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Energy-Efficiency Maximization of Hybrid Massive
MIMO Precoding with Random-Resolution DACs

via RF Selection
Evangelos Vlachos, and John Thompson, Fellow, IEEE.

Abstract—Energy-efficiency (EE) is identified as a key 5G
metric and will have a major impact on the hybrid beamforming
system design. The most promising system designs include a
reduced number of radio-frequency (RF) chains with digital-to-
analog converters (DACs) of lower sampling resolution. However,
naive reduction of beamformer components to reduce power con-
sumption typically leads to significant loss of spectral-efficiency
(SE). In this paper, we focus on the transmit beamforming
(precoding) and we introduce an architecture with low-end
components that maximizes the EE while minimizing the effects
on SE. This is achieved by the novel design of the analog part of
the precoder, where the number of the RF chains is not reduced a
priori, but deactivated based on an optimization algorithm. Thus,
the problem becomes a subset selection one, where only the RF
chains with the optimal SE-EE performance are being activated.
The selection algorithm not only determines the optimal number
of RF chains to activate but also selects optimally between DACs
of randomly-allocated resolution. Through simulations, we verify
that the proposed architecture exhibits improved performance
when compared with baseline precoding techniques which use a
predefined number of RF chains with low-resolution DACs.

Index Terms—Energy-efficiency maximization, low-resolution
digital-to-analog converter (DAC), millimeter wave (mmWave),
massive MIMO, hybrid beamforming.

I. INTRODUCTION

The conventional microwave frequency spectrum between
the range of 300 MHz and 10 GHz is increasingly occupied
which highlights the need to use the available spectrum for
future wireless communication systems. Adopting millimeter-
wave (mmWave) spectrum can resolve this issue [1], [2] and
provide improved rate performance [3]. Some more advantages
of using a mmWave frequency band are increased capacity,
improved coverage, lower latency, high mobility and reliabil-
ity, and lower infrastructure costs [4]–[6]. However, the prop-
agation characteristics associated with a mmWave spectrum
induce some challenges such as high path loss. This can be
compensated by using large-scale antenna arrays leading to a
massive multiple-input multiple-output (MIMO) system. The
use of large-scale antennas and wide bandwidths at mmWave
MIMO systems makes it hard to implement one radio fre-
quency (RF) chain and associated digital-to-analog/analog-to-
digital converter (DAC/ADC) components per antenna [7]. The
analog-only beamforming approach [8], [9] hardly supports
multi-user communication and cannot implement multi-stream

Evangelos Vlachos is with the Industrial Systems Institute, Athena Research
Centre, Patras, Greece. (e-mail: evlachos@isi.gr). John Thompson is with the
Institute for Digital Communications, The University of Edinburgh, U.K. (e-
mail: j.s.thompson@ed.ac.uk).

communication with a single RF chain only. To provide higher
data rates, the 5G New Radio technology [10] will support
Hybrid BeamForming (HBF) [11] with up to four spatial
streams for communication. This technology capitalizes on
both analog and digital signal processing to enable a large
number of antenna elements to be connected to a much smaller
number of RF chains.

Lately, the high fidelity specifications considering the sam-
pling resolution of the DACs/ADCs have been alleviated, and
designs with lower resolution DACs/ADCs are being proposed
[12]. In particular, since DACs/ADCs components have large
power consumption, lowering their resolution significantly
reduces the overall system power consumption, at the expense
of the introduced distortion to the transmitted/received signal.
The effect of low-resolution ADCs on channel capacity has
been studied for MIMO channels in [13]–[15]. An approxi-
mated linear model to capture the effect of the low-resolution
DACs/ADCs is the additive quantization model (AQNM) [16].
Although it is only a rough approximation of the non-linear
effect, due to its simplicity it has been adopted by many
authors in the massive MIMO literature [16]–[18].

The idea of a mixed-ADC architecture has been first in-
vestigated in [17] for massive MIMO systems. The authors
developed an optimal detector to provide a minimum mean-
squared error (MMSE) estimate on data symbols with the
use of the combination of low and high-resolution ADCs.
Reference [16] employs AQNM for the case of a point-to-
point mmWave MIMO system, while [18] and [19] for the case
of mmWave fading channels. In [20], the energy-efficiency
(EE) and spectral efficiency (SE) for low-resolution ADC HBF
architecture are studied, showing the advantages of a low-
resolution HBF with few RF chains over an infinite resolution
ADC structures. In [21], the SE of uplink massive MIMO with
low-resolution ADCs are studied, showing that few ADC bits
are enough to achieve almost the same SE of unquantized
MIMO.

In [22], joint optimization of the ADC resolution and the
number of antennas is studied, where a particle swarm opti-
mization algorithm has been proposed to obtain a near-optimal
non-uniform bit allocation for the ADCs. The results showed
that having optimized, higher than 1-bit bit resolution for the
ADCs, is beneficial in terms of EE for the case of MIMO
systems. In [23], a closed-form solution has been proposed for
a minimum mean square quantization error problem subject to
a constraint on the total ADC power, showing that allocating
more bits to the RF chain with stronger channel gain is
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beneficial. Theoretical analysis of these results is provided
in [24]. For the transmitter side, reference [25] uses low-
resolution DACs for a single user MIMO system while [26]
employs low-resolution DACs at the base station (BS) for a
narrowband multi-user MIMO system. In [27], a single user
MIMO system with quantized hybrid transmit beamforming
including the RF quantized noise term is considered while
evaluating EE and SE performance.

A. Motivation and Contributions

To meet the increased capacity requirements of next-
generation mobile networks, novel designs have to be em-
ployed. For this reason, even fully-digital massive MIMO
beamforming designs for the mmWave frequencies [28] have
appeared, despite the high hardware complexity and power de-
mands. However, for power-limited scenarios, e.g., unmanned
aerial vehicle (UAV) aided communications, there is a need
for novel designs that will provide both high energy and
spectral efficiency. Align with this direction are dynamic
HBF architectures that will be able to change their properties
depending on the operating environment requirements. Steps
to this direction are designs with dynamic structure [29]–[31]
and dynamic bit allocation [32].

In this paper, we build on the direction of dynamic HBF
structures, to jointly maximize the EE and SE of a mmWave
massive MIMO system with hybrid precoding. To do so, we
introduce a novel precoding architecture, where the RF chains
can be activated/deactivated based on an optimization algo-
rithm on a frame-by-frame basis. A preliminary work related
to the proposed technique has been presented in [31], where
a subset selection approach is introduced to minimize the
required power over a constraint of the minimum information
rate. However, only equal bit allocation is considered and the
fractional EE optimization problem was not solved optimally.
In this work, we consider that the implemented RF chains are
equipped with DACs of randomly-allocated resolution. Each
RF chain is equipped with a low-resolution DAC. The key
contributions of this paper can be summarized as follows:

1) We investigate joint EE and SE maximization for the
scenario of power-limited BS with a large antenna array.

2) We introduce a novel dynamic analog precoding archi-
tecture, which employs a large number of RF chains
with DACs of randomly-allocated resolution.

3) We develop a selection algorithm that activates only a
subset of the RF chains in an optimal manner.

4) We express the optimization problem via fractional
programming and we introduce random bit allocation
for the DACs to transform it into a subset selection one.

The SE-EE performance of the proposed technique is
investigated through extensive simulation results, achieving
increased energy efficiency compared to other baseline tech-
niques with predefined DAC resolution and RF chains, as
well as an exhaustive search-based approach which finds the
optimum number of RF chains and bit resolution which is
common for all DACs.

TABLE I
THE NOTATIONS OF THIS PAPER.

a,a and A Scalar, vector, and matrix
j ,
√
−1 The imaginary unit

AT and AH Matrix transpose and Hermitian transpose
A−1 and A† Matrix inverse and pseudo-inverse

[A]i,j Matrix element at the i-th row and j-th column
[a]i The i-th vector element

A and Â Actual and estimated matrix
IN N ×N identity matrix

0N×K N ×K matrix with zeros
IN×K Column concatenated matrix [IN 0N×K ]

Ω Matrix containing 0’s and 1’s
‖ · ‖F Matrix Frobenius norm
× Scalar multiplication
◦ Element-wise (Hadamard) matrix product
⊗ Kronecker product

tr(A) The trace of matrix A
vec(A) Vectorization of A

unvec(A) Inverse operation of vec(·)
diag(a) Diagonal matrix with a on the main diagonal

B. Notations and Organization

A summary of the notation used throughout this manuscript
can be found in Table I.

The paper is organized as follows: Section II presents
the channel and system models where the channel model is
based on the mmWave channel properties and the system
model defines the low-resolution quantization at the trans-
mitter. Section III presents the problem formulation for the
proposed technique and the solution to obtain an energy-
efficient transmitter. Section IV verifies the proposed technique
through the spectral efficiency and energy efficiency plots.
Section V sums up the outcomes of the proposed work in
the paper.

II. HYBRID MMWAVE MIMO SYSTEM

A. Millimeter wave channel model

Considering the point-to-point mmWave channel of the k-th
user, with NT transmitting and NRk

receiving antennas, the
mmWave channel matrix can be written as follows [7]:

Hk =

√
NTNRk

NclNray

Ncl∑
i=1

Nray∑
l=1

αk,i,lar(φ
r
k,i,l)a

H
t (φtk,i,l), (1)

with k = 1, . . . ,K, Ncl is the number of the clusters and Nray
is the number of the propagation paths in each cluster for the
narrowband channel; αk,i,l ∈ CN (0, σ2

α,i) is the gain term with
σ2
α,i being the average power of the ith cluster. Furthermore,

at(φ
t
k,i,l) and ar(φ

r
k,i,l) represent the normalized transmit and

receive array response vectors, where φtk,i,l and φrk,i,l denote the
azimuth angles of departure and arrival, respectively. We use
uniform linear array antennas for simplification and model the
antenna elements at the transmitter as ideal sectored elements.
We assume the transmit antenna gains to be unity over the
sectors defined by φtk,i,l ∈ [φtmin, φ

t
max]. For signal wavelength

λ and inter-element spacing d, and considering azimuth angles
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of departure, the transmit array response vector can be written
as follows [33]:

at(φ
t
k,i,l) =

1

NT

[
1, ej

2π
λ d sin(φtk,i,l), ..., ej(NT−1) 2π

λ d sin(φtk,i,l)
]T
(2)

and similarly for the receive array response vector ar(φ
r
k,i,l).

Note that, although the narrowband channel is a simplified
model for mmWave communications, in this work it is being
used to provide a proof of concept for the proposed technique.
An investigation of the wideband case is being left as future
work.

B. System model

We consider a HBF transmitter (TX) with NT TX antenna
elements, sending Ns data streams.. This transmitter serves K
user terminals at very high data rates, where each terminal
has NR receiving antenna elements. In this work, we focus
on the design of the TX for EE maximization but also for
high SE requirements. To achieve high data rates along with
energy efficiency, we assume that the TX is equipped with a
large number of RF chains LT ≤ NT [34]. Each RF chain
i, with i = 1, . . . , LT, has a DAC which transforms the
infinite precision digital input to an analog output. Practically
quantization in DACs is necessary since the precision of the
input values has to be reduced to be transformed into the
analog domain. Additionally, to drastically reduce the power
consumption, we consider low precision for the DACs at the
TX RF chains, i.e., the number of the bits for the quantization
of the i-th DAC is bi ∈ [1, 8]. It is known that by reducing the
quantization resolution b at the DAC, the consumed power is
exponentially reduced, i.e., PDAC ∼ eb. However, this power
reduction via low-resolution DACs introduces quantization
noise to the transmitted signal, thus, a trade-off design criterion
between power efficiency and signal fidelity is obtained.

The TX operation is decomposed into three main parts, as
shown in Fig. 1:

1) the baseband precoder FBB ∈ CLT×Ns , where Ns is the
number of independent transmission streams,

2) the LT RF chains with a tunable resolution DAC at each
chain with Q(·) the quantization function, i.e.,

Q(·) : CLT×1 → {q1, . . . , qM}LT×1, (3)

where qj ∈ R, for j = 1, . . . ,M , denote the M
quantization levels, and

3) the analog transmit precoder FRF ∈ FNT×LT , where
FNT×LT denotes the set of matrices with entries of
constant modulus.

At the receiver side, we define the matrix Wk ∈ CNRk
×Ns

as the receiver combiner of the k-th user. Given that the
vector s ∈ CNs×1 represents the vector with the independent
transmission symbols, then the TX broadcasts the vector

t , FRFQ(FBBs), (4)

with t ∈ CNT×1 and E{ss∗} = PTX

Ns
INs , where PTX represents

the transmit power. The discrete-time received signal at each
user terminal k is expressed as:

yk = WH
k HkFRFQ(FBBs) + WH

k n, (5)

where yk ∈ CNs×1 and n ∈ CNRk
×1 is a noise vector

with entries which are i.i.d. and follow the complex Gaussian
distribution, i.e., n ∼ CN (0, σ2

nINRk
).

The concatenated received signal y ∈ CNs×1 for all user
terminals, k = 1, . . . ,K, can be expressed as:

y = WHHt + WHn, (6)

where
W , [W1 · · ·WK ]T ∈ CNR×Ns ,

H , [HT
1 · · ·HT

K ]T ∈ CNR×NT ,

with
∑K
k=1NRk

= NR.

C. Approximation model for quantization

Let us consider the well-known Bussgang’s model [35] for
the linear approximation of the introduced distortion of the
quantization noise [36]. Given that Q(·) denotes a uniform
scalar quantizer then for the scalar input s we have that

Q(s) ≈ δs+ ε, (7)

where δ =

√
1− π

√
3

2 2−2b is the multiplicative quantization
parameter for bit resolution equal to b, which characterizes
the fidelity of the quantized output [25], [37]. Parameter ε
is the additive quantization noise with ε ∼ CN (0, σ2

ε ). The
quantization noise variance σ2

ε is equal to E [|ε|2]. Note that
δ ∈ (0, 1] where the upper bound is achieved at the limit of
b → ∞. Therefore, the higher the bit resolution, the lower
distortion (or higher fidelity) is introduced into the quantized
values.

Remark: In this work we focus on modeling the nonlinearity
effect of DACs. However, the approximation (7) could also
include the nonlinearity effect of power amplifiers (PAs) [36].
This extension is left for future work.

Extending this scalar model to the HBF MIMO case we
have:

Q(FBBx) ≈∆FBBx + ε, (8)

where Q(FBBx) ∈ CLT×1 and FBB is the baseband transmit
beamforming matrix, ∆ ∈ RLT×LT is a diagonal matrix with
values depending on the DAC resolution bi, for i = 1, . . . , LT.
Specifically, each diagonal entry of ∆ is given by:

[∆]ii =

√
1− π

√
3

2
2−2bi . (9)

Following the analysis in [27] and [24], the second term of
(8) expresses the additive quantization noise for all RF chains,
with ε ∈ CN (0,Cε) with

[Cε]ii =

√
1− π

√
3

2
2−2bi

√
π
√

3

2
2−2bi . (10)

This leads us to the following linear approximation for the
transmitted signal, as seen at the output of the HBF TX:

t̃ , FRF (∆FBBx + ε) = FRF∆FBBx + FRFε, (11)

where t̃ ∈ CNT×1 is the output signal at the TX based on the
linear approximation model for the quantization function.
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... Digital part

ADC/
DAC

ADC/
DAC

...

RF Chain

RF Chain

Analog
part ...

User 1

...

User K

Fig. 1. Block diagram of a hybrid analog/digital (A/D) transmit beamforming MIMO system with NT TX antenna elements and LT number of RF chains.
Each user terminal is equipped with NR antennas.

After the effect of the wireless mmWave channel and after
the RF processing at the RX, the received signal based on the
linear approximation model is given by:

ỹ = WHHt̃ + WHn (12)

= WHHFRF∆FBBx + WH
k HFRFε + WH

k n︸ ︷︷ ︸
,η

, (13)

where ỹ ∈ CNs×1 and ηk ∈ CNs×1 is the combined effect of
the Gaussian and quantization noise for all users, with η ∼
CN (0,Rη). The Hermitian symmetric matrix Rη ∈ CNs×Ns
is the combined noise covariance matrix with

Rη = WHHFRFCεC
H
ε FHRFHHW + σ2

nWHW. (14)

Remark: In this work, we assume perfect CSI at the
TX and frequency synchronization (as in, e.g., [23], [24],
[27]). Additionally, we consider that the PAs operate in their
linear regime, thus, they are not further distorting the TX
signal. However, our formulation makes no assumptions on
the structure of noise covariance matrix Rη . Thus, the effects
of phase noise and PAs distortion may be incorporated into
the noise term, η.

When the linear approximation model for the quantization
is applied at the transmitting signal, the achievable spectral
efficiency (ASE) for k-th user is expressed as function of the
fidelity parameter, ∆, i.e.,

R(∆) , log2 |INs +K/NsR
−1
η WHHFRF∆FBB

FHBB∆FHRFHHW| (bits/s/Hz), (15)

where Rη is defined in (14).

D. DACs power consumption model

An exact computation of the power consumption of a HBF
TX is a complex task since it depends significantly on the
adopted structure and hardware technology [38]. In this work,
the focus is on the optimization over the active RF chains
LT and the resolution of the corresponding DACs. Thus, the
provided framework aims to be generic and applicable to any
HBF structure that uses a given number of RF chains.

The power consumption of the i-th RF chain with a DAC
of bi-bits resolution can be expressed as [27]:

Pi , PCγ2bi , (16)

where γ is a parameter that depends on the sampling frequency
and the DAC hardware specifications, while PC is the required
power of the other components that exist in the RF chain,
e.g., low-power-amplifier, filters. Note that in our analysis we
assume that γ = 1. Given that all RF chains have similar
components, the overall power consumption can be expressed
as:

PRF({bi}LT
i ) =

LT∑
i=1

Pi = PC

LT∑
i=1

2bi , (17)

which is a function of the bit resolution bi for each DAC.
Alternatively, (16) can be expressed based on the i-th

diagonal entry of ∆ of (9), i.e.,

Pi = PC

(
π
√

3

2(1− [∆]2ii)

)1/2

, (18)

and (17) is expressed as:

PRF(∆) = PC

LT∑
i=1

(
π
√

3

2(1− [∆]2ii)

)1/2

. (19)

Using (9), the bit resolution given the fidelity of the i-th DAC
is given as:

b̂i =

⌊
−1

2
log2

(
2

π
√

3
(1− [∆]2ii)

)⌋
+ 1. (20)

E. Beamformer codebook design

Let us consider the design of the digital and the analog
beamformers that maximizes the ASE R. Assuming normal-
ized equal-power allocation, the digital transmit beamformer
(DBF) is given by:

FDBF =
1√
Ns

VNs (21)

and the digital combiner is given by:

WDBF = UNs ∈ CNR×1, (22)
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where H = UΣVH is the singular value decomposition of
the channel matrix and VNs , UNs represent the Ns columns
of the respective singular value matrices.

It follows that, the hybrid transmit beamforming and com-
bining matrices can be obtained by solving the following
optimization problem [7]:

min
FBB,FRF

‖FDBF − FRFFBB‖22

subject to FRF ∈ F and (FRFFBB)H(FRFFBB) = I,
(23)

where F is the set of feasible matrices for the analog transmit
beamformer.

III. EE MAXIMIZATION VIA RF SELECTION

In this section, we investigate the problem of EE maxi-
mization by selecting the minimal subset of RF chains to
utilize. First, we present the problem formulation in the case
where the goal is to jointly optimize the subset of the RF
chains along with their DAC resolution. Then, we describe
a random bit allocation scheme for the available DACs. The
problem becomes a fractional subset selection one, which is
solved by a Dinkelbach approximation approach. Finally, we
propose a projected Newton-type method to solve the near-
optimal derived formulation.

A. Problem formulation

The energy efficiency (EE) is defined as the ratio of the
ASE R and the total power at the TX P [39],

EE ,
R

P
(bits/Joule). (24)

The ASE R is computed based on (15) using the obtained
hybrid beamforming matrices from (23). The power P ,
PTX+PRF depends on the transmission power PTX as well as
the DACs power consumption PRF. The transmission power
is expressed as PTX = tr(F) = tr(FRFFBB), while the DACs
power consumption via (17). The analytical expression of EE
is given by:

EE =
log |I + K

Ns
R−1
η WHHFRF∆FBBFHBB∆FHRFHW|

tr(FRFFBB) + PC

∑LT
i=1

(
π
√

3
2(1−[∆]2ii)

)1/2

.

(25)
Note that, in this work, we are not investigating the optimal

codebook design for the beamformers, i.e., FRF,FBBW.
Instead, we provide a method that utilizes the available code-
book to maximize the energy efficiency at the transmitter by
determining the best DAC resolution for each RF chain and
by selecting the best subset of RF chains to activate.

Our goal is to jointly optimize the bit allocation as well as
the active RF chains. This can be represented by extending
the feasible values of the diagonal entries of ∆ with zero,
i.e., ∆ ∈ D ∪ {0}. Therefore, a zero diagonal entry of ∆
corresponds to an inactive RF chain, while the non-zero values
of ∆ ∈ RLT×LT represent the DAC fidelity for each RF chain.

In the case where ASE R and power P are expressed with
respect to ∆, we formulate the following EE problem:

max
∆∈D∪{0}

R(∆)

P (∆)

subject to P (∆) ≤ Pmax, (26)

where Pmax is the maximum power budget, and D is the
set of feasible values. This joint problem can also be seen
as a combinatorial one, where the solution is obtained via
exhaustive search over all possible bit allocations, augmented
by one more state which represents the RF chain is active or
not. Therefore, for an increased number of RF chains, e.g.,
LT > 8, the combinatorial approach becomes impractical due
to the exponential increase in computational complexity, i.e.,
(bmax − bmin + 2)LT .

B. RF selection with random bit allocation

In the following, we introduce the proposed selection mech-
anism that describes the active/inactive RF chains. For this
scope, let us define the binary matrix S ∈ {0, 1}LT×LT .
Specifically, S is a diagonal matrix composed by zeros and
ones, with [S]kk ∈ {0, 1} and [S]kl = 0 for k 6= l. A physical
interpretation of S is possible by considering that the diagonal
entries of this matrix represent hypothetical switches which
activate or deactivate the DACs/RF chains. However note that
the implementation of this matrix is in the digital domain, as
part of the baseband precoder. Hence, there is no need for
additional hardware when considering the implementation of
the proposed architecture. Using S, the joint optimization of
bit allocation and RF chain selection can be described by:

max
S∈{0,1}LT×LT ,∆∈D

R(∆S)

P (∆S)

subject to P (∆S) ≤ Pmax, (27)

where the extended set D ∪ {0} of (26) is represented using
the product ∆S of the unknown matrices ∆ and S. The
problem (27) belongs to the class mixed-integer fractional
programming, thus, there is no global solution. To overcome
this difficulty, in this work, we consider the case where ∆
is predefined, thus, the only unknown is S. Therefore, EE is
maximized by solving a subset selection problem, where a
non-zero diagonal value of S will select the respective RF
chain.

Let us consider a random allocation for the DACs bit
resolution. In this manner, the bit resolution of each DAC is
randomly selected from the set {bmin, . . . , bmax} ⊆ [1, 8]. A
simple approach is to adopt the uniform distribution, so each
entry is generated as:

[∆ii] ∼ U(bmin, bmax). (28)

However, we stress that the proposed technique can be ex-
tended to any distribution of the available bits. Then, the prob-
lem becomes equivalent to finding only the selection vector,
diag(S) ∈ {0, 1}LT×1, where each unity value represents one
active RF chain with a predefined resolution, while the a zero
value represents an inactive RF chain.
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Incorporating the selection matrix into our formulation, the
received signal y ∈ CNs×1 at the k-th user is expressed as:

ŷ = WHHFRF∆SFBB︸ ︷︷ ︸
,Heff

x + η, (29)

where the effective channel,

Heff , WHHFRF∆SFBB, (30)

can be expressed as a sum of LT terms (see Appendix VI-A),
namely:

Heff =

LT∑
i=1

[S]iiaib
T
i . (31)

where

ai , [WHHFRF∆]i ∈ CNs×1, (32)

and

bi , [FTBB]i ∈ CNs×1. (33)

Therefore, it can be seen that (31) is the sum of LT rank-one
matrices aib

T
i , where ai and bi are vectors of dimension Ns×

1. The rank of the effective channel matrix Heff ∈ CNs×Ns
can be at most Ns. However, (31) sums LT ≥ Ns terms,
indicating that if LT > Ns some of the rank-one matrices
will contribute to the same subspace. The contribution of each
rank-one matrix depends on the binary diagonal value of S.

Based on (31), the received signal for all users can be
expressed as the following measurement vector:

ŷ =

LT∑
i=1

[S]iiai(b
T
i x) + η̃, (34)

where η̃ , S[η1 · · ·ηK ], and η̃ ∼ N (0,Rη̃), with the noise
covariance matrix Rη̃ ∈ CNs×Ns expressed with respect to
the selection matrix, i.e.,

Rη̃ = WHHFRFCεSFBBFHBBSCH
ε FHRFHHW+σ2

nWHW.
(35)

Similarly to (15), the ASE for the case of the proposed
architecture with the selection matrix S ∈ {0, 1}LT×LT , can
be expressed as:

R(S) =log2

∣∣∣∣INs +
1

Ns
HH

effR
−1
η̃ Heff

∣∣∣∣ , (bits/s/Hz) (36)

where Heff ∈ CNs×Ns is defined in (30) and Rη̃ ∈ CNs×Ns
in (35) and they both are functions of S. This property will
enable the decomposition of the ASE into terms that describe
the contribution of each RF chain.

To proceed, first note that the ASE in (36) is equivalent to:

R(S) =log2

∣∣∣∣INs +
1

Ns
HH

effR
− 1

2

η̃ R
− 1

2

η̃ Heff

∣∣∣∣ (37)

=log2

∣∣∣∣INs +
1

Ns
R
− 1

2

η̃ Heff

(
R
− 1

2

η̃ Heff

)H ∣∣∣∣ . (38)

Utilizing the decomposition of the effective channel, as it is
given in (31), we have that:

R(S) = log2

∣∣∣∣∣INs+
1

Ns

(
R
− 1

2

η̃

LT∑
i=1

[S]iiaib
T
i

)
R

− 1
2

η̃

LT∑
j=1

[S]jjajb
T
j

H
∣∣∣∣∣∣∣ . (39)

By defining ci , R
− 1

2

η̃ ai, (39) can be written as:

R(S) = log2

∣∣∣∣∣∣INs+
1

Ns

LT∑
i=1

LT∑
j=1

([S]ii[S]jj)(c
T
i c∗j )(bib

H
j )

∣∣∣∣∣∣
= log2 INs+

1

Ns

∣∣∣∣∣
LT∑
i=1

[S]ii(c
H
i ci)(bib

H
i )︸ ︷︷ ︸

,Q

+
1

Ns

∑
i 6=j

([S]ii[S]jj)(c
T
i c∗j )(bib

H
j )

∣∣∣∣∣∣︸ ︷︷ ︸
,Q̄

.

(40)

Essentially, the second term of (40) (i.e., the matrix Q)
expresses the contribution of each RF chain to the overall
ASE, while the third term (i.e., the matrix Q̄) expresses
the portion of the ASE that occurs due to cross-correlation
between different RF chains. The second term provides a
linear expression over S, while the third term is quadratic.
Nevertheless, Q̄ = 0 since bHi bj = 0 for i 6= j, as it is
proven by the following proposition.

Proposition 1. Consider an ideal hybrid TX with precoder
decomposed as F = FRFFBB, with phase-shifters of infinite-
resolution and LT. Then, following (36)-(40), the achievable
information rate (ASE) can be expressed as:

R(S) = log2

∣∣∣∣∣INs +
1

Ns

LT∑
i=1

[S]ii(a
H
i ai)(bib

H
i )

∣∣∣∣∣ , (41)

where ai and bi are defined in (32) and (33), respectively,
while [S]ii ∈ {0, 1} determines the state of the i-th RF chain.

Proof. see Appendix VI-B.

Eq. (41) provides an expression for the ASE that is a
function of the selection matrix S. The inner product aHi ai,
weights the contribution of the i-th RF chain to the ASE, given
the combined effect of the inverse of the noise covariance
matrix R−1

η̃ , the combiner matrix W, the channel H, the
analog beamforming matrix FRF and the random bit allocation
∆. Assuming that the baseband precoder matrix FBB is
normalized, the outer-product bib

H
i does not contribute to the

ASE of each RF chain.
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Algorithm 1 Dinkelbach-based Algorithm
1: for m = 1, 2, . . . , Imax do
2: Obtain S(m) by solving (46)
3: Calculate R(m) and P (m)

4: κ(m) = R(m)/P (m)

5: end for

Furthermore, the power for all the RF chains is now
expressed with respect to the binary diagonal matrix S as
follows:

PRF(S) = PC

LT∑
i=1

[S]ii

(
π
√

3

2(1− [∆]2ii)

)1/2

(42)

= βT vec(S), (43)

where vec(S) ∈ RLT×1 and β ∈ RLT×1 with

[β]i , PC

( √
3

2(1− [∆]2ii)

)1/2

, (44)

for i = 1, 2, . . . , LT. Eq. (42) states that only the selected
RF chains contribute to the total power depending on the
associated weight.

C. EE maximization via Dinkelbach method

Capitalizing the random resolution DACs framework, the
EE problem can be expressed as:

max
S∈S

R(S)

P (S)

subject to P (S) ≤ Pmax, (45)

which states an integer concave-convex fractional problem.
Dinkelbach (DB) algorithm [40] has been widely used for
solving fractional problems. In brief, DB method is an iterative
and parametric algorithm, where a sequence of easier problems
converge to the global solution of (26).

To solve (45), first we alleviate the constraint for the integer
values of S, so as S̃ ∈ [0, 1]. Once the matrix S̃ has been
recovered, its diagonal values will be thresholded to indicate
the active RF chains. Let κ(m) ∈ R, for m = 1, 2, . . . , Imax,
then each iteration step of DB can be expressed as:

S̃(m)(κ(m)) , arg max
S̃∈S̃

{
R(S̃)− κ(m)P (S)

}
= arg min

S̃∈S̃

{
P (S̃)− 1

κ(m)
R(S̃)

}
(46)

where S̃ is the set of diagonal matrices with the feasible bit
allocations which satisfy P (S̃) ≤ Pmax. The DB algorithm
is summarized in Algorithm 1 and it can be shown that with
proper selection of κ(m) it converges to the global solution of
(26) [39, Proposition 3.2].

The (m)-th step of the Dinkelbach algorithm (46) can be
written as:

min
S̃(m)∈S̃

LT∑
i=1

[S̃(m)]ii

(
π
√

3

2(1− [∆]2ii)

)1/2

− 1

κ(m)
log2

∣∣∣∣∣INs +
1

Ns

LT∑
i=1

[S̃(m)]ii‖ai‖22(bib
H
i )

∣∣∣∣∣
(47)

The optimization problem of (47) is a form of sparse subset
selection [41], where given the set of LT measurement vectors,
namely (bTi x)ai, we have to determine the subset that will
provide us with the best results based on the optimality
criterion. This criterion can be also expressed in terms of the
eigenvalues of the matrix Q ∈ CNs×Ns defined as:

Q ,
LT∑
i=1

[S̃]ii‖ci‖22Bi. (48)

with
Bi , bib

H
i ∈ CNs×Ns . (49)

An equivalent way to express (47) is by using the trace of the
matrix, i.e.,

min
S̃(m)∈S̃

LT∑
i=1

[S̃(m)]ii

(
π
√

3

2(1− [∆]2ii)

)1/2

− 1

κ(m)
tr
(

INs +
1

Ns
Q

)
. (50)

The optimization problem in (50) for the m-th iteration of
the DB method is a standard semi-definite one which can
be solved in polynomial time using interior-point methods,
e.g., the projected Newton-type method (PNM) [42, p. 619].
There are several available software packages of implemented
interior-point methods (e.g., CVX [18], Mosek). However, in
the next subsection, we will implement our interior-point based
technique, which is customized for our case.

D. Projected Newton-Type Method

Let us describe the PNM expressed for our problem where
(46) can be seen as the log-determinant barrier function, i.e.,

arg min
s∈S

κ(m)βT s− log2 |
1

Ns
Q− γI|, (51)

where s , vec(S̃) and γ ∈ R+ is a predefined weighting
parameter. The i-th step of the projected Newton’s update
equation is given by:

s(i+1) = PS
(
s(i) − α(i)Ξ−1g(i)

)
, (52)

for i = 1, . . . , LT, where PS is a thresholding operation, which
is performed element-wise on the input vector, with

P(x) =

{
1 if x > ρ
0 otherwise , (53)

ρ > 0 is a small positive value, e.g., ρ = 10−5, and β
is defined in (44). The scalar α(i) represents the step-length
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Algorithm 2 Proposed algorithm based on projected Newton’s
method
Input: ai,Bi,βi, Imax

Output: SImax

1: Initialization: S(1) = 0LT×LT

2: for m = 1, 2, . . . , Imax do
3: s(1) = vec(S(m)).
4: for i = 1, 2, . . . , LT do
5: Update the Hessian matrix using (55).
6: Obtain the gradient vector using (56).
7: Obtain s(i+1) from (52).
8: end for
9: Reshape the obtained vector into matrix S(m) =

unvec(s(LT)).
10: Calculate R(m)(S(m)) and P (m)(S(m)).
11: κ(m) = R(m)/P (m).
12: end for

chosen by line-search. The (k, l)-th entry of the Hessian matrix
Ξ(s(i)) ∈ CLT×LT is given by:

[Ξ]k,l(x
(i)) =

∂2

∂[s]k∂[s]l

(
βT s− log2 |Q− γI|

)
(54)

= ‖ak‖2‖al‖2tr
(
(Q− γI)−1Bk(Q− γI)−1Bl

)
(55)

and the k-th entry of the gradient vector is given by

[g(i)]k = κ(m)[β]k + ‖ak‖2tr((Q− γI)−1Bk). (56)

Thus, Algorithm 2 provides the PNM solution of (50), after
a fixed maximum number of iterations Imax. Considering
computational complexity, the formation of the matrix Q has
computational cost of the order O(LTN

3
s ), while the computa-

tion of the Cholesky factorization to obtain (Q−γI)−1Bk ∀k
costs O(LTN

3
s ). Additionally, the computation of the Hessian

matrix costs O(L2
TN

2
s ) and the Cholesky factorization for

the Newton step O(L3
T). Therefore, the overall computational

complexity per iteration of the PNM is O(L3
T).

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
technique via computer simulation results using MATLABTM.
All the results are averaged over 500 Monte-Carlo (MC)
realizations.

A. Setup

Before proceed, let us define the parameters and the system
characteristics. We assume that the transmitter employs a
hybrid transmit beamforming with NT antennas. The number
of RF chains is Ns ≤ LT ≤ NT and each one is equipped
with a bi-bit DAC, for i = 1, . . . , LT, with bi ∈ [1, 8]. Each
transmission broadcasts a zero-mean random Gaussian vector
with x ∈ CNs×1 and E{xxH} = PTX

Ns
INs . We assume uniform

linear arrays (ULAs) at both TX and RX sides and operating
over a 28 GHz outdoor mmWave channel [43]. The azimuth
angles of arrival and departure are generated from the Laplace
distribution with a standard deviation of 50◦. The number of

Algorithm 3 Exhaustive search algorithm
Input: FRF,FBB, C
Output: Sopt

1: for i = 1, . . . , |C| do
2: Compute the EE for Si ∈ C via (36) and (42)
3: end for
4: Find Sopt = arg maxSi EE

clusters set to Ncl = 4 and the number of rays per cluster to
Nrays = 5. We assume digital combining is performed at the
user equipment with NR = Ns and the combiner matrix W
is given by (22). The power of the RF chain components PC

is set to 0.01 and Pmax = 1.
In this work, we investigate the case of selecting the best

active subset of RF chains in terms of EE maximization.
Ideally, the optimal subset can be obtained via an exhaustive
search over all possible combinations. Let the set C represents
all possible combinations for the state (active/inactive) of the
virtual switches for the LT RF chains. Then, the exhaustive
search algorithm has to compute the EE for all combinations
|C| and select the one with the highest EE. The exhaustive
search is summarized in Algorithm 3. Since the number of
the combinations |C| increases exponentially with the number
of active RF chains.

B. Energy and spectral efficiency performance

For the evaluation of the proposed technique in terms
of energy efficiency (EE) and the spectral efficiency (SE)
performance, we have considered the following cases for the
TX:

1) DBF: digital beamforming architecture (NT = LT)
with high resolution DACs (8-bits), which represents the
optimum from the achievable SE perspective,

2) b-bit-HBF: hybrid transmit beamforming with LT RF
chains with common b-bits DACs resolution, where b ∈
{1, 8},

3) random-bit-HBF: hybrid transmit beamforming with
LT RF chains with mixed resolution DACs. The bit
resolutions are generated using the uniform distribution
U(1, 8),

4) common-exhaustive-HBF: hybrid transmit beamform-
ing with minimum number of RF chains LT and com-
mon bit resolution for all DACs.

5) proposed HBF: Proposed technique with Imax = 5
and the bit resolutions are generated using the uniform
distribution U(1, 8). The number of RF chains was set
equal to the number of transmitting antennas LT = NT.

In Figs. 2 and 3 we plot the EE and SE with respect to the
transmit power PTX over a wide range. Note that 24 dBm is
the maximal output of the mobile user equipment (class 3),
while a typical value for macro cell base station is 43 dBm at
the antenna connector. Future wireless networks will have to
achieve high SE performance with limited power, e.g., UAV-
aided communications. Thus, a reasonable TX power range
would be between 24-40 dBm. From Fig. 2 it is evident that for
this range of PTX values, the proposed technique outperforms
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Fig. 2. Energy efficiency as a function of the transmit power PTX for NT =
128, NR = 8, and σn = 0.562.
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Fig. 3. Spectral-efficiency as a function of the transmit power for NT = 128,
NR = 8, and σn = 0.562.

the other baselines reaching over 300 bits/Joule. The common-
exhaustive-HBF also achieves high EE performance at the
expense of exponential computational complexity. Consider-
ing EE performance for the fixed b-bit-HBF cases, the best
performance is achieved by the 5-bit-HBF case. However, the
best DAC resolution is directly related to PC. Specifically, for
PC = 0.1, the 4-bit-HBF achieves the best performance.

In Fig. 3, the SE performance of the considered techniques
is shown. DBF achieves the higher SE, at the expense of
high power consumption, and computational and hardware
complexity. The SE performance of the b-bit-HBF cases is
fully analogous to the bit resolution b. Thus, among the HBF
techniques, the highest performance is achieved by the 8-bit
case and the lowest by the 1-bit case.

The proposed technique outperforms the other baselines,
thus, achieving both high SE and EE. This is possible since
it can search over the whole NT codebook space. To achieve
this performance, the analog part (e.g., phase-shifters) of the
BS beamformer have been increased, based on the proposed
design. Thus, a trade-off between the hardware complexity
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Fig. 4. Energy efficiency versus spectral efficiency for NT = 128, NR = 8
and σn = 0.562.

and the SE performance is possible. Note that in this work,
we consider that the power consumption of each phase-shifter
is negligible compared to the power consumption of each RF
chain [44]. Indeed, the proposed structure for the analog part
can be realized by using very energy-efficient elements, e.g.,
passive phase-shifters, Butler matrix [45].

In Fig. 4, the EE versus the SE performance is illustrated.
The proposed technique covers much larger area of the EE-SE
region, thus, enables high flexibility for the design of a hybrid
HBF with low-resolution DACs by providing higher EE and
SE.

In Figs. 6 and 5, we plot the SE and EE with respect to
the number of transmission streams Ns, respectively. For the
proposed technique we consider that the maximum number of
active RF chains is constrained by Ns, while for the rest of
techniques we assume that LT = Ns. The SE increases as
the number of the streams increases, exploiting the available
degrees-of-freedom provided by the channel, e.g., NclNray =
20. EE also increases, but as the number of Ns, and thus LRF,
increases, the RF chains power consumption sets an upper
bound.

It is important to stress out that the performance of the
proposed algorithm depends on the ratio of LT and Ns which
represents the sparsity level of the problem. Specifically, the
problem expressed by (47) describes a sparse subset selection
one. Via experimentation, we have observed that to maintain
the SE performance of the proposed technique as Ns increases,
the sparsity level has to be Ns

LT
≤ 0.1.

C. Active RF chains and bit-allocation

To get a better insight into how the proposed technique
works, in Fig. 7 we show the average active RF chains with
respect to the transmit power, for the proposed technique and
common-exhaustive-HBF. In the same figure, we also plot the
minimum and maximum values for active RF chains for each
technique over the MC realizations. The proposed technique
activates 8 RF chains for almost all the transmit power
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values, which belong to the range [−20, 30] dBm. However,
the variance of the number of active RF chains is rather
wide, indicating the dynamic characteristics of the proposed
technique. On the other side, the common-exhaustive-HBF
reduces the average number of active RF chains as transmit
power increases, to maximize the EE.

In Fig. 8 we show the sum of the bit resolution of the
DACs for the active RF chains. Although different RF chains
are activated at each channel realization, the sum of the
DACs resolution seems not to vary significantly, over the
transmit power. On the contrary, in the case of common-
exhaustive-HBF, the common DACs resolution decreases as
transmit power increases. In this manner common-exhaustive-
HBF achieves high EE compared to the other techniques with
fixed-resolution. Therefore, by selecting the best subset of
active RF chains with the proper DAC resolution, via the
proposed technique, provides high EE and SE performance.

D. Convergence of Dinkelbach iterations

The convergence of the Dinkelbach iterative algorithm can
be investigated via the behaviour of the κ(m) variable over
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Fig. 7. Average number of active RF chains over transmit power.
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Fig. 8. The sum of DACs resolutions for all active RF chains over transmit
power.

iteration m. Recall that κ represents an approximation for
the achievable spectral efficiency. Thus, it is expected to be
increasing with each iteration, till an upper bound value which
indicates that the technique has converged. In Fig. 9, we plot
the κ(m) value with respect to the iteration number m of the
proposed algorithm. We consider three cases for the antenna
array size NT. The number of the RF chains is set to the half
for each case, i.e., LT = NT/2. We note that in all cases DB
requires only a small number of iterations to converge to the
optimal value of the parameter κ(m). Also, the convergence
behaviour depends on the DACs resolution. We consider three
cases, namely: (a) bmin = bmax = 1, (b) bmin = 1, bmax = 8,
and (c) bmin = bmax = 8. When the DACs resolution is mixed,
case (b), the proposed algorithm requires twice the number of
iterations to reach the upper floor. That is 6 iterations instead
of 3 which are required for the other two cases, i.e., (a) and
(b).

V. CONCLUSION

This paper proposes a selection framework to jointly al-
locate the best active RF chains that maximize the energy-
efficiency performance, along with the spectral-efficiency, of
the transmitter. To cope with the non-convexity of this prob-
lem, we employ random bit allocation for the DACs and we
formulate a binary fractional programming problem that is
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Fig. 9. Dinkelback convergence curves.

solved via the Dinkelbach approximation and subset selection.
The proposed algorithm mostly outperforms all the baselines
such as fully digital beamforming, fixed DACs bit resolution.
The convergence of the proposed fractional programming
algorithm is fast as it typically requires only 3-4 iterations
to converge.

VI. APPENDIX

A. Derivation of (31)
It is known that for matrices A ∈ CN×M , B ∈ CM×T , and

S ∈ CM×M a diagonal matrix, the following equality holds:

ASB =

M∑
i=1

[S]iiaibi, (57)

where ai is the i-th column of A and bi is the i-row of B.
Similarly, by defining A , WHHFRF∆ and B , FTBB, the
eq. (31) follows, i.e.,

Heff =

LT∑
i=1

[S]ii[W
HHFRF∆]i[F

T
BB]Ti . (58)

B. Proof of Proposition 1
Essentially, Proposition 1 is based on the observation that,

under idealized conditions for the analog precoder, namely,
phase-shifters with infinite resolution and LT = NT, the ana-
log and the digital matrices are orthonormal, i.e., FHRFFRF =
ILT and FHBBFBB = INs . To prove the proposition we have
to show that bHi bj = 0 for i 6= j, with bi , [FTBB]i. First
recall that the digital beamformer Fopt is composed by the Ns
columns of the orthonormal matrix V with the right singular
vectors of the channel impulse response, i.e., H = UΣVH .
Also, based on the solution of (23), ideally we have that
F = FRFFBB. Hence,

FHoptFopt = INs (59)

⇒ (FRFFBB)H(FRFFBB) = INs (60)

⇒ FHBBFHRFFRFFBB = INs (61)

⇒ FHBBILTFBB = INs , (62)

since FHRFFRF = ILT with LT = NT.
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