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Abstract
The force-extension relation for a semi-flexible

polymer confined in a nanoslit is investigated.
Both the effective correlation length and force-
extension relation change as the chain goes from
3D (large slit heights) to 2D (tight confinement).
At low forces, correlations along the polymer
give an effective dimensionality. The strong force
limit can be interpolated with the weak force limit
for two regimes: when confinement dominates
over force and vice versa. These interpolations
give good agreement with simulations for all slit
heights and forces. We thus generalize the Marko-
Siggia force-extension relation for DNA and other
semi-flexible biopolymers in nanoconfinement.

Many recent studies have focused on static1–9

and dynamic10–15 properties of semiflexible
biopolymers, such as DNA, within nanoslits,16,17

nanochannels18–21 and crowded environments.22–24

Here, we study polymers of contour length LC
confined within nanoslits and subjected to a
stretching force F with resulting extension x.
We seek to generalize the Marko-Siggia (MS)
force-extension relation (FER) to confined envi-
ronments. Experimental examples include DNA
stretched by electric fields in nanoslits25 and tug-
of-war or nanopit-type devices26–29. Both the
3D30,31 and 2D32 limits of the FER have been
∗To whom correspondence should be addressed
†University of Ontario Institute of Technology
‡University of Oxford

studied extensively but few studies investigate
the crossover from 3D to 2D with confinement.33

While scaling theories quite successfully predict
conformations and dynamics of confined macro-
molecules,34 a generalization of the FER35 is
needed. Chen et al. compared simulations to an
FER proposed without derivation.36 Since x was
defined as the distance between the ends in the di-
rection of the force, the low-force regime was un-
resolved. We apply a force ~F1 = Fx̂ (where x̂ lies
in the plane of the slit) to monomer 1, ~FN = −Fx̂
to the last monomer and define x = (~r1−~rN) · x̂.
This ensures that x→ 0 as F → 0 permitting ex-
ploration of the low-force regime.

We first find an explicit form of the MS-FER in
d discrete dimensions without explicit reference to
polymer correlation length. We propose that this
generalization can be applied to chains confined in
nanochannels of height h if a suitable effective di-
mensionality deff is identified. For slits where h
is sufficiently small deff = 2, while deff = 3 when
h is large. Intermediate values of deff represent
the impact of confinement on the FER and map
between the 2D to 3D limits. Suitable low-force
values arise from the confined correlation length,
which can be interpolated with theoretical strong-
force limits. By considering the competition be-
tween confinement and applied force, we derive
the FER in two limits: confinement dominated and
force dominated. Comparing with the MS-FER in
discrete dimensions shows that the generalization

1



can act as a semi-empirical FER with an effective
dimensionality deff that depends on slit height and
applied force.

Our results are substantiated by Langevin dy-
namics simulations of an ideal polymer of 200
monomers with no interactions between non-
neighbouring monomers. The method used here
follows standard implementations for a semiflexi-
ble polymer37 and is described in detail in the Sup-
porting Information (SI).

We now derive a generalized MS-FER for d dis-
crete dimensions. The FER can be approximated
as the interpolation between the low- and strong-
force limits. At low forces, we use the Kratky-
Porod model38 in d-dimensions, which describes
the polymer as an entropic spring with extension
x

LC
= 2

d
FLξ

kBT (see SI). This limit depends on Lξ , the
correlation length between tangent vectors. The
correlation length is commonly referred to as per-
sistence length but, to avoid ambiguity with the
length scale of mechanical rigidity Lκ = κ/kBT ,
we forgo this term. While Lκ is a thermo-material
property, Lξ depends on dimensionality. The two
are not strictly equivalent.

In the strong-force limit, we utilize the equipar-
tition theorem in Fourier space to find x

Lc
= 1−(d−1

4

)√ kBT
FLκ

(see SI). Interpolating between the
limits produces a generalized MS-FER:

F =
kBT
Lκ

(
d−1

4

)2
[(

1− x
Lc

)−2

−1

+

(
d
2

(
4

d−1

)2 Lκ

Lξ

−2

)
x
Lc

]
(1)

which is consistent with 3D35 and 2D32,39 forms.

Reasonable agreement with simulations in 3D
(indistinguishable from h = 199) is obtained for
d = 3 and Lξ = Lκ (Fig. 1). The slight over-
prediction in the 3D limit is a limitation of the
simulations (see SI).

The 2D FER is shifted to larger extensions com-
pared to 3D (Fig. 1). Equation 1 fails to agree with
the simulations if Lκ is erroneously utilized as Lξ

(appropriate only in 3D). Not only do the coeffi-

Figure 1: Simulated force-extension relation for var-
ious slit heights. Dashed lines indicate theoretical
curves (Eqn. 1). In 2D, the curves using both Lξ = Lκ

and Lξ = 2Lκ are shown.

cients of the MS-FER change but

Lξ (Lκ ,d) =
2Lκ

d−1
, (2)

does as well as previously stated40 and explicitly
verified in SI. In 2D, Lξ = 2Lκ .

Substituting Lξ into Eqn. 1 produces the gen-
eralized MS-REF without reference to correlation
length

F (x,d) =
kBT
Lκ

(
d−1

4

)2
[(

1− x
Lc

)−2

−1+2
(

d +1
d−1

)
x
Lc

]
,

(3)

which is in excellent agreement with both the 3D
and 2D limits (Fig. 1).

Equation 3 represents a unified form for discrete
dimensions. It also suggests that confinement-
induced crossover from 3D to 2D can be dis-
cussed in terms of an effective dimensionality 2≤
deff ≤ 3. The polymer does not exist in a frac-
tional dimension but rather a continuous effective
dimensionality quantifies the extent to which con-
finement alters the FER.

We use Eqn. 2 to define the low-force limit to
be deff→ dlow

eff = 1+ 2Lκ/Lξ (h). The correlation
length is typically measured via 〈cosθi,i+δ i〉 for
the angle θi,i+δ i between segments i and i+δ i us-
ing 〈cosθi,i+δ i〉 ≡ e−δ i/Lξ . While this approach
works well in 2D and 3D, the results for inter-
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Figure 2: Correlation length (dashed circles) and cor-
responding effective dimensionality (solid squares) as
a function of the slit height. Solid black lines fit the
data for h≤ 2Lκ (Eqn. 4). Inset shows the components
of correlations of direction vectors along the polymer
contour.

mediate heights are non-isotropic (Fig. 2; inset).
At intermediate heights, the parallel components
remain monotonically positive, but the perpen-
dicular component does not. Fully understand-
ing the correlation functions of semiflexible poly-
mers in confinement remains challenging experi-
mentally,41–44 computationally,45–47 and analyti-
cally.48–50

Following Chen et al.,36 we use parallel correla-
tion measurements to define Lξ (h), which crosses-
over from 3D to 2D with decreasing slit height
(Fig. 2). The black solid line is a fit for h ≤ 2Lκ

given by

Lξ (Lκ ,h) = Lκ

[
2− e−0.88(Lκ/h)1.41

]
, (4)

which agrees with theory for both h → 0 and
h → ∞. Correspondingly, dlow

eff
(
Lξ/Lκ

)
varies

smoothly from 3 to 2.
We propose that deff can be substituted into Eqn.

3 in place of the discrete dimensionality d to pro-
duce a semi-empirical FER for confined polymers.
For now, we assume deff is only a function of Lξ .
This allows Eqn. 3 to apply to finite slit confine-
ments as a function of measured Lξ (Fig. 1; inset).

Good agreement is obtained for moderate
extensions. Hence, the deff approach maps

the crossover from 3D to 2D at low forces.
However, the theory over-predicts the large-
extension regime in comparison to simulations
(Fig. 1; inset). This suggests that expressing ex-
tension in terms of deff is only accurate for low-
forces

lim
F� kBT

Lκ

x
Lc

=
4FLκ

dlow
eff

(
dlow

eff −1
)

kBT
. (5)

Since taut, confined polymers can only accom-
modate small thermal fluctuations about the line
connecting their ends,51 they feel the effect of the
walls less. Hence, confinement effects diminish as
force increases causing deff to increase. Confining
walls act to cut off the lowest frequencies allowed
in Fourier space, which increases the average ex-
tension (see SI). We find the expression for the ex-
tension in the strong force limit and arbitrary slit
confinement to be

lim
F� kBT

Lκ

x
Lc

= 1− 1
2

√
kBT
FLκ

[
1− 1

π
tan−1

(
c0

h
Lκ

√
kBT
FLκ

)]
(6)

where c0 controls the cutoff. This general form for
the strong-force FER is in good agreement with
the high-force limit of the simulations for all slit
heights.

Interpolating between Eqns. 5 and 6 is not possi-
ble for arbitrary confinement and we must consider
the argument of the arctangent in Eqn. 6. We ex-

pand the confinement-dominated
(

h
Lκ
�
√

kBT
FLκ

)
and force dominated

(
h

Lκ
�
√

kBT
FLκ

)
cases. Inter-

polation can be found separately in either limit.

Interpolating the force-dominated limit of the
strong-force regime with Eqn. 5 gives

F =
kBT
4Lκ

[(
1− x

Lc

)−2

−8c0
Lκ

h

(
1− x

Lc

)−1

−
(

1−8c0
Lκ

h

)

+2

{
dlow

eff

(
dlow

eff −1
)

2
−
(

1−4c0
Lκ

h

)}
x
Lc

]
. (7)

The cutoff c0 = 0.3 is acceptable and Eqn. 7
is highly accurate at both low and high forces
when h & Lκ (Fig 3). However, the weak con-
finement approximation breaks down as slit height
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Figure 3: Simulated force extension curves (solid
lines) and Eqn. 7 for h > Lκ (dashed lines) or Eqn.
8 for h < Lκ (dash-dot lines). Inset shows the depen-
dence of effective dimensionality on force for different
slit heights Circles indicate dlow

eff values.

decreases.
The other limit of Eqn. 6 is confinement dom-

inated. Interpolating the confinement-dominated
limit with Eqn. 5 produces

F =
kBT
16Lκ

[(
1− x

Lc
− 1

2πc0

h
Lκ

)−2

−
(

1+
1

πc0

h
Lκ

)

+2
(

2dlow
eff

2−2dlow
eff −1

) x
Lc

]
(8)

where c0 = 1.55 to obtain acceptable agreement.
Figure 3 demonstrates that this interpolation is ac-
curate for h . Lκ .

The relative error of the interpolations (Eqn.
7 or 8) with the simulations is (Fi(h,x) −
Fs(h,x))/Fs(h,x)) (Fig. 4). For moderate to tight
confinement, the relative error is generally within
± 5%. Since the results diverge in 3D due to sim-
ulation limitations (see SI), the relative error is
large for weak confinement. However, the dashed
black line is the relative error between the 3D limit
of Eqn. 7 and the 3D MS-FER, confirming Eqn. 7
approaches the proper 3D limit.

Having generalized the interpolations for force
extension in a slit, we return to the effective di-
mensionality in Eqn. 3, now recognizing that deff
depends on both slit height and force. We extract
deff (F,h) by fitting Eqn. 3 to the analytical Eqns.
7 and 8 (Fig. 3; inset). The full deff shows how the
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Figure 4: Relative error between simulation results
and the interpolation formula given by Eqn. 7 for h >
Lκ (dashed lines) or Eqn. 8 for h < Lκ (solid lines).
The dashed black line is the difference between Eqn. 7
at dlow

eff = 3 and the 3D Marko-Siggia relation.

effect of confinement decays with both increasing
h and F as the curves move from 2D to 3D. Fur-
ther, deff demonstrates quantitatively that the force
dependence is dramatic at intermediate heights but
otherwise weak.

In conclusion, we have presented a physical pic-
ture of the force-extension relation (FER) for DNA
confined within nanoslits by introducing an effec-
tive dimensionality, deff. Using deff in a general-
ized Marko-Siggia FER leads to good agreement
with simulations for all slit heights and forces.
At low forces, deff is determined from in-plane
correlations. However, the effect of confinement
is reduced for larger forces. Via interpolation,
we derived FERs for force-dominated (near 3D)
and confinement-dominated (near 2D) systems.
These formulas give good agreement with all sim-
ulation results. Comparison to the generalized
Marko-Siggia yields deff as a function of both slit
height and stretching force. For tight confine-
ments, deff → 2 but tends towards 3 as slit height
increases. The effective dimensionality thus pro-
vides as a useful physical perspective on force-
extension curves for biopolymers subject to nat-
ural and artificial confinement.
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