis and cell cycle regulation, has also been involved in 

regulation of muscle atrophy and metabolic homeostasis (Maddocks and Vousden 2011; 

Schwarzkopf et al. 2006). Recent development of a muscle-specific, doxyciline-induced 

DUX4 expression mouse model shows a new promise in better understanding of DUX4 

role in postnatal muscle (Bosnakovski et al. 2017). In this model, it is possible to induce 

a very low-level expression of the toxic gene, thereby recapitulating more the 

pathophysiological conditions that appear in FSHD patient muscle. Similarly to FSHD 

patients, these animals shows slow progressive degenerative myopathy and high 

frequency hearing loss (Bosnakovski et al. 2017).  

The C-terminal (transactivating) domain of DUX4 protein is believed to play a major role 

in mediating cytotoxic effects, as transfected cells with the DUX4c protein that lack the 

C terminal region do not exhibit myotoxic effects to the same extent as with the full 

length DUX4 protein (Ansseau et al. 2009). The C-terminal region is also absent in DUX4-

s isoform, which was previously found in healthy control muscle samples (Snider et al. 

2010).  

The DUX4 promoter sequence binding elements such as Sp1, YY1 and E box are 

characteristic for genes expressed in terminal differentiation (Dixit et al. 2007). 

However, the fact that half of the Caucasian population lacks the permissive FSHD allele 

suggests that the DUX4 has a limited or no function in the postnatal stages and might be 

more relevant during the development (Lemmers et al. 2002).  
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Figure 1.4 DUX4 transcription factor: process of transcription initiation and propagation cascade 

(A.) Myotubes are multinucleated cells sharing common cytoplasm. Each nucleus can express genes independently. In FSHD, DUX4 is expressed in 

a given nucleus (1.) and becomes transcribed from a distal D4Z4 arrays that contains permissive polyA signal which stabilises its mRNA. Multiple 

copies of DUX4 mRNA are transcribed and transported to the cytoplasm where they become translated into proteins (2.). DUX4 is able to diffuse 

to several adjacent nuclei (3.). (B.) Each imported DUX4 proteins affects expression of a range of genes. DUX4 can amplify its toxic potency by 

abnormally upregulating other transcription factors (e.g., PITX1) that can also diffuse into neighbouring nuclei and activate its target genes such 

as p53. DUX4 expression also leads to downregulation of muscle differentiation master regulator- MyoD transcription fact and upregulate caspase 

3 expression -a key regulator of apoptosis. DUX4 cascade in muscle cells leads to atrophy, reduced differentiation potential, and oxidative stress. 

Figure based on publications by Tassin et al., (2013) and Vanderplank et al., (2011). 
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 Path to understanding DUX4 biological role  

Evidence that DUX4 might be involved in human development comes from the studies 

that found DUX4 expression in human testis (Snider et al. 2010). DUX4 is particularly 

robustly expressed in germline cells under normal conditions (Figure 1.3)(Snider et al. 

2010). However, the transcriptional mechanisms are substantially different to those 

found in FSHD. Germ line cells express DUX4 from both 4qA and 4qB arrays as well as 

the D4Z4 array in the chromosome 10 locus (10q), and instead of the pLAM, the 

polyadenylation signal located within exon 7 is utilised, which extends the DUX4 

transcript over 4 additional untranslated exons (Figure 1.3). The fact that the DUX4 

transcript was also found to be expressed in induced pluripotent stem cells (iPS) cells 

derived from control individuals, further indicates that DUX4 most likely plays a role in 

human development (Snider et al. 2010). This idea was also supported by the study that 

found over 74 genes aberrantly expressed in DUX4-induced cultures that are directly 

involved in stem and germ cell function (Geng et al. 2012).  

Since the DUX4 retrogene is conserved exclusively in primates, it has been challenging 

to study a normal physiological role in development of the gene in standard animal 

models (Clapp et al. 2007). Current approaches focused on induced expression of DUX4 

globally, which resulted in significant defects in zebrafish or was fatal in mouse 

(Mitsuhashi et al. 2013; Bosnakovski et al. 2017). Understanding the complex spatio-

temporal expression of DUX4 during development, and recapitulation of these 

mechanism in an animal model, could lead to better understanding of DUX4 function in 

the future.  
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1.4. Therapeutic strategies to tackle FSHD 

The definitive cure for FSHD has not been found yet. Current therapies focus on 

symptom management and slow down or halting of disease progression. The non-

pharmacological interventions include; orthopaedic intervention, surgical scapular 

fixation; physical therapy; respiratory insufficiency management and aerobic exercise 

(Tawil 2008). Current pharmacological intervention focus on use of corticosteroids that 

reduce inflammation apparent in dystrophic patients (Munsat et al. 1972). Furthermore, 

compounds that could protect muscle mass and function like albuterol and creatine 

monohydrate and are also frequently recommended to FSHD patients (Benson et al. 

1991; Kemp et al. 1993; Tawil 2008). Since impaired methylation of the permissive D4Z4 

array repeat and synthesis of the toxic DUX4 TF are the molecular hallmarks of the FSHD, 

substantial pharmacological research has focused on controlling methylation of the 

D4Z4 and inhibition of DUX4 expression. 

 Attempts to increase methylation of D4Z4 repeats  

Since it has been well established that the hypomethylation of the D4Z4 repeat array is 

one of the main features of FSHD1 and FSHD2 needed for the expression of DUX4 from 

the permissive 4q chromosome (section 1.2), one rational approach to reverse the FSHD 

pathogenesis would be to promote methylation of the D4Z4 region. Indeed, a pilot study 

by Van der Kooi et al., 2006, used folic acid and methionine treatment on FSHD patients 

to test this hypothesis. Both folic acid and vitamin B12 are required for production of 

methionine, which is essential for maintenance of DNA methylation (E. L. van der Kooi 

et al. 2006). Although concentration of serum folate optimal for DNA methylation 

augmentation was achieved, no such an effect was demonstrated in the FSHD or control 
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patients following 12-week treatments. It has been proposed that a dose increase of 

folic acid combined with B12 treatment could be more beneficial (E. L. van der Kooi et 

al. 2006).  

More promising experimental results in epigenetic repression of the D4Z4 region was 

achieved using CRISPR/Cas9 method (Himeda et al. 2016). Authors have modified the 

nuclease-deficient component of the genome engineering tool (dCas9) by fusing it to 

the transcriptional effector domain known as Kruppel associated box (KRAB) that can 

suppress up to 99% of the target gene in human cells (Gilbert et al. 2013). When the 

dCas9-KRAB system was recruited to the promoter of DUX4, it has led to a significant 

downregulation of the toxic TF in the FSHD myocytes (Himeda et al. 2016). In addition, 

the ChIP analysis showed that the KRAB domain has increased recruitment of the HP1α 

HP1β that had a repressive effect on the chromatin of the D4Z4 region (Himeda et al. 

2016).  

 Silencing of DUX4 expression 

There are a number of tools are available that can be utilised to aid gene silencing, 

including: small hairpin RNA (shRNA), micro RNA (miRNA), small interfering RNA (siRNA) 

and antisense oligonucleotide chemistries (Wallace et al. 2011; Marsollier et al. 2016).  

shRNA, miRNA and siRNA are essentially double stranded, negatively charged RNA that 

can lead to target gene silencing through independent pathways (Meister and Tuschl 

2004). siRNA species was successfully used to downregulated DUX4 expression by 

targeting the 3’ untranslated region of the gene (Vanderplanck et al. 2011). Since shRNA 

and miRNA show to be activated and stable in the nucleus, it is believed that these RNA 

species can have a longer lasting effect and require lower doses to mediate gene 
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silencing (Bao et al. 2016). In the study by Wallace et al., DUX4-targeting miRNA was 

delivered via adeno-associated viral (AAV) vector into a mouse model expressing AAV-

induced DUX4, demonstrated a considerable reduction of 90% in DUX4 protein and 64% 

in DUX4 transcript levels (Wallace et al. 2011).  

 Muscle stem cell therapy  

Intramuscular transplantation of cultured myoblasts has been considered as a 

therapeutic strategy for several muscular dystrophies (Tawil 2008). An interesting 

finding comes from the Vilquin et al. study (2005), where it has been found that 

myoblasts derived from FSHD biopsies showing healthy histology have unaffected 

processes of division and differentiation (Vilquin et al. 2005). Therefore, it was proposed 

that these myoblasts could prove useful for autologous cell therapy in FSHD.  

Mesoangioblasts, another type of myogenic mesodermal stem cell, occurring within 

perivascular tissue of skeletal muscle, have been demonstrated to improve muscle 

function and morphology as shown in dystrophic animal models injected with these cells 

(Morosetti et al. 2007). Mesoangioblasts derived from FSHD patient muscle tissue, show 

to have abnormal morphology and impaired differentiation (Morosetti et al. 2007). 

Interestingly, it was possible to obtain biopsies from FSHD mosaic patients that 

produced mesoangioblast populations that were morphologically normal, and 

functioning virtually as control cells (Morosetti et al. 2007). This raises an opportunity 

to use mesoangioblasts for autologous cell therapy. An advantage of using 

mesoangioblasts over myoblasts is the fact that these cells can be delivered 

systematically, whereas the intramuscular injection of myoblasts have a less practical 

use clinically (Berry 2015).  
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1.5. G-quadruplexes: structure, function and roles as therapeutic target. 

 G-quadruplex nucleic acid motifs 

All known living organisms contain genetic information in the form of long linear chains 

of copolymers composed of many nucleotide units (Koonin and Novozhilov, 2009). 

These molecules, known as DNA and RNA, are typically formed from five different types 

of nucleotide bases: the pyrimidines - cytosine (C), thymine (T) and uracil (U); and 

purines - adenine (A) and guanine (G) (Nordhoff et al. 1996). While the T is specific to 

DNA, the U is characteristic for the RNA polymers. The most commonly occurring 

complimentary base pairing of nucleotides in the biological systems occurs via hydrogen 

bonding of A to T or U, and G to C. The A-T (-U) and G-C base pairs are held together by 

two and three hydrogen bonds, respectively (Nordhoff et al. 1996). In the contexts of 

DNA, this classical complementary base paring of nucleotides results in the formation of 

two anti-parallel strands that form the well-known, right handed canonical double helix 

(B-form) secondary structure, which was first proposed by James Watson and Francis 

Crick in 1953 (Watson and Crick, 1953). While the ability of the DNA to form secondary 

structure has been well characterised in the recent past, the discovery that in addition 

to storing and passing on information, the DNA is also capable of G-quadruplex (GQ) 

structure formation, has suggested a novel role of DNA in biology (Yang and Okamoto 

2010).  

Before the B-form DNA structure was discovered, it has been found that at high 

concentrations, G nucleotides form gels that were not characteristic for any other 

nucleobases (Bang 1910). Over 50 years later, it appeared that the gelatinous substance 

was composed of G-tetrad structures (Gellert et al. 1962). In the G-tetrad, four G 
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residues hydrogen bonded together are held in a square planar array via Hoogsteen 

pairings as opposed to the classical Watson-Crick hydrogen bonding found in the B-form 

duplex (Huppert 2010). Further stabilisation of the G-tetrad is mediated by the presence 

of monovalent cations, usually K+ and Na+ (Sen and Gilbert 1990). Since the intracellular 

concentration of K+ (140 mM) is considerably higher than of Na+ (10 mM), it is 

considered physiologically more relevant in the context of GQ formation and 

stabilisation (Sen and Gilbert 1990). The centrally positioned monovalent cation within 

the G-tetrad coordinates to O6 atom of each guanine via strong negative electrostatic 

interaction (Figure 1.5 A). The linear array assembly running through the centre of the 

core G-tetrad is promoted by the polarizable aromatic surface of guanine, this creates 

large π surfaces with a high propensity to stack (Huppert 2008). A core of two or more 

π-π G-tetrads are considered to be sufficient to form a GQ structure. 

 GQ topology 

In both DNA and RNA, the G-tetrads are held together by intervening sequences that are 

variable in length and nucleotide composition. These stretches form loops and run on 

the exterior edges of the core. Similarly to the amino acid side-chains in proteins, the 

loops are the key element that define the structural variability in GQs. The diversity in 

loop sequences results in highly variable (and sometimes flexible) cavities on the 

exterior of GQs that can form part of ligand binding sites (Balasubramanian et al.2011).  

In addition, the presence of different cations can promote formation of diverse GQ 

conformations of the same G-rich sequence (Yang and Okamoto 2010). For example, the 

conserved human telomeric DNA sequence consists of tandem repeats, and thus lacks 

this sequence variability. This elegantly evolved telomeric sequence is able to form 
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various GQ structures with low energy differences and therefore convey intrinsic 

structure polymorphism. 

Another factor that influences the GQ formation is the number of strands used to form 

the structure. In theory, the GQ can be formed from four separate DNA/RNA strands 

(tetramolecular), two distinct DNA/RNA strands (bimolecular) or a single, continuous 

strand (unimolecular or intramolecular) (Figure 1.5 B). The unimolecular GQ has been 

considered to be the most biologically relevant and its structure extensively studied, 

especially in gene promoters and telomere regions (Balasubramanian et al. 2011). A 

unimolecular GQ consist of four G-tracts (continuous or discontinuous), three or more 

loops and two flanking segments. Two types of G-tract can be distinguished based on 

their direction: parallel and anti-parallel (Figure 1.5 B). The parallel and anti-parallel 

strand directionality is associated with specific sugar glycosidic conformation. The 

possible glycosidic conformations that form between the guanine base and its sugar 

backbone are syn and anti (Figure 1.5 C). The guanines from the parallel G-tract have 

the same glycosidic conformation, whereas the antiparallel G-tract will adopt the 

opposite glycosidic conformation. Loops form three conformations: strand reversal 

(joining adjacent parallel strands), lateral (connecting adjacent antiparallel strands) and 

diagonal (coupling together diagonal antiparallel strands on opposite sides of the tetrad) 

(Figure 1.5 B).  

The first biologically relevant GQs were found in eukaryotic chromosomal telomeric DNA 

(E. Henderson et al. 1987). Human telomeres consist of 5-10 kb d(TTAGGG)¬n tandem 

sequences with a 50-600 nt single stranded 3’ overhang at chromosome ends that are 

capable of forming DNA GQs (de Lange 2005). The presence of the DNA GQs in the 
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human telomere has been demonstrated to diminish activity of telomerase, which is 

over activated in 80 to 85% of cancer, making it an attractive drug target (Kim et al. 

1994). Structure of the telomeric GQ has been found to be rather complex. It has been 

shown that in the presence of K+, it forms two coexisting hybrid structures that possess 

mixed parallel and anti-parallel G-tracts making the GQ structure (Ambrus et al. 2006a). 

Since the composition of the G-tracts is the same, it is the position of the strands that 

allows distinction of the two hybrid structures (Figure 1.5 B). Flanking sequences and 

loop content is the main contributor for the formation of these hybrid forms. Presence 

of these two hybrid structures helps explain the multimeric formation at the human 

telomere 3’ overhang. It was also suggested that the structural polymorphism, caused 

by the asymmetry of the telomeric sequence forming GQs, could provide a platform for 

protein recognition, and hence control of telomere biology (Dai, Carver, and Yang 2008).  

In recent years there was a lot of effort to try and describe structure of GQs, especially 

those present in a number of oncogene promoters (Balasubramanian et al. 2011). 

Compared to the invariable human telomeric sequence, the GQs present within the 

gene promoter regions are more diverse in sequence, possessing different length G-

tracts and flanking sequences. Several GQ structures have been described in oncogene 

promoters. These include genes encoding c-MYC, B cell lymphoma 2 (BCL-2), hypoxia-

inducible factor 1 α (HIF1α), vascular endothelial growth factor (VEGF), retinoblastoma 

protein 1 (RB1), the transcription factor MYB, human telomerase reverse transcriptase 

and platelet-derived growth factor α polypeptide (PDGFA) (Huppert 2010). Out of all of 

the above listed genes, the c-MYC was the first and most thoroughly investigated system 

for the promoter GQ formation (Seenisamy et al. 2004). Within the promoter, the GQ 

motif maps to the nuclease hypersensitivity element III (NHE III) that consist of 33 
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nucleotides and contains six G-tracts of unequal lengths. The predominant GQ formed 

within the c-MYC promoter is a parallel-stranded structure. The G-tetrads are connected 

by two single nucleotide loops and one two nucleotide loop. Interestingly, these parallel-

stranded structures appear to be the most common type of GQ structure in promoter 

regions (Agrawal et al. 2014). 
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Figure 1.5 GQ structure topology 

(A.) Four guanines (G) can self-assemble into stable square planar arrays known as the G-quartet (left panel). Guanines are held together by four 

hydrogen bonds on each guanine (shown by the dashed red lines) and may be further stabilized by the presence of monovalent cations (orange 

ball). Stacking of G-quartets generates a GQ (right panel). (B.) A basic classification of GQ structures by the number of oligonucleotide strands 

used to form a quadruplex structure. Tetramolecular structures are generated from four separate strands; bimolecular structures are generated 

from two separate strands while unimolecular structures are folded structures derived from a single guanine-rich strand. Looping sequences are 

highlighted in red and strand polarity is indicated by arrow directions. (C.) The glycosidic bond angle of G-quartets will change depending of the 

polarity of strands in a GQ. 
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 Detection, visualization and mapping of GQs in cells 

1.5.3.1. Antibody and small molecule based approach to localize GQs in cells 

Computational analysis is a useful tool to predict putative GQ motifs across genomes. 

The potential and application of these algorithms are discussed in more detail in section 

3.2.1. However, since the computational methods predict consensus GQ sequences 

only, potential structures that are formed from non-canonical sequences could be 

potentially omitted (Schiavone et al. 2014). Furthermore, long repeated DNA sequences 

are not available in current sequence databases, which could lead to underestimation 

of potential genomic GQ (Rhodes and Lipps 2015). Importantly, current algorithms 

predict the GQ motifs to be particularly enriched in non-random, functional locations of 

the genome such as telomeres, promoters and first introns (Konig et al 2010). Indeed, it 

is important that the potential role(s) of GQs are studied in a biologically relevant 

context.  

One of the current methods that aids visualisation of DNA structures in cells, utilises 

structure-specific molecular probes. Antibodies are an extremely powerful tool in 

detecting molecular structures of a particular protein with an astonishing specificity 

(Hansel-Hertsch et al. 2017). These can be also synthesised by either immunization or 

by affinity in vitro selection to recognize particular DNA or RNA structures. For example, 

a GQ-specific single chain variable fragment (scFV) of an antibody, has allowed first 

visualisation of a biologically relevant GQ formation in the telomeres of the Stylonychia 

lemnae ciliate (Schaffitzel et al. 2001). Two additional GQ-selective antibodies, 1H6 and 

BG4, have been produced and used to visualize these motifs using immunofluorescence 

microscopy in human cells (A. Henderson et al. 2014; Biffi et al. 2013). Each antibody 
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was tested by separate groups in a number of fixed human cell lines, showing cell cycle 

dynamic GQ formation with the maximum number of the structures being formed in the 

S-phase (Biffi et al. 2013). Interestingly, the number of GQ nuclear foci increased when 

the live cells were treated with the structure specific ligands, including TMPyP4, Phen-

DC3 and pyridostatin (PDS), suggesting that these compounds have the potential to 

stabilise the motifs (Henderson et al. 2014; Biffi et al. 2013). Furthermore, depletion of 

GQ-specific helicase Fanconi anaemia group J protein (FANCJ) resulted in an increase of 

GQ foci in chicken DT40 cells treated with the stabilising ligand (A. Henderson et al. 

2014).  

Modified small molecules that can bind GQ also have been used to detect these 

structures. A fluorophore fused PDS (PDSα) molecule staining has shown a significant 

accumulation of its signal with the GQ-helicase integration frequency peptide 1 (PIF1) in 

osteosarcoma cells (U20S), further supporting the role of PIF1 in regulation of GQ 

structures in human cells (Rodriguez et al. 2012). When other intrinsically fluorescent 

ligands, DAOTA-M2 and BMVC, were used to visualise GQs, it was found that the motifs 

are significantly enriched in some cancer cell lines compared to the control cells (Huang 

et al. 2015; Shivalingam et al. 2015).  

Both GQ-specific small molecules and antibodies can potentially influence stability of 

the motifs through simple binding interactions. Therefore, it is important to supplement 

the probe-based studies with observation of normal biological processes (e.g., cell cycle) 

or perform functional analysis by perturbation of key enzymes that regulate GQ stability, 

to ensure that probe binding would act independent of these processes.   



34 
 

1.5.3.2. Mapping of genomic GQs in cells  

One approach to map GQs in a purified single stranded human DNA, used next 

generation sequencing and GQ-induced DNA polymerase stalling (Chambers et al. 

2015a). In this method the isolated DNA is first sequenced under conditions that do not 

favour folding of GQ, following by sequencing of the same DNA that is sequenced in the 

presence of ions (e.g., K+) or ligands (e.g., PDS) that promote quadruplex formation. The 

GQ dependent DNA polymerase stalling events are compared between the two 

sequencing procedures. As a result, over 700,000 GQ were identified. This number 

exceeds that predicted by the bioinformatic estimations, which can be partially 

explained by false positive results caused by the non-guanine sequences forming bulges 

or formation of considerably longer loop sequences that are not accounted for in the 

standard algorithms (Huppert and Balasubramanian 2005). This data suggest that the 

human genome sequence has the potential to form GQs in numbers vastly exceeding 

previous estimations (Bedrat et al. 2016). It also confirms that the GQs were particularly 

enriched within the promoters, 5’ untranslated regions and splice sites as well as cancer 

related genes (Chambers et al. 2015a). 

The main pitfall of analysing GQs using bioinformatics and the high throughput 

sequencing methods is the fact that the DNA is predominately double-stranded (except 

for telomeric overhangs and transcripts) and condensed in the form of chromatin. In 

recent reports, detection of GQ utilising GQ-specific antibodies to probe the motif 

structures using ChIP-seq method, has been explored (Rodriguez et al. 2012; Hansel-

Hertsch et al. 2016). They have compared fixed chromatin derived from primary human 

epidermal keratinocyte (NHEK) cells to the immortalised pre-cancerous keratinocytes 

(HaCaT) (Hansel-Hertsch et al. 2016). It has been found that only around 10,000 and 
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1,000 GQ structures could be detected in the chromatin of HaCaT and NHEK cells, 

respectively. This constitutes around 1% of the GQs found by the sequencing 

experiments or bioinformatic analysis, indicating that the GQs are supressed in the 

chromatin state. Proteins might play a vital role in regulating GQ formation, as it has 

been found that GQs are particularly enriched within regions of chromatin that are 

deprived from nucleosomes- a highly transcribed sites (Hansel-Hertsch et al. 2016). In 

addition, the histone deacetylase inhibitor treatment that leads to chromatin 

condensation also resulted in decreased GQ detection by Chip-seq, consistent with the 

idea that GQ formation is correlated with transcriptionally active genomic sequences. 

Interestingly, this study also has showed that the identified sequences significantly 

overlap with binding sequences of transcription helicases, including xeroderma 

pigmentosum group B- complementing protein (XPB) and XPD (Gray et al. 2014). In 

addition, the ChIP-seq-based analysis has demonstrated that various proteins map to 

the regions that have been predicted to be significantly enriched in GQ forming 

sequences, including: α-thalasemia/ mental retardation syndrome X-linked human 

helicases; the Pif1 helicase from yeast and the RAP1-interacting factor 1 telomere 

protein (Whitehouse and Hughes 2010; Kanoh et al. 2015). Despite the fact that the 

helicases are able to bind to a range of genomic sequence, increasing evidence suggests 

that these might also play an important role in GQ regulation. 

 Formation and regulation of GQs in cells 

Since GQs formed from short artificial stretches of nucleotides are shown to be 

extremely stable and with their thermal stability significantly exceeding physiological 

range, it is important to understand how folding and unfolding kinetics of these motifs 



36 
 

are regulated in real cellular situations. This is especially important, considering that 

cellular ionic composition, consisting typically of 5-15 nM Na+, 140 nM K+ and 0.5-2 mM 

Mg2+ (pH 7.2), is particularly favourable for GQ formation (Davis 2004). The assumption 

that there are cellular proteins regulating GQ structures becomes increasingly 

supported by the accumulating number of reports suggesting that chaperone and 

helicase proteins are responsible for GQ folding and unfolding, respectively (Rhodes and 

Lipps, 2015).  

Predominant evidence showing that chaperones control GQ folding comes from the 

studies of telomeres. It has been demonstrated two decades ago that the double 

stranded DNA binding protein, Rap1, induces telomeric GQ formation in S. cerevisiae 

(Rhodes and Giraldo 1995). Yeast telomerase regulatory subunit Est1 has also been 

shown to bind and stabilise GQ, as well as the human telomeric binding protein TRF2 

(Biffi et al. 2012). A convincing in vivo experiment has demonstrated that the ciliate 

telomere ending protein (TEBPβ), regulates GQ folding in a cell cycle dependent fashion 

(Fang and Cech 1993). In addition, TEBPβ has been shown to increase GQ formation by 

105  - 106 fold in vitro. Another example of a human protein that binds to GQs is MutSα, 

which was previously implicated in recognising DNA mismatches (Larson et al. 2005). 

Nucleophosmin (NPM1), a frequently mutated gene in acute myeloid leukaemia that 

normally is involved in ribosome maturation processes, has also been found to bind 

ribosomal DNA that forms GQs both in vitro and in vivo (Chiarella et al. 2013). A well-

established GQ binding protein, nucleolin, has been recently shown to be sequestered 

by the presence of an aborted RNA transcript sequence which are carrying expanded 

hexanucleotide repeat (GGGGCC)n that forms GQs (Dempsey et al. 1999).  
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As mentioned above, helicases are very likely to play a major role in GQ unwinding. 

Helicase enzymes are part of a larger ATP-dependent family of proteins that are involved 

in unwinding of nuclei acids and are also implicated in genome stability regulation 

(Singleton et al. 2007). An important insight into the role of helicases in GQ structure 

regulation and genome stability came from studies of genetic diseases that are caused 

by mutations of these enzymes (Rhodes and Lipps 2015). The conserved domain of RQC 

present in human WRN and BLM helicases show high affinity binding to GQs, and when 

mutated it results in Werner and Blooms syndrome, respectively (Lipps and Rhodes 

2009). Interestingly, the DOG-1 helicase found in C.elegans seems to be essential to 

maintain the genomic G-rich sequences, especially the ones that have been predicted 

to form GQs (Cheung et al. 2002). The human orthologue of DOG-1, FANCJ helicase, 

when mutated has been found to result in the heritable cancer susceptibility disorder, 

Fanconi anaemia (London et al. 2008). The patient cell lines have large stretches of DNA 

deleted that are mapped to GQ forming regions. The in vitro experiments showing 

preferential unwinding of GQs over the double stranded DNA by the FANCJ, suggest that 

just like the DOG-1, these helicases are involved in resolving of transcriptional barriers 

formed by the DNA GQs (London et al. 2008). Also, RETL1, a DNA helicase regulating 

telomeres length, when mutated, it increases susceptibility to certain cancers and was 

also implicated in GQ unwinding, given its high homology to FANCJ and DOG-1 (Vannier 

et al. 2012). However, due to lack of the biochemical evidence of the RETL1 on GQ 

unwinding, more work is required to support this idea. PIF1 DNA helicase is another 

protein that is highly conserved and shows GQ unwinding ability (Paeschke et al. 2013). 

As previously mentioned, Pif1 of S.cerevisiae not only binds GQ sequences as shown by 

ChIP-seq analysis, but also when deprived from cells, it induces DNA double strand 
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breaks (Ribeyre et al. 2009; Lopes et al. 2011; Paeschke et al. 2013). It appears that when 

a GQ unwinding helicase is absent or dysfunctional, a number of nucleases can become 

involved in deletion of G-tracts that could be potentially involved in the quadruplex 

formation. Example of such nucleases, include: the yeast Kem1 and human DNA2, FEN1 

and EXO1 (Vallur and Maizels 2008; Liu and Gilbert 1994). All of these have been found 

to cleave GQs in vitro. Normally, FEN1 and EXO1 are involved DNA replication and 

telomere maintenance. In addition, when these nucleases are absent, the telomeres are 

not maintained correctly and become dysfunctional (Saharia et al. 2008). Another 

protein that has an important role in telomere maintenance, RPA, has been 

demonstrated to drive the kinetic equilibrium from the folded to unfolded state of 

quadruplex structures in vitro (Safa et al. 2014). 

On the level of translation, an DEAH-box human RNA helicase RHAU has been identified 

to bind and resolve RNA GQs into linear forms (Lattmann et al. 2011). Over 100 RNAs 

have been identified to be bound by the helicase at sites that potentially form GQs in 

vivo. Furthermore, it has been found in vitro and in vivo that binding of RHAU to one of 

its targets which is the human telomerase RNA TER, depends on the presence of a stable 

GQ structure within the 5’-region of the TER’s transcript. Additionally, disruption of the 

RHAU helicase lead to incorrect telomerase assembly and telomer extension (Booy et 

al. 2012). Together, these findings strongly indicate the there is a vast array of proteins 

mediating GQ unfolding that are involved in preventing DNA breaks, and interruption of 

replication and translational processes.  
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 Role of GQs in transcription and translation. 

Considering that over 50% of human gene promoters were found to potentially form 

GQs within their sequence, it is tempting to speculate that these motifs might play an 

important role in gene expression regulation (Huppert and Balasubramanian 2005). 

Interestingly, it has been predicted that the promoters of oncogenes and regulatory 

genes, for instance transcription factors, are particularly likely to contain GQs compared 

to other gene types, such as promoter tumour suppressor and housekeeping genes 

(Huppert and Balasubramanian 2005; Nakken et al. 2009). This pattern of GQs presence 

seems to be conserved in other organisms, for example bacteria, yeast and plants (Capra 

et al. 2010; Hershman et al. 2008; Todd et al. 2005). Furthermore, the GQs in humans 

are predominately found in the non-template strand and also to congregate at 5’ of the 

5’UTR (Huppert 2008). In bacteria transformed with GQ encoding plasmid on the non-

template strand, a loop structure formation was detected on the complementary 

strand, indicating formation of the GQs in cells during transcription (Duquette et al. 

2004). GQ formation in this case could release the template strand from the double 

stranded conformation in order to allow uninterrupted, high level transcription 

(Duquette et al. 2004). Therefore, since it is generally believed that the GQ formation 

on the non-template strand has an enhancing effect on transcription, it has been also 

suggested that the GQ present on the template strand could inhibit transcription by 

potentially blocking the transcription machinery  (Qin and Hurley 2008) (Figure 1.6).  

One of the first and best studied examples of GQ role in transcription regulation comes 

from the study of the c-MYC oncogene promoter (Huppert 2010). MYC is a cell 

proliferation-associated transcription factor that has been found upregulated in 80% of 

the human cancer cells (Pelengaris et al. 2002). The c-MYC promoter region contains GQ 
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forming sequence that has been shown to control over 80% of the gene’s expression 

(Simonsson et al. 1998). The reporter studies comparing gene expression driven by the 

wild-type c-MYC  promoter to the one carrying sequence mutation disrupting 

quadruplex formation, have demonstrated that presence of the GQ within the promoter 

sequence supresses gene expression (Siddiqui-Jain et al. 2002). In addition, treatment 

with a GQ stabilising ligand, TMPyP4, has also shown decrease in c-MYC transcription in 

lymphoma cell lines as well as antitumor effects in mice (Grand et al. 2002). However, 

since the TMPyP4 is not GQ specific and it shows binding affinity also to double stranded 

DNA in multiple regions of the genome, more work needs to be done in order to 

establish the exact mode of action of this chemistry. Interestingly, a highly selective 

compound for the c-MYC promoter-related GQ known as GQC-05 has been found. Its 

treatment of Burkit’s lymphoma cell line has led to significant reduction of c-MYC mRNA 

expression, further highlighting the potential of rational drug design for the 

development of highly specific GQ chemistries (Brown et al. 2011).  

Previously mentioned GQ-binding protein, nucleolin, is one of the most abundant 

cellular proteins and has been found to bind to the promoter sequence of c-MYC. What 

is more, over-expression of nucleolin leads to dose-dependent reduction of MYC 

transcription (González and Hurley 2010). It has been suggested that the nucleolin-

mediated oncogene suppression is mediated by binding and stabilising of the c-MYC-

related GQ, which prevents binding of the transcription activating factors (e.g., SP1 and 

CNBP) (González et al. 2009).  

GQs have been found vastly overrepresented within 5’UTRs of a large number of genes, 

suggesting their important role in translation regulation (Bugaut and Balasubramanian 
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2008). It was initially speculated that presence of the extremely thermodynamically 

stable GQs within the 5’UTR would result in an inhibition of translation, and indeed this 

has been found to be the case for number of genes, including: Bcl-2, ESR1, FMR1, NRas, 

TRF2, Zic-1 and Mt3-MMP (Bugaut and Balasubramanian, 2008). However, cases where 

translation becomes enhanced by the presence of the 5’ UTR GQs have also been 

demonstrated for fibroblast growth factor 2 and vascular endothelial growth factor 

transcripts (Bonnal et al. 2003; Morris et al. 2010). Another example demonstrating that 

mRNA GQs can regulate translation, comes from the studies of fragile X mental 

retardation, where the transcript expansion of the (CGG)n repeat causes the mental 

retardation protein (FMRP) to bind to its own transcript. It has been demonstrated that 

the expanded transcript variant forms GQ stable structures that promote binding to the 

FMRP (Brown et al. 2011). This FMRP binding to the GQ-forming transcript lead to 

abnormal mRNA processing and consequently result in the disease pathology (Darnell 

et al. 2001). Furthermore, GQs have also been found present within the 3’UTR of 

transcripts where they mediate alternative polyadenylation and transcript shortening 

(Beaudoin et al. 2014).  

Identification of RNA helicases such as RHAU that bind GQs with high affinity, also 

indicates that GQs could be instrumental in regulation of translation (Lattmann et al. 

2011). 
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Figure 1.6 Potential roles of GQs in regulating transcription 

(A.) GQs were suggested to act as physical barrier on the template strand that stalls or 

inhibits polymerase (orange) that consequently prevents transcription. (B.) Formation 

of the GQ on the coding strand may facilitate transcription by keeping the template 

strand in the open conformation. (C.) GQs could recruit transcriptional activator proteins 

(green) that promote transcription. (D.) Alternatively, GQs can recruit transcriptional 

suppressor proteins (grey, yellow) that inhibit transcription. 
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 DNA and RNA GQs as a target for small-molecules compounds. 

Design and development of effective GQ-binding small molecules still presents many 

challenges. These limitations particularly concern specificity of binding to GQs over 

duplex DNA structures, selectivity of various GQ types distributed across the genomic 

loci (e.g., telomeric vs. promoter DNA), and binding selectivity to different nucleic acid 

chemistries, e.g., DNA vs. RNA. Although GQs show a vast diversity in their structures, 

there are many common characteristics in their conformation that can be utilised for 

development of small molecule chemistries. These strategies were particularly explored 

in the targeting of telomere, promoter and 5’UTR related GQs.  

1.5.6.1. GQ targeting: telomeric DNA 

The first investigation looking at the effects of small-molecule binding to GQs was 

performed in the context of telomerase activity, which can become inhibited upon 

treatment that stabilises telomeric GQ structures (Sun et al. 1997). Consequently, a 

number of novel compounds have been developed that show binding to the telomeric 

DNA GQs. However, despite development of a large library of these compounds (listed 

in online ‘G-quadruplex Ligands Database’), only a handful of these molecules have been 

tested in cell-based systems, of which very few have reached clinical trials (De Cian et 

al. 2007). When designing small molecules to bind GQs with high affinity and specificity, 

three main chemical properties typically are maintained: 

a)  A large aromatic core that ensure maximal π stacking interaction of the G-

tetrad. 
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b) Presence of a positive charge that uses the negative charges of the negatively 

charged phosphate backbone to enhance interactions. 

c) Introduction of sidechain groups that increase specific interactions with specific 

loops/grooves or individual bases of a particular GQ structure.  

Existing methods that help accelerated rational design of small molecules with optimal 

binding properties to a given GQ structures combine high-resolution NMR and X-ray 

crystallography with computational molecular modelling methods (Li et al. 2013). The 

candidate molecules are subsequently assessed for quadruplex-ligand binding using a 

range of biophysical techniques, including circular dichroism-UV, fluorescent resonance 

energy transfer or electrospray ionisation mass spectrometry. Many small molecule 

chemistries have been developed using the above approach with many showing 

preferential binding to GQ over duplex DNA structures, and specificity for telomeric 

quadruplexes over other types of the motif structure found for example in the promoter 

sequences (De Cian et al. 2007).  

When screening test compounds, it is important to choose appropriate cell lines in order 

to assess their toxicity and ensure it is relatively low. Recently, the most comprehensive 

testing of telomeric DNA quadruplex binding in cell-based and in vivo systems has been 

performed for BRACO19, RHSP4 and telomestatin (Burger et al. 2005; Phatak et al. 2007; 

Tauchi et al. 2006). Despite a range of the compounds being synthesised and tested for 

their efficacy and safety, only one candidate has reached clinical trials, namely 

Quarfloxin. The ineffectiveness of these compounds is often attributed to their ability to 

bind off-target protein, RNA and DNA species. It has to be noted that the d(TTAGGG) 

quadruplex-forming telomeric sequence, apart from the telomeric ends, can also be 
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found in a number of regions within the genome (Todd and Neidle 2011). Therefore, any 

future quadruplex-drug design has to consider any potential off-target sites that the 

potential chemistry might bind inside the cells.  

1.5.6.2. GQ targeting: promoter DNA 

During the transcriptional process, the double-stranded DNA structure becomes 

transiently opened, which allows for the formation of a quadruplex within the G-rich 

stand and an i-motif on the complimentary C-rich strand (Brooks et al. 2010). This event 

presents an opportunity to develop small molecules that target and stabilise either of 

these structures to regulate transcription. The main limitation behind the quadruplex/i-

motif formation within the promoter sequences, is the stability of the double stranded 

DNA. However, presence of the hypersensitive elements (e.g., found in c-MYC promoter) 

and susceptibility of promoter sequences to transcription-induced supercoiling, can 

dramatically facilitate formation of these secondary structures over the duplex form 

(Sun and Hurley 2009). 

When performing bioinformatic identification of promoter GQs, it has to be noted that 

that the general algorithms that identify typical GQs of 3-5 G-runs linked by 1-7 

nucleotides, might omit promoter quadruplexes that can contain linking sequences of 

up to 26 nucleotides and extended G-runs as reported in the PDGF-A promoter (Todd et 

al. 2005). Therefore, selection of a correct sequence that will result in biologically 

relevant quadruplex forming structure is critical for rational drug design and 

development.  The first example of gene expression at the transcription comes from a 

study of TMPyP4 ligand on the expression of c-MYC oncogene (Siddiqui-Jain et al. 2002). 

The TMPyP4-mediated effects leads to gene expression inhibition, and combined with 
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mutagenesis studies of the quadruplex sequence, it has been confirmed that the 

presence the stable motif within the promoter is responsible for inhibition of the c-MYC 

expression (Siddiqui-Jain et al. 2002). Additional examples of promoter forming GQs 

were found within promoters of BCL2, c-KIT, VEGF and HIF1-α, where their presence has 

been found to be generally inhibitory, except for the VEGF promoter in which the 

presence of the quadruplex has been shown to have an enhancing effect on the rate of 

transcription (Figure 1.7 B)(Dash et al. 2008; De Armond et al. 2005; Nambiar et al. 2011; 

Sun et al. 2008). As for the telomeric quadruplexes, the same limitations exist when it 

comes to designing small molecules targeting these structures. Despite the promising 

specificity for quadruplex over duplex that can be achieved with current chemistries, 

targeting of quadruplex structures for specific promoters still remains a major challenge.  

1.5.6.3. GQ targeting: mRNA 5’UTR 

As previously mentioned, bioinformatic analysis has found a significant enrichment of 

GQs present within 5’UTR of mRNAs, indicating that these motifs might play a role in 

gene expression regulation (Huppert and Balasubramanian 2005). The first 

demonstration of function of 5’UTR GQs comes from the study of NRAS proto-oncogene, 

where it has been found that the formation of the stable motif structure within the 

5’UTR leads to the gene downregulation (Figure 1.7 C) (Kumari et al. 2007). It has been 

suggested that the gene expression downregulation is caused by the quadruplex-

induced steric blocking of the ribosome complex and inhibition of translation initiation 

(Kumari et al. 2007). One advantage of targeting 5’UTR quadruplexes is the fact that the 

mRNA is single-stranded, and there is no complimentary strand that competes with the 

motif for the duplex formation.  
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Another example of RNA GQ structure involvement in disease pathogenesis comes from 

the study of Fragile X mental retardation syndrome, where the disease-causing proteins, 

FMRP1 and FMRP2, have been demonstrated to bind and stabilise GQs of 5’UTR of a 

variety of gene transcripts (e.g., PP2 and MAPB1)(Castets et al. 2005; Darnell et al. 2001). 

In addition, the FMRP1 has been found to also bind directly to quadruplexes within its 

own coding sequence and within the mRNA of AAP gene (Westmark and Malter 2007). 

The FMRP1 quadruplex forming sequence within the coding region of the gene has been 

suggested to be a potential exon splice enhancer, since the FMRP1 and 2 have been 

demonstrated to bind to these motifs and affect splicing patters of the affected mRNA 

(Didiot et al. 2008). Interestingly, the FMRP1 has been also shown to bind RNA GQ 

targets within 3’UTR of a number of genes, however the potential role of these motifs is 

yet to be determined (Darnell et al. 2001). 
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Figure 1.7 Potential roles of GQs in gene expression regulation 

Genome wide bioinformatic analysis have demonstrated the presence of non-randomly 

distributed GQs in functional genomic loci such as telomeres, promoters and 5’UTRs of 

mRNAs. These combined with protein- and ligand-GQ interaction studies provide an 

insight into possible roles of these motifs in gene expression. (A.) GQs forming at the 

telomeric 3’ overhangs, especially when stabilised with ligands, can prevent telomerase 

from regulating length of telomeres. (B.) Before the transcription initiation process, the 

double stranded helix becomes unwound and allows stable GQ formation. This masks 

transcription factors from binding sites, leading to transcription downregulation. (C.) 

Stabilisation of GQ at the 5’UTR of pre-mRNA prevents progress of the ribosome 

complex, resulting in downregulation of translation. 

A. 

 

A. 

B. 

 

B. 

C. 

 

C. 
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 Berberine  

Traditional medicines, often derived from plants, have been used as remedies to 

effectively treat physical and mental disorders long before modern medicine has been 

established (Guamán Ortiz and Scovassi 2013). As modern science starts to understand 

the biological and chemical properties of these traditional treatments, they have 

become increasingly recognised and recommended by the scientific communities 

(including World Health Organization) as an alternative treatment for a number of 

different diseases (Kohler and Baghdadi-Sabeti 2011).  

Secondary metabolites from plants, such as flavonoids, tannins saponins, steroids and 

alkaloids have been shown to regulate many biological effects, including: anti-

inflammatory, anti-bacterial, immunomodulating, antioxidant and even anticancer 

(Teiten et al. 2013; Wang and Chen 2013). One example of a plant alkaloid widely 

studied for its range of pharmacological properties is berberine.  

Berberine belongs to a group of protoberberine compounds known as 

benzylisoquinoline alkaloids (C20H18NO4
+) and is found in a number of plants, including: 

Coptis chinensis- Chinese goldthread, Mahonia aquifolium – Oregon grape, Berbis 

aristata- tree turmeric, Hydrastis canadensis- goldenseal, Berbis vulgaris-barberry, 

Xanthorhiza simplicissima-yellowroot,  Argemone Mexicana-prickly poppy and 

Phellodendron amurense- Amur cork tree (Tillhon et al. 2012). The use of berberine 

containing plants for medical use dates to 200 A.D where in the work of “The Herbal 

Classic of the Divine Plowman” by Shen Nong Ben Cao Jing, it was used to treat 

gastrointestinal infections (Lian 1986). Later, in 500 A.D. it was first realised that the 

berberine containing plant, Rhizoma Coptidis, shows anti-diabetic properties as 



50 
 

reported by Hongjing Tao in his “Note of Elite Physicians”(S. Li 1996). Other medical 

applications of berberine include treatment of coronary artery disease, hyperlipidemia, 

hypertension, obesity, polycystic ovary disease, diabetes and Alzheimer’s (Heidarian et 

al. 2014; Tang et al. 2013; Zhang et al. 2013). Interestingly, berberine has been recently 

demonstrated to inhibit proliferation and migration as well as promote apoptosis in a 

number of cancer cell lines, suggesting its potential as a novel anti-cancer treatment (Li 

et al. 2013; Liu et al. 2013; Zhang et al. 2010). Since berberine shows therapeutic 

benefits in a range of distinct diseases, it is clear that the compound has a complex 

mechanism of action that involves targeting of multiple pathways. Some of the 

berberine protein targets discovered to date, include p53, NF-kB, MMP, telomerase and 

estrogenic receptors (Li et al. 2013; Liu et al. 2013; Tillhon et al. 2012). Importantly, 

berberine has been shown to strongly bind DNA and RNA (Bhadra and Kumar 2011b), 

resulting in double-strand breaks and DNA topoisomerase binding inhibition (Li et al. 

2013; Qin et al. 2007). Berberine was also found to prevent transcription by binding 

TATA box sequence in gene promoters, which leads to displacement of enhancer 

proteins (Jiao Wang and Jiang 2012).  

Berberine’s particularly strong binding to secondary DNA structure such as GQ over 

duplex DNA also has been previously demonstrated (Bhadra and Kumar 2011b). Human 

telomeric sequences are bound by berberine with high affinity, and was suggested to 

block the abnormal telomerase-mediated chromosome elongation that leads to cellular 

tumorigenesis and immortalization. (Bazzicalupi et al. 2013; Bernardes de Jesus and 

Blasco 2013). This GQ binding ligand has also been shown to have antifibrotic properties 

in cardiac fibroblast and rats with induced myocardial fibrosis (Gu et al. 2012). Berberine 

upregulates relaxin-1, a protein that can prevent and reverse cardiac fibrosis, in a dose 
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depend manner in vivo and in vitro. The antifibrotic mode of action of berberine was 

suggested to be a result of the ligand binding to GQ forming structures within the 

promoter of relaxin-1 (Gu et al. 2012). 

Despite the issue of berberine having a range of non-specific binding to various protein 

and nucleic acid targets, its structural properties, in particular the aminoalkyl side 

chains,  allows for chemical modifications that can address the issue of poor specificity. 

For example, a 9-0-substituted berberine with extended side chains and terminal amino 

groups shows a significant increase in specificity for GQs over any other DNA structures 

(Ma et al. 2008; Zhang et al. 2007). In addition, linking of two berberine moieties with a 

polyether linker has demonstrated a 76-508 fold increase of binding to GQ structures 

compared to native berberine structure (Z.-Q. Li et al. 2017).  

Proven safety of berberine and its therapeutic potential in a range of diseases models 

as well as its capacity for chemical modification to increase its GQ specificity, makes it 

an attractive molecular candidate for initial proof-of-concept testing to: (i) determine 

any positive improvement of molecular disease signature, and (ii) determination of 

potential target pathways of berberine action that mediate these changes at either 

protein or nucleic acid level.  

1.6. GQs and DUX4 genomic locus.  

The D4Z4 repeat array contains a high CG content (73%) and in unaffected individuals it 

provides a large CpG island platform for the formation of methylated, DUX4 repressive 

closed chromatin state (Tsumagari et al. 2008). A lot of effort has gone into 

understanding how the impairment of the methylation process leads to the FSHD 
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pathology (Section 1.5.1).  However, virtually no attention has been paid into the 

potential presence of GQ-mediated DUX4 expression regulation. The single mention of 

potential GQ-forming sequences in D4Z4 locus has been published by Tsumagari et al., 

2008. These have been mapped to the region of putative DUX4 promoter sequences and 

proximal site of the D4Z4 repeat (Tsumagari et al. 2008). In this work the GQ-predicting 

algorithm that was used discriminates any potential motif-forming sequences with loops 

of >7 nucleotides. The idea that the GQs do not form stable genomic structures has been 

challenged with recent findings of hTERT and BCL-2 gene promoter GQs that contain 26-

nuleotide and 13-nucleotides loops, respectively (Agrawal et al. 2014; Palumbo et al 

2009). In addition, at the time of the study the DUX4 myogenic enhancer 1 and 2 had 

not been established (Himeda et al. 2014). Therefore, these elements as well the DUX4 

transcript, should be analysed using bioinformatic tools that allow for extensive GQ 

loops and allow prediction of RNA GQ sequences.
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1.7. Aims  

We aimed to advance our understanding of molecular mechanisms controlling 

expression of DUX4 by identifying, and assessing the role of, novel GQ regulatory motifs 

within enhancer, promoter and transcript elements of the gene. This was achieved 

through the following objectives: 

I. Prediction of GQ formation within the analysed sequences with bioinformatic tools, 

and assessment of the candidate sequences for the formation of GQ structures 

using biophysical techniques.  

II. Testing of the biophysical interaction between berberine and the selected 

sequences in solution, and in vitro effects of the ligand on the DUX4 expression to 

evaluate the GQ motifs as potential therapeutic targets.  
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2. Materials & Methods 

2.1. General laboratory reagents 

All general chemical reagents were purchased from Sigma, Invitrogen, BDH or VWR 

(unless stated otherwise) with standard chemical purity graded as AnalaR (Analytical 

Reagents for analysis applications). More commonly used chemicals are listed below, 

whereas the regents required for only more specialised assays are described in the 

relevant materials section.  All of the reagents were dissolved in double de-ionized H20 

(ddH20), unless stated otherwise. The majority of the solutions required for tissue 

culture use were autoclaved at 121°C for 15 min, except for the solutions containing 

protein, detergents or glucose which required passing through a 0.22 µm filter (Falcon). 

All solutions were stored at room temperature unless indicated otherwise. 

Table 2.1 List of common reagents 

Reagents  Manufacturer: 

Agar Sigma 

Agarose Invitrogen 

Berberine chloride Sigma 

Calcium chloride (CaCl2) Sigma 

Dimethyl sulphoxide (DMSO) Sigma 

EDTA Sigma 

Ethanol (EtOH) Sigma 

Glacial acetic acid WVR 

Glucose Sigma 

Goat serum Sigma 

Hydrochloric acid (HCl)  Sigma 

Lysogeny broth (LB) BDH 

Magnesium chloride (MgCl2) Sigma 

NaOH BDH 
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Na2HPO4 Sigma 

Paraformaldehyde (PFA) Sigma 

Potassium chloride (KCl) Sigma 

Phosphate buffered saline (PBS) pH 
7.3  

Sigma 

Sodium chloride (NaCl) Oxoid Ltd 

Triton X-100 Sigma 

Tween-20 Sigma 

Trizma Base Sigma 

Trizma hydrochloride (HCl) Sigma 

2.2. Bacterial culture and storage 

 Materials 

• Ampicillin (Sigma): prepared as 1000x stock in ddH2O at 20 mg/ml 

concentration, filtered through 0.22 µm filter (Falcon) and stored at -20°C.   

• Kanamycin (Sigma): prepared as 200x stock in ddH2O at 10 mg/ml concentration, 

filtered through 0.22 µm filter (Falcon) and stored at -20°C.   

• Agar (Sigma) 

• Glycerol (Sigma) 

• Lysogeny Broth (LB) (Sigma). 

• LB (1.5%) agar: 1.5% w/v agar was added to LB solution and autoclaved. The LB-

agar solution was cooled to 45°C before addition of desired antibiotic. ~25ml of LB-agar 

was added into 100 mm petri dish in proximity to the Bunsen burner. Once solidified the 

plates were sealed in cling film and stored at 4°C 

• SOC medium: 100 µl of 1 M MgSO4 and 20 µl of 1 M glucose were added to 10 

ml LB medium.  
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• TOP 10 (E. coli) competent cells (Invitrogen) 

• CaCl2 (Sigma): prepared as 100 mM stock by adding 5.5 g of CaCl2 into 500 µl of 

ddH2O. The solution was filtered through 0.22 µm filter (Falcon) and stored at -20°C. 

• 100 mM CaCl2 in (15%) glycerol: 5.6 g CaCl2 and 75 ml glycerol were made up to 

500 ml with ddH2O, filtered through 0.22 µm filter (Falcon) and stored at -20°C.   

 Preparation of TOP10 bacteria 

The bacterial cells (TOP 10, Invitrogen) were streaked on LB-agar plate without antibiotic 

and incubated overnight at 37°C. The following day, a single colony was selected and 

added to 5 ml of LB media (no antibiotic). The LB media containing the colony was then 

incubated at 37°C overnight with shaking (200 rpm). 5 ml of the overnight culture was 

added to 500 ml of LB media (no antibiotic) and incubated at 37°C with shaking (200 

rpm) until the OD260/280 was between 0.2 and 0.5. The cells were pelleted at 3000 rpm 

for 5 min at 4°C. The supernatant was removed and the pellet was resuspended in 50 ml 

of 100 mM CaCl2.  The resuspended cells were left on ice for 20 min. Cells were pelleted 

again at 4000 rpm for 5 min at 4°C. The supernatant was removed and cells resuspended 

in 5 ml (1/10 original vol) ice-cold 100 mM CaCl2/15% glycerol. Resulting cells suspension 

was divided into 50 or 250 ul aliquots on dry ice submerged in methanol and stored at -

80°C. 

 Bacterial culture and storage 

A single bacterial clone was selected from the LB selective plate and incubated overnight 

at 37°C with shaking (200 rpm) in 5 ml of antibiotic containing LB medium. 700 µl of the 

overnight culture was resuspended in 300 µl of 80% glycerol and stored at -80°C. 
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2.3. Expansion and purification of DNA plasmid 

 Materials 

• QIAprep spin Miniprep kit (Qiagen). 

• SOC medium: 100 µl of 1 M MgSO4 and 20 µl 1 M glucose were added to 10 ml 

LB medium. 

• TE: 10 mM Tris pH 8.0 and 1 mM EDTA pH 8.0 

• Ampicillin: prepared as 1000x stock in ddH2O at 20 mg/ml concentration, filtered 

through 0.22 µm filter (Falcon) and stored at -20°C.   

• DNA plasmids (for cloning procedures see section 2.4): stored in TE or ddH20 at 

-20°C. 

 DNA plasmid transformation of bacteria 

10 ng of plasmid DNA in a volume of 1 µl of ddH2O was added to 25 µl of thawed 

chemically competent cells. The cells were heat-shocked at 45°C for 30 seconds and 250 

µl of SOC media was added. The culture was incubated for at least 1 hour at 37°C with 

shaking (200 rpm) and plated on agar plates containing appropriate antibiotic. Next day 

at least one single colony was screened for the presence of the plasmid DNA by placing 

it in 5 ml LB media (with appropriate antibiotic) and incubating overnight with shaking 

(200 rpm). The following day, miniprep DNA extraction and purification was performed 

(Section 2.3.3). 

 Qiagen plasmid extraction and purification 

For DNA plasmid extraction using QIAprep spin Miniprep kit, the 5 ml starter culture 

(Section 2.3.2) was centrifuged at 6000g for 3 minutes at room temperature. The 

supernatant was aspirated and the pellet was resuspended in 250 µl of P1 buffer. The 

resuspended cells were transferred into a microcentrifuge tube and 250 µl of P2 buffer 

was added. The solutions were mixed by inverting the tube several times. 350 µl of N3 



58 
 

buffer was added and mixed by inverting the tubes several times. The tubes were 

centrifuged for 10 minutes at 1300 rpm. The resulting supernatant was transferred (up 

to 800 µl) into a QIAprep spin column that was placed in a 2 ml collection tube. The 

column was centrifuged for 30 seconds at 13000 rpm. The flow through was discarded 

and 500 µl of buffer PB was added to the spin column. The column was centrifuged for 

30 seconds at 1300 rpm and the flow through discarded. 750 µl of PE buffer was added 

and the column was centrifuged for 30 seconds at 13000 rpm. The flow through was 

discarded and the column centrifuged for 1 minute at 1300 to remove any residual 

buffer. The column was placed in a new DNase-free microcentrifuge tube and 30 µl of 

DNase-free water was added to the centre of the column. After 1 min incubation time 

the DNA was eluted from the column by 1 minute centrifugation at 13000 rpm. The 

purity and concentration of the extracted DNA was assessed using NanoDrop 

spectrophotometry (Thermo Fisher). 

 Preparing plasmids for sequencing  

Components required for sequencing, included: 600 ng of plasmid DNA and 4 µM of the 

M13 forward and reverse primers (Invitrogen). The total volume of the plasmid and 

primer solution was adjusted with water to a total of 15 µl. 
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2.4. Molecular cloning 

 Materials 

2.4.1.1. Reagents 

• 50x TAE: 242 g Tris Base, 57.1 ml glacial acetic acid, 100 ml of 0.5 M EDTA pH 8.0 

were brought to a total volume of 1 L with ddH2O. 

• 5x Loading buffer (Bioline). 

• DNA molecular weight markers (Bioline): Hyperladder I. 

• Restriction enzymes and buffers (New England Biolabs). 

• Antarctic Phosphatase (New England Biolabs). 

• T4 DNA ligase (New England Biolabs). 

• Qiaquick gel extraction kit (Qiagen). 

• 1000x SYBR Safe DNA gel stain (Invitrogen). 

• UltraPure Agarose (Invitrogen) 

• QIAquick Gel Extraction Kit (Qiagen) 

2.4.1.2. Plasmids 

pUC57.Promoter_DUX4 

The pUC57 plasmid is a commercial vector (GenScript) that carried the synthesised full 

promoter sequence of the DUX4 promoter and 5’UTR sequence. The synthesised 

promoter sequence included flanking restriction enzyme sites for directional cloning of 
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the sequence into donor plasmids, i.e.: pC1.Promoter_DUX4.GFP.3’UTR_DUX4 and 

pAAV.Promoter_DUX4.DUX4 plasmid. 

pC1.CMV.GFP. 

The pC1.CMV.GFP.3’UTR_DUX4 plasmid was kindly donated by Dr Julie Dumonceaux, 

UCL, U.K.  

pC1.Promoter_DUX4.GFP. 

The pC1.Promoter_DUX4.GFP. was created by replacing the CMV promoter sequence 

from the pC1.CMV.GFP. vector backbone with the DUX4 promoter sequence derived 

from the pUC57.Promoter_DUX4. 

pAAV.CMV.DUX4. 

The pAAV.CMV.DUX4 was a kind donation from Dr Scott Harper, The Ohio State 

University College of Medicine, U.S. 

pAAV.Promoter_DUX4.DUX4. 

The pAAV.Promoter_DUX4.DUX4 was created by replacing the CMV promoter sequence 

from the pC1.CMV.GFP. vector backbone with the DUX4 promoter sequence derived 

from the pUC57.Promoter_DUX4. 

 Restriction enzyme digest and gel electrophoresis 

For the diagnostic digest 1 µg of DNA product was subjected to a restriction enzyme 

reaction under conditions recommended by the manufacturer. 5x loading buffer was 

used to load the digested products onto an agarose gel. The 0.5-2% agarose gel was 

made with 1x TAE and 1x SYBR Safe to allow visualisation of the DNA bands with UV 
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light. The appropriate maker was chosen depending on the expected bands size. The 

loaded gel was electrophoresed at 60-100 V submerged in 1x TAE buffer. 

 Antarctic phosphatase dephsphorylation 

Antarctic phosphatase (AnP) was used to catalyse the removal of phosphates from DNA 

5’;3’ and blunt-ends extensions. Dephosphorylation was performed directly after the 

restriction digest reaction was completed by adding 5 U of AnP per 1 µg of the digested 

DNA. The reaction was incubated for 15 minutes at 37°C for blunt-ends and 5’ strand 

extensions. Inactivation was performed for 5 minutes at 70°C. The resulting product was 

verified on 1x SYBR Safe-stained, 1% agarose gel and run at 60-100 V in 1x TAE buffer. 

The expected band was excised from the gel and purified Qiaquick gel extraction kit 

according to manufacturer’s instructions. 

 DNA ligation 

To catalyse the formation of a phosphodiester bond between juxtaposed 5’ phosphate 

and 3’ hydroxyl in duplex DNA, the T4 DNA ligase was used. Typically, 1:3 or 1:5 vector 

to insert molar ration was used for the ligation reaction. The reaction was incubated at 

16°C overnight, following heat inactivation at 65°C for 10 minutes, and stored at 4°C 

ready for transfection. 

 Cloning of GFP gene into the plasmid backbone (i.e., pC1.Promoter_DUX4) 

The DUX4 promoter sequence was excised form the donor pUC57 vector with the PciI 

and NheI restriction enzymes under reaction conditions suggested by the enzyme 

manufacturer (NEB). To create compatible restriction enzyme sites for directional 

cloning between the DUX4 promoter insert and the acceptor plasmid, the pC1.CMV.GFP 
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plasmid was subjected to the same digestion reaction as the pUC57 vector, so the CMV 

promoter sequence could be removed from the pC1.CMV.GFP vector backbone (Figure 

2.1). Both reaction products were run on 1% agarose gel to separate the plasmid 

backbones from their corresponding promoter constructs. The bands corresponding to 

pC1.GFP. vector and DUX4 promoter sequences were excised from the gel and purified 

using gel purification kit (Qiagen).  

The purity and concentration of the excised DNA fragments were assessed using 

nanodrop spectrophotometer (Thermo Fisher). The vector and insert were ligated using 

the T4 DNA ligase (NEB) using 1:3 and 1:5 vector to insert ratio. The ligated product was 

transformed into chemically competent TOP10 E.coli cells. The cells were streaked onto 

the ampicillin-containing LB agar selection plates. Following day, 4 positive colonies 

were selected and grown overnight in 1X ampicillin LB media shaking at 200 rpm. The 

plasmid DNA was purified from the suspended cell culture using miniprep kit according 

to the manufacturer’s instructions (Qiagen). The quality and concentration of the 

purified plasmid was assessed with the nanodrop (Thermo Fisher). Diagnostic restriction 

enzyme digest was performed to ensure presence of the correct backbone and insert. 

The presence of the promoter insert was verified by sequencing (MWG) using primers 

listed in table 2.2. The sequencing reaction was prepared in barcoded tubes provided 
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by MWG. The reagent submitted for sequencing, included: 15 μl of 10 ng/ μl DNA 

plasmid and 2 μl primer of 10 μM concentration.  

Figure 2.1 Simplified schematic showing cloning of the DUX4 promoter construct into 

the pC1.CMV.GFP. reporter plasmid 

The DUX4 promoter sequence was excised from the donor pUC57 vector using PciI and 

Nhe-I restriction enzymes cleaving at the 5’- and 3’-end of the promoter construct. The 

CMV promoter sequence was removed from the acceptor pC1.GFP. plasmid using the 

same PciI and NheI- restriction enzymes that also cleaved the CMV sequence at the 5’- 

and 3’-end, respectively. This produced compatible sticky ends between the DUX4 

promoter insert and pC1.GFP., which were utilised for directional cloning process. 
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 Cloning of the DUX4 promoter sequence into the plasmid backbone (i.e., 

pAAV.Promoter_DUX4.DUX4) 

The restriction enzymes used to digest the donor and acceptor plasmids were SpeI and 

Nhe-I (Figure 2.2). The cloning process for the pAAV.Promoter_DUX4.DUX4 plasmid was 

the same as for the pC1.Promoter_DUX4.GFP. (Section 2.4.5). 

.

Figure 2.2 Simplified schematic showing cloning of the DUX4 promoter construct into the 

DUX4-expressing pAAV.CMV.DUX4 vector 

The DUX4 promoter sequence was excised from the donor pUC57 vector using SpeI and Nhe-

I restriction enzymes cleaving at the 5’- and 3’-end of the promoter construct. The CMV 

promoter sequence was removed from the acceptor pAAV.DUX4. plasmid using the same 

SpeI and NheI restriction enzymes that also cleaved the CMV sequence at the 5’- and 3’-end, 

respectively. This produced compatible sticky ends between the DUX4 promoter insert and 

pAAV.DUX4. plasmid, which were utilised for directional cloning process. 
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Table 2.2 Primer used in sequencing DUX4 promoter sequence from pC1 and pAAV 

plasmid backbones 

Target sequence Primer sequence Tm GC% 

DUX4 promoter in 

pC1 plasmid 

5’-GCCTATGGAAAAACGCCAGC-3’ 60 55 

DUX4 promoter in 

pAAV plasmid 

5’-GTGAATTCCCTTCCGGGGTG-3’ 61 60 

2.5. Plasmid DNA transfection 

 Materials 

• Lipofectamine 3000 (Invitrogen). 

 Protocol 

2.5x105 Rhabdomyosarcoma cells (RD) (ATCC® CCL-136™) were seeded in 2 mL of RD 

DMEM growth media per well on 6-well plates. The cells were at least 80% confluent 

before transfection. An hour prior to transfection the overnight growth media was 

replaced with fresh RD DMEM growth media. Optimal DNA to Lipofectamine 

transfection ratio was 1 μg DNA to 3.75 μl Lipofectamine per well in total volume of 250 

μl of serum and antibiotic free DMEM media. The DNA/Lipofectamine mixture was 

added dropwise to each well to make up the final volume of 2000 μl of RD DMEM growth 

media per well. 24 hours post-transfections, the cells were analysed under fluorescent 

microscope (Zeiss) and harvested for RNA extraction or flow cytometry (FACScan II) 

analysis. 
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2.6. Tissue culture techniques 

 Materials 

• Dulbecco’s Modified Eagle’s Medium (DMEM): high glucose (4.5 g/l), 

GlutaMAXTM-I (862 mg/l), pyruvate (110 mg/l) and phenol red (15 mg/l) 

(ThermoFisher). Stored at 4°C. 

• Medium 199. Stored at 4°C. 

• Foetal bovine serum Serum (FBS), certified heat inactivated (Invitrogen). Stored 

at -20°C in 50 ml aliquots.  

• Gentamicin (50 mg/ml) (Thermo Fisher).  

• FSHD skeletal muscle growth medium: 4 vols of DMEM, 1 vol 199 medium, 20% 

FBS, 50 μg/ml gentamicin, 5 μg/ml insulin, 0.2 μg/ml dexamethasone, β-FGF , 5 ng/ml 

hEGF, 25 μg/ml fetuine. Stored at 4°C. 

• FSHD skeletal muscle differentiation medium (PromoCell GmbH): 10 µg/ml 

insulin. Stored at 4°C. 

• RD growth medium: DMEM supplemented with 10% FBS. Stored at 4°C. 

• Methylthiazolyldiphenyl-tetrazolium bromide (MTT, 5mg/ml): 250 mg of MTT 

was dissolved in 50 ml of filtered using 0.22 μl filter (Falcon), stored at -20°C in the dark.   

• Trypsin-EDTA (10x)- 0.5% trypsin, 0.2% EDTA in PBS. Stored at -20°C 

• Zeiss Vert.A1 microscope with Axiocam 503 monocamera (Zeiss) 

• Basic cell culturing equipment: 37°C, 5% CO2 incubator; Class 2 microbiology 

safety cabinet; 37°C water bath, low speed centrifuge and haemocytometer. 
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 Cell lines 

• Rhabdomyosarcoma (RD) cells (ATCC® CCL-136™): Stored in vapour phase of 

liquid nitrogen at 500,000 cells/vial in growth media plus 10% DMSO. 

• DUX4 expressing FSHD patient immortalised myoblasts (kindly made available 

by Dr Vincent Mouly, Institute of Myology, Paris). Stored in vapour phase or liquid 

nitrogen at 500,000 cells/vial in growth media plus 10% DMSO. 

 Culture of human RD CCL-136 and FSHD immortalized myoblasts 

All work was performed using sterile plastic inside grade 2 laminar flow hood. Cells were 

incubated at 37°C with 5% CO2.  

 1x106 RD and 0.5x106 FSHD immortalised myoblast cells were seeded in 25 ml of their 

corresponding growth media per T175 flask. When 80% confluent, the media was 

aspirated and the cells were washed with sterile 5 ml of 1x PBS. PBS was replaced with 

5 ml of 1x Trypsin/EDTA solution and incubated at 37°C for 2-3 minutes to detach the 

cells from the flask. 10 ml of growth media was added to neutralise the trypsin and the 

cell suspension was transferred into a 50 ml Falcon tube (Corning) and spun at 3000 rpm 

for 5 minutes. The resulting supernatant was aspirated and the pelleted cells were 

resuspended in their growth media to reach concentration of 1x106 cells/ml. The 

resuspended cells were placed in a fresh T175 flask containing 25 ml of their 

corresponding media and incubated for a 3-4 days until 80% confluency was reached 

again. 
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 Freezing and thawing process of cells. 

To freeze the cells, 0.5x106 cells suspended in their corresponding growth media were 

transferred into a 1 ml sterile cryovial. DMSO was added to a final concentration of 10% 

to make up freezing media. The cell-containing cryovials were placed into cryo-freezing 

container and placed in the -80°C freezer overnight. The cryovials were transferred into 

the vapour phase of a liquid nitrogen storage facility.  

The cells were swiftly defrosted by placing cell-containing cryovial into 37°C water bath. 

As soon as they became defrosted, the cells were suspended in 9 ml of growth media 

and spun at 3000 rpm for 5 minutes. The supernatant was aspirated and the resulting 

pellet was resuspended in 1 ml of growth media. The cells were seeded in T75 flask 

containing 15 ml of growth media. When 80% confluency was reached, the cells were 

transferred into T175 flasks containing 25 ml of growth media. 

 Differentiation of FSHD immortalized myoblast cells. 

1x105 of FSHD immortalized myoblast cells were seeded in 2 ml of their corresponding 

growth media per well on 6 well plates. When >95% confluency was reached, the growth 

media was replaced with the differentiation media. The cells were fully differentiated 4 

days after the media was changed. 

 Cell viability assessment 

For assessment of the cell viability MTT assay was used. To each well containing cells 

MTT was added evenly in 1:10 ratio (MTT:media). The treated cells were incubated for 

4 hours at 37°C with 5% CO2. Media was gently aspirated and plates were air dried at 

room temperature. 1 ml of DMSO was added per well and the plates were placed on a 
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shaker (200 rpm) to dissolve the crystals. 75 μl from each well was transferred into 96 

well plate. The OD at 570 nm was recorded with the GloMax-Microplate Multidote 

Reader (Promega). The absorbance was normalised to blank containing DMSO (no MTT) 

and compared to untreated cells. 

 Berberine treatment in cell culture 

Berberine chloride was dissolved in ddH2O to produce stock solution of 1 mM. To 

increase solubility of berberine chloride, the solution was placed in the 37°C water bath 

and vortexed several times until fully dissolved.  

The seeding process of the RD cells on 6-well plates was described in section 2.5. RD 

cells were treated with berberine chloride at the time of transfection (Section 2.5). The 

berberine concentration dose range used was between 0 and 100 μM in the final volume 

of 2000 μl of the fresh growth medium per well. The treated and untreated controls 

were harvested and analysed 24 hours after the exposure to the compound.  

FSHD immortalizes myoblast cells were treated with berberine chloride on the second 

day of differentiation (Section 2.6.5). The concentration rage of berberine chloride used 

to tread the cells was 0-25 μM in the total volume of 2000 μl of the fresh differentiation 

medium per well. The cells were harvested for analysis 48 hours after treatment.  

2.7. RNA extraction 

 Materials 

• QIAshredder kit (Qiagen Ltd.): Stored at room temperature. 

• RNeasy Mini Kit (Qiagen Ltd.): Stored at room temperature. 



70 
 

• RNase-free DNase-I (Qiagen Ltd.): Stored at 4°C. Once reconstituted, stored in 50 

µl aliquots at -20°C. 

• ND-1000 NanoDrop spectrophotometer (Thermo Fisher). 

 RNA extraction protocol 

The RNA extraction was performed from cells seeded on 6 well plates using RNeasy mini 

kit and QiaShredder columns. The cell culture medium was carefully aspirated. 350 μl of 

RLT lysis buffer was added into each well. The buffer was carefully pipetted several times 

across the well to ensure complete lysis. The cell lysate was transferred into Qiashredder 

column and placed into a 2 ml collection tube. The lysate containing column was 

centrifuged for 2 minutes at full speed. The flow through could be stored at -80°C at this 

point,and defrosted at 37°C for 10 minutes when needed . 350 μl (1 volume) of 70% 

ethanol was added to the flow through and pipetted up and down several times to mix. 

700 μl of the mixture was transferred to an RNeasy mini column placed in 2 ml collection 

tube. Closed tube was centrifuged for 30 seconds at ≥8,000xg. The flow through was 

discarded and 350 μl of buffer RW1 was added to the RNeasy column. The column was 

centrifuged for 30 seconds at ≥8,000xg and the flow through was discarded. 10 μl of 

reconstituted RNase-free DNase and 70 μl of RPE buffer were mixed together and 

carefully pipette the 80 μl on to the Rease column. The column was incubated at room 

temperature for 15 minutes. After incubation was completed, 350 μl of RW1 buffer was 

added to the column and centrifuged for 30 seconds at ≥8,000xg. The flow through was 

discarded and 500 μl of RLP buffer (with ethanol added as indicated on the label of the 

bottle) the column. The column was centrifuged for 30 seconds at ≥8,000xg. The flow 

though was discarded and another 500 μl of RLP buffer was added to the column. The 
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column was spun for 2 minutes at ≥8,000xg. The column was then placed into an RNase-

free; DNase-free 1.5 ml Eppendorf tube and 30 μl of RNase-free; DNase-free water was 

added directly into the membrane of the column. The column was then spun for 1 

minute at ≥8,000xg. Quality and concentration of the extracted RNA was assessed using 

ND-1000 NanoDrop spectrometer. Samples were stored in a -80°C freezer. 

2.8. cDNA synthesis 

 Materials 

• GoScript reverse transcription system kit (Promega): Stored at -20°C. 

• Random primers (Invitrogen) 

• Oligo(dT) primers (Promega) 

• Thermal cycler (VWR) 

 Protocol 

Fort the first strand cDNA synthesis, the GoScript kit (Promega) was used. Before setting 

up the reaction, all the components were thawed on ice except for the reverse 

transcriptase that was kept in the Labtop cooler to maintain temperature close to -20°C. 

600 ng of RNA and 500 ng of both random primers and oligo(dT) were added to a RNase-

free PCR tube. Total volume of RNA/primer mixture was adjusted to 10 μl with RNase-

free water. To ensure resolution of any potential secondary structures formed by the 

RNA and effective primer annealing to the RNA, the reaction was placed in a PCR 

machine and a single cycle was run for 5 minutes at 70°C followed by at least 5 minutes 
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at 4°C. The resulting samples were stored on ice until the reverse transcription master 

mix was ready. 

Reverse transcription reaction master mix was prepared on ice in the order listed in 

table 2.3 

 Table 2.3 Composition of the reverse transcription reaction master mix 

 

The 10 μl RNA/primer mix was combined with 15 μl reverse transcription mix and placed 

in the PCR heat block. The PCR program, included: annealing for 5 minutes at 25°C, 

extension at for 1 hour at 42°C and heat inactivation for 15 minutes at 70°C. Samples 

were kept at -20°C for long term storage. 

2.9. Reverse transcriptase polymerase chain reaction (RT-PCR) 

 Materials 

• cDNA generated using Method 3.13. 

• Platinum Green Hot Start PCR Master Mix (Invitrogen). Stored at -20°C. 

Components Volume 

GoScript 5x Reaction Buffer 4 μl 

MgCl2 (25 mM) 2 μl 

dNTP (5 mM) 2 μl 

GoScript Reverrse Transcriptase 1 μl 

Nuclease-Free water 6 μl 

Final volume 15 μl 
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• Gene-specific primers and housekeeping primers designed using PrimerQuest 

Tool at https://eu.idtdna.com/PrimerQuest/Home/Index (IDT). 

• Thermal cycler (WVR) 

 RT-PCR amplification protocol 

To amplify GC-rich sequences such as DUX4 mRNA, Platinium Green Hot Start PCR 

Master Mix (2x) kit was used. Primers used are listed in table 2.4.  

Table 2.4 Primers used in RT-PCR 

Target 
gene 

Primer 
Accession 

no. 
Sequence 

(5’-3’) 
Location 

Product 
size 

DUX4 

Forward: HQ266760 AGGCGCAACCTCTCCTAGAAAC Exon1 
368/504 

bp 
Reverse HQ266761 TCCAGGAGATGTAACTCTAATCCA Exon3 

B2M 

Forward: 
NM_0040

48.2 
CTCTCTTTCTGGC-CTGGAGG Exon1 

67 bp 

Reverse 
NM_0040

48.2 
TGCTGGATGACGTGAGTAAACC Exon2 

 

All the components of the PCR mix and primers were thawed and then combined on ice in 

order listed in table 2.5 

Table 2.5 RT-PCR reaction set up 

Component Volume 

Platinum Green Hot Start PCR 2x Master Mix 12.5 μl 

Forward and reverse DUX4-all primers (10 μM each) 0.5 μl 

Forward and reverse B2M primers (5 μM each) 0.5 μl 

Platinum GC Enhancer (optional) 5 μl 

Nuclease-Free water  2.5 μl 

Final volume 21 μl 
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21 μl of the master mix reaction was added to each PCR tube. 4 μl of cDNA template 

was added to the reaction mix. At least one negative control was set up that lacked the 

cDNA, which was replaced with nuclease-free water. The PCR tubes were sealed, 

placed in the PCR machine and programmed to run the single denaturation step for 2 

minutes at 92°C followed by 30 cycles of PCR amplification (i.e., denaturation for 1 

minute at 94°C, annealing for 1 minute at 55°C and extension for 45 seconds at 72°C), 

and one final cycle of extension for 5 minutes at 72°C. The PCR program was ended by 

putting the reaction on hold at 4°C until ready for analysis on agarose gel 

electrophoresis. Otherwise, samples were stored at -20°C. 

2.10. Semi-quantitative densitometric analysis of gene expression 

 Materials 

• Agarose. Stored at room temperature. 

• 10x TAE buffer: diluted to a 1X solution. containing 40 mM Tris, 40 mM acetate, 

and 1 mM EDTA, pH ~8.3. Store at room temperature. 

• SYBR Safe (x10,000) DNA gel stain (Invitrogen). Store at room temperature. 

• DNA Hyperladder V (Bioline UK Ltd.). Stored at 4°C. 

• Horizontal electrophoresis system (Bio-Rad). 

• E-BOX VX2 gel documentation system (PeqLab). 

• Access to GeneTools software (Syngene) for densitometric analysis. 
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 Protocol 

To examine expression of target and housekeeping genes, the specific PCR products 

were separated by agarose gel electrophoresis. For the detection of the DUX4 mRNA 

detection, the PCR products were run on a horizontal 3% agarose. The gel was prepared 

by dissolving 3 g of agarose in 100 ml of 1x TAE buffer and heating until transparent, 

crystal-free solution was formed. When the gel was cooled to 60°C, 15 μl of 1000x SYBR 

safe was added and mixed into the gel solution. The gel was poured into a casting tray 

and an appropriate comb was inserted. The gel was allowed to set for 20 minutes at 

room temperature. The comb was removed and the gel in the tray was placed in the gel 

tank. The gel was submerged with 1x TAE to around 1 cm in depth. Since the PCR 

reaction mix contains the loading dye, each sample was directly loaded into each well at 

consistent volume. 7 μl of Hyperladder V was used as a verification marker of PCR 

product size and loaded at each side of the gel. The loaded gel was run at 90 volts for 45 

minutes and visualised under UV light using Ebox VX2 imaging system. The semi-

quantitative analysis of the DUX4 mRNA expression levels was done by normalising its 

expression to the levels of the house keeping gene (i.e., B2M) expression. The analysis 

was performed using GeneTools software. The formula below was used to calculate 

expression of DUX4 relative to B2M: 

𝐷𝑈𝑋4 expression =
(𝐷𝑈𝑋4−background)

(𝐵2𝑀−background)
      (Eq.1) 

2.11. Quantitative RT-PCR (RT-qPCR) 

 Materials 

• cDNA generated using Method 3.13. 
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• Housekeeping realtime primers and gene-specific primers (Primetime qPCR 

primers from IDT) or designed using PrimerQuest software (IDT). 

• 3LightCycler 488 SYBR Green I Master (Roche). Stored at -20°C. 

• LightCycler 480 (Roche) for quantitative PCR 

 Protocol 

Very low levels in human muscle and extremely GC-rich sequence of DUX4 (Snider et al., 

2010), made the direct detection of the DUX4 with qPCR extremely challenging. C2C12 

mouse myoblast cells transfected with DUX4 show to deregulate a range of the 

downstream genes (Krom et al. 2013). Expression profile of the genes downstream of 

DUX4 provided a bench standard allowing for indirect measurement of the DUX4 

expression.  

The described protocol has been optimised for use with the ROCHE SyBr Green master-

mix and the ROCHE LightCycler480 machine using a 386 well plate. Sequences of primers 

used for RT-qPCR are listed in table 2.6. All the procedures were carried out in a UV-

treated, nucleic acid-free safety cabinet. 

Table 2.6 Primers used in RT-qPCR 

Target 
gene 

Accession no Primer Sequence (5’-3’) Location 
Product 

size 

B2M NM_004048.2 
Forward 
Reverse 

CTCTCTTTCTGGCCTGGAGG Exon1 
67 bp 

TGCTGGATGACGTGAGTAAACC Exon2 

MBD3L2 NM_144614.3 
Forward 
Reverse 

CGTTCACCTCTTTTCCAAGC Exon1 
142 bp 

AGTCTCATGGGGAGAGCAGA Exon2 

TRIM43 NM_138800.1 
Forward 
Reverse 

ACCCATCACTGGACTGGTGT Exon6 
100 bp 

CACATCCTCAAAGAGCCTGA Exon7 

ZSCAN4 NM_152677.2 
Forward 
Reverse 

CTGGAGCAGTTTATGATTGG Exon3 
162 bp 

AGCTTCCTGTCCCTGCATGT Exon4 
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The synthesised cDNA (Section 2.8) was diluted in nuclease free water. The cDNA from 

untreated samples were used to set up standard serial dilutions (i.e., 1:50, 1:500, 

1:5,000 and 1:50,000) for calculation of primer binding efficiency. The final volume of 

each dilution was at least 50 μl. A qPCR plate set up by including the four standard 

serial dilution standards and one negative control that had nuclease-free water instead 

of cDNA. In each qPCR run at least three biological replicates of treated and untreated 

samples were included. Each of the biological replicates had 3 technical replicates to 

ensure consistent reading. 

The master mix for each of the DUX4 downstream genes and corresponding 

housekeeping gene was set up as outlined in table 2.7, excluding the cDNA. 6 μl of the 

master mix was added to its corresponding wells, followed by addition of 4 μl of cDNA. 

Table 2.7 Composition of RT-qPCR reaction 

Components Initial concentration Volume Final cincetration 

SYBR Green 2x 5 μl 1x 

Primer 
concentration 

10 μM 0.5 μl 0.5 μM/primer 

cDNA n.a. 4 μl n.a. 

Nuclease-free water n.a. 0.5 μl n.a. 

Fianl volume/well n.a. 10 μl n.a. 

 

The plate was sealed using the provided cover and spun briefly to ensure all the 

reagent have reached the bottom. The plate was placed into the machine and the 

programme outlined in table 2.8 was initiated. The melting curve programme was 

enabled to asses any off target primer binding (Figure 2.3). When there was no off 

target primer binding or contamination present in the sample, a single peak was 

present for each primer set (Figure 2.3). 
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Table 2.8 RT-qPCR cycling parameters 

PCR 
programme 

No. of cycles Temp. (°C) Time 

Preincubation 1 94 5 minutes 

Amplification 45 

94 10 seconds 

60 10 seconds 

72 10 seconds 

 

2.12. Immunohistochemistry  

 Materials 

 Extracellular matrix (ECM) gel from Engelbreth-Holm-Swarm murine sarcoma 

(SigmaAldrich). Diluted with DMED to 1 mg/ml and stored in aliquots at -80°C. 

 Triton X (SigmaAldrich). Stored at room temperature. 

Figure 2.3 Example of melting peaks acquired from the Roche LightCycler480 

Two distinct peaks specific for ZSCAN4 (green) and B2M (red) housekeeping gene indicate that 

the primers are amplifying a single product and no off-target amplification or sample 

contamination is present. 
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 Goat serum (SigmaAldrich). Stored in aliquots at -20°C. 

 4% paraformaldehyde (SigmaAldrich) in 1xPBS pH 7.0. Stored in aliquots at-20°C. 

 Tween-20 (SigmaAldrich). Stored at -20°C. 

 DAPI (SigmaAldrich) in ddH2O at 20 mg/ml. Stored at -20°C. 

 Odyssey CLx Imaging System (Licor) 

 Primary antibodies:  

 Mouse anti MF20 (DSHB, MF20). Stored in aliquots at -20°C 

 Rabbit anti-DUX4 (Abcam, E5.5). Stored in aliquots at -20°C 

 Secondary antibodies: 

 Goat anti-mouse (Licor, IRDye 680RD). Stored in aliquots at -20°C 

 Goat anti-rabbit (Licor, IRDye 680RD). Stored in aliquots at -20°C 

 Goat anti-rabbit (ThermoFisher, AlexaFluor488). Stored in aliquots at 

-20°C 

 In-cell Western of FSHD cell culture 

6-well plates were coated with 500 μl of ECM (1 mg/ml) to ensure cell adhesion. The 

seeding of the FSHD patient myoblast, differentiation and berberine treatment were 

described in sections 2.6.5 and 2.6.7, respectively. At the end of incubation period, the 

culture medium was removed and cells rinsed with 1xPBS, followed by fixing in ice cold 

4%PFA for 15 minutes at room temperature. Cells were washed three times with 1xPBS 

for 5 minutes. Permeabilization of cell was performed in 0.5% Triton X-100 in 1xPBS for 

10 minutes at room temperature. 10% goat serum in 1xPBS was used to perform 1 hour 

blocking. The primary antibodies were diluted 1:100 in 5% goat serum, 1xPBS and added 
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to each well for overnight incubation at 4°C. Each well was washed three times for 5 

minutes with 1xPBST (0.1% Tween-20). Secondary antibody was diluted 1:800 in 5% goat 

serum, 1xPBS, Cells were incubated for 1 hour with the diluted secondary antibodies. 

1xPBST washes were preformed three times for 5 minutes. After the final wash, any 

remaining solution was removed from the wells completely. The plates were used for 

the analysis using Odyssey CLx Imaging System. Plates can be stored if 1xPBS was added 

to each well and kept at 4°C.  

 Fusion index of FSHD patient cells 

6-well plates were coated with 500 μl of ECM (1 mg/ml) to ensure cell adhesion. The 

seeding of the FSHD patient myoblast, differentiation and berberine treatment were 

described in sections 2.6.5 and 2.6.7, respectively. The cell culture medium was 

removed and cells were washed with 1xPBS once. The cells were fixed with ice cold 4% 

PFA for 10 min at room temperature. The fixative was washed away by rising once in 

1xPBS. The cells were permeabilised in 0.5% Triton X-100, 1xPBS for 10 minutes at 

room temperature. Blocking was performed with 10% goat serum in 1xPBS for 1 hour 

at room temperature. The mouse anti-MF30 primary antibody was diluted 1:1000 in 

5% goat serum, 1xPBS. The primary antibody incubation was performed overnight at 

4°C. Next day cells were washed in 1xPBS three times for 5 minutes. The goat anti-

mouse , AlexaFluor488 secondary antibody was diluted 1:200 in 5% goat serum, 1xPBS. 

The secondary antibody incubation was performed for 1 hour at room temperature. 

The cells were washed three times for 5 minutes with 1xPBS. DAPI stock was diluted 

1:100 in 1xPBS, added to each well and incubated at room temperature for 10 

minutes. The cells were rinsed twice in 1xPBS and kept in 1xPBS at 4°C protected from 
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light. Fluorescent microscope at 10x magnification was used to acquire images for 

analysis. The fusion index was calculated by counting the number if nuclei in MF20 -

positive myotubes containing 3 or more nuclei, and expressed as a percentage of total 

number of nuclei present in the captured field.  

2.13. Flow cytometry  

 Materials 

• Paraformaldehyde (PFA). 4% PFA in 1x PBS. Stored at -20°C. 

• 5 ml snap cap round bottom tubes (Falcon) 

• FACSCantoII flow cytometer (BD Bioscience) 

• FACSDiva Software (BD Bioscience) 

 Analysis of GFP expression in transfected RD CCL-136 cells by flow cytometry 

RD cells were trypsinised 24 hours post-transfection/berberine treatment (Section 2.5 

describing transfection; Section 2.6.7 describing the berberine treatment), transferred 

into 5 ml snap cap round bottom tubes and pelleted by centrifugation at 3000 rpm for 

3 minutes. The supernatant was aspirated and the cells were resuspended in 300 μl of 

4% PFA. A mock transduced (i.e., no plasmid) control population was also included in 

every experiment analysing GFP expression.  
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To discriminate debris from the viable cell population FSC-A/SSC plot was selected and 

the P1 gate was drawn over the cells (Figure 2.4.A). Single viable cell population were 

selected from doublets by selecting them using polygonal on the FSC-H/FSH-A plot 

(Figure 2.4.B). The GPF positive cell population was displayed in a histogram using FITC 

channel. The mock population was analysed first to set the gate of false GFP positive to 

<1%. At least 10 000 cells were analysed for each condition. 

. 

2.14. Spectroscopic analysis of nucleic acid secondary structures and 

ligand binding  

 Materials  

• KP buffer: 100 mM KCl, 10 mM K2HPO4/KH2PO4, pH 7.0, ddH2O, filtered using 

0.22 μm filter (Flacon). 

Figure 2.4 Example of gating to select viable (A.) and single (B.) in flow cytometric analysis 

(A.) Forward scatter-area vs. side scatter-area plots allowed for selection of viable RD cells 

as shown by the polygonal gate. Cells outside the gate were consider debris. (B.) Forward 

scatter- area vs. forwards scatter-height was subsequently selected in order to select single 

viable cells for the analysis. Cells outside the polygonal gate are considered to be doublets. 
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• Tris buffer: 10 mM Tris-HCl, 100 mM KCl, pH 7.0, ddH20, filtered using 0.22 μm 

filter (Flacon). 

• Chirascan qCD, circular dichroism spectrometer (Applied Photophysics Ltd). 

• Nuclear magnetic resonance spectrometer (800 MHz; Bruker Avance III). 

• Fluorescent spectrometer (Perkin Elmer). 

• UV/Vis spectrophotometer (Jenway 7305). 

• 1 mM Berberine chloride stock: berberine was dissolved in either KP or Tris 

buffer and heated at 37°C until fully dissolved. Stored at room temperature.  

• DNA and RNA oligonucleotides (IDT) (Table 2.9). 
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Table 2.9 List of oligonucleotides used in spectroscopic analysis 

Oligonucleotides synthesised at 0.2 μm and HPLC purified by IDT. Underlined guanine 

residues are predicted to form putative GQs. Adenosine residues in bold indicate 

guanine substitution to disrupt GQ and hairpin structures in M1-3M2DGCb_GQ, 

oligonucleotides. Abbreviations: DMEM_GQ, DUX4 myogenic enhancer 1 G-quadruplex; 

DGCb_GQ, DUX4 GC box; M1DGCb_GQ, mutant 1 DUX4 GC box; CSS, cryptic splice site; 

E1, enhancer 1; SS1, splice site 1; H.telomere, Human telomere. 

 

 

Construct 

name: 
Construct sequence: 

Amount 

(µmol) 

Purification 

method 

DME1_GQ CAGGGGATGGTGGGGCTGGGGTTGAGTGATGGGC  0.2 HPLC 

D4P_ GQ CGGGGTGGGGCGGGCTGTCCCAGGGGGGCT  0.2 HPLC 

M1DGCb_GQ 

(NO GQ) 

CGAAAATGGGGCGGGCTGTCCCAAAAAACT 0.2 HPLC 

M1DGCb_GQ 

(NO GQ) 

CGAAAATGGGGCGGGCTGTCCCGGGGGGCT   

M3DGCbQ 

(no Hairpin) 

CGGGGTGGGGCGGGCTGTAAAAGGGGGGCT 0.2 HPLC 

CSS_GQ AGGGCCAGGCACCCGGGACAGGGUGGCAGGGC 0.2 HPLC 

E1_GQ AGGGGAGUCCGUGGUGGGGCUGGGGCCGGGGU 0.2 HPLC 

SS1_GQ CGGGGUUGGGACGGGGUCGGGU 0.2 HPLC 

H. 

telomere_GQ 

AGGGTTAGGGTTAGGGTTAGGG 0.2 HPLC 
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 Circular dichroism and nuclear magnetic resonance spectroscopy  

DNA and RNA oligonucleotides for circular dichroism (CD) and nuclear magnetic 

resonance (NMR) were prepared from the HPLC purified samples by resuspending them 

in KCl buffer to a final concentration of 2–4 µM.  

CD spectra were acquired using a Chirascan qCD spectrophotometer (Applied 

Photophysics Ltd), equipped with a LTD6G circulating water bath (Grant Instruments, 

UK) and thermoelectric temperature controller (Melcor, USA). Samples were heated in 

the cell to 95oC for a total period of 15 minutes, samples were then annealed by allowing 

to cool to room temperature for a minimum period of 4 hours. CD spectra were recorded 

over a wavelength range of 215– 340 nm using a 1 cm path length strain-free quartz 

cuvette and at the temperatures indicated. Data points recorded at 1 nm intervals. A 

bandwidth of 3 nm was used and 5000 counts acquired at each point with adaptive 

sampling enabled. Each trace is shown as the mean of three scans (±SD). CD temperature 

ramps were acquired at 265 nm corresponding to the band maxima of the folded 

quadruplex species. Ranges between 5 and 99oC were used, with points acquired at 

0.5oC intervals with a 120–180 s timestep between 0.5oC increments. Points were 

acquired with 10 000 counts and adaptive sampling enabled.  

CD was recorded in units of absorbance known as ellipticity [θ]. Data was normalised to 

molar concentration of the repeating unit, where the repeating unit represents number 

of bases in each of the DNA/RNA oligonucleotide. The mean residue weight (MRW) was 

calculated from the molecular weight (MW) of each oligonucleotide divided by the 

number of bases (N) minus 1 (i.e., [MRW=MW/N-1]). To calculate the molar residual 

ellipticity (M.R.E) the following equation was applied: 
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𝑀. 𝑅. 𝐸 =
θ∗𝑀𝑅𝑊

10∗𝑑∗𝑐
  [𝑑𝑒𝑔. 𝑐𝑚2. 𝑑𝑚𝑜𝑙−1]   (Eq. 2) 

 
Where: 

θ= observed molar ellipticity 
d= path length in cm 
c= concentration in g/L  

 

The molar residue ellipticity equation (Eq. 2) was used to normalise the molar ellipticity 

spectrum in order for the measured value to be independent of the nucleic acid polymer 

length (Ishtikhar et al. 2014). 

NMR spectra (1H) were collected at 800 MHz using a Bruker Avance III spectrometer with 

a triple resonance cryoprobe. Standard Bruker acquisition parameters were used. Data 

were collected using Topspin (v. 3.0) and processed in CCPN Analysis (v. 2.1). 

 UV/Vis and fluorescence spectroscopy binding and analytic techniques 

DNA and RNA oligonucleotides for UV/Vis spectrophotometric and fluorescent 

spectrometric analysis stock solutions were prepared from the HPLC purified samples 

by resuspending them in Tris buffer to a final concentration of 500 µM. To anneal the 

oligonucleotides, the samples were placed on a heat block at 950 for 10 minutes and 

annealed by allowing to cool overnight to room temperature.  

Annealed oligonucleotides were titrated in 0-10 μM range in both UV/Vis and florescent 

spectrometry readouts. The berberine concertation was kept constant at 10 and 5 μM 

in UV/Vis and fluorescent spectroscopic analysis, respectively. Tris buffer was used as a 

blank. The UV/Vis spectrophotometer was set to record spectra from 300-550nm. Both 

types of spectra were recorded at room temperature. Fluorescent spectra were 

measured at λex/λem=355/530 nm. To measure the binding constant (Ka) data was 
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plotted into hyperbolic function using KaleidaGraph software following the equation 

below: 

𝛥𝐹 = (
𝛥𝐹𝑚𝑎𝑥

2[𝐿]0
) {([𝐿]0 + [𝑄] +

1

𝐾𝑎
) − √([𝐿]0 + [Q] +

1

𝐾𝑎
)

2

− 4[𝐿]0[𝑄]}              (Eq. 3) 

Where: 

ΔF=F-F0 and ΔFmax= Fmax-F0.  

F0 and F- initial and subsequent fluorescent intensities  

[L]0-berberine concertation 

[Q]- oligonucleotide concertation.  

Ka-binding constant 

The Eq. 3 is a quadratic velocity equation for tight-biding substrates to determine the 

affinity binding between berberine and quadruplex. The Eq. 3 was previously used to 

determine the binding affinity of berberine to the human telomeric DNA quadruplex 

structure by utilising the fluorescent spectroscopic analysis (Arora et al. 2008).   

2.15. Bioinformatics  

 Online resources 

 NCBI GenBank (www.ncbi.nlm.nih.gov/genbank/) 

o Genomic sequences 

  Ensembl (www.ensemble.org) 

o Transcript sequences 

 DUX4 secondary structure was predicted with mFold software:  

o Duplex DNA and RNA formation prediction 

 QGRS Mapper (http://bioinformatics.ramapo.edu/QGRS/index.php) 
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o DNA and RNA GQ formation prediction 

  DNA and RNA sequences 

The DUX4 sequences enhance and promoter sequences were acquired from the 

GenBank database (gene ID: AF117653). The DUX4 transcript isoform sequence were 

taken from the Ensembl database with their ID outlined in table 2.10. Sequences were 

exported in FASTA format form both databases and used to be directly inputted into a 

web server of software of interest. 

Table 2.10 Details of GenBank and Ensemble entries used 

  MFold 

The RNA folding form was set to default conditions. Folding temperature was at 37°C, in 

1 M NaCl. Maximum loop sizes were set to 30 bases and there was no limit on the 

distance between base pairs. The inputted sequences were no longer that 40 bases. The 

output structures were saved as pdf for later analysis. 

 QGRS Mapper 

The data could be submitted in the input box as raw FASTA nucleotide sequence, by 

providing the NCBI gene ID or Ensemble transcript ID. The GQ max length was set to 30 

DUX4 gene feature Database ID 

Enhancer and promoter GenBank AF117653 

Transcript 1 Ensembl ENST00000565211.1 

Transcript 2 Ensembl ENST00000569241.5 

Transcript 3 Ensembl ENST00000616166.1 
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base and loop size to 36 bases. The output view was provided as a FASTA sequence view 

with highlighted potential GQ-forming tetrads. The JavaScript enable internet browser 

(e.g., Internet Explorer) allowed for graphical view of putative GQs formation. GQ 

predicted sequences with a G-score of above 30 were considered for further analysis. 

2.16. Statistical analysis 

All statistical analysis was performed using GraphPad Prism 6 software.  

The data from the RT-PCR, RT-qPCR flow cytometry and spectrophotometry was 

analysed using one-way Anova unless stated otherwise.  
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3. Analysis and determination of GQ formation within 

DUX4 enhancer, promoter and transcript sequences 

3.1. Introduction  

 Computational prediction of GQs 

Computational analysis investigating GQs permits a thorough genome wide analysis of 

mammalian genes. These methods already allowed detailed surveillance of the GQ 

structures in the human genome (Huppert and Balasubramanian, 2006). However, a 

user friendly software that is available to a wider public has not existed until the release 

of QGRS mapper (Kikin et al. 2006). Particular focus of this software was to analyse 

alternatively processed mammalian pre-mRNA sequence of human and mouse genes 

(Kostadinov et al. 2006). As a result it has been found that GQ motifs are particularly 

enriched at or near alternative splice sites and poly(A) regions (Kostadinov et al. 2006). 

Furthermore, the QGRS Mapper provides comprehensive information on the 

configuration and distribution of potential GQ forming sequences that can be either 

manually submitted or retrieved from the NCBI databases through options provided in 

the software (Kikin et al. 2006). One of the core strengths of the software is the fact that 

it is able to analyse mammalian pre-mRNA sequences that have been alternatively 

processed i.e., have different splice isoforms or have been alternatively polyadenylated. 

The software provides flexibility in allowing the user to define the parameters of a 

number of tetrads, length of the quadruplex structure and content as well as size of the 

loops (Kikin et al. 2006). Selected genomic sequences such as enhancers, promoters, 
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telomeric regions as well as RNA sequences can be submitted in FASTA format for 

mapping unimolecular GQ motifs. In addition, QGRS Mapper is a very useful tool in 

predicting oligonucleotide structures. To retrieve desired genomic or transcript 

structures for the analysis, the software provides direct access to the NCBI Gene Entrez, 

GenBank and RefSeq databases. The output is represented in the form of an interactive 

graphic that can be also viewed in the form of a raw sequences and visualised 

distribution of the quadruplex motifs across all alternative RNA transcripts of a gene. 

Therefore, the QGRS Mapper allows functional analysis of the GQ motifs that might be 

involved in the alternative processing of a gene. The basic motif that QGRS uses to 

predict putative GQs is the following: 

GxNy1GxNy2GxNy3Gx 

Where x= number of guanine tetrads in the GQ and y1, y2, y3,= length of the loops 

connecting the guanine tetrads (Kikin et al. 2006).  

 Circular dichroism and nuclear magnetic resonance as 

experimental methods to study GQ structures and ligands 

Phenomenon of circular dichroism (CD) arises when chiral molecules interact with 

circularly polarized electromagnetic rays (Woody, 1995). In biological research, the CD 

has proven to be particularly useful in determining secondary structures of DNA and/or 

RNA due to their asymmetric sugar backbone and the helical structure resulting from a 

specific arrangement of its constituent nucleobases. Typical CD analysis uses UV light 

within 200-320 nm range of the spectrum that detects electronic transition of DNA (or 

RNA) bases (Gray et al. 1995). Although the resulting CD spectra of the nucleic acid 

chemistries can be calculated using complex quantum mechanical methods, in practice 
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the spectra patterns are interpreted empirically (Vorlickova et al. 2012). CD 

spectroscopy is a convenient method to analyse conformational changes in DNA 

structure that might be affected by environmental cues, such as pH, temperature, 

counter ions concentration or presence of crowding agents.  

Since the discovery of GQ motifs in the human genome and the fact that these structures 

might play an important biological role in processes related to aging and cancer 

development, extensive effort has gone into understanding of the biological role of 

these guanine-rich nucleic acids and potential molecules that regulate their stability. 

One of the most widely used techniques to interrogate the conformational changes and 

ligand interactions within GQs is CD. Three major DNA GQ conformations have been 

described using CD, such as parallel, antiparallel or mixed (Gray et al. 2008). Since RNA 

molecules lack the anti and possess only the syn glycosidic bond geometry, they form 

only parallel quadruplexes. Different types of quadruplex folding can be distinguished 

by characteristic pattern of CD spectra. The parallel GQs can be distinguished by the 

pronounced positive 260 nm band, while a positive band at 295 nm and a negative band 

at 260 confirm presence of an antiparallel quadruplex topology (Karsisiotis et al. 2011). 

Currently CD spectral patterns cannot be used to unambiguously determine the exact 

topology of the GQ structure. Since the CD analysis limits the number of possible 

structures that can be distinguished, defining exact GQ topology should also be 

supported by nuclear magnetic resonance (NMR) or X-ray crystallography data and 

techniques. 

NMR spectroscopy is a powerful tool that allows atomic resolution of GQ structures 

(Campbell and Parkinson, 2007). In addition, NMR is the only technique providing such 
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a high resolution that also allows structural analysis and ligand interaction in solution. 

Presence of the GQ structure can be determined by detection of the hydrogen bonds 

formed between guanines (Hoogsteen base pairing) within the G-tetrad. These 

characteristic guanine imino protons (1H) show a specific chemical shift in the region of 

10-12 nm of the spectrum, whereas the typical Watson-Crick base pairing can be 

detected within the range of 13-14 nm (Webba da Silva 2007). NMR has proven to be 

extremely useful in determining kinetic and dynamics of the interaction of GQ structures 

with their specific ligands, especially in the context of telomeric and oncogene promoter 

GQs. Furthermore, NMR can be also used to characterise 3D structures of an individual 

GQ as well as GQ-ligand complexes (Haider et al. 2002). The fact that the structure is 

investigated in solution serves as an advantage over the static crystallography approach.  

CD and NMR are currently considered be state-of-the-art scientific techniques that 

tremendously increased our understanding of GQ structure topologies as well as 

allowing us to test an extensive array of GQ interacting ligands that might serve as a 

potential treatment for many devastating diseases, including cancer (Balasubramanian 

et al. 2011). 

 Berberine binding affinity for RNA and DNA secondary structures measured with 

UV-Vis and fluorescent spectroscopy 

Photochemical properties of berberine were widely utilised to study its binding affinity 

to different types of nucleic acid secondary structures, including double stranded DNA, 

tRNA, GQs and triple helical nucleic acids (Basu et al. 2013; Nandi et al. 1990; Park et al. 

2004; Zhang et al. 2007). Berberine is a planar molecule with a large aromatic surface 
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that contains an extensive π-delocalised system and partial positive charge on N7 (Figure 

3.1) (Grycová et al. 2007).  

 

Figure 3.1 Chemical structure of berberine 

 

These chemical characteristic properties of berberine result in a specific absorbance 

pattern of the molecule. The absorption maximum of berberine has two characteristic 

peaks at 340 and 420 nm that change when the compound is bound to nucleic acid 

sequences (Arora et al. 2008; Li et al. 2017). Generally, the red shift in absorption peak 

indicates end stacking for GQs or intercalative properties for duplex DNA or RNA. The 

hypochromic shifts indicate reduction of the berberine absorption due to its binding to 

DNA/RNA. Furthermore, when the hypochromicity occurs without any red shift, it 

indicates groove binding rather the above-mentioned end stacking or intercalating 

interactions of berberine to the nuclei acid. 
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In addition, berberine shows significant fluorescent emission enhancement at 525 nm 

when bound to DNA/RNA and excited at 355 nm wavelength, while being essentially 

non-fluorescent while unbound. By utilising the UV-Vis and fluorescence spectroscopy 

techniques berberine binding affinity and recognition of nucleic acid secondary 

structures can be studied. 

 Objectives of the chapter 

The study of DUX4-related GQs was initiated by in silico analysis of the DUX4 myogenic 

enhancer 1 and 2, promoter and transcript elements to determine presence of the 

putative motifs within the analysed sequences. The candidate quadruplex-forming 

sequences were then subjected to the CD and NMR spectroscopy to determine their 

secondary structure topology in solution. Finally, the binding properties of berberine to 

the selected DNA and RNA oligonucleotide was assessed by the UV-Vis and fluorescence 

spectroscopy methods.
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3.2. Results 

 Bioinformatic analysis of GQ formation within the enhancer, promoter and 

transcript of DUX4 

The full promoter and enhancer sequences were manually selected and submitted into 

the QGRS Mapper software in FASTA format (Figure 3.2 and 3.3). The output result for 

the DUX4 myogenic enhancer 1 and 2 (DME1 and 2) has predicted 11 and 1 GQ motifs, 

respectively. Out of those predicted motifs only 1 has scored the value of ≥30 G-Score 

in the DME1 sequence, which is considered to likely form GQs in vitro (Prof M. Searle 

personal communication). The QGRS Mapper analysis of the DUX4 promoter (D4P) 

sequence has found 4 putative GQ motifs, from which only 1 has a G-Score of ≥30.  

The whole DUX4 transcript sequence (ENST00000569241.5) contains 30 putative GQ 

motifs according to the GQRS Mapper analysis (Figure 3.2.3). However, only 4 sequences 

have been predicted to have a G-Score of ≥30.  

All of the predicted sequences with the score of ≥30 were mapped to their 

corresponding positions within enhancer, promoter or transcript sequence regions as 

shown in Figure 3.4. From the schematic, it can be deduced that GQs with the G-Score 

≥30 cluster particularly with the coding sequence (CDS) and exon/intron boundaries of 

the transcript, indicating their possible biologically relevant role. The overlap of the GQ 

at the cryptic splice site (CSS), suggest a role in alternative splicing. There were no GQ 

forming sequences predicted within the exon 3 where the polyadenylation signal 

resides.  
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A particularly strongly scoring GQ (G-score: 36) motif has been also identified in the 5’ 

end of the DUX4 promoter (Figure 3.4). The motif spans through the conserved GGGGCG 

sequence known as GC box that has been previously found to be an important cis-

element recognised by common transcription factors such as Sp1 (Rettion et al. 2009).
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 Figure 3.2 QGRS Mapper-based prediction of G-quadruplexes within DUX4 enhancer sequences 

Top and bottom graphic show predictions of GQs within the sequence of DUX4 myogenic enhancer 1 and 2 (DM 

E1 and 2), respectively. (A.) The summary table showing the total number of GQs predicted and a number of motifs with a G-score ≥ 30 (i.e., 

highly likely to form GQs in vitro) present within the analysed sequence. (B.) Full FASTA sequence for each analysed genomic element with 

potential GQ sequences highlighted in yellow. (C.) A graphical output form QGRS Mapper showing all the potential GQ motifs forming within 

the analysed sequences and their relative position. 
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Figure 3.3 QGRS Mapper-based prediction of GQs within DUX4 promoter sequence 

(A.) The summary table showing the total number of GQ predicted and a number of 

motifs with the G-score ≥ 30 (i.e., highly likely to form GQs in vitro) present within the 

analysed sequence. (B.) Full FASTA sequence for each analysed genomic element with 

potential GQ sequences highlighted in yellow. (C.) A graphical output from QGRS 

Mapper showing all the potential GQ motifs forming within the analysed sequences and 

their relative position. The sequences were acquired from the study by Himeda et al., 

(2014) that first identified DUX4 myogenic enhancers. Promoter sequence was acquired 

from GenBank (Accession number: AF117653). 
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Figure 3.4 QGRS Mapper-based prediction of GQs within DUX4 transcript sequence 

(A.) The summary table showing the total number of GQ predicted and a number of 

motifs with the G-score ≥ 30 (i.e., highly likely to form GQs in vitro) present within the 

analysed sequence. (B.) Full FASTA sequence for each analysed genomic element with 

potential GQ sequences highlighted in yellow. (C.) A graphical output from QGRS 

Mapper showing all the potential GQ motifs forming within the analysed sequences and 

their relative position. Coding and 3’UTR sequence was acquired from Ensembl 

(ENSG00000260596), whereas the 5’UTR was derived from GenBank (Accession 

number: AF117653). 
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Figure 3.5 Schematics of GQ motifs prediction scores (B.) aligned with the biologically relevant genetic signal elements of DUX4 genomic locus 

(A) and transcript (C) 

Score prediction of the putative GQ structures was preformed using QGRS Mapper software. Location of the genomic elements relative to the 

start codon (ATG) was mapped based on the data acquired form GenBank (Accession number: AF117653) and publications by Himeda et al., 

(2014) and Dixit et al., (2007). The transcript sequences were derived from Ensembl (ENSG00000260596). Abbreviations: DME1 and 2, DUX4 

myogenic enhancer 1 and 2; DUX4-fl, DUX4 full length; DUX4-s, DUX4 short; Ex, exon; In, intron; CDS, coding DNA sequence; UTR, untranslated 

region; GQ, G-quadruplex. 
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Since the GQ forming sequences often contain cytosine residues, it is important to 

determine whether these will contribute to potential hairpin formations that are more 

thermodynamically stable than the corresponding GQ (Fay et al. 2017). To assess 

potential for formation of other secondary structures by the selected GQ sequences 

from enhancer, promoter and transcript sequences, the Mfold software was used. The 

isolated oligonucleotide GQ forming sequences (as predicted by the QGRS Mapper), that 

have ΔG <-10  kcal/mol were considered to have a higher driving force for hairpin 

formation structures over the GQ motifs. The ΔG prediction for DME1 G-quadruplex 

(GQ) and D4P GQ sequence was -3.31 and 0.33 kcal/mol, indicating a very low potential 

for these oligonucleotide sequences to fold into hairpin structures (Figure 3.6). The 

sequences with highest G-Score present within exon 1 (E1 GQ), has a ΔG= -7.30 kcal/mol 

that is relatively unfavourable for the hairpin formation (Figure 3.7). The relatively high 

ΔG=-0.66 kcal/mol predicted for the GQ predicted sequence motif located in the 

proximity of the splice site 1 (SS1_GQ), indicated low probability for this sequence to 

form hairpin structure (Figure 3.7). The ΔG for the remaining GQ forming sequences 

within CSS and splice site 2 (SS2 GQ) scored -14.70 and -10.00 kcal/mol, respectively, 

indicating that these sequences have a significantly higher potential to form hairpin 

structures rather than the GQ motifs (Figure 3.7).
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Figure 3.6 Mfold analysis of GQ forming sequence derived from the DUX4 myogenic 

enhancer 1 (DME1) and promoter (D4P) regions 

(A.) QGRS mapper graphic score highlighting sequence that is highly likely to form GQ in 

vitro (dashed box; G-score ≥ 30). (B.) Mfold analysis of the GQ forming sequence. The 

free energy (ΔG) is indicated. 
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Figure 3.7 Mfold analysis of GQ forming sequence derived from the DUX4 transcript region 

(A.) QGRS mapper graphic score highlighting the sequences that are highly likely to form GQ in vitro with the G-score ≥ 30. The putative GQ sequences 

that lay within the regions of cryptic splice site (CSS; black solid box), exon 1 (E1; black dashed box), splice site 1 (SS1; red box) and splice site 2 (SS2; 

green box) of the DUX4 transcript. (B.) Mfold analysis of the detailed GQ forming sequences. The free energy (ΔG) is indicated.  
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DUX4 transcript analysis 

 

DUX4 transcript analysis 
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 CD and NMR structural analysis to determine GQ formation of selected DNA and 

RNA oligonucleotides  

To confirm whether the in silico predicted GQ-forming sequences (Figure 3.5) derived 

from the enhancer, promoter and transcript elements of DUX4, form in solution, CD and 

NMR analyses were performed on corresponding synthetic oligonucleotides. In addition, 

to determination of GQ presence, the CD and NMR were used to establish secondary 

topology of the selected DNA and RNA oligonucleotides. To generate a stable GQ 

structures the oligonucleotides were annealed in KP buffer with added 100 mM KCl that 

promotes formation of the motif. Exact sequence of each oligo is outlined in (Table 2.9). 

All of the selected oligonucleotides carry 4 runs of three Gs that have potential to form 

3 tetrads within the GQ structure. The runs of Gs are interspaced by varying number of 

nucleotides that will form loops in the potential GQ structure. Each oligonucleotide 

sequence was selected so the nucleotide at the end of each sequence is different than 

G to prevent stacking of the GQ molecules. 

3.2.2.1. CD and NMR structural analysis of GQ formation by the DNA oligonucleotide sequences 

derived from DME1 and D4P of DU4 

The DME1 DNA GQ oligo (5’ CAGGGGATGG TGGGGCTGGG GTTGAGTGAT GGGC 3’) shows a 

characteristic CD spectrum pattern of an ellipticity maximum around 260 nm and 

negative ellipticity minimum at 240 nm at room temperature indicative of a parallel GQ 

structure (Figure 3.8 A). The NMR spectrum confirmed the presence of GQ formation by 

the oligo as detected by the strong signal at 10 and 12 ppm, which is specific to the 

Hoogsteen hydrogen boding. The NMR readout also shows no signal detection at the 

>12 ppm range, indicating no other secondary structure formation by the 

oligonucleotide (Figure 3.8 C). CD spectra shows weak absorbance at the 290 nm 
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ellipticity, suggesting presence of external loops formed by bimolecular parallel GQ, 

rather than the tetramolecular (four stranded) structure that has a single positive peak 

at 260 nm ellipticity (Paramasivan, Rujan, and Bolton 2007)(Figure 3.8 A). The melting 

transition appears smooth, further indicating that there is one predominant structure of 

the oligonucleotide formed (Figure 3.8 B). The relatively low melting temperature of 

~70°C is most likely caused by the presence of potential long loop-forming sequences 

within the motif. Upon thermal renaturation of the DNA oligo, the absorbance pattern 

returns to the original position suggesting no transition to other stable topologies or 

secondary structures than the parallel GQ (Figure 3.8 A).  

The CD and NMR spectral data, supplemented by the bioinformatic analysis, showing a 

low probability of hairpin formation (ΔG=0.33 kcal/mol) and relatively high score for 

quadruplex formation (≥30) strongly suggest that the DME1 DNA oligonucleotide forms 

a single species GQ of bimolecular parallel structure in solution (Figure 3.8 D).
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Figure 3.8 Biophysical characterisation of DNA secondary structure of the predicted GQs in the DUX4 myogenic enhancer 1 (DME1) sequence 

(A.) Far-UV circular dichroism spectrum at 25°C reveals ellipticity maximum at 265 nm indicative of a parallel GQ structure formation by the 

oligonucleotide. The temperature at which each absorption spectra was obtained is expressed in degrees Celsius. (B.) Sigmoidal CD melting 

curves for the oligonucleotide shows transitional mid-point at 70°C indicating modest stability of the quadruplex structure. (C.) 1H NMR spectrum 

of the oligonucleotide recorded at 800 MHz and 298K showing groups of resonances characteristic for Watson-Crick (solid line box highlighting 

non-quadruplex structure signal) and Hoogsten H-bonded bases (dash line box highlighting quadruplex structure). As highlighted, the DME1 

sequence forms a single species of quadruplex structure. (D.) Bioinformatic prediction of possible secondary structures formed by the sequence 

using mFold (solid arrow) or QGRS Mapper (dashed arrow). Abbreviations: M.R.E - molar residue ellipticity 
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The D4P DNA GQ oligonucleotide (5’ CGGGGTGGGGCGGGCTGTCCCAGGGGGGCT 3’) has 

a characteristic pattern of absorbance at the ellipticity maximum at 260 nm and 

ellipticity minimum at 240nm for a parallel GQ as shown by the CD (Figure 3.9 A). Lack 

of apparent absorbance at 290 nm indicates that the structural topology is 

tetramolecular lacking external loops (Figure 3.9 A). The NMR spectrum displays 

distinctive signals characteristic of both GQ as well as double-stranded hairpin structure 

(Figure 3.9 C). The double transition of the melting curve indicates presence of two 

structures with quite different stabilities (i.e., hairpin and quadruplex). There is no 

significant transition in the CD spectra upon thermal renaturation of the oligonucleotide, 

since both hairpin and parallel GQs have a strongly overlapping ellipticity maxima at 

260nm (Kypr et al. 2009). The negative ΔG of -3.32 kcal/mol for the oligonucleotide 

indicates that there is a possibility of a hairpin and GQ folding might exist in 

thermodynamic equilibrium, which is supported by the CD and NMR readouts (Figure 

3.9 D).



113 
 

. 

 

 

Figure 3.9 Biophysical characterisation of DNA secondary structure of the predicted GQs in the DUX4 promoter (DP) sequence 

(A.) Far-UV circular dichroism spectrum at 25°C reveals ellipticity maximum at 265 nm indicative of a parallel GQ structure formation by the 

oligonucleotide. The temperature at which each absorption spectra was obtained is expressed in degrees Celsius. (B.) However, the melting 

curve shows a double transition, indicating that two different structures i.e., hairpin and quadruplex exist with different stabilities. Overall 

melting temperature was recorded at 78°C (C.) 1H NMR spectrum of the oligonucleotide recorded at 800 MHz and 298 K showing groups of 

resonances characteristic for Watson-Crick (solid line box highlighting non-quadruplex structure signal) and Hoogsten H-bonded bases (dash line 

box highlighting quadruplex structure). Recorded NMR signal confirms presence of hairpin (solid line box) and quadruplex structure (dashed line 

box). (D.) Bioinformatic prediction of possible secondary structures formed by the sequence using Mfold (solid arrow) or QGRS Mapper (dashed 

arrow). Abbreviations: M.R.E - molar residue ellipticity 
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The DNA oligonucleotide sequence derived from the human telomere (H. Telomer GQ) 

(5’AGGGTTAGGGTTAGGGTTAGGG 3’) was used as a positive control. The classic CD 

absorption spectra for an antiparallel GQ has the ellipticity maxima at 290 nm and 

ellipticity minima 260 nm. Although the measured H. Telomere GQ oligonucleotide 

shows maximum absorbance at 290 nm, there is a shoulder peak at around 250 nm and 

ellipticity minimum at 238 nm (Figure 3.10 A). This absorption patterns is indicative of a 

hybrid type unimolecular parallel/antiparallel GQ structure as it has been previously 

reported for this sequences (Ambrus et al. 2006b). The melting temperature of the GQ 

structure was recorded at around 60°C using the CD analysis (Figure 3.10 B). The CD data 

confirms the bioinformatic data predicting no hairpin structure and high G-Score (i.e., 

42) for quadruplex formation as shown by the Mfold and GQRS Mapper, respectively 

(Figure 3.10 C).
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Figure 3.10 Biophysical characterisation of DNA secondary structure of the human telomeric sequence  

(A.) Far-UV circular dichroism spectrum at 25°C reveals ellipticity maximum at 290 nm, shoulder peak at 250 and ellipticity minimum at 238 nm 

indicative of a hybrid parallel/antiparallel GQ structure formation by the oligonucleotide. The temperature at which each absorption spectra 

was obtained is expressed in degrees Celsius. (B.) Overall melting temperature was recorded at 60°C (C.) Bioinformatic prediction of possible 

secondary structures formed by the sequence using mFold (solid arrow) or QGRS Mapper (dashed arrow). Abbreviations: M.R.E - molar residue 

ellipticity 



117 
 

 



118 
 

3.2.2.2. GQ formation by RNA oligonucleotides derived from DUX4 transcript analysed by CD 

and NMR 

The first RNA oligonucleotide of interest that was tested by the CD and NMR for the 

formation of GQ was the sequence derived from the region overlapping the cryptic 

splice site (CSS), since it could be involved in alternative splicing of the DUX4 transcript 

and yielded non-toxic DUX4 (short) isoform (Snider et al. 2010). As the RNA GQcan only 

form parallel structures due to the lack of the anti-glycosidic bond geometry and the 

fact the hairpin structures show overlapping ellipticity maximum absorbance at 260 nm 

with parallel quadruplexes, it is important to supplement the CD data with the NMR and 

bioinformatic analysis to discriminate between those two secondary structures.  

As predicted, the CSS GQ oligonucleotide (5’ CGGGGUUGGGACGGGGUCGGGU 3’) 

measured by the CD shows ellipticity maxima at 260 nm and ellipticity minimum at 

around 240 nm that would normally indicate that it is a parallel GQ motif (Figure 3.11 

A). However, presence of a second ellipticity minima at 210 nm suggest that the A-form 

(i.e., hairpin) structure is formed by this sequence (Figure 3.11 A). The clear signal at 

>12ppm from the NMR also shows presence for hairpin specific hydrogen bonds, 

whereas no GQ specific signal was recorded (Figure 3.11 C). The smooth melting curve 

indicates a single hairpin structure in the solution (Figure 3.11 B). The mFold predicts a 

very thermodynamically stable hairpin formation due to presence of multiple C residues 

within the analysed sequences (Figure 3.11 D). Despite the high G-Score of 41, the NMR 

and CD analysis does not confirm quadruplex formation by the analysed sequences, but 

confirms the hairpin formation as predicted by the Mfold analysis. 
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Figure 3.11 Biophysical characterisation of RNA secondary structure of the predicted GQs in the cryptic splice site (CSS) sequence 

(A.) Far-UV circular dichroism spectrum at 25°C reveals the ellipticity maximum at 265 nm and the ellipticity minimum at 240 and 210 nm 

characteristic for a hairpin structure. (B.) 1H NMR spectrum of the oligonucleotide recorded at 800 MHz and 298 K showing groups of resonances 

characteristic for Watson-Crick (solid line box highlighting non-quadruplex structure signal) and Hoogsten H-bonded bases (dash line box 

highlighting quadruplex structure). As highlighted, the CSS sequence forms a single species of hairpin structure. (C.) Bioinformatic prediction of 

possible secondary structures formed by the sequence using mFold (solid arrow) or QGRS Mapper (dashed arrow). Abbreviations: M.R.E - molar 

residue ellipticity 
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The highest scoring sequence for the formation of GQ out of all of the analysed 

sequences was present downstream of the CSS in the exon 1. The exon 1 GQ (E1 GQ) 

had a G-Score of 55 as predicted by the GQRS Mapper, which is higher than the well-

studied human telomeric quadruplex sequence that scored 44 when analysed with the 

same software (Figure 3.7; Figure 3.10 C).  

The RNA E1 GQ sequences (5’ AGGGGAGUCCGUGGUGGGGCUGGGGCCGGGGU 3’) 

analysed by the CD shows the ellipticity maximum at 260 nm and ellipticity minimum at 

240 nm, which is a characteristic pattern of absorption for a parallel GQ (Figure 3.12 A). 

The oligonucleotide shows high thermal stability as the full melting profile could not be 

achieved at the near 80°C (Figure 3.12 B). Despite the relatively large intervening loops 

between the G-tetrads, the analysed sequence shows to be particularly 

thermodynamically stable, which aligns with the QGRS Mapper output predicting the 

high G-Score of 55 for the RNA oligo. The NMR shows a strong, clear signal at the 10-12 

ppm range indicating presence of quadruplex-specific Hoogsteen hydrogen bonding 

(Figure 3.12 C). No Watson-Crick hydrogen bonding could be detected by the NMR, 

confirming that no hairpin structures are formed by this sequence in the solution (Figure 

3.12 C). The ΔG of <10 kcal/mol from the Mfold output indicates small probability of a 

stable hairpin formation by the E1 GQ sequences (Figure 3.12 D). 
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Figure 3.12 Biophysical characterisation of RNA secondary structure of the predicted GQ in the exon 1 (E1) sequence 

(A.) Far-UV circular dichroism spectrum at 25°C reveals the ellipticity maximum at 265 nm and the ellipticity minimum at 240 typical for parallel 

GQ structure. The temperature at which each absorption spectra was obtained is expressed in degrees Celsius. (B.) Sigmoidal CD melting curve 

was not fully formed in the assessed temperature range; therefore, no Tm was assessed. (C.) 1H NMR spectrum of the oligonucleotide recorded 

at 800 MHz and 298 K showing groups of resonances characteristic for Watson-Crick (solid line box highlighting non-quadruplex structure signal) 

and Hoogsten H-bonded bases (dash line box highlighting quadruplex structure). As highlighted, the E1 GQ sequence forms a single species of 

quadruplex structure. (D.) Bioinformatic prediction of possible secondary structures formed by the sequence using mFold (solid arrow) or QGRS 

Mapper (dashed arrow). Abbreviations: M.R.E - molar residue ellipticity 
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The final RNA oligonucleotide that had the G-score ≥30 lies at the exon1/intron1 

boundary, in the region of the first splice site (SS1). The RNA oligonucleotide SS1 GQ 

sequences (5’ CGGGGUUGGGACGGGGUCGGGU 3’), when subjected to the CD analysis, 

shows ellipticity maximum at 265 nm and ellipticity minimum at 240 nm, which is 

characteristic of a parallel GQ (Figure 3.13 A). The complete thermal denaturation of the 

structure could not be achieved within the available temperature limits, showing high 

stability of the analysed sequences (Figure 3.13 A). As a result, full melting curve profile 

could not be achieved for this sequence and therefore no Tm could be derived (Figure 

3.13 B). Interestingly, the peak at 265 nm becomes more pronounced after the 

renaturation process, suggesting that the process of denaturation promoted formation 

of additional GQ motifs that failed to form during the initial annealing process (Figure 

3.13 A). In the NMR analysis, the oligonucleotide sequences have been found to produce 

a signal within the 10-12 ppm rage which is GQ specific (Figure 3.13 A). No signal for 

Watson-Crick, hairpin specific signal was recorded in the NMR readout (Figure 3.13 C). 

In support of the CD and NMR analysis, the Mfold predicted a potential hairpin 

formation with a modest stability as suggested by the low ΔG of -0.60 kcal/mol (Figure 

3.13 D). 
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Figure 3.13 Biophysical characterisation of RNA secondary structure of the predicted GQs in the splice site 1 (SS1) sequence 

(A.) Far-UV circular dichroism spectrum at 25°C reveals the ellipticity maximum at 265 nm and the ellipticity minimum at 240 nm typical for 

parallel GQ structure. The temperature at which each absorption spectra was obtained is expressed in degrees Celsius. (B.) Sigmoidal CD melting 

curve was not fully formed in the assessed temperature range, therefore no Tm was assessed. (C.) 1H NMR spectrum of the oligonucleotide 

recorded at 800 MHz and 298 K showing groups of resonances characteristic for Watson-Crick (solid line box highlighting non-quadruplex 

structure signal) and Hoogsten H-bonded bases (dash line box highlighting quadruplex structure). As highlighted, the SS1 GQ sequence forms a 

single species of quadruplex structure. (D.) Bioinformatic prediction of possible secondary structures formed by the sequence using mFold (solid 

arrow) or QGRS Mapper (dashed arrow). Abbreviations: M.R.E - molar residue ellipticity 
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 Effect of berberine on secondary structure of selected DNA and RNA 

oligonucleotides 

Having established that all of the selected oligonucleotide sequences from the 

enhancer, promoter and transcript elements (except for the hairpin-forming CSS 

sequences) form GQs in solution, the next step was to investigate the effect of berberine 

on conformation of these secondary structures. The CD spectra was used to assess 

structural changes of the DME1 GQ, D4P GQ, CSS GQ and SS1 GQ oligonucleotides (5 

μM) in the presence of increasing concentrations of berberine (0-50 μM). Each of the 

sequences was also subjected to thermal denaturation process in the presence of the 

ligand at the maximum concentration (50 μM) in order to study berberine’s binding 

properties.  

First, the DME1 GQ DNA oligonucleotide was investigated (Figure 3.14). Upon increasing 

concentration of the compound, no apparent change of the ellipticity maximum at 265 

nm, ellipticity minimum at 240 nm and the shoulder peak at 290 nm indicative of 

bimolecular parallel GQ structure has occurred (Figure 3.14 A). This indicated that no 

further induction of the GQ structure has been promoted, and that there is no structural 

shift towards other types of GQ topologies (e.g., antiparallel) induced by the presence 

of berberine. The melting curve analysis reveals melting transition increase from ~44 to 

55°C for the oligonucleotide with the berberine added compared with the 

oligonucleotide solution that did not contain the compound, indicating potential binding 

of the compound to the GQ. The double transition in the melting curve for the 

oligonucleotide solution containing berberine, might indicate the temperature-induced 

dissociation of the compound from the GQ prior to the denaturation of the secondary 

structure (Figure 3.14 B). Furthermore, the double transition might be also indicative of 



128 
 

a weak binding of berberine, leading to equilibrium between bound and unbound state. 

However, due to the limitations of the apparatus, it was not possible to reach 

temperatures above ~80°C that would allow formation of the full melting curve profile 

for both of the analysed oligonucleotides (Figure 3.14 B). Therefore, an accurate Tm 

could not be calculated that in turn would allow for assessment of berberine’s binding 

affinity to the DME1 GQ DNA oligonucleotide.
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Figure 3.14 Effect of increasing berberine concentrations on secondary structure formation of DME1 GQ sequence 

(A.) Far-UV spectra were recorded using CD at each concentration of berberine (0-50μM) added to the fixed concentration of the oligonucleotide 

(5 μM). Each measurement was performed at room temperature. Increasing concentration of berberine has not changed the intensity or 

transition the 265 or 290nm peaks noticeably, indicating no change in the parallel GQ structure of the oligonucleotide. (B.) CD spectra recorded 

at 265 nm absorbance of the DME1 GQ oligo without and with 50μM berberine added. The absorbance was expressed as a function of 

temperature ranging from ~20 to 80°C (±2°C). Melting of the oligonucleotide structure is increased in the presence of berberine from ~45 to 

~55°C. Abbreviations: M.R.E (molar residue ellipticity); DME1 GQ (DUX4 myogenic enhancer 1 G-quadruplex). 
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When the D4P GQ DNA oligonucleotide was analysed in the presence of berberine, a 

very significant change in ellipticity was recorded (Figure 3.15 A). The ellipticity 

maximum at 265 nm has decreased as the concentration of the ligand was increased. In 

addition, the absorbance peak at 290 nm has increased as the berberine was added to 

the D4P GQ oligonucleotide solution. At the highest concentration of the ligand, the 290 

nm absorbance has reached ellipticity maximum and has become more pronounced 

than the 265 nm absorbance. This 265 to 290 nm shift of absorbance is mediated by end 

stacking of berberine to the GQ structures that leads to transition from the parallel to 

the antiparallel topology (Figure 3.15 A). The berberine-induced change in structural 

plasticity of the D4P GQ is also apparent from the melting profile (Figure 3.15 B). The 

early increase in temperature (~20-50°C) initially displaced the ligand from the GQ and 

lead to the initial return from the antiparallel to the original (i.e., ligand free) parallel 

structure conformation with the ellipticity peak shifting from 290 to 265 nm. As the 

temperature was increased to ~60°C, the secondary structure of the D4P GQ started to 

denature (Figure 3.15 B). The full melting profile of the measured GQ structure could 

not be achieved due to the limitations of the machine. Therefore, an accurate Tm value 

for binding affinity calculations could not be derived. 
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Figure 3.15 Effect of increasing berberine concentrations on secondary structure formation of D4P GQ sequence 

(A.) Far-UV spectra was recorded using circular dichroism at each concentration of berberine (0-50 μM) added to the fixed concentration 

of the oligo (5 μM). Each measurement was performed at room temperature. Increasing concentration of berberine induces a transition 

of 265 nm to 290 nm peak, indicating shift of the GQ structure from parallel to anti-parallel form. (B.) CD spectra recorded at 265 nm 

absorbance of the D4P GQ oligo without and with 50 μM berberine added. The absorbance was expressed as a function of temperature 

ranging from ~20 to 80°C (±20). In the presence of berberine the 265 nm peak increases as the temperature is raised. Melting of the 

secondary structure of the oligonucleotide initiates between 50 and 60°C. Abbreviations: M.R.E., molar residue ellipticity; D4P GQ, DUX4 

promoter G-quadruplex. 
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Introduction of berberine to the RNA CSS GQ solution has not induced any major 

changes in the ellipticity of the oligonucleotide’s secondary structure (Figure 3.16). This 

suggests that this particular hairpin conformation is a weak binder of berberine.  
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Figure 3.16 Effect of increasing berberine concentrations on 

secondary structure formation of CSS GQ sequence 

Far-UV spectra was recorded using circular dichroism at each 

concentration of berberine (0-50 μM) added to the fixed 

concentration of the oligonucleotide (5 μM). Each measurement 

was performed at room temperature. 
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No significant changes in ellipticity was reordered for the RNA E1 GQ oligonucleotide 

upon increasing concentrations of berberine in solution (Figure 3.17 A). As a result, no 

apparent effects of berberine on E1 GQ structure was reported. The melting profile for 

E1 GQ in the presence and absence of the ligand shows to be similar and has estimated 

melting transition point of ~65°C and ~70°C, respectively (Figure 3.17 B). The estimated 

melting point indicates a relatively high stability of the GQ structure. At the maximum 

temperature of ~80°C, that could be achieved by the CD spectroscopy, the secondary 

structure was not fully dissociated as the full meting curve was not formed (Figure 3.17 

B). Therefore, it was not possible to establish accurate Tm values.  
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Figure 3.17 Effect of increasing berberine concentrations on 

secondary structure formation of the E1 GQ sequence 

(A.) Far-UV spectra was recorded using circular dichroism at each 

concentration of berberine (0-50 μM) added to the fixed 

concentration of the oligonucleotide (5 μM). Each measurement 

was performed at room temperature. Increasing concentration of 

berberine has not changed the intensity or transition the ellipticity 

maximum at 265 nm and ellipticity minimum at 210 nm, indicating 

no change in parallel GQ structure of the oligonucleotide. (B.) CD 

spectra recorded at 265 nm absorbance of the E1 GQ 

oligonucleotide without and with 50 μM berberine added. The 

absorbance was expressed as a function of temperature ranging 

from ~20 to 80°C (±20). Melting curve for the oligonucleotide in 

presence and absence of the ligand is incomplete within the limits 

of temperature range used. Abbreviations: M.R.E molar residue 

ellipticity; E1 GQ, exon 1 G-quadruplex 
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Finally, the RNA SS1 GQ oligonucleotide shows no change in the CD spectra in the 

presence of increasing concentrations of berberine (Figure 3.18 A). This suggests that 

the ligand does not have a major effect on the topology of the SS1 quadruplex. 

Overlapping melting profiles of the SS1 GQ in presence and absence of berberine, 

indicates weak binding of the compound to the structure (Figure 3.18 B). The GQ 

structure shows to have a modest thermodynamic stability as its melting transition 

begins at ~65°C. The full melting profile could not be achieved due to the device 

limitations (Figure 3.18 B). Therefore, the Tm for the oligonucleotide could not be 

measured.  
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Figure 3.18 Effect of increasing berberine concentrations on secondary 

structure formation of the SS1 GQ sequence 

(A.) Far-UV spectra was recorded using circular dichroism at each 

concentration of berberine (0-50 μM) added to the fixed concentration of the 

oligonucleotide (5 μM). Each measurement was performed at room 

temperature. Increasing concentration of berberine has not changed the 

intensity or transition the ellipticity maximum at 265 nm and ellipticity 

minimum at 240 nm, indicating no change in the parallel GQ structure of the 

oligonucleotide. (B.) CD spectra recorded at 265 nm absorbance of the SS1 GQ 

oligonucleotide without and with 50 μM berberine added. The absorbance was 

expressed as a function of temperature ranging from ~20 to 80°C (±2°C). 

Melting curve for the oligonucleotide in presence and absence of the ligand is 

incomplete within the limits of temperature range used. Abbreviations: M.R.E’ 

molar residue ellipticity; DME1 GQ, DUX4 myogenic enhancer GQ. 

Abbreviations: M.R.E., molar residue ellipticity; SS1 GQ, splice site 1 G-

quadruplex. 
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 Berberine binding affinity to selected DNA and RNA oligonucleotide sequences 

measured using UV-Vis and fluorescent spectroscopy 

3.2.4.1. UV-Vis spectroscopic analysis of berberine binding to DNA and RNA oligonucleotides 

Addition of DME1 GQ and D4P GQ oligonucleotides into berberine solutions resulted in 

considerable λmax hypochromicity of ~26 and 24% at the highest concentration of the 

oligonucleotides, respectively (Figure 3.19). A red shift of ~6 nm at 320 nm and ~8 nm 

at 420 nm for the DME1 GQ oligo was recorded, whereas the D4P GQ oligonucleotide 

induced a shift of ~4 nm at 320 nm and ~8 nm at 420 nm (Figure 3.19). This absorbance 

pattern change is indicative of end-stacking of the ligand (i.e., berberine) to the G-

quadruplex structures, which further supports the data obtained from the CD and NMR 

analysis of these sequences.  

The DNA control sequences included calf thymus (CT) DNA, long sequence 

oligonucleotide (LS) (26-mer) and short sequence oligonucleotide (SS) (12-mer) were 

annealed to form a double stranded DNA conformation. For the CT, LS and SS there was 

a noticeable λmax hypochromicity recorded of 14.4; 13.7; and 7.0%, respectively. No red 

shift was recorded for any of the negative DNA controls, indicating that the berberine is 

not a good intercalator but rather a duplex groove binder (Figure 3.19).



138 
 

 Figure 3.19 UV-Vis absorbance spectra of putative G-quadruplex forming oligonucleotides 

UV-Vis absorbance spectra of 10 µM berberine in presence of DNA oligonucleotides at a range of concentrations (0-10 µM) in Tris-HCl 

(10 mM), KCl (100 mM) pH 7.0, measured at room temperature. The GQ forming DNA oligonucleotide sequences, include: DME1 GQ and 

D4P GQ. The Negative controls used are CT DNA, DNA LS and DNA SS. Abbreviations: CT, calf thymus; LS, long sequence; SS, short 

sequence; DME1, DUX4 myogenic enhancer 1; D4P, DUX4 promoter; GQ, G-quadruplex.  
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The binding mode of berberine towards CSS, E1 and SS1 GQ RNA oligonucleotides was 

also investigated. At the highest oligonucleotide concentration, the λmax hypochromicity 

for the CSS, E1 and SS1 was up to 20.4; 28.0 and 30.0%, respectively (Figure 3.20). The 

red shift at the highest concentration of each oligonucleotide was ~6 nm at 340 nm and 

~12 nm at 420 nm for the CSS GQ; ~6 at 340 nm and 0 nm at 420 for the E1 GQ; ~4 nm 

at 340 nm and ~12 nm at 420 nm for the SS1 GQ (Figure 3.20). The recorded absorbance 

signal at 420 nm measured in the presence of the E1 GQ was particularly noisy that most 

likely resulted in an error producing no red shift for berberine at this particular 

wavelength. 

The RNA oligonucleotides that were used as a negative control were the RNA LS (26-

mer) and SS (12-mer) that were annealed to form a duplex structure. The RNA LS and SS 

show a negligible λmax hypochromicity of 7.8 and 8.9%, respectively (Figure 3.20). The 

red shift of berberine absorbance was not induced by presence of neither of the 

negative control oligonucleotide. This suggests that berberine is a weak groove binder 

of the annealed negative control RNA sequences.
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Figure 3.20 UV-Vis absorbance spectra of RNA oligonucleotides 

UV-Vis of 10 µ M berberine in presence of RNA oligonucleotides at a range of concentrations (0-10 µM) in Tris-HCl (10 mM), KCl (100 mM) pH 

7.0, measured at room temperature. The GQ forming DNA oligonucleotide sequences, include: CSS GQ, E1 GQ and SS1 GQ. The Negative controls 

used are RNA LS and RNA SS. Abbreviations: LS, long sequence; SS, short sequence; CSS, cryptic splice site; SS1, splice site 1; E1, exon 1; GQ, G-

quadruplex.
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3.2.4.2. Fluorescence spectroscopic titration to assess binding kinetics of berberine to secondary 

structures of selected DNA and RNA 

The berberine alone in Tris-HCL buffer was essentially non-fluorescent. The change in 

fluorescent emission intensity at 525 nm was recorded as each of the oligonucleotides 

was titrated gradually at increasing concentrations. The gradual addition of the DME1 

and D4P GQ DNA oligonucleotides resulted in up to ~7 and ~2.5-fold fluorescent increase 

of berberine fluorescent emission, respectively (Figure 3.21). The negative control DNA 

duplexes such as CT, LS and SS DNAs show minimal fluorescent emission of 0.5; 0.4 and 

0.2, respectively (Figure 3.21). The results collected for the DME1 and D4P GQ sequences 

were plotted as a hyperbolic function using the equation listed in section 2.14.3, to 

calculate the binding constant (Ka). When plotted, the data points from the DME1 and 

D4P GQ titration forms a clear hyperbolic curves indicative of binding of berberine to 

these conformations (Figure 3.22 A). The calculated Ka for DME1 and D4P GQ are 1.9 ± 

0.2 x 106 M-1 and 4.0 ± 0.3 x 105 M-1, respectively (Figure 3.22 B). All of the titrated 

duplex DNA negative control tested (i.e., CT, LS and SS DNA) form a straight-line function 

indicative of low or no binding activity of berberine to these conformations (Figure 3.22 

A). The calculated Ka values of ~1 ± 0.2 x 105 M-1  for the CT and LS DNA oligonucleotides 

indicate that these duplexes are weak berberine binders (Figure 3.22 B). The DNA SS has 

considerably lower binding affinity with a large error, suggesting that it does not bind 

berberine effectively (Figure 3.22 A).
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 Figure 3.21 Fluorescent spectra of DNA oligonucleotides 

Fluorescent emission spectra of (0.5 µM) berberine in the presence of increasing concentrations (0-10 µM) of DME1 GQ, D4P GQ, CT 

DNA, DNA LS and DNA SS oligos in Tris-HCl (10 mM), KCl (100 mM), measured at pH 7.0 and room temperature. Arrow indicates increase 

of fluorescent emission at 525 nm as the increasing amount of the oligo was titrated. Abbreviations: CT, calf thymus; LS, long sequence; 

SS, short sequence; DME1, DUX4 myogenic enhancer 1; D4P, DUX4 promoter; GQ, G-quadruplex 
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Figure 3.22 Binding affinity of berberine to DNA oligonucleotides 

(A.) Plot of ΔF emission at 522 nm of (0.5 μM) berberine versus DNA oligo concentrations (0-10 

μM). The DNA oligonucleotide measured include DME1 GQ, D4P GQ, CT DNA, DNA LS and DNA SS 

sequence. (B.) To calculate the binding affinity for the plotted data, the equation from section 

2.3.13 was used. Abbreviations: CT, calf thymus; LS, long sequence; SS, short sequence; DME1, 

DUX4 myogenic enhancer 1; D4P, DUX4 promoter; GQ, G-quadruplex. 
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The CSS, E1 and SS1 GQ RNA oligonucleotides were gradually titrated at increasing 

concentrations, resulting in an increase in fluorescent emission of 2, 3 and 4-fold, 

respectively (Figure 3.23). The fluorescent emission data was plotted as a hyperbolic 

function using the same method as the above-mentioned DNA counterparts using the 

equation described in section 2.143. These RNA sequences show to have a comparable 

Ka of 4.3-3.3 x 105 M-1 and a relatively low error of ±0.2-0.3 x 105 M-1 (Figure 3.24 B). 

Furthermore, the RNA secondary structure motifs show to have a comparable berberine 

binding affinity to the DNA D4P GQ conformation (Figure 3.22 B and 3.24 B). The highest 

berberine binding affinity was calculated for the DME1 DNA GQ, which was ~5-fold 

higher than for second highest GQ-forming sequence (i.e., D4P GQ). The relatively low 

Ka value calculated for the CSS GQ, could be dictated by the fact that the sequence forms 

a hairpin rather than the GQ structure.  

The RNA SS negative control was plotted as a flat straight line and its Ka was calculated 

to be particularly low and with high error, indicating that this RNA duplex has a very low 

binding potential to berberine (Figure 3.24 B).
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Figure 3.23 Fluorescent spectra of RNA oligonucleotides 

Fluorescent emission spectra of (0.5 µM) berberine in the presence of increasing concentrations of (0-10 µM) CSS GQ, E1 GQ, SS1 GQ, RNA LS and RNA 

SS oligonucleotides in Tris-HCl (10 mM), KCl (100 mM) pH 7.0, measured at room temperature. Arrow indicates increase of fluorescent emission at 525 

nm as the increasing amount of the oligo was titrated. Abbreviations: LS, long sequence; SS, short sequence; CSS, cryptic splice site; SS1, splice site 1; E1, 

exon 1; GQ, G-quadruplex. 
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Figure 3.24 Binding affinity of berberine to DNA oligonucleotides 

(A.) Plot of ΔF emission at 522 nm of (0.5 μM) berberine versus RNA oligonucleotide 

concentrations (0-10 μM). The RNA oligonucleotide measured include CSS GQ, E1 GQ, 

SS1 GQ and RNA SS sequence. (B.) To calculate the binding affinity for the plotted data, 

the equation from section 2.3.13 was used. Abbreviations: SS, short sequence; CSS, 

cryptic splice site; SS1, splice site 1; E1, exon 1; GQ, G-quadruplex. 

. 
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3.3. Discussion 

QGRS Mapper proved to be a very intuitive, easy to use software that allowed prediction 

with high confidence of six novel GQ: two of these were found in DME1 and D4P, 

respectively and 4 in the transcript coding sequence of DUX4. Interestingly, the D4P GQ 

and three of the transcript predicted GQ motifs (i.e., the CSS the E1 and SS2 GQ) contain 

a loop that is >7 nucleotide long.  

The biophysical analyses confirm GQ formation in solution within the selected putative 

GQ sequences except for the CSS sequence that was found to form a hairpin. Therefore, 

the original GQ predicting algorithm assuming that any potential GQ forming sequences 

with loops longer than 7 are redundant should be re-evaluated, especially since there is 

a body of accumulating experimental evidence showing that extensive loops sizes do 

not prevent formation of stable GQs. For example, a nine-nucleotide propeller loop was 

found within the stable GQ structure of the human CEB25 mini-satellite locus as 

determined by NMR studies (Amrane et al. 2012). Furthermore, a very long 26-

nucleotide loop, stabilised with a GC-based hairpin has been found to form within a 

promoter sequence of hTERT gene (Palumbo et al. 2009). Finally, the human BCL-2 gene 

contains GQ-forming sequences containing a 13-nuclotide central loop (Agrawal et al. 

2014). Since these restrictive algorithm were originally used to predict total number of 

350000 putative GQ within the human genome, it highly likely that this number could 

be much greater and potentially needs to be revised (Huppert and Balasubramanian 

2005). The development of a whole genome GQ screening assay that utilises 

combination of next-generation sequencing and the polymerase stop assay, identifies 
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~720000 potential GQ motifs, which further demonstrates the redundancy issue of GQ 

prediction by the early bioinformatic software (Chambers et al. 2015b).  Indeed, the 

recent updates of the QGRS mapper software allows for more extensive loop analysis of 

up to 36 nucleotides.  This could also explain why the previous study could not predict 

presence of the putative GQ motifs that we present in this work (Tsumagari et al. 2008).  

Another limitation of the GQRS mapper is the fact that it does not account for the 

formation of competing secondary structures other than the GQ motifs. For instance, 

we have found a run of CCC within a central loop of the putative CSS GQ oligonucleotide. 

Although there are reports demonstrating that the secondary structures forming within 

the loops of GQs present within hTERt and c-KIT promoter sequences, the cytosine 

present in the CSS GQ sequences have been found to thermodynamically favour hairpin 

formation rather than a GQ (Palumbo et al. 2009; Phan et al. 2007). The addition of 

berberine to the CSS GQ solution did not influence the topology in favour of GQ 

formation, suggesting that the sequence in fact forms a highly thermodynamically stable 

hairpin structure. This study also demonstrates the importance of the secondary 

structures of loops and flanking sequences that could potential affect formation of the 

GQ structures. The study by Beauodin et al., has demonstrated that GQ structures are 

strongly inhibited by the presence of flanking or loop-related runs of CCC, particularly 

when present within RNA sequences. As a result, the group derived a new scoring 

system taking into account the neighbouring sequences containing C-tracks that can 

form hairpin structures and inhibit GQ formation (Beaudoin et al. 2014).  

Particularly interesting was the fact that both the DUX4 DME1 enhancer and promoter 

show presence of GQs within their sequence. It has been previously suggested that 
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hybrid GQs can be actually formed between enhancer and promoter sequences, where 

each of the cis-elements contributes half of the GQ structure bringing these two 

regulatory elements together (Hegyi, 2015). Since the DUX4 enhancer elements are 

separated a considerable distance of up to 20 kb from the target promoter sequences, 

it can be hypothesised that both of these elements come into proximity by the looping 

out of the intervening DNA sequences between them (Dean 2011). While the looping 

out theory has previously been supported experimentally, it is not clear if the looping 

out process happens first and is followed by binding of transcription factors or vice versa. 

It has been demonstrated that in the immunoglobulin heavy-chain locus, the looping-

out and nuclear migration to the site of transcription occurs first and is then followed by 

transcription (Guo et al. 2011). As it is not clear what are the molecular mechanisms that 

regulate enhancer-promoter interactions to drive DUX4 expression, it would be 

interesting to investigate a potential role GQs in mediating this process.   

Stabilisation and folding pathways for the DNA and RNA sequences into GQ structures 

depend upon among other things, length and composition of the loops as well as 

concentration of stabilising ions present (eg., K+ and/or Na+), and number of G-tetrads 

(Mullen et al. 2012; Pandey et al. 2013). Although we could not achieve a full melting 

curve profiles for the majority of the analysed sequences using CD, the difference in the 

melting transition points was apparent. Therefore, the hypothetical speculation on the 

thermal stability of the analysed secondary structures was made. 

Initial reports investigating the GQ structure stability in the motifs containing loops 

ranging from 1-4 nucleotide in size, have found that the longer the loop size the less 

stable is the GQ structure (Guédin et al. 2010). However, in our analysed DNA GQ-
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forming sequences the shorter loops did not correlate with a higher thermal stability of 

the analysed secondary structures. For example, the human telomeric quadruplex-

forming sequences containing of 3-nucleotide loops shows the main melting transition 

point at ~50°C, whereas the D4P GQ sequences that contains 8-nucleotide loops has a 

melting transition point of ~65°C. In addition, the DME1 GQ with the 9-nucleotide loops 

appears to start melting at ~60°C, indicating higher thermal stability compared to the 

human telomer GQ structure. Indeed, the recent findings looking at the loop length 

stability could not determine an upper limit of GQ loop sizes (Guédin et al. 2010). In their 

study, the analysed GQ structures containing loops of up to 30-nucleotides still show to 

be thermodynamically stable and the size of the loops and Tm trends were found to be 

an independent variable (Guédin et al. 2010). In addition, the C-track present in the D4P 

GQ nucleotide could potential form a C:G stabilised secondary structure, which would 

contribute to the overall stability of the GQ. The hairpin forming, C:G stabilised loops 

have been previously reported in the context of GQ structure found in the promoter of  

the hTERT (Palumbo et al. 2009).  

When comparing the thermal stability of the DNA and RNA GQs, it was found that the 

RNA GQ structures appear to be more stable in general. The melting transition for all of 

the analysed RNA GQs appears to begin at ~70°C, which is a considerably higher 

temperature compared to the DNA counterparts which show melting transition at ~50-

65°C. In addition, the melting profile is more complete at the maximum melting 

temperature (~82°C) for the DNA GQs, when compared to the melting curves of the RNA 

GQs. These findings confirm the previous studies showing that RNA GQs are typically 

more stable than analogous DNA sequences (Zhang et al. 2010). For instance, the ΔG 

and Tm for the RNA GQs composed of 3 G-tetrads and loops of a single nucleotide, in 15 
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mM of cationic solution are 9 kcal/mol and 86°C, respectively, compared to 5 kcal/mol 

and 77°C for the DNA analogue (Lane 2012). It was suggested that the difference in the 

stability seen between the DNA and RNA quadruplexes is dictated by the differences in 

the chemistry of the two nucleic acids, rather than their folding topology (Joachimi, et 

al. 2009; Zhang et al. 2010).  The presence of 2’-OH-group in the RNA sugar plays crucial 

roles in water molecules binding to the groves of the quadruplex structure, formation 

of H-bonds, and conformation of the sugar residue (Zhang et al. 2010). In addition, 

molecular modelling studies demonstrate that the 2’OH-groups provide additional 

intramolecular contacts with different hydrogen bond acceptors, for example, within 

the phosphate and backbone oxygens, 04’ atoms of the ribose as well as the polar 

exocyclic groups of the bases (i.e, the NH2-group), which leads to the increased stability 

of the parallel RNA GQ structures (Collie et al. 2010). 

Although the loop size can play a role in stability of RNA and DNA GQ structures, we 

suggest that the composition of intervening sequences is also an important factor and 

that runs of cytosine residues within the RNA GQ sequence especially influence stability 

of the motif. The size of the largest loop within both DME1 and SS1 GQ oligonucleotides 

consists of 10-nucleotides. However, the DME1 GQ forms a very thermodynamically 

stable GQ structure, whereas the CSS1 GQ appears to form a hairpin conformation as 

shown by the CD and NMR analyses. It seems that the presence of the C-track within the 

loop sequence is a major factor contributing to the inhibition of GQ formation and that 

the relatively long loop did not interfere with the DME1 GQ formation significantly. C-

tracks within the RNA sequences have indeed been shown previously to strongly inhibit 

GQ formation (Beaudoin et al 2014). Interestingly, In the D4P GQ oligonucleotide a run 

of cytosine residues has not interfered with the formation of the GQ structure, indicating 
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that perhaps the RNA-forming GQ sequences are more prone to C-track mediated 

inhibition of quadruplex formation.  

In the absence of the GQ-binding ligand, all of the tested oligonucleotides showed to 

form parallel GQ structures as demonstrated by the CD and NMR analyses, expect for 

the CSS GQ and h. telomere GQ that formed a hairpin and an anti-parallel GQ motif, 

respectively. As expected, both RNA GQ forming sequences (i.e., E1 and SS1 GQ) form a 

parallel GQ topology due to presence of the restrictive 2’OH-group that allows for only 

the anti- conformation in guanosines. The addition of berberine did not influence 

changes in the topology and thermal stability of the RNA GQ and the analysed hairpin 

motif (i.e., CSS GQ). Previous attempts also failed to modulate topology of the parallel 

RNA GQ structures by introducing: small-molecule ligands; changes in loop configuration 

and composition of monovalent ions (K+ and Na+), further confirm that the highly stable 

parallel topology of the RNA GQs is mainly due to the chemical properties of the 

ribonucleotide residues (Collie et al. 2011). On the other hand, the DNA GQ structures 

show much greater flexibility in their topology due to their ability to adapt syn- and anti- 

glycosidic bond conformation, which allows for formation of both parallel and 

antiparallel GQ motifs.   

The flexibility of the DNA GQ motifs was particularly apparent in the context of the D4P 

GQ structure when the berberine was introduced. Using the CD analysis, we have 

demonstrated that berberine can recognise and stabilise the antiparallel D4P GQ 

conformation over the parallel topology. Since the loop sequences are the key elements 

in dictating the preferred GQ topology, it can be suggested that connecting loops of the 

GQ structure play an important role in small-molecule binding. Indeed, it has been 
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previously demonstrated that the RHPS4 ligand has affinity for lateral and diagonal 

loops, which promotes formation of an antiparallel conformation of the human telomer 

GQ structure (Garner et al. 2009). Although it should be noted that the GQ groove-

specific recognition also have been exploited as a target for drug design, the loop-

mediated targeting of the GQ structures serves as an attractive alternative strategy for 

drug discovery (White et al. 2007).  

In order to study the ligand-GQ binding interaction in terms of affinity and sequence 

specific recognition, it is important to support the high-resolution CD and NMR studies 

with thermodynamic analysis. Especially, since the melting curves from the CD data for 

each of the analysed oligonucleotides in the presence or absence of berberine were 

unable to form and therefore their thermal stability and interaction could not be 

thoroughly analysed. By utilising UV-Vis and fluorescent spectroscopy techniques, we 

could assess the thermodynamic binding profiles of berberine to the secondary 

structures of the selected sequences.  

The UV-Vis absorption titration has demonstrated a clear red shift for all sequences that 

have tested positively for  GQ formation (i.e., DME1, D4P, E1 and SS1 GQs) in CD and 

NMR analysis. Previous studies indicate that this characteristic change in absorbance is  

specific for GQ-ligand end stacking interaction (Arora et al. 2008; Li et al. 2017). In 

addition, the red absorbance shift is also associated with intercalating properties, 

explaining why the titration of the hairpin-forming CSS GQ also shows similar pattern of 

absorbance to the GQ forming sequences. The λmax hypochromicity for these samples 

was in the 20-30% range, which is comparable to that of berberine binding to the human 

telomeric GQ, reported to be ~35% (Arora et al. 2008). The Arora et al., 2008 study has 
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estimated 1:1 berberine to GQ motif binding ratio through the end stacking interactions, 

suggesting that the partial binding mode and stoichiometry of berberine to the GQ-

forming sequences analysed by us is also similar. The 2:1 stoichiometry of ligand (i.e., 

porphyrin) binding to parallel GQ structure had been previously demonstrated to have 

λmax hypochromicity of 56-60% (Wei et al. 2006). Therefore, it can be speculated that the 

hypochromicity of berberine (roughly half that seen for the porphyrin-GQ binding) 

would be indicative of 1:1 binding ratio through end stacking interaction.  The significant 

λmax hypochormicity (~14%) combined with the lack of any red shift as recorded for the 

CT DNA titration, indicates groove binding interaction as it has been previously 

suggested by the work of Li et al., 2017.  

However, the accuracy of the UV-Vis read out could be questioned by the fact the 

absorption curve is not perfectly smooth, indicating potential noise in the recorded 

signal. This could perhaps explain why the E1 GQ, despite showing a clear red shift at 

340 nm, no red shift at 420 nm was produced. One explanation for the poor resolution 

readout could be the fact that the bandwidth of the UV-Vis apparatus (Jenway 7305) 

used in our experiments was set and limited to 5 nm. Other UV-Vis spectrometry devices 

(e.g., UV-2450), where the bandwidth can be reduced to 0.1,  have up to 10 times higher 

resolution (Soares and Costa 1999). Therefore, a UV-Vis spectrophotometer with a 

higher accuracy bandwidth capability, would perhaps allow formation a smoother more 

accurate absorbance readout at lower berberine concentrations giving more reliable 

indication of berberine binding to the titrated GQ structures.  

The gradual increase in the fluorescence emission of berberine upon addition of 

increasing concentrations of GQ, suggests transfer of the ligand from the aqueous to the 
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hydrophobic environment. Therefore, the end stacking on the end terminals of GQs is 

more likely, since the outside berberine stacking would allow continuing quenching of 

the chromophore fluorescence by the solvent. (Bhadra and Kumar 2011a). Indeed, 

molecular modelling studies show that berberine stacks on the G-tetrad terminal end 

human telomeric quadruplex structure (Moraca et al. 2017). 

The relatively high binding affinity of berberine to DME1 GQ (1.9 ± 0.2 x 106 M-1) was 

found to be comparable to the one established for the human telomeric GQ (1.2 ± 0.1 x 

106 M-1), which has also been determined using the fluorescence spectroscopy (Arora 

et al. 2008). However, the berberine binding affinity to the DNA GQ (i., e D4P GQ) and 

RNA GQ (i.e., E1 and SS1 GQ) was ~5 times lower than to the DME1 GQ, suggesting a 

moderate binding but no preference between DNA and RNA GQ binding. Chemical 

modification such as polyether-tethered berberine dimers shows a remarkably high 

binding to GQ structures with Ka values >108 M-1 (Z.-Q. Li et al. 2017). In other studies, 

9-O-N-aryl/arylalkyl amino carbonyl methyl substituted berberine analogues shows 10 

times higher binding affinity towards tRNA sequences that berberine. RNA GQ-specific 

small-molecule high affinity binders such as  tetrandrine, fangchinoline and 

cepharanthine have also been recently established (Cui et al. 2012). This highlights that 

the literature on natural and synthetic small-molecule and their thermodynamic 

interaction with GQ sequences is expanding. Combined with the accumulating high-

resolution GQ-ligand structural data, the prospect of future development of potentially 

highly specific therapeutics to treat a range of diseases (including FSHD) remains 

optimistic. 
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4.  Chapter 4: Role of DUX4 promoter GQ (D4P GQ) 

4.1. Introduction 

 Evidence suggesting presence of GQs within the DUX4 promoter 

The identification of the DUX4 promoter was discovered by chance in the study by Ding 

et al., (1998), where the binding sites of helicase-like transcription factor (HLTF) was 

investigated. Surprisingly, one of the HLTF binding sites had 87% homology with a region 

derived from the D4Z4 repeat region (Ding et al. 1998). Subsequently this led to 

identification of the putative promoter mapped directly upstream of the ORF of DUX4 

gene (Gabriels et al. 1999). Functionality of the putative DUX4 promoter was initially 

doubted since its TATAA box carries sequence mutation (i.e., TACAA). Furthermore, the 

lack of the introns in the gene’s coding sequence and the presence of a canonical polyA 

signal indicated that the DUX4 might be a pseudogene. To assess the activity of the 

promoter, its 191 bp fragment was cloned upstream of the luciferase reporter gene 

(Gabriels et al. 1999). The study showed that the DUX4 promoter is up to 30 times more 

active in human rhabdomyosarcoma TE671 cells compared to non-muscle HeLa cells 

(Gabriels et al. 1999). Further studies on the functionality of the promoter has revealed 

that a 2 bp mutation in the GC box sequence can significantly reduce its activity (Gabriels 

et al 1999). It has been also discovered that the cis-elements of the promoter is 

recognised and bound to by a multiprotein complex composed of YY1, HMGB2 and 

nucleolin, which have been suggested to act as a transcriptional suppressor element 

(Gabellini et al. 2002). YY1 is a trans-factor known to activate or repress transcription 
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depending on the cell type and promoter context (Bauknecht et al. 1996). In 

undifferentiated myoblasts YY1 represses expression of a number of muscle specific 

genes, whereas in differentiated myotubes the transcription factor is subjected to 

proteolytic degradation allowing upregulation of these genes (Walowitz et al. 1998). For 

example, the DMD gene promoter has the YY1 binding site which drives low expression 

of a reporter gene in C2C12 cells, and is increased five times once the cells become 

differentiated (Galvagni et al. 1998). HMGB2 is one of the three members of high 

mobility group (HMG) proteins. These proteins show affinity to DNA as well as other 

proteins and are thought to facilitate multiprotein complexes assembly on DNA (Bianchi 

and Beltrame, 1998). Interestingly, HMGB1 (the most studied protein member) interacts 

with human telomeric GQ DNA (Pagano et al. 2015). Nucleolin is an abundant nuclear 

protein and has been associated with chromatin structure regulation, rRNA maturation, 

rRNA transcription, ribosome assembly and cytoplasmic transport (Ginisty et al. 1999). 

Most importantly, nucleolin was identified by affinity chromatography to bind to the c-

MYC promoter GQ (Gonzalez et al. 2009). Furthermore, nucleolin stabilises the 

promoter quadruplex and subsequently leads to repression of c-MYC expression in vitro 

(Gonzalez et al. 2009). The nucleolin mediated transcription repression is mediated 

through prevention of Sp1 activator protein from binding to its recognition sequence in 

the c-MYC promoter (Gonzalez et al. 2009). Since the above mentioned DUX4 promoter 

associated proteins have also been found to have affinity for the GQ structures, it 

suggests that interaction of these in-trans elements could be regulated by the formation 

of the potential GQ motifs within the promoter sequence.  

The GQ-forming sequences have been predicted, using bioinformatics, to form 

upstream of the functional promoter region of DUX4 on the antisense (non-coding) 
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strand (Tsumagari et al. 2008). However, at the time of the analysis the outdated GQ 

predicting algorithm omitted any potential GQ-forming sequences with loops longer 

than 7-nucleotide in length (Tsumagari et al. 2008)(Discussed in Section 3.3). 

Furthermore, the role of the identified GQ motifs has not been studied. 

  Study of function and targeting of promoter GQs 

The first evidence of GQ formation comes from the study of c-MYC oncogene expression 

(detailed in Section 1.5.1). The study of c-MYC promoter GQ served as a paradigm for 

subsequent research that identified a number of other GQ motifs located within the 

promoters of human oncogenes and the genes expressed in tumour cells , including: 

BCL-2, h-RAS, b-RAF, HIF, c-KIT, VEGF, HSP90, RET (Agrawal et al. 2014; Hsu et al. 2009; 

Kuryavyi, Phan, and Patel 2010; Ohnmacht et al. 2012; Sun et al. n 2011; Sun and Hurley 

2009; Tong et al. 2011; Zidanloo et al. 2016). Examples of non-cancer related genes that 

also had GQ motifs recognised within their promoters, include: HIV-1 genes and tyrosine 

hydroxylase gene that is linked with number of neurological disorders such as 

schizophrenia and Parkinson’s (Amrane et al. 2014; Farhath et al. 2015).  

The canonical approach to study promoter GQs typically involves: a) identification of the 

motifs using a bioinformatics approach; b) CD and NMR analysis of secondary structures 

of oligonucleotide sequences derived from promoter regions containing four 

consecutive G-tracts; c) plasmid reporter construct development that contain G-rich 

promoter regions or their fragments to give a better indication of the motif’s role in gene 

expression in vitro (Balasubramanian et al. 2011; Małgowska et al. 2014; Podbevšek and 

Plavec 2016). Mutagenesis of the GQ-forming sequences was also frequently performed 

to disrupt formation of the motif (Dolinnaya et al. 2016) . Finally, the early proof-of-
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concept experiments demonstrating c-MYC expression downregulation by small-

molecule (e.g, porphyrin) treatment has served as an example of a new potential 

quadruplex-targeted therapeutic strategy (Siddiqui-Jain et al. 2002). Although the 

ligand-mediated, promoter GQ targeting predominately has been shown to lead to 

target gene downregulation, several cases exist where upregulation of gene expression 

was reported. Most notably, the GQ stabilisation in the promoter of relaxin (encoding 

an antifibrotic protein in rat cardiac fibroblasts) with the berberine treatment has led to 

upregulation of the gene (Gu et al. 2012).  

Since DUX4 protein is expressed at extremely low levels and it has a high sequence 

homology with number of other double homeobox transcription factors (eg., DUX4c and 

DUX1) expressed in muscle tissue, targeting it at the protein levels might be extremely 

challenging (Ansseau et al. 2016; Snider et al. 2010). Therefore, targeting the DUX4 at 

the gene level, in principle, serves as an alternative strategy to regulate expression of 

the toxic transcription factor.  

In this work we have already demonstrated presence and formation of novel GQ-

forming sequences within the proximal region of the DUX4 promoter using CD and NMR 

analysis on the sense (coding) strand (Section 3.2.2). In order to better understand the 

potential role of the motif formation in vitro, we have introduced the isolated DUX4 

promoter sequence containing the GQ motif and inserted it upstream of the eGFP 

reporter gene. In addition, the GQ formation was either interrupted by mutagenesis of 

the GQ-forming sequence or stabilised by addition of a small-molecule ligand- (i.e., 

berberine). The effect of the mutagenesis of the GQ-forming oligonucleotide sequences 

was also assessed using CD analysis.
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4.2. Results 

 Design and bioinformatic analysis of the D4P GQ sequence variants 

In order to begin evaluation of the biological role of the D4P GQ, we assessed how the 

substitution of the oligonucleotide G-tetrad sequences would affect the formation of 

the motifs using the bioinformatic and biophysical analysis.  

First, G-A base pair substitutions at 5’ and 3’- ends (M1D4P) or 3’-end only (M2D4P) of 

the GQ forming sequence was introduced (Figure 4.1 A). The QGRS mapper analysis of 

the D4PGQ disrupted sequences shows that the G-A substitutions introduced at each 

end of the oligonucleotide eliminate formation of the putative GQ motif completely as 

the G-score for the M1D4P oligonucleotide was zero. Interestingly, the G-A substitution 

of the G-tract at the 5’ of the M2D4P oligonucleotide did not result in a significant 

disruption of the putative GQ formation as the predicted G-score was 34 (Figure 4.1 A). 

The 3’-end of the M2D4PGQ oligo consists of 6 G run that can serve as two separate G-

tracts providing a platform to rescue formation of the GQ structure. The C-A of the 

hairpin forming C-tract did not show any potential effect on the GQ formation within 

the D4PGQ sequence (Figure 4.1 A). The introduced G-A substitutions introduced in the 

M1-(ΔG=-3.91 kcal/mol) and M2D4P (ΔG=-3.80 kcal/mol) oligonucleotides was shown 

not to have a major influence on the stability of the hairpin formation compared to the 

wild-type sequences (ΔG=-3.32 kcal/mol) as shown by the mFold analysis  (Figure 4.1 C). 

In addition, a mutation variant was created where the C-tract was also disrupted to 

eliminate the potential hairpin formation (M3D4P) (Figure 4.1 A). The C-tract sequence 

disruption by the C-A substitution showed predicted elimination of a strong hairpin 
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formation by the M3D4PGQ sequence (Figure 4.1 C). However, the 2 Cs present at the 

3’ end of the M3D4P oligonucleotide interspaced by the 13 nucleotides could still serve 

as a platform for a weak hairpin formation with ΔG=0.16 kcal/mol (Figure 4.1 C).  

  

 

Figure 4.1 Mutagenesis of DP4 GQ oligonucleotide sequences required for secondary structure 

formation 

(A.) Table listing the analysed sequences. Underlined sequences indicate substituted nucleotides from 

the native D4P sequence. Three altered variants were created: M1D4P, carries G to A substitution of 

the tetrad forming sequences at the 5’ and 3’ of the sequence; M2D4P, has a G to A substitution of 

the tetrad forming sequence at the 3’ end of the oligo; M3D4P, C to G substitutions was introduced 

to disrupt hairpin formation. G-tetrad forming residues highlighted in bold. (B.) Bar chart summarising 

G-Scores of each of the oligonucleotide listed in table A). Oligonucleotides were analysed using QGRS 

Mapper. G-score is a GQ scoring system of the QGRS Mapper. Sequences with higher G-Score (≥30) 

make better GQ candidates. (C.) Mfold analysis of each sequence listed in table A). Free energy (ΔG) 

is indicated for each oligonucleotide. Sequences with lower ΔG have higher chance of forming hairpin 

structures.  
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 CD analysis of D4PGQ and its sequence variants 

The structural analysis of the D4P GQ sequences using CD revealed that it forms a stable 

parallel GQ structure in KP buffer solution containing of 100 mM KCl (Section 3.2.2). Each 

spectrum was recorded at ~20-85°C temperature range to achieve unfolding for each 

oligo. Refolding from ~85-20°C was also recorded for each oligo to assess their potential 

to form alternative secondary structures. This would show how the introduced 

sequence alternation of the oligonucleotide might interfere with the formation of the 

GQ motif.  

In the M1D4P oligo where the G-tracts were substitute with runs of As, a complete 

absence of the parallel GQ absorbance pattern was observed; instead an ellipticity 

maximum at 260 nm and ellipticity minimum at 210 nm was recorded, which is indicative 

of a hairpin conformation (Figure 4.2). As previously shown by the mFold analysis, the 

run of Cs in the middle of the M1D4P oligonucleotide sequence could bond to the 

proximal G residues and promoter hairpin structure formation (Figure 4.1). Therefore, 

the QGRS Mapper and mFold bioinformatic analysis of the M1D4P, demonstrating lack 

of GQ structure and strong hairpin-forming potential, respectively, are strongly 

supported experimentally by the CD data.   

The 5’ end A to G sequence substitution in the M2D4PGQ oligo did not result in a major 

disruption of the native GQ structure as the ellipticity maximum and minimum recorded 

by the CD was at 265 and 240 nm, respectively (Figure 4.2). This indicated that the 

parallel GQ fold could form due to the presence of the run of 6 G residues in the 3’ end 

of the oligonucleotide. Thus, the CD data aligns with the QGRS Mapper analysis of the 

M2D4PGQ predicting formation of the GQ by the oligo sequence. What is more, the 
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absorbance maxima of the M2D4PGQ was marginally reduced, compared with the 

absorption spectrum of the wild-type D4P GQ sequence (Figure 4.2). Interestingly, the 

G-score of QGRS Mapper for the M2D4P sequence was also only marginally lower (i.e., 

by 2 points) compared to the D4P GQ sequence (Figure 4.1 B), suggesting that the 

software can serve as a powerful tool for prediction of GQ formation in vitro.  

During the process of M2D4P denaturation, an additional absorbance minimum started 

to form at 210 nm, suggesting that potential structure transition from quadruplex to 

hairpin was occurring. It is possible that the introduced G to A substitutions reduced the 

thermodynamic stability of the GQ-motif and indirectly promoted formation for the 

hairpin formation upon increasing temperatures.  

The M3D4P oligonucleotide with the intact GQ-forming sequence and C-A substitution 

which disrupts the hairpin structure, had a strong ellipticity maximum and minimum at 

265 nm and 240 nm, indicating a parallel quadruplex formation by the oligonucleotide. 

The absorbance pattern of the M3D4PGQ strongly overlapped with the absorbance of 

the D4PGQ sequence at all measured temperatures, which could suggest that the 

thermal stability of the measured GQ motif was not affected by the introduced sequence 

alterations (Figure 4.2). Lack of negative ellipticity absorbance recorded at 210 nm 

further reinforces the idea that the M3D4P sequence did not form a hairpin structure
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Figure 4.2 Assessment of secondary structures of the D4P and its variant sequences using far-UV CD spectra 

20 μM of each DNA oligonucleotide dissolved in KP buffer with 100 mM KCl, pH 7.0 was analyzed using CD at ~20-85°C temperature range (solid 

lines). The refolding was assessed by reverse temperature ramp at ~85-20°C (dashed lines). The ellipticity maximum at 265 nm indicative of a 

parallel GQ structure formation was recorded for the D4P GQ oligonucleotide. The sequence substitution of G-tetrad forming sequences in the 

M1D4P variant resulted in formation of the 210 ellipticity minimum indicative of a hairpin structure, whereas the M2D4P sequence substitution 

preserved but thermodynamically weakened (dashed lines) the native GQ parallel structure. Disruption of the hairpin forming sequence (i.e., C-

tract) strengthen the thermodynamic stability of the native motif (solid and dashed lines). The number of G-tract in the native were underlined 

and numbered I-V. Abbreviations: M.R.E - molar residue ellipticity 
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The recorded CD absorbance at 265 nm (major absorbance point) for the D4P GQ 

sequence and its variants was expressed as a function of temperature ranging from ~20 

to 85°C (Figure 4.3), in order to assess the effects of the sequence substitutions on the 

stability of the M1-M3D4P oligonucleotides. The full melting curve profiles could not be 

produced due to the limited maximum heating capacity (~85°C) of the equipment. 

Therefore, accurate Tm values indicative of thermal stability could not be produced. 

However, the considerable differences in melting transitions recorded between the 

oligonucleotides, suggest the presence of distinct thermodynamic profiles characteristic 

for each of the analysed sequence.  

The native D4P GQ sequence displayed a main melting transition temperature at ~65°C 

and a double transition point indicating heterogeneous population of secondary 

structures (Figure 4.3). Supported by the bioinformatic analysis and the CD absorbance 

spectra, the proposed secondary structures responsible for the initial melting transition 

could be caused by the existence of hairpin-forming oligonucleotide species present in 

the solution alongside the quadruplex-forming sequences.  

The melting profile of the M1D4P sequence expressed as a straight line, indicates that 

the oligonucleotide forms a hairpin structure derived from a single strand of nucleic acid 

with significantly weaker stability compared to the other analysed GQ-forming 

sequences (Figure 4.3). 

The A-G substitution at the 3’-end of the M2D4P did not prevent the quadruplex motif 

formation as the double melting transition was recorded, indicative of an additional 

hairpin-forming sequences being present. Although the comparable melting profiles 

were produced for D4PGQ and M2D4PGQ sequences, the oligonucleotide carrying the 
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GQ disrupting sequence substitutions has a steeper and earlier descending melting 

curve slope, suggesting a potentially lower Tm value and therefore decreased stability 

compared to the native D4P GQ sequence.  

A to C substitution of the hairpin-forming C-tract sequence in the M3D4P 

oligonucleotide, clearly eliminated a double melting transition pattern that has been 

recorded for the D4P GQ and M2D4P oligos (Figure 4.3). This suggests that only a 

homogenous population of quadruplex structure is present in the analysed solution. 

Furthermore, the more gradual descending melting slope of the M3D4PGQ, indicates 

possibly higher Tm value indicative of higher stability of the secondary structure formed 

by the oligo compared to the D4P GQ and M2D4P sequences.  

 

Figure 4.3 Effects of D4P sequence substitution on the melting profile 

The far-UV spectra from circular dichroism at 265 nm absorbance was expressed as a 

function of temperature ranging from 20 to 85°C. Each DNA oligonucleotide was measured 

at 20 μM in KP buffer, 100 KCl, pH 7.0. Arrows indicate melting transition points. 

Abbreviations: M.R.E - molar residue ellipticity. 
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 NMR analysis of the D4PGQ oligo and its variants 

The CD spectra for the parallel quadruplexes and hairpin structures have a very similar 

pattern of absorption (Kypr et al. 2009). Since quadruplexes have a characteristic NMR 

spectrum that is separate from the resonances formed by other forms of nucleic acids, 

such as single strands, duplexes (e.g., hairpins) and other secondary structures, it can 

serve as a useful tool to assess the secondary structure differences induced by the base 

substitutions introduced to the D4P GQ sequence (Webba da Silva 2007).  

The NMR analysis of the D4P GQ oligo showed a strong resonance signal detection in 

the 10-12 ppm range, indicating formation of the quadruplex structure by the sequence 

(Figure 4.4). However, a weak resonance signal was also detected between the 12-14 

ppm, suggesting presence of a double strand nucleic acid structure existing within the 

solution. Combined with the mFold analysis, this alternative secondary structure formed 

by the D4P GQ sequence was most likely a hairpin motif (Figure 4.1).  

The 5’ and 3’ end G to A substitutions introduced to the M1D4P demonstrated a 

significant reduction in the GQ-specific resonance signal between 10-12 ppm (Figure 

4.4). Interestingly, a weak quadruplex specific resonance remained present, suggesting 

that the oligonucleotide could still perhaps form an intramolecular GQ structure 

composed of two oligonucleotide residues. The hairpin-specific imino proton signal 

appeared to be more pronounced in the M1D4P compared to the native D4P GQ 

sequence (Figure 4.4). Therefore, the dominant secondary structure formed by the 

M1D4P in solution was highly likely to be the hairpin motif.  

The NMR readout for the M2D4P sequence shows only the quadruplex specific 

resonance signal at 10-12 ppm range (Figure 4.4). Lack of the hairpin-specific NMR 
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signal, suggest that the parallel GQ structures were likely to form a heterogenous 

population of inter- and intramolecular quadruplex motifs, rather than a mixture of 

hairpin and quadruplex structures as proposed by the CD analysis (Figure 4.2).  

C-tract substitution with A residues in the M3D4P oligonucleotide eliminated formation 

of the hairpin structure as the NMR readout demonstrated presence of the imino 

pronton signal resonance characteristic for quadruplex secondary structure only (Figure 

4.4). The NMR findings combined with the CD and bioinformatic analysis strongly 

indicate that the M3D4P sequence was highly likely to form a stable parallel GQ 

structure in solution. 
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Figure 4.4 NMR analysis of the effects of D4P GQ sequence substitution on the 

secondary structure of the oligo 

The 1D 1H NMR spectra was acquired at the 9-15 ppm range to detect imino proton 

signal relating to hydrogen bonded bases. The Hoogsten hydrogen bonding 

corresponding to bonded Gs within the G-tetrad are recorded at 10-12 ppm (dashed 

box), whereas the Watson-Crick hydrogen boding within hairpin structure are present 

at >12 ppm (solid box). The DNA oligonucleotide samples were measured in 20 μM in KP 

buffer, 100 mM, pH 7.0 at 298 K 
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 In vitro function assessment of the DUX4 promoter fragment containing the 

D4PGQ sequence in the reporter plasmid system 

4.2.4.1. Sequence analysis of the DUX4 promoter fragment and 5’UTR 

Plasmid constructs with inserted G-rich promoter regions or their fragments upstream 

of a reporter gene, have been previously found to be a useful tool in assessing the in 

vivo role of the motifs on gene expression (Sun and Hurley 2009). The DNA GQ structure 

can be formed by either the sense or antisense strand of the promoter sequence, while 

the 5’UTR can only be formed in the mRNA coded by the positive strand (Agarwal et al. 

2014). Previously, the GQ-forming sequence was predicted to form ~400-500 bp 

upstream of DUX4 start codon on the antisense strand (Hewitt et al. 1994; Tsumagari et 

al. 2008). However, since the previously used algorithms to predict GQ-sequences within 

the DUX4 gene would discriminate any potential candidates with loops larger than 7 

nucleotides (Tsumagari et al. 2008), we asked the question whether the updated 

software (i.e., QGRS Mapper) would predict any GQs forming closer to the 

transcriptional start site (TSS) or within the 5’UTR of the DUX4. Therefore, we have 

analysed the 235 bp promoter region (including the 97 bp DUX4 5’UTR region) upstream 

of the DUX4 start codon (Figure 4.5). The closest GQ forming sequence predicted by the 

QGRS Mapper was located on the sense strand, upstream of the previously determined 

functional DUX4 TACAA (equivalent to TATTA box) and GC box as well as the 5’UTR 

sequence (Figure 4.5) (Gabriels et al. 1999; Dixit et al. 2007). No GQ motifs were 

predicted on the antisense strand of the DUX4 promoter fragment or the 5’UTR (Figure 

4.5). 
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Figure 4.5 Schematic primary structure and sequence of DUX4 promoter and 5’UTR 

(A.) Schematic of the DUX4 promoter and position of its key elements. 5’UTR and the 

transcriptional start site (TSS; -1;+1 position) are indicated. Nucleotide positions of each 

element are numbered relative to the TSS. (B.) The DNA primary sequence of DUX4 

promoter and 5’UTR. The most proximal GQ-forming sequence (D4P GQ; red font) to 

the TSS on the sense strand is shown. No quadruplex-forming sequences on the 

antisense strand of the analyzed sequence could be predicted. The key promoter 

elements such as GC and TACAA box are highlighted in green and purple, respectively. 

The 5’UTR sequence is underlined. Putative G-tracts of the D4P GQ sequence are 

numbered I-V. ATG denotes start codon. Nucleotide positions of each element are 

numbered relative to the TSS (-1;+1). 
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4.2.4.2. Development of expression plasmid constructs containing the 5’UTR and the DUX4 

promoter fragment containing D4PGQ sequence 

We have observed the presence of the GQ forming sequence in DUX4 promoter 

fragment but not in the 5’UTR region (Figure 4.5). In addition, the promoter GQ-forming 

oligonucleotide sequence (D4P GQ) was confirmed to form the GQ motif in solution as 

shown by the CD and NMR analysis (section 4.2.2 and 4.2.3). The substitutions in the 

D4P GQ sequence were purposely introduced to prevent or weaken the GQ formation 

(M1-M2D4P) (section 4.2.2 and 4.2.3). In another D4P GQ oligonucleotide variant (i.e., 

M3D4P), the hairpin-forming sequence substitution was preformed to assess the 

influence of other secondary structure formation within the GQ forming region.  

Once we have observed and confirmed the presence of GQ structure formation in the 

D4P GQ sequence and its variants (M1-M3D4PGQ), we then asked whether these 

structures or their lack may affect the expression of DUX4. To address this question, the 

wild-type, D4PGQ-containing 235 bp promoter fragment that also includes the 5’UTR of 

DUX4 were designed and then synthesised by GenScript (Figure 4.5). The promoter 

sequence variants (M1-3D4PGQ) containing mutations to the promoter GQ forming 

sequence (as outlined in figure 4.1 A) were also synthesised. An additional mutation 

construct (MGCbox) of the DUX4 promoter sequence was designed where the GC box 

sequence mutation was introduced (GGGGTGG to GGAATGG), since it has been 

previously shown to strongly affect the DUX4 promoter activity (Gabriels et al. 1999).  

The DUX4 promoter fragment constructs were directionally cloned from the commercial 

plasmids (pUC57, GenScript) directly upstream of the eGFP-containing plasmid (Figure 

4.6 A). The resulting plasmid constructs were subjected to restriction enzyme diagnostic 
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digest reaction to determine: (i) DUX4 promoter sequence presence using the SpeI-HF 

and NheI-HF restriction enzymes; (ii) correct orientation of the cloned fragment using 

AlwNI and NheI-HF enzymes; and (iii) presence of the eGFP reporter sequence by 

performing the XhoI digest (Figure 4.6 B). All of the plasmid constructs tested positive 

for presence and correct orientation of the inserted DUX4 promoter plasmid construct 

and eGFP in the restriction enzyme diagnostic digest analysis (Figure 4.6 B). 

Subsequently, each of the cloned DUX4 promoter fragments were sequenced to confirm 

whether the cloned inserts are present at the correct orientation within the plasmid and 

to ensure that the mutagenesis of the D4PGQ and GC box sequences has been carried 

out correctly. The sequencing results confirm the results of the diagnostic restriction 

digest reaction and show that the specific mutation of the D4PGQ and GC box sequences 

are present within their corresponding plasmid backbones (Figure 4.6 A)
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Figure 4.6 Mutagenesis of G-quadruplex sequence within DUX4 promoter driving eGFP expression construct 

(A.) Schematic plasmid map demonstrating restrictive enzyme sites used for cloning and diagnostic digest of the DUX4 promoter sequence 

upstream of the eGFP. Sizes of the digested products are indicated in base pairs (bp) (B.) Restriction enzyme digest of the 

p.C1.DUX4_promoter.eGFP plasmid. All samples were run on 1% agarose gel (w/v) in TAE, stained in with 10,000x SYBRSafe (Invitrogen). (C.) 

Partial DNA sequencing graph showing successful mutations of the GQ sequence within the DUX4 promoter (M1-M3D4PGQ). MGCbox represents 

mutation within the GC box sequence of DUX4 promoter. Native DUX4 promoter sequence corresponds to D4PGQ. Dashed box highlights the G 

to A substitutions. Abbreviations: H1, Hyperladder I (Bioline); D4PGQ, DUX4 promoter G-quadruplex; M1-3D4PGQ, mutation1-3 of D4PGQ; 

MGCbox, mutation of GC box. 
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4.2.4.3. Optimisation of DNA amount for optimal transfection for the DUX4 promoter fragment-

containing reporter plasmid in RD CCL-136 cells 

After developing reporter plasmids containing DUX4 promoter fragment and its 

variants, it was important to derive optimal DNA plasmid amounts for transient 

transfection conditions using Lipofectamine 3000 (Invitrogen) reagent to assess the 

activity of the promoter in vitro. The human rhabdomyosarcoma (RD) CCL-136 cell have 

been used for the transection experiments as it has been demonstrated that the DUX4 

promoter is activated at significantly higher rates in these cells (i.e., 10-30 fold increase) 

compared to non-muscle tissue such as HeLa cells (Gabriels et al. 1999). In the transient 

transfection reaction, the plasmid containing wild-type DUX4 promoter was used over a 

range of concentrations from 0.5 to 2.5 μg (Figure 4.7). 24 hours after transfection, cells 

were harvested for flow cytometry analysis. The eGFP protein expression detected by 

the flow cytometry has shown to be present at the highest levels in cells transfected 

with the 1 μg of the plasmid (Figure 4.7). Since the maximum transfection efficiency at 

1 μg of the transfected plasmid could only achieve 37% (± 1%) of cells positive for the 

GFP protein expression, it can be suggested that the DUX4 promoter activity in muscle 

tissue is relatively weak under the tested conditions (Figure 4.7). Other amounts of 

plasmid than the 1 μg resulted in significantly lower transfection efficiency (Figure 4.7). 

Therefore, the transfection conditions utilising 1 μg of plasmid were used in all of the 

subsequent transient transfection experiments involving DUX4 promoter plasmid and 

its variants. Since the concentration of the Lipofectamine regent was kept constant 

during the experiment, the decreasing transfection efficiency could be attributed to the 

increasing plasmid concentration. Apart from the GFP protein, the transfected plasmid 

also encodes ampicillin resistance gene driven by a strong CMV promoter. Therefore, 
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other than the GFP protein, the cells are very likely to express large amounts of other 

proteins. This alone could be inducing a protein unfolded response leading to 

endoplasmic reticulum stress-induced cell death (Egger et al. 2007) and/or depletion of 

the histidine pool (essential amino acid that is limiting in tissue culture)(Salazar et al. 

2016).  

 

 

Figure 4.7 Transcriptional activity of the DUX4 promoter 

Increasing amounts of GFP expressing plasmid, driven by DUX4 promoter was 

transfected into RD CCL-136 cells using Lipofectamine 3000 (Invitrogen). (A.) Flow 

cytometry plots showing count of GFP-expressing RD CCL-136 cells. Background 

fluorescence was set using mock samples and was below 1%. The transient GFP activity 

was measured in harvested cells 24 hours after transfection with flow cytometry using 

FITC-A channel. (B.) Statistical analysis of the flow cytometry data comparing effects of 

varying plasmid concentrations on GFP expression in RD CCL-136 cells. A one-way Anova 

test was performed (*p<0.05; **p<0.01 ***p<0.001); N=3
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4.2.4.4. D4PGQ motif present in DUX4 promoter weakly modulates the expression of a reporter 

gene 

Next, the presence of the sequences responsible for the formation of secondary 

structures (e.g., GQ or hairpin) within the DUX4 promoter was assessed for their role in 

the regulation of the reporter gene expression. Five of the generated reporter plasmids, 

including: the wild-type promoter fragments sequence containing the GQ motif (i.e 

,D4PGQ); mutated variants of the GQ-forming sequence (M1-M2D4PGQ) and hairpin-

forming sequence (M3D4PGQ); as well as the GC box mutated sequence of the DUX4 

promoter, were transiently transfected into the RD CCL-136 cells  

The reporter gene expression driven by the wild-type DUX4 promoter, transfected into 

the RD CCL 136 cells using the optimised transfection conditions, resulted in 36% (± 2%) 

of the cells positively expressing GFP protein as recorded by the flow cytometry (Figure 

4.8 B). The plasmid construct containing the M1D4PGQ sequences mutation that 

significantly disrupts formation of the GQ motif as shown by the CD and NMR analysis, 

demonstrated a statistically significant decrease (p<0.0001; 31% (±2%) GFP positive 

cells) in the reporter gene expression compared to the wild-type construct (Figure 4.8 

B). Although the M2D4PGQ plasmid carries the sequence mutations that perhaps 

weaken thermodynamic stability but not completely abolishes the GQ formation within 

the DUX4 promoter, there is a still statistically significant reduction (p<0.001) in the 

number of cells positively expressing the GFP (i.e. 33±2%), compared to the D4P GQ-

containing promoter construct. Interestingly, the statistical significance of the GFP 

expression was found to be lower for the M1D4PGQ construct, compared to the 

M2D4PGQ plasmid variant, suggesting that the severity of the GQ disruption potentially 
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correlates with the activity of the promoter (Figure 4.8 B). Mutation of the hairpin 

forming sequence in M3D4PGQ construct variant did not result in any significant change 

of the DUX4 promoter activity compared to the wild-type plasmid and indicates that it 

does not play a major role in regulating expression of the reporter gene (Figure 4.8 B). 

The plasmid construct carrying the mutation of the GC box sequences, downstream of 

the GQ forming region within the DUX4 promoter fragment, led to a dramatic reduction 

in GFP expression of 30-fold compared to the wild-type plasmid construct (Figure 4.8 B).  

The microscopic analysis of the GFP expression of each plasmid construct also confirms 

the weak activity of the wild-type expression construct demonstrated by the dim 

fluorescence of the protein in the transfected cells (Figure 4.8 A). The qualitative 

difference of the reporter gene expression between the D4P GQ and the M1-M3D4PGQ 

are virtually indistinguishable (Figure 4.8 A). Furthermore, the activity of the DUX4 

promoter shows to be almost completely deactivated by the mutation introduced to its 

GC box sequence as no GFP expression could be detected microscopically in the cells 

transfected with the MGCbox construct (Figure 4.8 A).
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Figure 4.8 Effect of sequence mutagenesis of DUX4 promoter in-cis elements of gene expression 

RD CCL 136 cells were transfected with the eGPF-containing plasmids driven by the native DUX4 promoter sequence and its variants containing 

GQ sequence mutations (M1-M3D4PGQ). The construct containing mutation within the GC box of the DUX4 prompter was also analyzed 

(MGCbox). Lipofectamine 3000 (Invitrogen) was used to transfect 1 µg of each plasmid. Mock sample contains non-transfected cells. (A.) 

Expression of GFP was photographed using FITC channel. Scale bar: 100 μm. (B.) Flow cytometry measuring number of GFP positive cells 

expressed as a percentage of the total cell count. The FITC-A channel was used for the GFP positive cell detection. Background fluorescence was 

set using mock samples and was below 1%. A one-way Anova test was performed (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001;); N=6. 
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4.2.4.5. Effects of berberine on DUX4 promoter activity 

We have previously observed a strong affinity binding and stabilising effect of berberine 

on the GQ-forming D4P GQ oligonucleotide sequence in solution (section 3.2.4). 

Assuming that berberine also binds to the D4P GQ sequence in the DUX4 promoter 

fragment in vitro, we asked the question how the small-ligand binding to the DUX4 

promoter GQ structure would affect gene expression. When the D4P GQ expression 

construct was transiently transfected and the cells were treated with berberine, there 

was a dramatic dose-dependent increase in the green fluorescence recorded by flow 

cytometry (Figure 4.9). However, when the ligand was added to the cells in the absence 

of the eGFP expressing plasmid, there was a significant fluorescent emission detected 

by the FITC-A channel of the flow cytometry (Figure 4.9). At the highest ligand 

concentration, the recorded emission was comparable to the emission from the group 

cells that were treated with the same ligand-concentration in the presence of the 

reporter plasmid (Figure 4.9). This indicates that the GFP and berberine have a very 

similar excitation and emission spectra. Therefore, the signal produced by the ligand 

interferes with the GFP readout produced by the reporter system. As a result, it is very 

difficult to draw any conclusions regarding the effects of berberine treatment on the 

activity of the DUX4 promoter fragment using this reporter system.  

The microscopy images confirm the flow cytometry data as there is a clear green 

fluorescence increase, especially at higher berberine concentrations (e.g., 50 and 100 

μM), in groups of cells untransfected with the reporter plasmid (Figure 4.9). Although 

the cells transfected with the reporter plasmid do show a clear increase in the green 

fluorescence emission between the 5 and 20 μM berberine concentration range  
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compared to the cells treated with the same concentrations of the ligand in the absence 

of the plasmid, it is difficult to conclude whether the increase in the recorded emission 

is a result of the ligand-mediated upregulation of the DUX4 promoter activity or the 

combined emission of berberine and GFP has caused the qualitative increase in the 

recorded fluorescent intensity (Figure 4.10). 
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Figure 4.9 Analysis of DUX4 promoter driven eGFP expression in presence of berberine 

RD CCL 136 cells were transfected with the eGPF plasmids driven by the native DUX4 

promoter sequence (D4PGQ) in presence of increasing concentrations of berberine. 

Lipofectamine 3000 (Invitrogen) was used to transfect 1 µg of the plasmid. Mock sample 

contains non-transfected cells. Flow cytometry measuring number of eGFP positive cells 

expressed as a percentage of the total cell count. The FITC-A channel was used for the eGFP 

positive cell detection. Cells treated with berberine only were used to detect background 

noise. Background fluorescence produced by the cells was set using mock samples and was 

below 1%. A one-way Anova test was performed (*p<0.05; **p<0.01 ****p<0.0001;); N=3. 

 



185 
 

 

Figure 4.10 Analysis of eGFP expression driven by the DUX4 promoter sequence in presence of berberine 

RD CCL 136 cells were transfected with the eGPF-containing plasmids driven by the native DUX4 promoter sequence (D4PGQ) in presence of increasing 

concentrations (0-100 μM) of berberine. Lipofectamine 3000 (Invitrogen) was used to transfect 1 µg of the plasmid. Non-transfected cells treated with 

berberine were used to established background fluorescent. Expression of eGFP was photographed using FITC channel. Scale bar: 100 μm. 
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4.3. Discussion  

In this chapter, the biophysical (i.e., CD and NMR) and bioinformatic analysis in 

combination with in vitro transient transcription assay were used to explore the 

potential role of GQ structure in the DUX4 promoter. The novel GQ-forming sequence 

was predicted to form closely upstream of the TSS on the sense strand of the promoter 

sequence. Different variants of GQ-related sequence substitutions were preformed, and 

each was assessed for its ability to form the motif before it was cloned into the reporter 

plasmid. The CD and NMR of the analysed GQ-forming sequence showed to have more 

than four G-tracts (i.e.,                  ) contributing to the 

formation of more than one discrete quadruplexes depending on what combination of 

G-tracts was used. The analysed D4P GQ oligonucleotide was revealed to have 

potentially five G-tracts that could contribute to the GQ formation, since when the 5’ 

end was G-A substituted, the motif structure was still able to form as shown by the 

bioinformatic and the biophysical analysis. Therefore, various GQ conformations are 

formed by the D4P GQ sequence that could potentially exist in dynamic equilibrium with 

each other.  

This idea was previously explored in the context of the P1 promoter region of the Bcl-2 

gene, where a 39 nucleotide G-rich sequence (i.e., Pu39), containing six G-tracts of 3-5 

guanosine residues was analysed for the GQ formation as well as the effect of loops and 

flanking regions on the thermodynamic stability of the motif folding (Sun et al. 2014). A 

range of oligonucleotides with overlapping sequences that contain four G-tracts were 

selected for the analysis (Sun et al. 2014). Interestingly, it has been shown that the 
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individual short GQ-forming sequences derived from the Pu39 sequence form 

heterogeneous GQ structures. In addition, the GQ topology of the investigated 

sequences would have a mixed structure, rather than a parallel conformation , 

commonly found in promoter sequences (Dolinnaya et al. 2016). However, when the full 

39 nucleotide Pu39 sequence was analysed, the dominant structure found in vitro in the 

folded sequence was a parallel quadruplex with two single and one 13 nucleotide loops. 

Interestingly, the long nucleotide sequence was the most thermodynamically stable 

compared to its oligonucleotide variants (Sun et al. 2014). 

In addition, the ability to form a variety of GQ topologies by the same sequence regions 

could be instrumental in regulating gene expression by fine-tuning binding affinity to the 

different quadruplex structures by in-transacting factors. The Bcl-2 promoter region, 

contains another 28- nucleotide GQ-forming region, that can form two parallel GQ 

motifs under physiological conditions and exist in an equilibrium state with each other. 

Both motifs form protruding loops that assume hairpin conformation and can be 

selectively recognised by small molecules (Onel et al. 2016). Similarly, our findings 

suggest the D4P GQ structure that has the potential to form both a parallel GQ and 

hairpin structure, providing a unique conformation that distinguishes it from other 

promoter-based parallel GQ structures and could potentially provide a platform for 

recognition by specific proteins or small molecules. These unique structural 

characteristics of the D4P GQ sequence combined with the findings that its topology can 

be changed by small-molecule binding interaction (i.e., berberine), suggests an 

unexplored platform for development of novel, highly specific compounds that can 

effectively target and regulate nucleic acid secondary structure formation.  
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In addition to the idea that D4P GQ sequence can form single GQ confirmation and/or 

multiple GQ structure formed by overlapping motifs, it can be speculated that other 

models of DUX4 promoter GQ structures can exist. For example, it has been previously 

found that upstream of the DUX4 promoter region (i.e., in hhspm3 region) there is a GQ 

forming sequence (Tsumagari et al. 2008), suggesting that multiple (or at least two) GQ 

structures can be formed within the promoter region separated by a long nucleotide 

stretch. There is a well-documented example of two GQ structures forming within the 

promoter of the c-KIT gene separated by over 30-nucleotide long sequence (Hsu et al. 

2009). Although the structure topology for both of these structure have been well 

characterised and have been found to be an overall parallel structure, the exact 

combined role of these two motifs is not well understood (Hsu et al. 2009). It is therefore 

important to analyse a larger upstream portion of the DUX4 gene in the D4Z4 satellite 

region, to assess the presence of other potential GQ sequences that could play a role in 

the DUX4 promoter regulation. 

Although the understanding of DUX4 promoter interaction with regulatory proteins is 

not yet clear, there is an accumulating number of studies shedding light on the role of 

in-trans acting elements in regulating the DUX4 expression (Dixit et al. 2007; Himeda et 

al. 2014; Sharma et al. 2016). A number of well know transcription factors that regulate 

gene expression have been found to specifically bind to quadruplex structures (Brázda 

et al. 2014). One prominent example of promoter GQ binding protein is poly [ADP-

ribose] polymerase 1 (PARP1). PARP1 is an zinc-finger protein, abundantly found in 

nucleosomes and has been implicated in DNA damage repair, chromatin remodelling 

and gene expression (Benjamin and Gill 1980; Soldatenkov et al. 2002). Interestingly, it 

has been found to bind DUX4 promoter fragment and strongly activate its activity 
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leading to increased DUX4 expression in FSHD myoblasts (Sharma et al. 2016). In 

addition the same report have found that the PARP1 regulates the DUX4 promoter 

function in conjunction with a catalysing enzyme, the DNA methyltransferase 1 

(DNMT1)(Sharma et al. 2016). Both PARP1 and DNMT1 are known for their affinity for 

GQ binding (Cogoi et al. 2010; Cree et al. 2016). For example, the PARP1 has also been 

found to be an activator of the KRAS promoter that recognises parallel quadruplex DNA 

(Cogoi et al. 2010). Furthermore, the PARP-1 becomes catalytically activated upon 

binding to GQ derived from the c-KIT promoter and binds the motif with high affinity. 

Interestingly, in a separate report, the DNMT1 has also been found to play a vital role in 

genome methylation and co-localised at the sites of DNA damage (Cree Simone L. et al. 

2016). The DNMT1 also shows strong binding affinity to GQ structures in gene promoters 

in vitro, but becomes catalytically inhibited by the RNA GQs that specifically targets the 

enzyme’s active site (Cree et al. 2016; Zhang et al. 2015). 

Nucleolin is another nuclear protein found to play multiple cellular roles, including: 

ribosome biogenesis, chromatin remodelling and apoptosis (Angelov et al. 2006; Ginisty 

et al. 1999; He et al. 1998). Overexpression of nucleolin was also correlated with c-MYC 

promoter inhibition as measured by the luciferase expression construct assays in 

MCF10A cells (Cogoi et al. 2010). It has been demonstrated that the nucleolin also binds 

to the c-MYC GQ motif with high affinity and its binding to the quadruplex structure was 

also confirmed in vivo (Cogoi et al. 2010). In addition, the nucleolin protein has been 

found to bind the D4Z4 repeat unit as a multiprotein complex and mediate repression 

of the genes expresses proximal to the D4Z4 (Gabellini et al. 2002). However, the role of 

nucleolin on DUX4 expression is not clear as the mechanisms describing binding to the 

promoter of the toxic gene have not been investigated yet. 
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MyoD is a master regulator transcription factor that plays a key role in differentiation 

process of myoblast cells (Ishibashi et al. 2005). MyoD transcriptional activity is 

promoted by the formation of a heterodimer with E-proteins that recruits the complex 

to E-box motifs present in promoter sequences that regulate muscle gene expression 

(Wendt, Thomas, and Ellenberger 1998). Interestingly, the MyoD shows a high affinity 

binding to promoter GQ structures, which leads to significant gene expression 

upregulation compared to the gene expression driven by the promoter that lacks GQ-

forming sequences (Shklover et al. 2010). It has been suggested by the author that the 

GQ helps to recruit the MyoD transcription factor to the site of the promoter (near the 

E-box sequence) without activating transcription (Figure 4.11). Subsequent heterodimer 

formation between the MyoD and E-proteins, weakens the MyoD association with the 

quadruplex structure which then able to bind to the neighbouring E-boxes to activate 

the gene expression (Figure 4.11) (Shklover et al. 2010). Interestingly, the DUX4 

promoter fragment does contain the E-box motif and MyoD has been found to bind the 

promoter sequence (Dixit et al. 2007). Since the D4P GQ sequence is present closely 

upstream of the E-box of the DUX4 promoter, it could be speculated that MyoD may 

potentially also be recruited to the promoter sequence aided by the presence of the GQ 

structure. This is supported by the fact that the mutation of the GQ-forming sequence 

downregulates expression of the reporter gene, but does not completely eliminates it, 

indicating that the MyoD can still perform its role once it forms a heterodimer with the 

E-proteins and is recruited to the E-box. Conversely, the presence of the GQ structure in 

the DUX4 promoter sequence increases gene expression levels as MyoD is more 

effectively recruited to the promoter target region. Whether MyoD has a strong binding 

affinity to DUX4 promoter GQ structures is still to be established.  
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Figure 4.11 Hypothetical model of transcriptional enhancement by promoter 

quadruplex structure 

MyoD myogenic transcription factor show high binding affinity towards promoter GQs. 

The MyoD GQ-mediated binding near E-box sequence promotes dimerization between 

MyoD and E-proteins that together activate transcription upon binding to the promoter 

sequence. Since MyoD and E-box binding sites have been previously mapped in DUX4 

promoter sequences (Dixit et al. 2007), the presence of the GQ within the promoter of 

the toxic transcription factor could have an enhancing effect on gene expression. 

Red circles represent MyoD, yellow triangles represent E-protein.  

 

 

Mutation of the non-canonical GC box sequence (GGGGTG -> GGAATG) in the promoter 

of DUX4 has resulted in a potent inhibition of the reporter gene expression, confirming 

the importance of this in-cis element on gene expression (Gabriels et al. 1999). The 
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consensus GC box motif (GGGGCG) typically serves as double-stranded binding site for 

the SP1 transcription factor. Since the DUX4 promoter lacks the minimal canonical GC 

box sequence, it was not clear how the SP1 can effectively bind to the in-cis acting 

element. Interestingly, the evidence from the genome-wide SP1 ChIP analysis showed 

that around 36% of the SP1 binding sites lack the consensus GC box sequences (Raiber 

et al. 2012). Furthermore, the majority of the SP1 binding fragments were predicted to 

form putative GQ structures. The SP1 strong binding affinity to GQ motifs was confirmed 

in the promoter sequence of the c-KIT gene (Raiber et al. 2012). Collectively these 

findings show that the SP1 transcription factor can interact with promoter sequences 

through interaction with the double-stranded GC box consensus sequence and/or 

through interaction with the GQ-forming sequences within the target promoter. 

However, in the context of the DUX4 promoter, it is not clear how the potential GQ could 

form the non-canonical GC box sequence, since the G-tract of the in-cis element would 

be separated from the nearest GQ-forming sequences by a relatively long loop of 13 

nucleotides. Nevertheless, stable GQ-structure with loops longer than 13 nucleotide 

have been reported, for example in the Bcl-2 gene (Sun et al. 2014). Therefore, it would 

be an interesting prospect to determine whether the DUX4 promoter GC box sequence 

could contribute to GQ motif formation and contribute to regulation of the promoter’s 

activity by recruitment of SP1.  

Structural motifs can form in either the sense (i.e., coding) or antisense (i.e., template) 

strands of the double stranded DNA. A striking asymmetric difference of putative GQ 

structure distribution between sense/antisense DNA strands have been reported across 

the human genome in the proximity (± 500b) of the TSS (Du et al. 2008). Additionally, 

GQ motifs have been more often found in the sense strand than the antisense strand 
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(Du et al. 2008). Indeed, in the DUX4 promoter fragment only one GQ motif was 

predicted closely upstream of the TSS in the sense strand. Disruption of the GQ motif by 

the sequence mutagenesis resulted in modest downregulation of gene, suggest that the 

presence of the GQ in the sense strand of the DUX4 promoter may act as an activator in 

gene expression. This model was supported by the fact that RNA polymerase II (RNAP II) 

occupancy (an important factor directly associated with gene expression) highly 

correlates with the putative GQ-forming regions proximal to the TSS found in the sense 

strand (Du et al. 2008). In the proposed model, the presence of GQ in the sense strands 

promotes opening of double-stranded DNA structure, making RNAP II binding more 

accessible and subsequently resulting in higher rates of transcription (Figure 4.12). 

Furthermore, lack of the GQ motifs in the antisense strands eliminates a barrier that 

would potentially have an inhibitory effect on RNAP II progression during mRNA 

synthesis (Figure 4.12)(Du et al. 2008). Indeed, the inhibitory effect of GQ formation in 

the antisense strand, particularly downstream of TSS, has been demonstrated 

experimentally (Agarwal et al. 2014). This collective data further strengthens the idea 

that the presence of GQ structures in promoter regions could play an important role in 

fine tuning gene regulation.  
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Figure 4.12 Role of G-quadruplex strand asymmetry on transcription 

Quadruplex structure formed on the sense strand promotes transcription by holding the 

DNA helix in an open conformation, making RNAP II more accessible. GQ forming on the 

antisense strand creates a physical barrier for RNAP II progression leading to 

transcription inhibition. 

 

 

It is also important to note that while the GQ motif is formed on one strand, on the 

complementary C-rich strand, an i-motif may form (Kuryavyi et al. 2010). Although there 

is a strong evidence that C-rich sequences can form i-motifs, their in vivo role is still a 

matter of an ongoing scientific debate (Zeraati et al. 2018). The fact that folding of i-

motifs requires acidic conditions, resulted in major doubts of the in vivo role of the 

secondary motif (Jin et al. 2009). However, a recent discovery of antibody fragments 

that bind the i-motifs with high affinity and selectivity enabled visualisation of the motifs 

formation in nuclei of human cells (Zeraati et al. 2018). Furthermore, the small-molecule 

specific targeting of the i-motif in the upstream region of the Bcl-2 promoter, has 

resulted in significant gene expression upregulation, supporting the argument that these 

secondary structures could play a major role in the regulation of expression(Cui et al. 

2014). The Bcl-2 example also supports our model where the mutagenesis of the GQ 

sequence in the DUX4 promoter would also eliminate the C-rich sequence that could 
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potentially form an i-motif, subsequently leading to downregulation of the reporter 

gene expression. Although the idea of a potential i-motif regulating DUX4 expression is 

highly hypothetical at this stage, it is an undoubtedly and interesting prospect for the 

future studies.  

Although mutagenesis of GQ-forming promoter sequences was commonly applied as a 

tool to disrupt the motif’s secondary structure formation in order to study its function, 

its obvious limitation is that the primary sequence of the promoter becomes changed. 

Therefore, it is not always clear if the changes of the reporter gene expression are 

predominately related to changes to the secondary structure of the primary sequence 

of the promoter. For this reason the studies of promoter GQ are often complimented by 

the use of small-molecules that can target and stabilise GQ structures with relatively 

high specificity and affinity. Unfortunately, the small-molecule berberine used in this 

study has demonstrated to have an overlapping excitation and emission spectra with 

the GFP readout. This introduced a significant background signal noise that made it 

virtually impossible to measure the GQ-stabilising effects of berberine on the reporter 

gene expression. Since we are interested in investigating the role of berberine effects 

on DUX4 expression, changing the reporter system to luciferasefor example, would 

eliminate the issues of background signal noise interference with the protein readout. 

Alternatively, the DUX4 expression could be also assessed on the mRNA level using RT-

qPCR. Despite the above limitations, the finding of the novel GQ structure within the 

DUX4 promoter provides a new platform for a scientific debate about its potential role 

in gene expression regulation that contributes to the field of FSHD and GQ biology.
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5. Effects of berberine on DUX4 expression 

5.1. Introduction 

 Emerging roles of RNA GQs in health and disease 

In addition to the finding that the putative DNA GQ structures are highly prevalent in 

the human genome regions such as telomeres, gene promoter recombination hotspots 

and ribosomal DNA, the bioinformatic analysis also have found GQ enrichment in 5’end 

of the 1st introns as well as the 5’ and 3’ UTRs of pre-mRNAs, suggesting an important 

role of these motifs in mRNA synthesis, processing and function (Huppert and 

Balasubramanian 2005). This bioinformatic data is further supported by the in vitro 

experiments showing that the RNA GQs could play an important role in cellular functions 

(Agarwala et al. 2015; Simone et al. 2015), including: gene expression regulation and 

telomere homeostasis. The mRNA-associated GQs are now becoming widely recognised 

as a crucial in cis-acting elements regulating processing of pre-mRNA (e.g., 

polyadenylation and splicing), mRNA targeting and turnover as well as translation. The 

genome wide sequencing provided further evidence of GQ overrepresentation in 5’UTR 

and introns of mRNA sequences, implying important regulatory functions (Chambers et 

al. 2015b). GQs also have been linked to pre-microRNA and long non-coding RNA 

sequences, suggesting a novel role of GQ in miRNA biogenesis and in-trans post-

transcription gene expression regulation, respectively (Jayaraj et al. 2012; Arachchilage 



198 
 

et al. 2015). Interestingly, RNA GQs have been implied in immunoglobulin class switch 

regulation, indicating that the motif plays a role in the humeral immune system  pathway 

(Zheng et al. 2015).  

One of the major mechanism through which the RNA GQs mediate their function in cells, 

involves binding of protein factors such as RNA-binding proteins (RBP) that regulate 

topology of the secondary structure and/or recruit other protein regulators (review 

Brázda et al. 2014). It has been demonstrated in vivo that the predominant role of the 

RBPs is unfolding of the eukaryotic RNA GQs. Furthermore, the RNA GQ associated RBPs 

were also implicated in the DNA-related processes such as recombination (e.g., 

immunoglobulin class switch) or elongation of telomeres (Guo and Bartel 2016; 

Takahama et al. 2013; Zheng et al. 2015). RNA and DNA complementary sequences can 

also interact with each other to form hybrid GQ sequences that have been suggested to 

regulate transcription termination (Skourti-Stathaki et al. 2011). RBPs such as the 

Senataxin helicase and Xrn2 endonuclease can  interact with and unwind the hybrid 

RNA/DNA GQs, subsequently leading to 3’end RNA product cleavage and release of RNA 

polymerase II from DNA (Skourti-Stathaki et al. 2011).  

An increasing body of evidence suggests that impaired biological function of RNA GQ 

structures could lead to diseases pathogenesis as demonstrated in cancer and several 

neurological disorders (review: Maizels, 2015). Reports demonstrating that RNA GQs act 

as cis-regulatory elements involved in mRNA expression regulation in several cancer-

related genes, include: the angiogenic factor, VEGEF; the tumour suppressor TP53 and 

the oncogene NRAS (Cammas et al. 2015; Kumari et al. 2007; Marcel et al. 2011). In the 

context of neurological disorders, a non-coding expansion of the GQ-forming 
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hexanucleotide repeat (GGGGCC) in the first intron of C9orf72 gene leads to 

frontotemporal dementia and/or amyotrophic lateral sclerosis (Reddy et al. 2013; Su et 

al. 2014). In addition, RNA GQs have been found to play a role in controlling microbial 

pathogenesis (Métifiot et al. 2014). For example, Epstein-Barr virus (EBV) encodes the 

RNA GQ binding protein, EBNA1. It has been suggested that EBNA1 is involved in an 

autoregulatory feedback loop that finely tunes its expression during the viral cell cycle 

process.  

The above outlined examples along with others suggest that the RNA GQs play an 

important role in regulating cell biology. Advancing our understanding of biological 

processes regulating RNA GQ function could help to uncover mechanisms behind the 

pathogenesis of many diseases and contribute to the development of potential 

treatments. 

 DUX4 transcript GQs and study objectives 

In this chapter we have explored the role of DUX4 transcript GQs on gene expression. In 

theory, formation of the RNA GQ in vivo is a more likely possibility compared to the DNA 

GQ motifs due to their increased thermal stability in the folded state in comparison to 

the DNA counterparts (Dolinnaya et al. 2016). In addition, the fact that the RNA is single-

stranded, means it does not have to compete with the hybridising forces of the 

complementary strand. Using bioinformatic and biophysical analysis, two stable RNA GQ 

motifs have been identified within the exon 1 and intron 1 of the DUX4 transcript 

previously (section 3.2.1). Furthermore, both of the analysed sequences show a 

relatively strong binding affinity (Ka) towards a GQ-stabilising small-molecule i.e., 
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berberine. Therefore, to investigate the effect of the DUX4 transcript GQs on gene 

expression, berberine was tested in the FSHD immortalised patient cells as well as cells 

transiently transfected with DNA plasmids containing the DUX4 transcript specific 

constructs sequence. Using RT- and RT-qPCR we demonstrate for the first time that the 

stabilisation of the novel DUX4 transcript GQ motifs could have a potentially 

downregulatory effect on DUX4 expression, providing a new platform for therapeutic 

strategy to treat the FSHD.  

5.2. Results 

 Berberine downregulates expression of DUX4 mRNA in FSHD cells 

The semi-quantitative analysis of the DUX4 expression in the FSHD-A5 cell line in the 

presence of berberine, demonstrated a dose dependent downregulation of the 

transcription factor (Figure 5.1 A.). At the lowest tested dose (5 μM), the recorded DUX4 

expression was reduced by 4% and the difference was not statistically significant (Figure 

5.1 C). However, at the highest ligand concentration (25 μM), the reduction of DUX4-

specific band was clearly apparent (p<0.0001) and it was quantified to be decreased by 

78% compared to the untreated samples (Figure 5.1 C). No DUX4 expression could be 

detected in the control cell line, FSHD-6 (Figure 5.1 B).  

To assess the effects of berberine on viability of FSHD immortalised patient cells the MTT 

assay was performed. The results indicated that berberine significantly reduced cell 

viability of FSHD-A5 myotubes in a dose-dependent manner (Figure 5.1 D). However, a 

large proportion of the cells did not demonstrate any cytotoxic effects leaving 40% (± 
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2.6%) of cells viable at the highest ligand concentration (Figure 5.1 D). Therefore, 

normalising DUX4 expression to a well-established housekeeping gene of FSHD 

immortalised patient cells such a B2M was necessary to ensure that the berberine-

mediated effect on DUX4 expression was not due to the cellular growth inhibition. 

Despite the berberine treatment and increased cytotoxicity, the treated cell populations 

still appear to express high levels of the house keeping gene, whereas the DUX4 

expression becomes significantly downregulated (Figure 5.1 A, B). Therefore, this 

strongly suggests that the effect of berberine treatment is predominately DUX4 specific 

and not due to the cytotoxic effect of the ligand. 
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Figure 5.1 DUX4 expression in FSHD-A5 and -6 cells, and cytotoxic effects of berberine treatment 

Immortalized FSHD-A5 (A.) and -6 (B.) myotubes were treated with berberine in a dose-dependent manner on the 2nd day of differentiation 

and incubated for an additional 48 hours before harvesting the total RNA. (A.) Representative RT-PCR analysis using primers detecting all DUX4 

full-length isoforms in the presence of berberine. B2M was used as the housekeeping gene. The DUX4 mRNA expression was represented as a 

percentage of band intensities normalised to their corresponding housekeeping bands (C.). The RT-PCR gel image (A.) was semi-quantitatively 

analysed using GeneTools showing a significant decrease of DUX4 mRNA level in a dose dependent manner (Syngene). (D.) Immortalized FSHD 

myotubes (which clone) were treated with berberine at the day 2nd of differentiation. The MTT cell viability assay was performed 48 hours after 

treatment.  Treated cells are compared to control cell with no berberine added. Independent treatment at each concentration was performed, 

N=6 (*p<0.05; **p<0.01; ***p<0.001, ****p<0.0001 one -way ANOVA). Error bars represent standard error of the mean (SEM).  
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 Berberine treatment leads to downregulation of DUX4 downstream genes 

DUX4 is a transcription factor that affects expression of several downstream genes. 

Since DUX4 expression levels in muscle tissue are very low and hard to detect, the 

signature expression of these downstream genes can serve as a useful DUX4 biomarker 

(Marsollier et al. 2016). The signature downstream genes that become upregulated by 

DUX4 have been previously determined and include: ZSCAN4, TRIM43 and MBD3L2 

(Ferreboeuf et al. 2014; Geng et al. 2012). These three genes have been selected for the 

RT-qPCR analysis to determine the effects of berberine on their expression. In the FSHD 

positive cell line all of the analysed downstream genes showed a significant 

downregulation at the lowest (5 μM) berberine dose, which was not observable when 

the DUX4 had been detected directly by the RT-PCR (Figure 5.2). The ZSCAN4 was 

significantly downregulated in a dose-dependent manner. In addition, all of the tested 

genes showed a highly statistically significant (p< 0.0001) expression downregulation at 

20 and 25 μM berberine dose. Interestingly, although the expression levels of TRIM43 

were significantly reduced at 10 μM compared to the control, when compared to 5 μM, 

there was an increase in expression of the downstream gene (Figure 5.2). Similarly, the 

MBD3L2 showed no statistically significant change at 10 μM, whereas it appears to be 

downregulated at a lower dose of 5 μM (Figure 5.2). No detectable levels of expression 

in any of the analysed downstream genes could be detected in the FSHD-6 negative 

control cell line (data not shown).
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Figure 5.2 Expression of the genes downstream of DUX4 in FSHD-A5 cells in the presence of berberine 

Expression levels of (A.) ZSCAN4, (B.) TRIM43 and (C.) MBD3L2 were measured by RT-qPCR in FSHD-A5 and -6 myotubes treated with the GQ 

ligand on the 2nd day of and harvested on the 4th day of differentiation. B2M was used as a housekeeping gene. Independent treatment at each 

concentration was performed, N=6 (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001, one -way ANOVA). Error bars represent SEM. 
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 In-cell western assay to measure DUX4 protein expression 

Although the DUX4 protein is expressed at extremely low levels, it was estimated to be 

present in 1/1000 or 1/200 in primary patents myoblast and myotubes, respectively 

(Snider et al. 2010; Tassin et al. 2013). The first developed 9A12 mouse monoclonal 

antibody against DUX4 has shown to also strongly react with another highly homologues 

protein such as DUX4c (Dixit et al. 2007). More recently, a monoclonal DUX4 rabbit 

antibody (E5.5) targeting the DUX4-specific C-terminus have been developed and tested 

showing positive results in the C2C12 DUX4 transfected cells and cre-inducible DUX4 

transgenic mouse model (Geng et al. 2011; Jones and Jones 2018). Therefore, we asked 

a question whether the E5.5 rabbit monoclonal antibody can also successfully detect the 

DUX4 expression in the FSHD immortalised patient myotubes by using the in-cell 

western assay (ICW) as a readout. ICW is a quantitative immunostaining technique that 

allows to study levels of protein of interest (i.e., DUX4 using the E5.5 mouse monoclonal 

antibody in this case) in cells (Egorina et al. 2006). The normalising signal of the 

corresponding cells was produced by antibody staining of the myosin heavy chain (i.e., 

MF20). Unfortunately, the DUX4 expression could be detected in the FSHD positive (A5) 

myotubes as shown by the Odyssey Imaging system readout (Figure 5.3 A). As expected, 

there was no apparent expression of DUX4 present in the FSHD-6 myotubes either (FSHD 

5.3 A). Although quantification of the DUX4 expression could be detected as a weak 

signal in the FSHD-A5 cells, it was not statistically significantly different from the 

intensities of the DUX4 expression present in the negative control cell line, indicating 

that the measured emission is mostly a background signal noise (Figure 5.3 B).  
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In order to acquire a higher image resolution, to check for the potential DUX4 expression 

at the nuclear level within the FSHD immortalized myotubes, fluorescent microscopy 

analysis was performed. Despite using a relative high antibody concentration (1:100 

dilution), no positive DUX4 nuclei could be found in the patient myotubes using the anti-

DUX4 rabbit monoclonal antibody (E5.5) (Figure 5.4 A).
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Figure 5.3 In-cell western measuring DUX4 protein levels in FSHD patient cells treated with GQ ligand 

Immortalized FSHD-A5 (DUX4 positive) and FSHD-6 (DUX4 negative) myotubes were treated with berberine in a dose dependent manner on the 

2nd day of differentiation. Treated cells were fixed and permeabilized on the 4th day of differentiation. (A.) Representative in-cell western image 

where DUX4 was measured using rabbit anti-DUX4 (E5.5) primary antibody followed by the detection with Goat anti-Rabbit secondary antibody. 

Normalization to number of differentiated cells was performed by staining myosin heavy chain with the mouse IRDye 800CW anti-MF20 primary 

antibody. The plate was scanned on Oddysey Classic Infrared Imaging System (Resolution: 100 μM; Quality: medium; Focus offset: 4.0 mm; 

Intensity: 7 and 8 for 700 and 800 Channel, respectively) (B.) Values of DUX4 intensity were normalised to the MF20, demonstrating no 

statistically significant change in DUX4 expression upon berberine treatment in each cell group. Independent treatment at each concentration 

was performed, N=8 (one -way ANOVA). Error bars represent standard error of the mean (SEM). 
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Figure 5.4 Immunocytochemistry to detect DUX4 protein expression in FSHD-A5 cells treated with berberine 

Immortalized FSHD-A5 (DUX4 positive) myotubes were treated with berberine in a dose dependent manner on the 2nd day of 

differentiation. Treated cells were fixed and permeabilized on the 4th day of differentiation. DUX4 stained using rabbit anti-

DUX4 (E5.5) primary antibody followed by detection with AlexaFluor488 Goat anti-Rabbit secondary antibody. FITC channel was 

used to detect the DUX4. No DUX4 was detected. Scale bar: 100 μm. 
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Figure 5.5 Immunocytochemistry to detect DUX4 protein expression in FSHD-6 cells treated with berberine 

Immortalized FSHD-6 (DUX4 negative) myotubes were treated with berberine in a dose dependent manner on the 2nd day of 

differentiation. Treated cells were fixed and permeabilized on the 4th day of differentiation. DUX4 stained using rabbit anti-

DUX4 (E5.5) primary antibody followed by detection with AlexaFluor488 Goat anti-Rabbit secondary antibody.  FITC channel was 

used to detect the DUX4. No DUX4 was detected. Scale bar: 100 μm. 
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 Berberine increases fusion index of FSHD cells and induces a phenotypic switch 

from atrophic to disorganised myotube morphology 

One of the mechanism by which a rare protein such as DUX4 can cause myopathy is its 

ability to diffuse across the cytoplasm of myotubes to the neighbouring nuclei and lead 

to aberrant activation of many downstream genes (Ferreboeuf et al. 2014).Therefore, in 

order to ensure that the berberine downregulation of the measured DUX4 downstream 

genes (i.e., ZSCAN4, TRIM43 and MBD3L2) was not an indirect effect of the myotube 

formation defect caused by the presence of the ligand, the fusion index of the FSHD 

myotubes (clones –A5 and -6) was assessed. The berberine treated cells were 

immunostained with the antibody specific for the myosin heavy chain (MF20), whereas 

the nuclei were visualised using DAPI (Figure 5.6 A). The nuclei present in the MF20 

positive myotubes were counted and divided by the total number of nuclei present in 

all cells of each filed. The fusion index was expressed as the percentage ratio of myotube 

-related nuclei vs. total number of nuclei (Figure 5.6 B). A statistically significant increase 

in the index fusion was observed across all tested concentrations of berberine, 

suggesting that the downregulation of the DUX4 downstream genes was not caused by 

the impairment of the myotube formation, but it was rather DUX4 specific. This idea was 

further supported by the fact that the negative control cells did not show any statistically 

significant change in the calculated fusion index (Figure 5.7 B).  

Two phenotypes of FSHD primary myotubes were previously reported: the atrophic and 

disorganised (Barro et al. 2010; Tassin et al. 2012). The atrophic phenotype was 

characterised by a narrow elongated myotubes with neatly aligned nuclei, whereas the 

disorganised myotubes were described as giant structures containing large clusters of 



213 
 

nuclei. Furthermore, an antisense-mediated downregulation of DUX4 have been 

demonstrated to lead to the prevention of the atrophic, but not disorganised myotube 

phenotype formation in FSHD primary cell culture (Ansseau et al. 2017). Interestingly, 

berberine treatment led to phenotypic switch from atrophic to disorganised state in 

FSHD immortalised myotubes (Figure 5.2.6 A). The clustering of nuclei in the berberine 

treated FSHD negative control cells was not as apparent, suggesting that the phenotypic 

switch could be DUX4 related (Figure 5.2 7 A).
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Figure 5.6 Fusion index of immortalized FSHD-A5 myotubes treated with berberine 

(A.) Immortalized FSHD myotubes were treated with berberine at the day 2nd of 

differentiation. Myosin heavy chain and nuclei were stained at the 4th day of 

differentiation with the MF20 antibody and DAPI, respectively. (B.) For fusion index 

calculation, nuclei were counted in myotubes containing two or more nuclei and were 

expressed as a percentage of total nuclei present. Independent treatment at each 

concentration was performed, N=8 (*p<0.05; **p<0.01; ***p<0.001, one -way ANOVA). 

Error bars represent standard error of the mean (SEM). 
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Figure 5.7 Fusion index of immortalized FSHD-6 myotubes treated with berberine 

(A.) Immortalized FSHD myotubes were treated with berberine at the day 2nd of 

differentiation. Myosin heavy chain and nuclei were stained at the 4th day of 

differentiation with the MF20 antibody and DAPI, respectively. (B.) For fusion index 

calculation, nuclei were counted in myotubes containing two or more nuclei and were 

expressed as a percentage of total nuclei present.  

Independent treatment at each concentration was performed, N=8 (*p<0.05; **p<0.01; 

***p<0.001, one -way ANOVA). Error bars represent standard error of the mean (SEM). 
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 Berberine-mediated downregulation is DUX4 transcript specific 

Since GQ structures have been predicted to prevalently form across the human genome, 

one must bear in mind that berberine could have potential DUX4-unspecific, off target 

effects. Indeed, this work has demonstrated that stable GQ motifs form within multiple 

genomic loci and transcript of DUX4 sequence that could serve as potential targets for 

the ligand (Section 3.2). Furthermore, we have demonstrated that the predicted GQ 

structure within the D4P sequence has a relatively weak effect on regulating the gene 

expression in a transient expression reporter system (Section 4.2.4). Therefore, the next 

question to address was whether berberine-mediated strong inhibition of DUX4 

expression in FSHD patient cells (Figure 5.1 A) was the result of transcript-specific 

targeting by the ligand. To answer this issue, two plasmid constructs were developed, 

where the DUX4 transcript sequence expression was driven by the endogenous D4P 

fragment or the non-native CMV promoter (Figure 5.8 A and B). In addition, a CMV 

driven, eGFP expressing plasmid was used as a control to determine if the berberine 

treatment could affect transfection reaction or influence expression from a plasmid 

deprived of GQ sequences (Figure 5.8 C). The berberine treatment was applied at the 

day of transfection to RD CCL 136 cells for 24 hours before the total RNA was harvested 

for the RT-qPCR analysis. The plasmid DUX4 expression construct driven by the D4P 

begins to show a statistically significant downregulation of the gene expression at 50 

μM of the ligand concentration (Figure 5.8 A). The CMV-driven construct shows a 

significant downregulation of DUX4 expression at lower drug concentration of 20 μM 

(Figure 5.8 B). Furthermore, the DUX4-downregulation from the CMV-containing 

plasmid continued to decrease in dose dependent manner (Figure 5.8 B). Since the CMV 
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promoter does not contain any GQ structures, the effect of berberine could be related 

to binding of secondary structures present within the mRNA and/or the coding sequence 

of the DUX4. This idea is supported by the fact that berberine shows strong binding 

affinity towards the DUX4 RNA GQs (e.g., E1 and SS1 RNA GQs) derived from the 

transcript sequence of the gene (section 3.2.4). The potential mechanisms how 

berberine could downregulate the DUX4 expression on the level of the mRNA are 

discussed in detail in section 5.3. The expression of the negative control plasmid shows 

no change in CMV-driven eGFP at any of the tested concentrations of the ligand, further 

strengthening the idea that the berberine-mediated downregulation of DUX4 is 

specifically related to the gene’s transcript and/or gene coding sequence (Figure 5.8 C). 
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Figure 5.8 Levels of transiently expressed DUX4 transcript at increasing berberine concentrations in RD CCL 136 cells 

Expression levels of DUX4 mRNA was measured using RT-qPCR in rhabdomyosarcoma (RD) CCL 136 cells transfected with 1μg of the pAAV.DUX4 

using LipofectamineTM 3000 (Invitrogen) and simultaneously treated with berberine. Total RNA was harvested 24 hours after transfection and 

treatment. GAPDH was used as a housekeeping gene. (A.) Top: schematic presentation of the transfected plasmid containing DUX4 driven by its 

native promoter sequence (D4P). Bottom: Downregulatory effect of the berberine on DUX4 expression from the transfected plasmid (B.) Top: 

Schematic presentation of the transfected plasmid containing DUX4 driven by a CMV promoter. Bottom: Downregulatory effect berberine on 

DUX4 expression from the transfected plasmid (C.) Top: schematic of the negative control plasmid expression eGFP driven by the CMV promoter.  

Berberine treatment in (A.), (B.) and (C.) was performed independently with N=3; N=6 and N=6, respectively (**p<0.01; ****p<0.0001, one -

way ANOVA). Error bars represent SEM. 
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5.3. Discussion 

Our understanding of the FSHD pathophysiology has advanced significantly in recent 

years (review: (Tawil et al. 2014). The current consensus recognises that the postnatal 

expression of the DUX4 is a key factor causing the disease. The novel finding showing 

that the GQ motifs present within the coding sequence of the gene, could potentially 

lead to further understanding the molecular mechanism that govern expression of the 

DUX4. In this study, we have demonstrated that berberine leads to downregulation of 

the DUX4 mRNA levels in FSHD immortalised patient cells. In addition, the ability of 

berberine to downregulate DUX4 expression could be specifically related to its 

coding/transcript sequence as demonstrated by the reporter studies.  

Since RNA GQs are implicated in mRNA transcription and processing, it is possible that 

the berberine treatment mediates downregulation of DUX4 mRNA by interference with 

these processes. For example, during transcription, the newly produced pre-mRNA 

sequence strand can fold into an intermolecular GQ structure with the coding (sense) 

DNA strand (Zhang et al. 2014). The RNA transcript sequence and the coding DNA strand 

require as little as two tandem G-tracks to form a stable GQ structure (Duquette et al. 

2004). Formation of such a hybrid RNA/DNA GQs has been predicted and confirmed in 

vitro using T7 RNA polymerase transcription, site specific mutagenesis and reporter-

based transient transcription assays (Wanrooij et al. 2012; Zheng et al. 2013). These 

studies conclude that formation of RNA/DNA hybrid GQ structures act as potential in-cis 

elements mediating transcription inhibition. The hybrid GQ structures are thought to be 

also involved in transcription termination as they have been observed to pause RNA 
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polymerase II transcription (Gromak et al.  2006; Skourti-Stathaki et al. 2011). The 

RNA/DNA GQ structures have been predicted to form downstream of poly(A) signals and 

since these motifs are very stable, a helicase Senataxin (SETX) is required to resolve 

these. Binding of SETX, promotes of endonucleolytic cleavage at the poly(A) and finally 

release of the newly synthesised pre-mRNA from RNA polymerase II (Gromak et al. 2006; 

Skourti et al. 2011). Therefore, berberine binding to RNA/DNA hybrid motifs formed 

from the DUX4 transcript and DNA coding strands could potentially prevent functions of 

the specific GQ helicases that ensure the resolution of these structures and 

consequently lead to premature transcription termination and DUX4 downregulation.  

In addition, the transcription termination is tightly linked to the polyadenylation process 

at the 3’end (Mandel, Bai, and Tong 2008). Briefly, the mammalian canonical 

polyadenylation involves pre-mRNA 3’UTR signals recognition (e.g., AAUAAA) by a 

multisubunit protein complex (CFI, CFII, CPSF and CstF). In the case of cellular stress and 

DNA damage, the CstF factor becomes sequestered and the polyadylation regulatory 

complex becomes inactive (Shi and Manley 2015). In the pre-mRNA of TP53, a GQ 

structure proximal to the polyadenylation sequence binds a hnRNP H/F slicing factor 

that in turn recruits and protects CstF from sequestration and allows efficient 

polyadenylation to occur (Decorsière et al. 2011). Perhaps DUX4 3’UTR sequences could 

also aid the process of polyadenylation of the DUX4 transcript, even under cellular stress 

conditions induced by the toxic transcription factor itself. Moreover, the berberine 

binding to the DUX4 RNA GQs could potential prevent formation of the polyadenylation 

complex by interfering with binding of its components (e.g., nhRNP H/F).  
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Three DUX4 transcript isoforms have been detected in primary FSHD myoblasts and 

myotubes (Dixit et al. 2007; Snider et al. 2009). In this study, only the two full-length 

DUX4 transcripts PCR that are thought to be responsible for the formation of the 

functional toxic DUX4 protein have been detected using RT-PCR-. However, there are a 

growing number of reports indicating that the DUX4 can also be alternatively spliced 

into a short isoform (DUX4-s) that would form a truncated protein with a functional DNA 

binding domain but lacking the effector domain (Jones and Jones 2018; Snider et al. 

2009). Therefore, the DUX4-s could potentially have an inhibitory effect on the function 

of the full length toxic protein variant by competing for the DNA target binding site. 

Interestingly, it has been demonstrated that the intronic and exonic RNA quadruplexes 

can be involved in the regulation of alternative splicing (review: Fay et al. 2017). A non-

exhaustive list of physiologically relevant genes that utilise quadruplex motifs to 

regulate splicing of their transcripts, include: B-tropomyosin, hTERT, PAX9, p53, BACE-1 

and FMR1 (Didiot et al. 2008; Fisette et al. 2012; Marcel et al. 2011; Ribeiro et al. 2015). 

Generally, the GQ formation regulates the splicing process by either masking binding 

sites of the target proteins or recruiting GQ-specific biding proteins (e.g., hnRNP protein 

family) (Dominguez et al. 2010). For example, formation of different Fragile X mental 

retardation protein isoforms is regulated by to the exonic GQ structures that provide a 

binding site for a splicing enhancer (Bensaid et al. 2009). By analogy, the GQ structures 

present within the exon 1 of the DUX4 transcript could potentially promote the 

expression of the DUX4-s isoform, which would not be detected by the primers used to 

detect the full-length variant here. Although it is not clear how berberine targeting GQ 

or how these motifs could regulate splicing by of the DUX4 transcript, these are 

interesting questions that could be addressed in the future.   
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The main hallmark of the FSHD molecular mechanism is loss of the epigenetic marks 

within the D4Z4 region leading to chromatin de-repression and DUX4 expression. An 

important epigenetic modificator, EZH2, has been previously found to be enriched 

within the D4Z4 repeat array in healthy primary myocytes, but not in the cells derived 

from the FSHD patients (Cabianca et al. 2012). EZH2 is one of the components of the 

PRC2 complex that acts as an epigenetic transcriptional repressor shown to regulate 

developmental processes and cancer (Sellers and Loda 2002). Interestingly, the EZH2 

has been found to bind to RNA GQs with significantly higher affinity compared to its DNA 

counterparts (X. Wang et al. 2017). It has been now well demonstrated that RNA GQs 

can play an important function in disease pathogenesis by sequestering important RNA-

binding proteins (Cammas et al. 2015). For example, a large hexanucleotide repeat 

expansion within intron 1 that leads to formation of stable RNA GQ structures within 

the pre-mRNA of C9orf72 gene (Reddy et al. 2013). The C9orf72 is a key factor behind 

the pathogenesis of ALS and its transcript’s RNA GQ has been demonstrated to bind and 

sequester important splicing and polyadenylation regulator (e.g., nhRNP H/F), leading 

to a global deregulation of RNA processing evens (Wang et al. 2015). Therefore, an 

interesting hypothesis arises suggesting that the DUX4 transcript could contribute to the 

disease pathogenesis by interfering with the epigenetic pathway regulating D4Z4 array 

repressive chromatin state. Targeting of the DUX4 RNA GQ with small molecules could 

potentially prevent sequestration of important epigenetic modificators (e.g., EZH2) and 

consequently result in DUX4 expression suppression.  

RNA GQ motifs found in open reading frames have also been found to act as 

‘roadblocks’, inhibiting progression of ribosomes along the mRNA, leading to 

significant decrease in protein synthesis efficiency (Endoh and Sugimoto 2016). The 
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RNA GQ downstream of start codon (downstream of 5’UTR) have been found to be 

particularly effective in blocking translation, as demonstrated in the context of KMT2A 

and MLL protooncogenes, where the in line probing combined with the G-A 

mutagenesis and the luciferase assay showed over 75% reduction in protein synthesis 

to be RNA GQ structure related (Thandapani et al. 2015). Presence of stable RNA GQ 

structures within the coding sequence of DUX4 could perhaps also negatively affect its 

translation, providing a potential explanation for the low levels of DUX4 protein 

present in the patient cells.  

Berberine treatment of the FSHD immortalised patient cells has led to significant 

decrease in cell viability. Since the immortalised clones were produced by 

retrotransduction of the hTERT gene, it has been anticipated that berberine could have 

an anti-proliferative effect on these cells (Krom et al. 2012). HTERT is an important 

enzyme involved in lengthening of the telomeric chromosome ends and maintaining 

chromosomal stability (Thorley et al. 2016). However, when overexpressed, it leads to 

cell immortalization and eventually results in wide range of cancers (Cong, Wright, and 

Shay 2002). It has been demonstrated that berberine strongly downregulates expression 

of hTERT and binds to GQ-forming telomeric ends sequences, resulting in growth 

inhibition of cancer cell lines (Fu et al. 2013). Therefore, the primary cause of berberine-

mediated decrease of viability of the patient cells could be a result of interference of the 

ligand with the immortalization pathways. It would be interesting to perform the same 

berberine treatment on primary FSHD patient cell lines to establish whether the 

cytotoxic effects of berberine are specifically attributed to the targeting of the hTERT-

related pathway present in the FSHD immortalised patient cells.  
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Berberine treatment has been demonstrated to lead to DUX4 mRNA downregulation in 

FSHD immortalised patient cells and in RD cells transiently expressing DUX4. 

Furthermore, the shift of the atrophic to disorganised myotube phenotype, could 

further suggest that the treatment is DUX4-specific as it has been previously implied 

(Ansseau et al. 2017). However, since berberine has been found to have a range of 

pharmacological activities, including anti-inflammatory, antimicrobial and anti-tumour 

effects, it is inevitable that berberine has DUX-nonspecific off-target effects (Ganesan 

and Xu 2017). This is also further supported by the fact that berberine, apart from the 

DUX4 transcript, it has a high affinity binding towards the GQ-forming sequences within 

its own enhancer and promoter regions (section 3.2). There is currently no feasible 

method to target specific GQs within the genome, having said that, new small molecule 

chemistries have begun to emerge that have high binding selectivity to GQ over duplex 

DNA or in some cases can even discriminate between RNA and DN GQ structures. Two 

small-molecule ligands have been recently developed able to target RNA GQs, namely 

carboxy pyridostatin and RGB1 (Di Antonio et al. 2012; Katsuda et al. 2016). Since the 

DUX4 transcript’s RNA GQ are demonstrated be a likely target of berberine that leads to 

its mRNA downregulation, it would be interesting to evaluate these RNA GQ specific-

ligands and their ability to suppress expression of the toxic transcription factor. The 

RBG1 is especially interesting candidate molecule, due to its ability to specifically bind 

RNA GQ not only over the DNA counterparts, but also other RNA structures.  

One promising strategy that could potentially address the specificity issue of small-

molecule RNA GQ targeting, is the use of antisense oligonucleotide (AO) chemistries. 

AOs can be designed to target GQ structures based on their sequence, which is the level 

of specificity currently unattainable by any other types of chemical compounds. Indeed, 
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disruption of RNA GQ folding of the H2AFY’s gene mRNA in human cell line has shown 

to interfere with its translational processes regulating the gene’s expression (Rouleau et 

al. 2015). A number of strategies, utilising various AO chemistries have been deployed 

over the years to regulate mRNA processing, including: interference with 5’-cap 

formation; splicing regulation, degradation of the transcript by the RNase H1-induced 

cleavage or interference with 3’UTR elements; and translation inhibition by interference 

with ribosome access (DeVos and Miller 2013; Marsollier et al. 2016). However, the 

strategy of modulating RNA GQ structures of DUX4 transcript using an AO approach to 

regulate its expression has not been studied. Since the antisense technology shows a 

very promising clinical potential as a treatment for muscular dystrophies, it provides an 

interesting avenue of research for development of novel therapeutic strategy to target 

the DUX4 expression.
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6. Final discussion, evaluation and future directions 

6.1. Summary of results 

The paramount objective of this thesis was to advance our understanding of the 

molecular mechanisms that lead to FSHD pathophysiology. More specifically, it aimed 

to investigate the strength and possible roles of GQ motifs forming within the genomic 

loci (e.g, enhancer and promoter) and transcript of DUX4.  These genetic regions of 

DUX4 were subjected to bioinformatic analyses to assess the potential formation of GQ 

structures. Novel putative GQ-forming sequences were predicted within the enhancer 

and promoter regions. In addition, the DUX4 transcript has been found to be particularly 

enriched in putative GQ motifs. Aided by these bioinformatic results, candidate 

oligonucleotide sequences were selected and analysed for the formation of the GQ 

structures in solution using CD and NMR. The biophysical analysis confirmed that the 

enhancer-, promoter-, and transcript-related putative GQ-forming oligonucleotides had 

indeed formed GQs is solution. Next, a binding interaction of berberine, a small-

molecule known to interact with GQs, with the GQ-forming candidate sequences was 

assessed. Berberine was shown to have a particular high binding affinity towards the 

DUX4 locus enhancer GQ-related sequence. The RNA GQ sequences appear to be 

weaker binders of berberine compared to the DNA counterparts.  

Due to an extensive focus of the scientific literature on promoter-related GQs 

(Balasubramanian et al. 2011), particularly in the context of oncogene expression, the 
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next task undertaken in this thesis was to investigate the role of the GQ-forming 

sequence within the promoter fragment of DUX4. First, substitution of the motif’s 

sequences was performed to disrupt the secondary structure and confirm GQ presence. 

Since the GQ- forming sequences were also predicted to have the potential to form 

alternative non-GQ hairpin structures, both of these putative motif types were disrupted 

by the sequence substitution as shown by the CD and NMR analysis. In addition, the 

mutagenised DUX4 promoter variants with the disrupted secondary structures were 

cloned upstream of an eGFP reporter cassette, to assess their activity to drive gene 

expression. The results demonstrated a statistically significant downregulation of gene 

expression driven by the promoter, with the deprived GQ-forming sequence, whereas 

the presence of hairpin-forming sequence has demonstrated to play no significant role. 

The experimental attempt to demonstrate that stabilisation of GQ-structures of the 

promoter using berberine resulted in enhanced expression was thwarted by the fact 

that berberine and GFP have overlapping emission/excitation wavelengths, which 

produced a significant signal noise in the flow cytometry readout. However, the 

mutagenesis studies, combined with previous literature (Armas et al. 2017) strongly 

suggest that due to the position of the GQ within the DUX4 promoter fragment (i.e., 

coding/positive strand and upstream of the TATA box), this structure could have a weak 

positive effect on transcription by contributing to double helix unwinding, which allows 

easier access of the transcriptional machinery binding. Although we concluded that the 

investigated promoter GQ sequence is a most likely weak, finely tuning in-cis element 

regulating DUX4 expression, its potential to form an intramolecular GQ structure with 

its corresponding enhancer sequence to control the interaction between these two 

crucial transcriptional elements is a very interesting but unexplored possibility. 
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Finally, in chapter 5 the effects of berberine on DUX4 mRNA expression were 

investigated in FSHD immortalised patient cells. The small molecule was demonstrated 

to have a strong downregulatory effect on expression of the toxic transcription factor as 

well as its downstream target genes, without a negative effect on the fusion index 

processes of the treated cells. Furthermore, it has been demonstrated that the potent 

downregulation of the DUX4 expression is likely to be related to berberine-mediated 

interferences of mechanisms mediating transcription and/or transcript processing as 

demonstrated in the reporter-based assay. Considering that the DUX4 transcript is 

enriched in GQ-forming sequences, bound with high affinity by berberine, strongly 

suggest the small-molecule mediated downregulation of DUX4 is a result of its binding 

to the DUX4-specific GQ motifs. Although the molecular mechanisms of berberine-

mediated DUX4 downregulation are not clear at this stage, the potential GQ-related 

pathways of the compound have been discussed in section 5.3. 

6.2. Evaluation and future directions 

The field of GQ epigenetics of FSHD has been previously virtually unexplored. This work 

provides the first comprehensive set of evidence indicating the presence of GQs in DUX4 

genomic loci, and transcript, that could potentially play an important role in the 

regulation of gene expression. The understanding of GQ biology is ever-expanding and 

the novel techniques to evaluate their role are constantly being developed. 

Furthermore, cellular and animal models that help recapitulate FSHD are also emerging. 

Taking advantage of the recent advancements in these scientific fields could significantly 

advance understanding of the FSHD-related GQ function.  
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Since it has been found that the DUX4 DME1 enhancer sequence forms a very stable GQ 

structure that binds berberine with high affinity, it would be interesting to investigate 

the role of the motif in a similar way to that used to examine the promoter elements. 

For example, the enhancer elements could be included in a reporter gene system and 

its intramolecular GQ-forming sequences disturbed through mutagenesis, and/or 

stabilised by small-molecule (e.g. berberine) binding, to determine the potential role of 

the motif on the gene expression regulation. Clearly, if berberine was to be used to 

assess the DME1 enhancer GQ function, an alternative cassette expressing a protein 

would be required with different excitation/emission to spectra to berberine to avoid 

the interference of the signal readout from the flow cytometry seen with eGFP. 

Alternatively, the luciferase reporter system could be used, where the signal is a result 

of an enzymatic reaction, and the reporter product serves as a substrate and therefore 

would not result in formation of a fluorescent activity by berberine.  

Although protein binding to the DUX4 promoter fragment has been previously assessed 

(Sharma et al. 2016), studies describing DUX4 enhancer-associated in-trans factors are 

not currently available. It would be therefore interesting to investigate DUX4 

promoter/enhancer-associated proteins and determine, whether the GQ-forming 

motifs influence these interactions by for example performing ChIP analysis. RNA-

binding proteins associated with the DUX4 transcript could also be investigated and 

evaluated for their potential to interact with the RNA GQ structures.  

The biophysical tools used in this thesis show the formation of GQ structures in isolated 

short sections of a given sequence. However, the bioinformatic analysis has 

demonstrated that the transcript sequence in particular is enriched in multiple 
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(potentially overlapping) RNA GQ sequences. Recently, a method has been developed 

where long stretches of RNA sequences can be footprinted for the presence of GQ by 

performing the 7-deazaguanine substitution (Weldon et al. 2017). The 7-deazaguanine-

substituted RNA is not able to form GQs, which allows differential identification of the 

structures in the control RNA sequences. Therefore, it would be interesting to confirm 

the DUX4 transcript GQ structures identified by bioinformatic and biophysical analyses 

in our studies using this novel foot-printing method. 

Accurate mapping of the DUX4 RNA GQ could also aid rational design of specific AOs 

that could target and potentially disrupt the structures by competitive hybridisation and 

interference with structural components (e.g., G-tetrad sequences) that are essential for 

the formation of the motif. The AO-mediated targeting of the DUX4 RNA GQs could help 

understand their potential role in regulating the transcript processing such as splicing 

and/or polyadenylation. 

Development of animal models for the FSHD has proven difficult over the years. The 

main hurdle behind modelling of FSHD is the fact that the D4Z4 microsatellite repeat 

region containing the DUX4 gene is conserved only to Old World primates, which has led 

to the absence of naturally-arising models of the disease in common animal species used 

in laboratories (Leidenroth and Hewitt, 2010). Attempts to create a mouse animal model 

that carries the contracted FSHD1 or full wild-type D4Z4 allele was performed (Krom et 

al. 2012). However, despite achieving a genetic signature equivalent to the one seen in 

the FSHD patient (i.e. detectable levels of DUX4 and dysregulation of its downstream 

genes) no disease-specific phenotype could be recapitulated in these animals (Krom et 

al. 2012). Recently, a cre-inducible DUX4 transgenic mouse has been created that 
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manifests the FSHD -related myopathy (Jones and Jones, 2018). However, the promoter 

and enhancer elements that have been introduced to drive DUX4 expression in this 

model, were not endogenous to the transcription factor, which eliminates the possibility 

of studying the GQ structures related to these transcriptional elements.  

Another approach to model the FSHD pathogenesis has utilised adeno-associated virus 

mediated delivery of myopathic DUX4 gene constructs in vivo (Wallace et al. 2012). At 

the time of writing of this thesis, it has been decided to deliver the AAV vector expressing 

the DUX4 (kindly provided by Dr Harper, The Ohio State University) into mouse (wild-

type C57BL/6) muscle tissue and investigate if berberine treatment could potentially 

prevent the disease phenotype. Interestingly, the initial results indicate that berberine 

treatment reverses the DUX4- induced histopathological changes of the muscle tissue 

by significantly reducing the central nucleation and fibrotic markers (Dr. Lu-Nguyen, 

Personal communications). In addition, the berberine treatment also reduces the DUX4 

protein levels as well as significantly improving muscle function as demonstrated by the 

improved muscle specific force of the berberine-treated tissue (Dr. Lu-Nguyen, Personal 

communications). It is important to note the DUX4 expression from the AAV vector was 

driven by the non-endogenous CMV promoter that lacks functional GQ motifs (Huang et 

al. 2012; Salvati et al. 2014). Therefore, it can be speculated that the berberine-

mediated DUX4 downregulation is specific to stabilisation of the GQs forming in the 

transcript rather that to the promoter/enhancer-related GQs. This was supported by the 

finding that berberine shows strong binding affinity towards the DUX4 RNA GQs (e.g., 

E1 and SS1 RNA GQs) (section 3.2.4). Even though berberine does not induce structural 

changes to these RNA GQs, as reported in the case of the DUX4 promoter-related GQ, 

strong binding of berberine to the DUX4 RNA GQ structures alone could lead to 
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downregulation of gene expression. The suggested mechanisms explaining DUX4 

downregulation mediated by the berberine biding to the gene’s transcript were outlined 

in section 5.3. 

Considering the vast growth in the scientific advancements of both FSHD and GQ fields, 

multiple exciting opportunities arise for the future research that can combine and 

further explore the two domains of study. 

6.3. Concluding remarks 

The molecular mechanisms that underlie FSHD pathogenesis have been investigated for 

over two decades. Here we make a scientific contribution to the field by showing that 

the GQ structures are novel epigenetic elements involved in regulating DUX4 expression. 

Future work on GQ function in FSHD may facilitate the identification of new drug targets 

and the development of new treatments for the disease as well as fully confirm 

authenticity of the observed GQ structures as important components in the molecular 

pathology of FSHD. 
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APPENDIX: Scientific publications 

Research Article: Antisense targeting of 3’end elements involved in DUX4 

mRNA processing is an efficient therapeutic strategy for Facioscapulohumeral 

Dystrophy: a new gene silencing approach 

Anne-Charlotte Marsollier, Lukasz Ciszewski, Virginie Mariot, Linda Popplewell, Thomas Voit, 

George Dickson, Julie Dumonceaux. 

Hum Mol Genet. 2016 Apr 15;25(8):1468-78 

ABSTRACT: 

Defects in mRNA 3’ end formation have been described to alter transcription 

termination, transport of the mRNA from the nucleus to the cytoplasm, stability of the 

mRNA and translation efficiency. Therefore, inhibition of polyadenylation may lead to 

gene silencing. Here, we choose Facioscapulohumeral Dystrophy (FSHD) as a model to 

determine whether or not targeting key 3’end elements involved in mRNA processing 

using antisense oligonucleotide drugs can be used as a strategy for gene silencing within 

a potentially therapeutic context. FSHD is a gain-of-function disease characterized by 

the aberrant expression of the DUX4 transcription factor leading to altered pathogenic 

deregulation of multiple genes in muscles. Here we demonstrate that targeting either 

the mRNA polyadenylation signal and/ or cleavage site is an efficient strategy to 

downregulate DUX4 expression and to decrease the abnormally high pathological 

expression of genes downstream of DUX4. We conclude that targeting key functional 

3’end elements involved in pre-mRNA to mRNA maturation with antisense drugs can 

lead to efficient gene silencing and is thus a potentially effective therapeutic strategy for 

at least FSHD. More over polyadenylation is a crucial step in the maturation of almost 

all eukaryotic mRNAs, and thus all mRNAs are virtually eligible for this antisense-

mediated knockdown strategy. 

 

 

 

 

 

 

 



259 
 

 

Book Chapter: Antisense Oligonucleotide Targeting of 3’-UTR of mRNA for Expression 

Knockdown 

 

Golnoush Golshirazi, Lukasz Ciszewski, Ngoc Lu-Nguyen, Linda Popplewell 
 

‘Exon skipping and Inclusion Therapies’ Methods Molecular Biology, Vol 1828, ISBN:978-1-

4939-8650-7 

 

Abstract: 

 

With the recent conditional approval of an antisense oligonucleotide (AON) that 

restores the reading frame of DMD transcript in a subset of Duchenne muscular 

dystrophy patients, it has been established that AONs sharing similar chemistry have 

clear clinical potential. Genetic diseases, such as facioscapulohumeral dystrophy (FSHD), 

can be the result of gain-of-function mutations. Since mRNA processing in terms of 

termination of transcription, its transport from the nucleus to the cytoplasm, its stability 

and translation efficiency are dependent on key 3’UTR elements, it follows that targeting 

these elements with AONs have the potential to induce gene silencing. Aberrant 

expression of the Double homeobox 4 (DUX4) transcription factor and the downstream 

consequences of such expression is the hall-mark of FSHD. Here we describe the 

bioinformatic strategies behind the design of AONs targeting polyadenylation signals 

and the methodologies relevant to their in vitro screening for efficacy and safety, 

including analysis of expression at the transcript and protein level of the specific target 

and downstream genes, and measurement of the effect on the fusion index of 

myotubes. The targeting of permissive DUX4 and MSTN are used as examples. MSTN 

encodes for myostatin, a negative regulator of myogenesis; the downregulation of 

MSTN expression has the potential to address the muscular atrophy associated with 

muscular dystrophies, sarcopenia, cancer and acquired immunodeficiency syndrome. 


