
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Competition between local erasure and long-range spreading of
a single biochemical mark leads to epigenetic bistability

Citation for published version:
Ancona, M, Michieletto, D & Marenduzzo, D 2020, 'Competition between local erasure and long-range
spreading of a single biochemical mark leads to epigenetic bistability', Physical Review E, vol. 101, no. 4,
042408. https://doi.org/10.1103/PhysRevE.101.042408

Digital Object Identifier (DOI):
10.1103/PhysRevE.101.042408

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Physical Review E

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 06. Nov. 2020

https://doi.org/10.1103/PhysRevE.101.042408
https://doi.org/10.1103/PhysRevE.101.042408
https://www.research.ed.ac.uk/portal/en/publications/competition-between-local-erasure-and-longrange-spreading-of-a-single-biochemical-mark-leads-to-epigenetic-bistability(fca018f7-c262-48e0-9533-0839d6a45a6a).html


Competition between local erasure and long-range spreading of a single biochemical
mark leads to epigenetic bistability

Marco Ancona,1 Davide Michieletto,1, 2, 3 and Davide Marenduzzo1

1SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
2MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine,

University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
3Centre for Mathematical Biology, and Department of Mathematical Sciences,

University of Bath, North Rd, Bath BA2 7AY, United Kingdom
(Dated: March 12, 2020)

The mechanism through which cells determine their fate is intimately related to the spreading of
certain biochemical (so-called epigenetic) marks along their genome. The mechanisms behind mark
spreading and maintenance are not yet fully understood, and current models often assume a long-
range infection-like process for the dynamics of marks, due to the polymeric nature of the chromatin
fibre which allows looping between distant sites. While these existing models typically consider
antagonising marks, here we propose a qualitatively different scenario which analyses the spreading
of a single mark. We define a 1D stochastic model in which mark spreading/infection occurs as
a long-range process whereas mark erasure/recovery is a local process, with an enhanced rate at
boundaries of infected domains. In the limiting case where our model exhibits absorbing states, we
find a first-order-like transition separating the marked/infected phase from the unmarked/recovered
phase. This suggests that our model, in this limit, belongs to the long-range compact directed
percolation universality class. The abrupt nature of the transition is retained in a more biophysically
realistic situation when a basal infection/recovery rate is introduced (thereby removing absorbing
states). Close to the transition there is a range of bistability where both the marked/infected and
unmarked/recovered states are metastable and long lived, which provides a possible avenue for
controlling fate decisions in cells. Increasing the basal infection/recovery rate, we find a second
transition between a coherent (marked or unmarked) phase, and a mixed, or random, one.

I. INTRODUCTION

The field of epigenetics studies how inheritable changes
in gene expression can arise without any changes in the
DNA (genetics) of a certain organism [1, 2]. These pro-
cesses are important, for instance, to explain how dif-
ferent cells of the same eukaryotic organism – which are
genetically identical – specialise to give rise to different
tissues. One well-characterised way to store epigenetic
information in a cell is via biochemical modifications, or
marks, of the histone octamers which associate with the
eukaryotic DNA to form the “chromatin fibre” [3]. Exist-
ing evidence points to the fact that such modifications are
quite dynamic, and are constantly deposited and erased
over time by a vast range of epigenetic enzymes, com-
monly referred to as “writers” and “erasers”. Focussing
on a given genomic region, different parameters can ei-
ther favour or hinder deposition of a mark along DNA,
resulting in an effective “spreading” (or erasure) of the
mark in that region. A key fact is also that epigenetic
marks are globally lost following cell division, hence they
need to be re-established in a robust way at each genera-
tion. This is crucial as, for instance, a skin cell needs to
retain the epigenetic memory of its state following divi-
sion (and not to turn into a different type of cell). At the
same time, epigenetic plasticity (a cell’s ability to gen-
erate different epigenetic patterns given suitable cues)
is necessary during cellular reprogramming or differen-
tiation from a pluripotent progenitor [4, 5]. Single-cell

experiments in yeast suggest that stochastic transitions
between two epigenetic states (i.e., characterised by the
presence or absence of a particular epigenetic mark), can
occur either over the cell lifetime, or over a few genera-
tions [6, 7]. This is especially the case in “weakened” re-
gion of the genome, where, for instance, nucleation sites
are missing or defected [8]. Intermittent switching be-
tween two epigenetic states is therefore possible, and is
commonly referred to as “epigenetic bistability” [2].

A number of dynamical models have been proposed in
the literature to explain the phenomenon of epigenetic
memory and bistability [2, 3, 5, 9–14]. These previous
works have typically considered the interplay between
two competing marks: methylation of histone 3 at lysine
9 (H3K9me, or methylation for brevity) which is asso-
ciated with inactive genes, and acetylation of the same
residue (H3K9ac) which is associated with active genes.
The kinetic rules used in those models give rise to a com-
petition between the two marks [2], which may in turn
yield bistability between a globally active and inactive
state [2, 15], via a symmetry breaking mechanism loosely
similar to that through which the Ising model selects its
stable state [5]. Such systems can then retain memory of
their (active or inactive) state even in the presence of an
external perturbation – such as the stochastic loss of a
large fraction of the marks during DNA replication [2, 5].
We highlight, though, that one-dimensional models ex-
hibiting bistability in this way typically require the ad-
dition of one or more intermediate states [2, 9]. Another
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Figure 1. Microscopic rules. Representation of the transition rules for methylated/infected sites (blue circles) and demethy-
lated/recovered ones (white circles). (a) Site i, which is unmarked in this case, is in long-range contact with site j (here,
j = i − 5). If j is marked, i can become methylated through a long-range “infection” at a rate qλ(1 + λ). (b) If j (here,
j = i + 5) is unmarked, i can still become infected spontaneously, at rate qλ. (c) To simulate the erasing process, a marked
site i can be recovered to the unmarked state at rate qµ(1 + µ) when at least one of the two neighbouring sites is unmarked.
(d) A marked site i that is flanked by marked sites can spontaneously loose the mark at rate qµ.

generic mechanism for bistability, alternative to spon-
taneous symmetry breaking, is the proximity to a first-
order transition in a finite system: in this case, either
switching between two states or coexistence can appear
near the transition region [16]. Not only can this ex-
plain bistability, but, in the context of heterochromatin
(inactive chromatin) spreading and inheritance, it gives
a natural explanation of the cell fate memory through
epigenetic robustness across generations [10]. The model
we propose here explores this alternative route to bista-
bility. We believe this is relevant to explain bistability
and memory even in stretches of chromatin where a sin-
gle epigenetic mark can be deposited or erased, rather
than in ones where multiple marks compete with each
other [2].

Our work is structured as follows. In Section II we
define the model, listing the steps of our Monte Carlo al-
gorithm (Section IIa). In Section III we show that albeit
our model, for suitable parameter choices, can be mapped
onto a Long-Range Directed Percolation process (LRPD),
it also falls, in some other limits, into a totally different
“non-universality” class, which shares some features with
the Long-Range Voter Model (LRVM). In Section IV we
discuss our findings when the model is studied in a bi-
ologically relevant parameter space. It should be noted
that, while our model is inspired by the spreading and es-
tablishment of epigenetic marks on the genome of cells,
our framework is generic and indeed our findings would
hold for an epidemic process that follows the same mi-
croscopic infection/spreading and recovery/erasure tran-
sition rules. The terms “infected” and “recovered” are
frequently used to describe the state of a system in epi-
demics and in percolation-like models. Since our work
shares some features with these models, we will make
use of both the terminologies interchangeably through-
out the following of this paper. Specifically, we will speak
of an infected state or phase to indicate a biochemically
marked state or phase, and we will refer to a recovered
state or phase to denote an unmarked state or phase.

II. THE MODEL

We assume that the spreading of a mark occurs
through long-range contacts mediated by the polymer
substrate, the chromatin fibre. This polymer – made
of DNA wrapped around histone octamers – is folded in
3D space and experiments have shown that its contact
probability is a power-law distribution [17, 18]:

P (l) ∝ l−(σ+1), l→ +∞ (1)

where l is the distance along the chromatin fibre and
σ > 0 is the contact exponent. In other words, the
spreading of epigenetic marks can be described in terms
of a Lévy distribution [2]. Interestingly, the contact ex-
ponent defining this distribution can depend on cell type,
stage of the cell cycle [19] and on the chromosome consid-
ered [20]. Therefore, in our model, σ will be treated as a
“free” parameter, and we show that different values yield
qualitatively different behaviours. We should mention
that, by using the contact probability in Eq. (1), we are
assuming that the timescale associated with chromatin
relaxation is smaller than, or comparable to, the one re-
lated to the spreading of marks. Experiments suggests
that, at least in some cases, this is realistic. For instance,
in yeast the estabilishment of an epigenetic state can take
generations [6], whereas in mice the spreading of hete-
rochromatin occurs at a rate of ∼ 100 nucleosomes/day
[21], while the coherent motion of chromatin can be of
about 10µm/day [22] (which is approximately the size of
a nucleus).

In order to model the erasure of H3K9me (or methyla-
tion) marks we argue that this is more likely to happen
at the boundary of an infected domain rather than in the
bulk. This difference might arise, for instance, if diffu-
sion of the enzyme responsible for lifting the epigenetic
mark is hindered by the strongly crumpled conforma-
tion assumed by regions of the genome enriched of such
a mark [5] or if the enzyme possesses binding sites for
both methylated and demethylated histones. Therefore,
we describe mark erasure as a “local” process and we as-
sume it is more probable in the presence of gradients in
the density of methylation marks.
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II. A. MC algorithm rules and relevant quantities

Our model is defined on a lattice of N sites, which can
be either in the demethylated/unmarked/recovered state
or the methylated/marked/infected state (the exact ter-
minology used is traditionally dependent on the research
field). Each site is associated with a dichotomous vari-
able mi, which can be respectively either 0 or 1. The
transition rules are specified in the following way (see
Fig. 1):

0i1j
qλ(1+λ)−−−−−→ 1i1j

0i0j
qλ−→ 1i0j

(2)

1i0i±1
qµ(1+µ)−−−−−→ 0i0i±1

1i−11i1i+1
qµ−→ 1i−10i1i+1

(3)

In words, if a site i is unmarked (mi = 0), it can be-
come marked at rate qλ(1 + λ) when it enters in contact
with a methylated site j (mj = 1). Otherwise, if mj = 0,
it can convert spontaneously with rate qλ. The site j is
selected by drawing the distance |i−j| from a normalized
power-law distribution:

P (|i− j|) = ζ(σ + 1)|i− j|−(σ+1) i 6= j. (4)

where ζ(α) = (
∑∞
n=1 n

−α)−1. Once the site j is selected,
the conversion rate can therefore be written as

q0→1 = qλ(1 + λmj). (5)

Conversely, if site i is marked (mi = 1), it can become
unmarked at rate qµ(1+µ) if it is at a domain boundary,
that is if mi−1mi+1 = 0. Otherwise, if mi−1mi+1 = 1
– i.e., if the site is flanked by two marked sites – it can
be demethylated with a basal rate qµ. In other words
the sites in the domains bulk are more protected from
erasure. The recovery rate can thus be written as

q1→0 = qµ [1 + µ(1−mi−1mi+1)] . (6)

The algorithm proceeds with random sequential updates,
and each timestep (sweep) consists ofN conversion trials:

1) Extract a random integer number between 1 and
N , which selects the i-th site. If mi = 1, jump
directly to step 4;

2) if mi = 0, choose with probability 1/2 one of the
two directions to attempt a long-range infection
event;

3) draw a random number z from a uniform distribu-
tion between 0 and 1, then consider the real number
r = z−1/σ, round it to the smaller positive integer
dre so that j = mod{i ± dre, L} + θ(−i ∓ dre)N ,
where mod{·, ·} indicates the modulo operation be-
tween two integers, θ is the Heaviside function, and
the ± depends on the direction choosen in step 2;

4) perform a conversion with rate q = (1−mi)q0→1 +
miq1→0.

Note that the values of λ and µ are bound by the values
q−1λ,µ − 1, where qλ,µ ≤ 1. To compare time in simulation
units to physical time, one may calculate and compare
any of the dimensionless quantities obtained by multi-
plying time with one of the rates. This means that a
time step in our simulation equals the inverse long-range
methylation rate (or the inverse demethylation rates at
a domain boundary).

In the following, we will mainly consider the rescaled
rates qλλ = λ̄ and qµµ = µ̄, which, as we will see, play
a relevant role in the dynamics of methylation/infection.
To describe the global methylation/infection state, we
use the order parameterm ≡ 〈m〉 = 1/N

∑N
i=1mi, which

is the fraction of infected sites in the lattice. Another rel-
evant quantity which is important in the presence of ab-
sorbing states is the survival probability, S(t), namely the
probability that the system has not reached any absorb-
ing states up to time t. The survival probability generally
depends on the initial condition, and we consider an ini-
tial condition with a single infected seed in the following.
We will study the behaviour of the survival probability
in Section III; since our model entails a non-equilibrium
phase transition between the totally recovered (m = 0)
and infected phases (m 6= 0), we pinpoint the location
of the transition point by looking for a power-law be-
haviour of S(t) (see, for instance, Fig. 2c), that is far
more efficient than searching for a discontinuity in the
order parameter m or in its derivative.

III. DYNAMICS WITH ABSORBING STATES

The first terms in Eqs. (2) and (3), qλ and qµ, are two
basal rates which represent respectively spontaneous ac-
quisition and deletion of methylation marks. Within the
problem of understanding how epigenetic marks spread,
it is natural to set these rates non-zero to account for
biological noise and imperfect writing and erasure by the
respective enzymes. Yet, it is instructive to consider first
the situation in which either one or both the basal rates
are zero: these cases lead to interesting physics, and help
to better understand the behaviour of the general system.

If any of the basal rates is zero, there are absorbing
states in the dynamics of the system. If qλ → 0 there is
one absorbing state (m = 0); if qλ, qµ → 0, the absorbing
states are two (eitherm = 0, orm = 1). As the absorbing
states are configurations from which it is not possible
to escape, detailed balance is violated and the resulting
system is out-of-equilibrium.

As we shall show, our model displays non-equilibrium
phase transitions of different type, depending on the
number of the absorbing states (either one or two), which
reflects the symmetries involved in the corresponding ef-
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Figure 2. Kymographs and survival probability for
LRDP. In the first two panels we show two typical kymo-
graphs at the transition point, and with µ̄ = 0.2, for respec-
tively (a) σ = 1.0 (b) σ = 2.0. Note that there are no very
compact domains. (c) Power-law trends of S(t) for two val-
ues of the contact exponent (σ = 1.0, blue lines, and σ = 2.0,
green lines), with µ̄ = 0, and the corresponding value of the
critical exponent δ (respectively dashed and solid black lines)

. For clarity, we also show the survival probability just
above and below the transition, which display the typical
decay and saturation. (d) By varying the value of µ̄ the

survival probability does not change. The critical properties
of the system, then, do not depend on the local erasing, but

only on the global erasure rate.

fective action (see Appendices). This model is respec-
tively either in the LRDP non-universality class – and
characterised by a second-order phase transition with a
σ-dependent exponent – or, alternatively, can be mapped
onto the Long-Range Compact Directed Percolation (LR-
CDP), – characterised by a first-order phase transition
with a discontinuity in the average infected/methylated
fraction of sites m. It is well known that the standard
Compact Directed Percolation (CDP) – i.e., the case with
short-range interactions – falls in the same universality
class of the Standard Voter Model (SVM) in d = 1. More-
over, critical exponents can be exactly computed, since
the dynamics can be seen as an annihilation problem be-
tween two random walkers [23].

There are also studies of the annihilation of Lévy
flights [24, 25] and of the Voter Model with long-range
interactions/infection [26]: however, their aim is distinct
from the one we pursue here. In particular, these works
direct their efforts towards the computation of the dy-
namical exponent α characterising the decay of the den-
sity of infected sites, ρ, with time, i.e., ρ ∼ t−α. This
requires simulations which start with uniform density or

fully disordered configurations. Here, instead, we fo-
cus on the survival probability exponent δ(σ) in simu-
lations where the initial configuration has a single in-
fected/methylated site (single seed simulations). Such
condition is typically used to compute the dynamical ex-
ponent δ, since one expects a power law dependence of
the survival probability with time – i.e., S(t) ∼ t−δ –
for t � 1. Our aim is to: (i) check that in the limit
of qλ → 0 (qµ finite) the contact process belongs to the
LRDP non-universality class (Section IIIA), and (ii) show
that in the limit qλ, qµ → 0 our model falls in a different
non-universality class, which is the LRCDP one (Section
IIIB). To the best of our knowledge, the latter case has
never been studied systematically, and for this case we
compute the critical exponent δ.

III. A. Limit qλ → 0

In the limit where qλ → 0 and λ → +∞ such that
the product qλλ ≡ λ̄ is finite and qµ > 0, the system
cannot recover from the totally demethylated state. The
unique absorbing state is defined by m = 0. In this
limit, our epigenetic model can be recast as an infection
model with long-range infection and a single absorbing
state. As such, we expect it to be in the same universality
class of long-range DP. The phenomenological equation
for LRDP reads [27]:

∂tm = κm− gm2 +DA∇σm+
√

Γmζ (7)

where, in general, κ = κ(λ̄, µ̄, qµ, σ), DA is the coefficient
of anomalous diffusion, ∇σ denotes a fractional deriva-
tive, and Γ is the strength of the noise ζ. This equa-
tion predicts two different stable states in the mean field
treatment: for κ < 0 the stable state is the absorbing
one, defined by m = 0, whereas for κ > 0, the stable
state is m = κ/g. Clearly the system is critical at κ = 0.

In agreement with our expectation, the exponents
found for simulations 103 timesteps long on a N = 10000
lattice give results in accordance with those found for
LRDP in Ref. [27] (Fig. 2 in this paper should be com-
pared with Fig. 2 and Fig. 4 in Ref. [27]). Two represen-
tative kymographs are shown in Fig. 2, for σ = 1.0, 2.0
at the critical point. Note that, when the infection pro-
cess is long-range, multiple infected nuclei can be gener-
ated very far away from the original seed (see Fig. 2a).
Conversely, when it is short-range, the infected domains
are more gathered around the original seed position (see
Fig. 2b). In any case, domains are not compact – i.e.
there are holes within every single domain.

In Fig. 2c the power law behaviour of S(t) at criti-
cality is shown, and we find δ(σ = 1.0) ' 0.501 and
δ(σ = 2.0) ' 0.256, which are compatible with the ex-
ponents found in [27] . We cannot compute the survival
probability for σ ≤ 0.5, that is the mean-field regime (see
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Figure 3. Kymographs at the transition point. Representative kymograph of the infection/methylation profile, when the
system is at the critical point (κ = 0 in Eq. (8), S(t) is a power-law). (a) For σ = 0.4 no compact domains can live for long
times, and the systems falls into the absorbing states after few hundreds timesteps. (b) For σ = 1.5 the main domain remains
compact and lives for the entire duration of the simulation. Other domains can be created and erased. (c) For σ = 4.0 the
only active compact domain is generated by one infected seed. it can live for a virtually infinite time.

Appendix B), since the long-range correlation are too im-
portant, and the finite-size effects are not negligible. Fi-
nally, we show that the exponent is independent of the
value of µ̄ (see Fig. 2d), which just modifies the value of
qµ at which the system is critical. In other words, mod-
els with only gradient-dependent (or “local”) recovery are
in the same universality class as models with global re-
covery terms at a fixed σ. This is consistent with the
relevant terms in the Reggeon effective field theory (see
Eq. (22)), which are the same for every value of µ̄ since
the structure of the absorbing state is given, as shown in
Appendix B.

III. B. Limit qλ,qµ → 0

In the limit in which qλ, qµ → 0, and λ, µ → +∞, in
such a way that the quantities qλλ, qµµ remain finite, the
second reactions in Eqs. (2) and (3) are both suppressed,
and the methylation/demethylation dynamics takes place
only if the system is not fully demethylated/methylated.
Indeed, in this case there are two absorbing states de-
fined by m = 0, 1. The presence of two rather than one
absorbing states modifies the universality class, so that
the system is no longer equivalent to LRDP. Again, if
we define qλλ = λ̄ and qµµ = µ̄, the prototypical phe-
nomenological equation for the field m(x, t) is:

∂tm = κm(1−m) +DA∇σm+
√

Γm(1−m)ζ , (8)

where κ is a generic function of the microscopical rates
λ̄ and µ̄. Unlike Eq. (7), the effective action built from
Eq. (8) has another symmetry under the transformations
m → 1 − m and m̂ → −m̂ (see Appendix A), which is
the reason why this variant of the model behaves differ-
ently from LRDP. Eq. (8) predicts that for κ < 0 the
completely demethylated state m = 0 is stable, whereas

for κ > 0 the stable state is m = 1. At κ = 0 the system
undergoes a discontinuous transition for every value of σ.

In Fig. 3 are shown three representative kymographs
of the infection dynamics at the transition, for different
values of the contact exponent σ. These kymographs
are obtained by evolving our microscopic model, detailed
in Section II, choosing µ̄/λ̄ so that the system is at the
transition between fully marked and unmarked phases.
For σ = 0.4 we see that no compact domains can form;
instead, the infected/methylated domains are full of holes
due to the long-range infection process, and at late times
the system falls into the absorbing state m = 0 (Fig. 3a).
For σ = 1.5 a compact domains opens in the middle of
the lattice: this can also create additional domains by
infecting regions of the lattice far away from it, since the
interactions are still long-range (see Fig. 3b). For σ = 4.0
the infection profile looks very similar to a typical CDP
kymograph, with a single fluctuating compact domain
which can virtually persist forever (Fig. 3c).

In Fig. 4a we show the survival probability as a func-
tion of time, for different values of σ ≥ 0.6. For σ > 2
the slope approaches the value predicted for the SVM
(δ = 0.5). Indeed, one would expect that for σ ≥ 2 the
substitution ∇σ → ∇2 holds and Eq. (8) becomes the
well-known equation of CDP. This is, however, not the
case: the system displays a smooth crossover between the
long range and the short range behaviour, with the latter
being re-established only at σ & 4.0, as shown in Fig. 4c
and its inset. A similar crossover has been found in other
models with Lévy flights, such as the LRDP [27] and the
LRVM [24]. Interestingly, we note that approximately
the same value for the crossover which we obtain was
found in Ref. [26] for the LRVM. Moreover, it is known
that the SVM and CDP belong to the same universality
class in d = 1, but not in other physical dimensions.
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linearly with the contact exponent. For σ < 1 (mean-field regime, MF) the location of the transition point is still compatible
with the linear scaling, but cannot be computed for σ < 0.6. In the inset we show the divergence of the survival exponent δ as
a function of σ.

For smaller values of the contact exponent than those
considered in Fig. 4a (i.e., for σ < 0.6) no power law can
be detected in our simulations, see Fig. 4b. This fact may
be due to finite-size effects, which can be strong for such
long interactions. Nevertheless, we observe that, after a
very small transient, the survival probability decays ex-
ponentially, S(t) ∼ exp(−k(σ)t). This exponential decay
is absent for σ greater than 0.6 − 0.7. Such crossover is
highlighted in Fig. 4b, where we replot the survival prob-
abilities for σ = 0.7, 0.8 in log-linear scale, which do not
present any exponential decay. This change in behaviour
is compatible with an analysis of the Reggeon field theory
(see Appendix A), which predicts a mean-field behaviour
for σ < 1, as the real dimension d is above the upper
critical dimension dc = σ.

We close this Section by discussing how we can map
the microscopic rates λ̄ and µ̄ to the effective parameter
κ entering the phenomenological theory in Eq. (8). To
do so, we note that, in the limit σ → +∞, the only
sites which can be modified are those at the boundary of
the domain. Therefore κ = 0 only if µ̄ = λ̄/2, and we
conjecture the following form for κ(σ):

κ(σ) =
(

1− µ̄

λ̄
f(σ)

)
(9)

where f(σ) is a monotonic function which satisfies
f(+∞) = 1/2. Such behavior is validated by simulations:
in Fig. 4c we show the location of the transition point
as a function of σ. For σ < 2 the transition point scales
linearly with the contact exponent, whilst for σ > 2 it de-
cays slowly towards µ̄/λ̄ = 0.5. This indicates that σ = 2
is the crossing point between the short-range regime and
the long-range behaviour. Interestingly, the value of δ
seems to diverge for smaller and smaller values of σ (see

inset in Fig. 4c); such divergence signals the crossover to
the exponential decay regime shown in Fig. 4b.

IV. PHASE DIAGRAM OF THE SYSTEM, AND
CONNECTION WITH EPIGENETICS

We now consider a more general case where all parame-
ters are non-zero, so that there are no absorbing states in
the system (qµ, qλ 6= 0). This is likely to be more realistic
as it includes the case where there is some generic bio-
logical noise. In line with previous models for bistability
in epigenetic patterns [2, 15], we consider a small chro-
matin region, with N = 100 beads/nucleosomes. This
is a realistic size to study, for instance, stochasticity in
epigenetic domains in yeast [2, 16], or a single chromatin
domain of about 20000 base pairs in larger genomes (as
in mammals).

To render the exploration of parameter space feasible,
we set qµ = qλ = q0, and λ̄ = µ̄ = 1−q0, and we study the
behaviour of the model by varying the parameters q0 and
σ. Physically, q0 can be viewed as a temperature-like pa-
rameter that regulates the baseline marking/unmarking
rates. Additionally, the biologically relevant values of σ
are between 0 and 1 [28]. As this exponent should be
associated with the looping probability of a polymer rep-
resenting the chromatin fibre [29], the value of σ = 0.5
corresponds to looping of a random walk, σ ' 1 corre-
sponds to looping of a self-avoiding walk [29], whereas
σ ' 0 describes the decay of contact probability with ge-
nomic distance in a crumpled (or fractal) globule [30, 31].

In Fig. 5a we present the phase diagram obtained nu-
merically for N = 100, for different values of q0 and
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Figure 5. Phase diagram (a) Phase diagram as a function of q0 and σ for a system with N = 100. A transition between a
marked and an unmarked regime can be seen; the black line correspond to systems where 〈m〉 = 0.5. The green line instead
separates a coherently unmarked regime from the disordered, or mixed, regime. (b) Variance of the fraction of marked sites
in the system, 〈(∆m)2〉. This quantity peaks close to the transition between the marked and unmarked regimes highlighting a
region of enhanced bistability.

for σ between 0.1 and 0.7. To find this phase diagram,
we used a truncated Lévy distribution to simulate long-
range infection – i.e. P (|i − j|) = A|i − j|−(σ+1), where
A = σ/(1 − (N/2)−σ). This procedure was employed in
order to limit boundary effects and it can be shown that
it simply shifts the location of the transition line to a
slightly smaller value of σ.

The phase diagram in Fig. 5a shows three distinct
phases. First, for small value of q0, although no real ab-
sorbing state is present, the system still tends to reach a
typical state with large 〈m〉 (methylated regime), or with
small 〈m〉 (demethylated regime). For sufficiently small
values of σ, or equivalently sufficiently long interaction
range, long-range methylation dominates over demethy-
lation (bottom left region in the phase diagram). For
larger σ, the fact that the erasure is more likely at do-
main boundaries tilts the balance in favour of demethyla-
tion, and 〈m〉 ' 0 (top left region in the phase diagram).
Finally, at sufficiently large values of q0, mean field the-
ory applies. The latter predicts that methylation and
demethylation should balance giving m = 1/2 in steady
state (as we consider λ̄ = µ̄). This is the mixed regime,
where methylated and demethylated sites coexist in a dis-
ordered system, and it is found to the right of the green
line in Fig. 5a. Note that, by using a truncated Lévy dis-
tribution, one can also extend the phase diagram in Fig. 5
to negative value of σ. However, for N = 100, we do not
expect any different qualitative behaviour from the dia-
gram line σ = 0.1, since we are in the mean-field limit
for which all the sites connect with each other. More-
over, such values for σ would be forbidden in the limit
N →∞, since Eq. (1) would not be integrable.

The line separating the coherent – either marked or
unmarked – regime from the mixed one (which we call

the coherence transition line) can be mapped out by
analysing the probability distributions of m in steady
state, for different parameter values, as shown in Fig. 6.
In particular, in Fig. 6 we show the effective potentials
V = −log(P (m))– where P (m) is the probability distri-
bution function for m in steady state – in the different
regions, for the representative values of σ = 0.2 and 0.6.
In the methylated phase/regime (for σ = 0.2, m ∼ 1)
the global minimum is located at m = 1 (see Fig. 6a).
For σ = 0.6, we are in the demethylated phase, and the
global minimum is now located at m = 0. Increasing
q0 at small σ, the system first becomes demethylated
(Fig. 6c, 〈m〉 ∼ 0.3), while for sufficiently large values
of q0 the effective potential has a global minimum for
0 < m < 1 (Fig. 6d), and the system is in the mixed
phase. The green line in Fig. 5a provides the boundary
between the coherent regime (minimum at either m = 0
or m = 1) and this mixed phase/regime. It should be
noted that, outside the mixed regime, we always find two
local minima at m = 0 and m = 1, so that both these
two states are always at least metastable in the coherent
regime. Besides this widespread bimodality, there is a ro-
bust bistability region close to the transition between the
methylated and the demethylated regime: this is appar-
ent from Fig. 5b, which shows the variance 〈(∆m)2〉 as a
function of q0 and σ. Bistability arises due to the proxim-
ity to the methylated-demethylated transition. Because
the P (m) distributions are always bimodal, the transi-
tion is sharp and first-order like, hence coexistence (and
bistability) naturally arise near the critical line. In the
bistable region, therefore, our model predicts that epige-
netic domains should be highly stochastic and may switch
over time.

To better understand our simulation results, we now
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Figure 6. Methylation effective potentials. In this figure
we show some representative plots of the effective potential
V (m), for σ = 0.2 (red solid line) and σ = 0.6 (green dashed
line). For σ = 0.2, the increasing values of q0 we consider cross
both the marked/unmarked transition line and the coherence
transition line. For σ = 0.6, the values of q0 we consider
cross only the coherence transition line. (a) For small q0 the
distribution is bistable, with the global minimum located at
m = 1 and m = 0, respectively for σ = 0.2 and σ = 0.6. (b)
The increase of q0 produces a change in the weights associ-
ated with the two minima. (c) After the transition point the
global minimum becomes m = 0 in both the cases even if for
σ = 0.6 we are already beyond the coherence transition line.
(d) For q0 = 0.04 the system is in the mixed phase and the
resulting unimodal distributions depend only very weakly on
σ, since (1) would not be normalized.

discuss a simple analytically tractable approximation
which is inspired by the stochastic field theory for long-
range compact directed percolation, Eq. (8). Neglecting
the spatial dependency of the order parameter (gradient
term), we can write down a dynamical equation for the
global methylation in our model, m, as follows,

∂tm = q0(1− 2m) + κm(1−m) +
√
Qm(1−m)ζ. (10)

The first term in Eq. (10) allows recovery from them = 0
and m = 1 states, which are then no longer absorb-
ing state. Additionally, Q is the strength of the mul-
tiplicative noise, and ζ is a Gaussian random variable,
with 〈ζ(t)〉 = 0 and 〈ζ(t)ζ(t′)〉 = δ(t − t′). Note that
we have neglected also the basal (additive) noise. We
want to solve the Fokker-Planck equation associated with
Eq. (10), for the probability P (m, t) that the system has
a global methylation m at time t. This equation reads as
follows

∂tP (m, t) = ∂2m

[
Qm(1−m)

2
P (m, t)

]
− ∂m [(q0(1− 2m)P (m, t)]

− ∂m [κm(1−m))P (m, t)]

≡ −∂mJ(m).

(11)

By imposing no-flux boundary condition, J(m) = 0,
we obtain the following equation for the steady state dis-
tribution P (m):

∂mK(m) =
2 [q0(1− 2m) + κm(1−m)]

Q [m(1−m)]
K(m) (12)

where we set P (m) ≡ (Q/2)m(1 −m)K(m). Then, the
stationary probability distribution reads:

P (m) ∼ 1

m(1−m)
×

exp

(
2

∫ m q0(1− 2m′) + κm′(1−m′)
Qm′(1−m′) dm′

) (13)

After some algebra, we find that the system is therefore
described by the following effective potential V (m):

V (m) ∝ (1− q0)κ̃m− (q0 −Q)log [m(1−m)] (14)

Since λ̄ = µ̄ = 1− q0 in our microscopic model, we have
assumed κ = (1−q0)κ̃. Therefore, there are three param-
eters, which are fundamental in the mean-field treatment,
namely q0, κ and Q. For q0 < Q P (m) is bimodal, since
V (m) is minimised for m = 0, 1 – where V (m) diverges.
Conversely, for q0 > Q, V (m) becomes unimodal and it
is minimised for

m∗ =
1

2
− x

κ̃
+
|κ̃|
κ̃

√
1

4
−
(x
κ̃

)2
(15)

where x ≡ (q0−Q)/(1−q0). Thus, the line q0 = Q deter-
mines a transition line separating the region where the
probability is bimodal, and the system is coherent (here
with m = 0), from the unimodal region where there is a
single stable state. Note that κ̃ determines the methy-
lation level in the latter case: if κ̃ > 0 then m∗ > 1/2,
otherwise m∗ < 1/2. In all cases, m∗ approaches 1/2 as
q0 tends to 1. In Fig. 7 we present a sketch of the line
separating the bimodal (epigenetically coherent) from the
unimodal/mixed regime according to the analytical the-
ory in Eq. (10). Note that such boundary is independent
of the value of κ̃. Additionally, if we postulate that the
sign of the linear term in Eq. (15) changes, for instance
with σ, λ̄, and µ̄, we can describe cases where the co-
herent regime may correspond to either a methylated or
demethylated phase (top-left inset in Fig. 7).
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V. DISCUSSIONS AND CONCLUSIONS

In summary, we have proposed here a simple 1-
dimensional stochastic model for the dynamics of mark
spreading and erasure inspired by the problem of how
the epigenetic marks spread along the genome. This is
distinct from previous models [2, 9, 11, 15], which typi-
cally consider the case where two or more different marks
compete within the same region. The case studied here
is more appropriate for the study of stochastic gene si-
lencing in yeast, where methylation of H3K9 by, e.g.
Clr4, is counteracted by an active erasure process by, e.g.
Epe1 [32]. Within our model, methylation is viewed as a
long-range “infection” process mediated by the looping of
the chromatin substrate. Importantly, while infection is
long range, we assume that the erasure/recovery occurs
locally and is enhanced at domain boundaries. This as-
sumption is motivated, for instance, by the idea that a
highly folded or crumpled heterochromatin domain may
be difficult to access by a demethylase protein. On aver-
age, the most accessible sites of such a domain are thus
the ones close to the domain one-dimensional ends. Our
local recovery rule may also be enacted by a protein that
has binding sites for both marked and unmarked sites and
thus is more frequently recruited at sites with gradient
in the density of marks.

In our microscopic model, we varied the exponent
σ, regulating the global folding of the chromatin poly-
mer (and hence the range of the infection process),
as well as the baseline rate of spontaneous methyla-
tion/demethylation, q0. For simplicity, we have taken
the methylation and demethylation rates to be equal,
and for efficiency we have assumed the rate of long-range
methylation and of demethylation at a domain boundary
to both equal unity. The phase diagram in the (q0, σ)
plane shows two distinct transition line. First, there is a
transition between a coherent regime (either methylated
or demethylated), and a disordered, or mixed, regime
(where marked and unmarked nucleosomes coexist with
no domain formation). Second, in the coherent regime
there is a transition between a methylated phase, when
long-range infection is efficient (small σ), and a demethy-
lated phase when infection is shorter-range (large σ). In-
creasing q0 favours the demethylated phase in our pa-
rameter range: we interpret this as due to the bound-
ary erasure term which tips the balance in the favour of
demethylation, when σ is sufficiently large, and for real-
istic system size, say, of a hundred units/histones.

We have shown that the transition between coherent
and mixed regimes can be understood on the basis of a
simple stochastic differential equation which is analyti-
cally tractable, and which predicts there is a qualitative
change in the nature of the effective potential govern-
ing the steady state behaviour of the system. At low
q0, the potential has two local minima (m = 0, fully
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Figure 7. The bistable-unimodal transition, or the co-
herence transition line. This phase diagram displays the
transition between a bistable (BS), or coherent, phase and a
monostable (MS), or mixed phase, as they are predicted by
the mean-field theory. In the first phase (white) the two min-
ima of the effective potential V (m) are m = 0, 1. In inset we
show a typical bistable potential, for q0 = 0.001, Q = 0.01,
in both the cases κ̃ > 0, green line, and κ̃ < 0, purple line
(|κ̃| = 0.1). In the latter phase only one minimum is present,
and its locationm∗ varies from 0 close to the transition to 0.5,
for q0 = 0 (if κ̃ is negative). In inset we show a typical uni-
modal potential, for q0 = 0.1, Q = 0.01 and κ̃ = −0.1. Colors
in the unimodal (mixed) regime are related to the value of m∗

for a fixed value of κ̃ = −0.1.

demethylated, or m = 1, fully methylated), whereas at
larger q0 noise dominates and there is a single minimum
at intermediate m. The transition between methylated
and demethylated phase, on the other hand, can be un-
derstood qualitatively as a transition between absorb-
ing states in the limit where q0 → 0. In this limit, we
have shown that the model is mappable onto a special
case of the contact process, known as long-range com-
pact directed percolation, which encompasses the voter
model with a long-range interaction. If we modify rates
such that only one absorbing states remain, the univer-
sality class changes and becomes, as expected, that of
“standard” (i.e., non-compact) long-range directed per-
colation, which has been well studied in the literature on
contact processes [27].

In this q0 → 0 limit, the transition between the two
absorbing states (here methylated and demethylated) is
a sharp, first-order-like transition, and this appears to be
the case also for the transition at q0 6= 0, in the epige-
netically coherent phase. The first-order nature of the
transition endows the system with bistability and hys-
teresis close to the critical line [16]. This provides a
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pathway to the establishment of epigenetic memory – the
phenomenon through which a chromatin region “remem-
bers” its state even following a relatively strong pertur-
bation [10]. This is different from other 1D models of
epigenetic dynamics [2], where bistability arises due to
symmetry breaking in the epigenetically coherent phase,
which is either fully methylated or fully acetylated. In-
terestingly, and in stark contrast with other models, in
the unstable regime also the unmarked phase can retain
memory of its state.

It is tempting to speculate that cells may tune the σ
and q0 parameters, which are associated with the con-
formational changes of chromatin and the bare affinity
of the writing/erasing enzymes, so as to control the vari-
ability in the epigentics patterns and thus, in turn, the
variability in gene expression within the same popula-
tion. Recent experiments in yeast support the idea that
this may be a biological bet-hedging strategy for survival
against random attacks [33].

Acknowledgements We thank the European Research
Council (ERC CoG Grant FQ 623 No. 648050 THREE-
DCELLPHYSICS) for funding.

APPENDIX A: EFFECTIVE ACTION FOR
LRCDP AND POWER COUNTING

In this Appendix we briefly review the construction of
the Reggeon effective field action, specifically for the LR-
CDP process, through which is possible to individuate an
upper critical dimension to our model, when in the pres-
ence of absorbing states. Similar actions have been intro-
duced and discussed in previous papers and reviews on
both short-range and long-range infection processes [23–
25, 34, 35]. If we consider the phenomenological equation
in (8), we can introduce the effective field lagrangian den-
sity:

L[m̂,m] = m̂(x, t)
[
(∂t −DA∇σ)m(x, t)− κm(x, t)(1−m(x, t))−

√
Γm(x, t)(1−m(x, t))ζ(x, t)

]
(16)

where m̂ is the response field and we have omitted any
possible short range contribution which would be rep-
resented by ∇2 (this term is negligible if σ < 2). The
associated effective field action reads:

S =

∫
dtddx L[m̂,m]. (17)

By integrating exp(−S) over the functional measure
Dm̂DmDζP [ζ], one gets the partition function Z in the

field-theory treatment. The noise ζ is gaussianly dis-
tributed:

P [ζ] = exp

[
−
∫

dtddx
ζ2(x, t)

2

]
. (18)

The integration over Dζ can be explicitly performed,
leading to the following effective action:

S =

∫
dtddx m̂(x, t)

[
(∂t −DA∇σ)m(x, t)− κm(x, t)(1−m(x, t))− Γ

2
m̂(x, t)m(x, t)(1−m(x, t))

]
(19)

It is easy to find by a simple power counting the scaling
dimensions of the coupling constant κ and Γ [36]. Intro-
ducing the length scale l−1, and assuming that DA has
null naive dimension, we derive:

x ∼ l−1, t−1 ∼ lσ

m̂ ∼ ld, m ∼ l0

κ ∼ lσ, Γ ∼ lσ−d
(20)

For κ = 0 the only coupling constant Γ has null naive
dimension if d = σ, which demonstrate that the upper
critical dimension is dc = σ. As d = 1 in our model,

we expect a mean–field behaviour for σ < 1 (since Γ be-
comes irrelevant), and a non-trivial behaviour for σ > 1.
Note also that the action in Eq. (19) is not symmet-
ric under the so-called rapidity-reversal transformation
m̂(x, t) → −m(x,−t). Instead, for κ = 0, it is symmet-
ric under the transformation m(x, t) → 1−m(x, t) and
m̂→ −m̂. Clearly, the different symmetry involved pro-
duce a different universality class compared with LRDP
(for each σ).
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APPENDIX B: LRDP EFFECTIVE ACTION AND
POWER COUNTING

In this section we show how our model crosses over the
LRDP non-universality class in the limit qλ → 0 with
λ̄ finite. The introduction of a global deletion rate qµ
changes the structure of the absorbing states, see the
main text. Therefore, the noise in the phenomenological
equation becomes

√
Γmζ and the Reggeon effective field

action in the Eq. (19) can be modified as follows:

S =

∫
dtddx m̂(x, t)

[
(∂t −DA∇σ)m(x, t)− κm(x, t)(1−m(x, t))− qµm(x, t)− Γ

2
m̂(x, t)m(x, t)

]
(21)

By using the substitution κ−qµ → κ′ and κ→ g′, and
omitting the primes, we find the effective field action of

Eq. (7). Then, by rescaling the field with the length scale
l′ such that m̂→ l′m̂ and m→ l′−1m with l′ =

√
2g/Γ,

we obtain

S =

∫
dtddx m̂(x, t)

[
(∂t −DA∇σ)m(x, t)− κm(x, t)−

√
Γκ

2
(m̂(x, t)−m(x, t))m(x, t).

]
(22)

Note that the action written in Eq. (22) satisfies the
rapidity-reversal symmetry. By a power counting similar
to the one performed in Appendix A, we find

x ∼ l−1, t−1 ∼ lσ

m̂ ∼ ld/2, m ∼ ld/2

κ ∼ lσ, Γ ∼ l 2σ−d2 .

(23)

Therefore, the upper critical dimension for LRDP is dc =
2σ [27].
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