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Journal Name

Multi-Particle Collision Dynamics Algorithm for Ne-
matic Fluids

Tyler N. Shendruk,∗a,b Julia M. Yeomans,a

Research on transport, self-assembly and defect dynamics within confined, flowing liquid crystals
requires versatile and computationally efficient mesoscopic algorithms to account for fluctuating
nematohydrodynamic interactions. We present a multi-particle collision dynamics (MPCD) based
algorithm to simulate liquid-crystal hydrodynamic and director fields in two and three dimensions.
The nematic-MPCD method is shown to successfully reproduce the features of a nematic liq-
uid crystal, including a nematic-isotropic phase transition with hysteresis in 3D, defect dynamics,
isotropic Frank elastic coefficients, tumbling and shear alignment regimes and boundary condition
dependent order parameter fields.

1 Introduction
As a state of soft condensed matter with intermediate symmetries
between highly ordered crystals and disordered fluids, nematic
liquid crystals are both phenomenologically fascinating and com-
mercially valuable. No longer are liquid crystals of interest only to
those producing liquid crystal display technology; now scientists
interested in microfabricated systems1, microelectromechanical
devices2, composite materials3, biosciences4 and active gels5 are
exploiting the unique properties of liquid crystals in novel appli-
cations6. Interest in complex geometries (such as confining ge-
ometries nanoconfined geometries7, topological microfluidics8,9

and colloidal intrusions10,11) require versatile mesoscopic al-
gorithms that can account for non-trivial boundary conditions.
Likewise research into “hypercomplex liquid crystals”12 and self-
assembly13,14 would benefit from efficient methods to simulate
nematohydrodynamic baths for macromolecular and colloidal so-
lutes.

Such elaborate systems present a considerable challenge for
traditional particle-based numerical methods. Lattice Monte
Carlo simulations have been very successful in simulating ne-
matic liquid crystals15 and continue to be widely employed due to
their computational frugality16,17. However, out-of-equilibrium
dynamics and relaxation mechanisms require more computation-
ally costly methods. Off-lattice simulations of hard anisotropic
particles and soft pair-potentials have played an important role
in understanding generic liquid crystalline phases18,19, but are
limited to simple systems. Molecular dynamics simulations can
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account for molecular detail with a range of coarse-graining20,21,
including fully atomistic22, generic molecules23 and the meso-
scopic approach of dissipative particle dynamics24,25. Even meso-
scopic simulations can become computationally expensive when
large numbers of constituent particles are required and so are
generally limited to simplified systems.

Investigating hypercomplex fluids or dynamics within demand-
ing geometries calls for the continued development of versatile
and computationally efficient coarse-grained algorithms. One
mesoscopic simulation technique that has shown promising ca-
pabilities in simulating fluctuating hydrodynamics of isotropic
solvents is the multi-particle collision dynamics (MPCD) algo-
rithm26,27. MPCD has been used to simulate hydrodynamic in-
teractions between macromolecules28,29 colloids30,31, vesicles32

and swimmers33–35. It has even been extended to simulate vis-
coelastic fluids36 and electrohydrodynamics37. In this work, we
propose an extension to the MPCD method to efficiently simulate
fluctuating nematohydrodynamics (nematic-MPCD).

2 Method

Multi-particle collision dynamics algorithms forgo simulating
molecular-scale interactions between constituent molecules. In-
stead, the continuum description is discretised into many artifi-
cial, point-like MPCD particles that stochastically exchange mo-
mentum while respecting conservation laws for mass, momen-
tum and energy. This is sufficient to reproduce the hydrodynamic
equations of motion on sufficiently long length and time scales.
Mesoscopic MPCD algorithms can dramatically reduce compu-
tational costs compared to simulations that explicitly calculate
molecular pair-potentials and are well suited to simulating flow-
ing systems involving non-trivial boundary conditions38,39, finite
Reynolds numbers40, and fluctuating hydrodynamics, which are
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ideal for moderate Péclet number systems41,42.

Here, we develop a nematic-MPCD method to efficiently sim-
ulate fluctuating nematohydrodynamics, by assigning an orien-
tation pseudo-vector to each MPCD point-particle and updat-
ing orientations through a local and stochastic nematic multi-
particle orientation dynamics (MPOD) operator. Backflow and
shear-alignment dynamics are ensured by coupling the MPCD and
MPOD operators. In § 3, we demonstrate that nematic-MPCD re-
produces the necessary physical properties to simulate a nematic
liquid crystal when the velocity and director fields are coupled.
In a very recent article, Lee and Mazza introduced an interesting
hybrid, non-local MPCD method for liquid crystals43. The main
difference to our approach is that their particles carry a director
field that is coupled to the fluid through a discretisation of the
stress terms in a simplified Ericksen-Leslie formalism of nemato-
hydrodynamics.

In this section, we begin by reviewing a traditional Andersen-
thermostatted MPCD algorithm that conserves angular momen-
tum. We go on to describe the implementation of the MPOD op-
erator for nematic fluids and the two-way coupling between the
director and velocity fields. Finally, we describe how potentially
complex boundary conditions can be implemented.

2.1 Traditional MPCD for Isotropic Fluids

The fundamental insight of MPCD algorithms is that continuous
mass and momentum fields can be discretised into MPCD point-
particles (labelled i). Each MPCD particle possesses a position ri,
mass mi and velocity vi, and which interact through multi-particle,
near-equilibrium stochastic collision events within lattice-based
cells (labelled c) defined by a size a, population Nc, centre of
mass velocity centre vcm,c =

〈
v j

〉
Nc

and moment of inertia Ic =

∑
Nc
k mk

(
r′k

21̂− r′kr′k
)

of the point-particles in cell c relative to their

centre of mass rcm,c where r′i = ri− rcm,c.

The MPCD algorithms consist of two steps. Each MPCD particle
streams ballistically for a time δ t such that its position at time
t +δ t becomes

ri (t +δ t) = ri (t)+ vi (t)δ t. (1)

Multiple particles then undergo collision events, in which mo-
mentum is transferred between MPCD particles. To exchange mo-
mentum, the simulation domain is partitioned into cubic cells of
thermally varying number density ρc = Nc/ad in d-dimensions.
Discretising space into MPCD cells breaks Galilean invariance,
though this can be remedied by randomly shifting the cell grid
at each time step44. The collision operator Ξi,c is a non-physical
exchange designed to be stochastic and also to conserve the net
momentum within each cell c,

vi (t +δ t) = vcm,c (t)+Ξi,c. (2)

Many choices for the collision operator exist, which result in
different versions of MPCD, including the original Stochastic Ro-
tation Dynamics26,45 and a Langevin version of the algorithm46.
In this work, we utilise the Andersen-thermostatted collision op-

erator46,47

Ξi,c = ξ i−
〈

ξ j

〉
Nc
+
(

I−1
c ·δLc

)
× r′i, (3)

where ξ i is a random velocity drawn from the Maxwell-
Boltzmann distribution fvel (ξ ,kBT ) for thermal energy kBT and〈

ξ
j

〉
Nc

is the average of the Nc random velocity vectors in the cth

cell during the instant of the collision event. Randomly gener-
ating the ξ i from the equilibrium distribution fvel in the moving
reference frame ensures that the algorithm is locally thermostat-
ted46. The third term in the collision operator is a correction
included to remove the angular momentum introduced by the
collision operator

δLc =
Nc

∑
j

m j

{
r′j×

(
v j−ξ

j

)}
. (4)

Though the nematic-MPCD method does not strictly depend on
this choice for Ξi,c, coupling the velocity field to the director field
is accomplished by respecting this conservation law (see § 2.3.2).

2.2 Multi-Particle Orientation Dynamics for Nematic Fluids

We now that propose nematic liquid crystals can be simulated via
a nematic-MPCD algorithm by including an orientation field.

Each MPCD particle is assigned an orientation ui, while each
cell acquires a tensor order parameter

Q
c
=

1
d−1

〈
duiui− 1̂

〉
Nc
. (5)

For a nematic fluid, the largest eigenvalue is the local scalar order
parameter Sc of the cell and the local Frank director nc is parallel
to the corresponding eigenvector.

Orientations interact through a positive, globally specified in-
teraction constant U . In physical liquid crystals, the energy U
represents inter-molecular interactions and will be a non-constant
function of temperature or molecular details such as nematogen
dimensions and density. In this nematic-MPCD algorithm, the in-
teraction constant U is the simulation specified energy that gov-
erns the local evolution of orientations. Taking inspiration from
the Andersen-thermostatted MPCD collision operator, we imple-
ment a stochastic multi-particle orientation dynamics operator for
orientation. The essential requirements are that the MPOD oper-
ator must be local and near equilibrium, with no gradient terms
in the collision operator. Therefore, we propose the orientation
collision event

ui (t +δ t) = Ψc

(
U,Q

c
(t)
)
, (6)

where the multi-particle orientation operator Ψc generates a ran-
dom orientation ui (t +δ t) drawn from the equilibrium probabil-

ity distribution fori

(
U,Q

c
(t)
)

about the local director nc (t) cal-

culated from the tensor order parameter. The nematic collision
operation causes the MPCD point-particles to change their orien-
tation by u̇col,i = δucol,i/δ t = [ui (t +δ t)−ui (t)]/δ t without alter-
ing the local director nc (t).
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2.2.1 Maier-Saupe Distribution:

As in the traditional Andersen-thermostatted MPCD algorithm,
the multi-particle orientation operator depends on the condition
of local, near-equilibrium statistics. In this work, we assume that
the local equilibrium distribution for the orientation field obeys
the Maier-Saupe self-consistent mean-field theory and so is an ex-
ponential function of un ≡ ui ·nc:

fori (U,Sc,nc) = ge−βwMF,c(U,Sc,un), (7)

where g is a normalisation constant, β ≡ 1/kBT and each cell’s
mean-field interaction potential is

wMF,c =−UScu2
n +

U
d
(Sc−1) . (8)

The second term does not depend on un and so the distribution
of un is determined by eβUScu2

n . When the scaled energy βUSc is
small, all orientations are equally likely but when βUSc is large
the distribution becomes sharply oriented about nc.

2.2.2 Generating the Maier-Saupe Distribution:

When βUSc ≈ 1, a Metropolis algorithm for wMF,c generates
the random orientations. However, the distribution can be
more efficiently approximated in the limits of βUSc � 1 and
βUSc � 1. In the strong mean field limit βUSc � 1, fori

is sharply centred about nc such that u2
n = cos2 θn ≈ 1 − θ 2

n ,
which means that the distribution for θn can be approximated
as Gaussian fori ∼ e−βUScθ 2

n . The Gaussian approximation is
used when βUSc > 5. On the other hand, when βUSc � 1
the exponent can be expanded and the cumulative distribution
function of fori can be approximated as W =

∫ un
−∞

dµeβUScµ2 ≈
un + βUScu3

n/3. Random values of un can be generated
through the transformation un = 2−1/3κ/βUSc − 21/3/κ, where

κ (r) =
(

3r (βUSc)
2 +
[
9(βUSc)

4 r2 +4(βUSc)
3
]1/2

)1/3
and r ∈

[0,1]. This expansion is used when βUSc < 0.5.

2.3 Two-way Coupling

Coupling between the director and fluid flow is crucial for repro-
ducing nematohydrodynamics since flows can rotate the nemato-
gens (§ 2.3.1) and the rotation of nematogens in turn produces
hydrodynamic motion, referred to as backflow (§ 2.3.2). We
model the coupling by treating the nematic-MPCD particles as
a dilute suspension of asymmetric particles rotating through an
non-inertial fluid. The nematogens are implicitly envisioned as
rotating through the viscous fluid that they themselves represent.

2.3.1 Shear Alignment: Velocity→Orientation Coupling:

We treat the nematic-MPCD particles as a dilute suspension of
rods subject to a net torque

Γnet,i = ΓHI,i +Γcol,i +Γext,i = 0, (9)

where ΓHI,i is due to the flow field’s vorticity ω =
[
∇v− (∇v)T

]
/2

and shear rate D =
[
∇v+(∇v)T

]
/2 (Fig. 8; insets)48, Γcol,i =

γRui × u̇col,i is the fluctuating thermal torque due to the MPOD

collision and Γext,i represents any external torques such as those
due to magnetic or electric fields. In this algorithm, we assume
viscously overdamping such that the net torque is zero.

Solving Eq. 9 for the total rate of rotation of particle i shows
that u̇i = u̇HI,i + u̇col,i, where u̇HI,i obeys the discretised Jeffery’s
equation for a slender rod

δuHI,i

δ t
= χHI

[
ui ·ω +λ

(
ui ·D−uiuiui : D

)]
, (10)

where λ is the bare tumbling parameter and χHI is a heuristic
shear coupling coefficient, a simulation parameter that tunes the
alignment relaxation time relative to δ t. For the rotation of an
individual prolate particle subject to shear flow, χHI = 1. When
the shear coupling coefficient is set to zero (χHI = 0) there is no
coupling of the director to the velocity field. Equation 10 is com-
patible with the torque used in Leslie-Ericksen continuum nema-
tohydrodynamics and has been utilized in molecular Doi theory
to predict the Leslie viscosities of nematic fluids49,50.

2.3.2 Backflow: Orientation→Velocity Coupling:

In the nematic-MPCD algorithm, backflow coupling is accounted
for by balancing the hydrodynamic torque ΓHI,i on each nemato-
gen with an equal and opposite change in angular momentum to
the velocity collision operator δL i/δ t. It is simplest to merely use
Eq. 9 to identify ΓHI,i =−Γcol,i−Γext,i in the non-inertial limit.

To balance this torque with the hydrodynamic drag on the fluid,
the opposite of the net change in the angular momentum δL c =

∑
Nc
i δL i = −∑

Nc
i ΓHI,iδ t is transferred to the linear momentum

portion of the algorithm. The MPCD collision operator Ξi,c (Eq. 3)
is thus modified to account for liquid crystal backflow becoming

Ξi,c = ξ i−
〈

ξ j

〉
Nc
+
(

I−1
c · [δLc +δL c]

)
× r′i. (11)

In this way, the total angular momentum of the system is con-
served and the orientation-velocity coupling is accounted for. By
setting γR = 0, the transferred angular momentum of each particle
is zero and this coupling is turned off.

2.4 Boundary Conditions

One of the advantages of particle-based hydrodynamics solvers
is that complex and mobile boundary conditions can be imple-
mented. For this reason, the nematic-MPCD may be well-suited
to nematic fluids confined within microfluidic devices8,9 and to
simulating colloidal-liquid crystals10,11 and hypercomplex liquid
crystals12.

The effect of boundaries on positions and velocities are imple-
mented in the standard manner. Periodic boundary conditions
are implemented by wrapping the MPCD particle positions. Lees-
Edwards boundary conditions are used to introduce simple shear
flows across periodic domains51. No-slip walls are simulated by
implementing bounce-back boundary conditions with phantom
particles52–54.
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Fig. 1 Nematic-isotropic phase transition. Simulation parameters from
§ 2.5 are used with no shear coupling, χHI = 0. Simulations in 3D exhibit
discontinuous isotropic to nematic transitions, regardless of whether the
local Sc (solid lines) or global S (dashed lines) order parameter is used.
The transition is second order in 2D when the local Sc is used but
becomes discontinuous if S is used. The nematic-isotropic transition
agrees qualitatively with the Maier-Saupe self-consistent mean-field
theory (MS; dotted lines). Inset shows a typical snapshot of the isotropic
disordered state (left) and nematic ordered state (right).

The boundary conditions also set the easy direction describing
the preferred orientation of the liquid crystal director at a sur-
face. During a bounce-back collision event with the surface, the
orientation ui of the impinging nematic-MPCD particle is set par-
allel to the surface’s easy direction. This anchoring is not strong,
as will be seen in § 3.5. For homeotropic boundary conditions,
the easy direction is normal to the surface. For planar boundary
conditions, the easy axis is parallel to the surface. In this case, all
in-plane directions can be equivalent or a single preferred direc-
tion can be specified. If no preferred direction is specified then
the boundary is said to be non-anchoring.

2.5 Units and Chosen Simulation Parameters

Values are expressed in MPCD simulation units — time, mass,
energy and length are given respectively by time step δ t, particle
mass m, thermal energy kBT and cell size a= δ t

√
kBT/m. The new

MPOD parameters are also stated these units. The interaction
constant U has units kBT , while the rotational friction coefficient
γR has units kBT δ t. Both the bare tumbling parameter λ and the
shear coupling coefficient χHI are dimensionless.

Except when otherwise stated, the simulations presented in this
manuscript vary input parameters about the following set of val-
ues: In this manuscript, simulations are carried out in 2D (d = 2)
for a system of size V = 50d with periodic boundary conditions
and a mean number density of ρ = 〈Nc〉 = 20. The MPCD parti-
cles are randomly initiated with positions from a uniform distri-
bution, velocities from the Maxwell-Boltzmann distribution and
aligned nematic orientations. Parameter values are chosen to be
m = 1, kBT = 1, δ t = 1, a = 1, U = 15, γR = 0.01, λ = 2 and χHI = 1.

3 Results
Having described the implementation of the nematic-MPCD al-
gorithm, we now characterise the resulting properties of the liq-
uid crystal. We first consider how the isotropic-to-nematic phase
transition depends on the simulation parameters, particularly the
heuristic shear coupling coefficient and number density of MPCD
particles. We measure the nematic-isotropic hysteresis and ex-
plore the dynamics of the defect annihilation rate as the system
orders. Elastic free energy drives defect annihilation and we mea-
sure the isotropic Frank elastic coefficients to be a linear function
of the interaction constant. The response of the isotropic phase
to an ordering wall is characterised.

3.1 Nematic-isotropic transition
When βU is small, the nematic-MPCD algorithm exists as an
isotropic fluid state with a small global order parameter S (Fig. 1;
inset-left). When βU is large a nematic state is formed (Fig. 1;
inset-right). Maier-Saupe self-consistent theory predicts that the
nematic-isotropic transition is first order (Fig. 1). Although the
nematic-MPCD algorithm assumes near-equilibrium and so uses
the Maier-Saupe distribution on the local cell level, the scalar
order parameter and directors are spatially varying fields rather
than mean-field values.

In 3D systems of large enough size, periodic boundary condi-
tions and no shear coupling, the nematic-MPCD algorithm does
exhibit a strongly first order nematic-isotropic phase transition
(Fig. 1). In these simulations, the nematic fluid is initialised in
the nematic state and resides in a periodic cube of size 503. The
system discontinuously jumps from zero to a global scalar order
parameter S∗ = 0.860±0.003 at [βU ]∗ = 4.20±0.05.

In 2D the nematic-isotropic transition is expected to become a
Kosterlitz-Thouless-type transition55,56. The present simulations
demonstrate that the transition is no longer first order, increasing
from zero at [βU ]∗ = 4.1±0.1 in a 502 system (Fig. 1). The second
order nature of the nematic-isotropic transition is a direct result
of the nematic-MPCD’s ability to accommodate spatialtemporal
varying fields. Future studies should more fully characterise the
nature of the nematic-isotropic transition in 2D.

3.1.1 Global vs. Local Scalar Order Parameter:

By replacing the local scalar order parameter Sc of each cell c with
the system’s globally determined order parameter S in each cell’s
local mean-field interaction potential wMF,c (Eq. 8), the 2D tran-
sition becomes first order (Fig. 1). The order parameter curve re-
mains relatively unchanged except near the phase transition. The
transition from the isotropically disordered state is retarded com-
pared to the spatially varying case that uses the local order param-
eters but suddenly jumps to S∗= 0.51±0.01 at [βU ]∗= 5.00±0.05.

3.1.2 Variation of Simulation Parameters:

In order to assess the impact of varying simulation parame-
ters on the nematic-isotropic transition, we initially omit the
velocity→orientation coupling by setting χHI = 0 in Eq. 10 (Fig. 2;
top row). We consider varying time step δ t, mass m, temperature
kBT , rotational friction coefficient γR, bare tumbling parameter λ

and mean number density ρ. In the zero-coupling limit, Fig. 2
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Fig. 2 Global order parameter as a function of simulation parameters varied about the simulation values from § 2.5 (red squares). The top row shows
simulations in the absence of shear coupling, χHI = 0. The bottom row shows simulations with full coupling, χHI = 1.

(top row) shows that none of the MPCD simulation parameters
have a significant effect on the nematic ordering. Only the mean
number density has an observable affect on the curve. At ex-
tremely low mean number densities, the transition occurs at a
slightly larger interaction constant. It should be noted that when
an individual nematic-MPCD particle is alone in an MPCD cell
neither its velocity nor its orientation are altered.

3.1.3 Impact of Coupling Fluctuating Hydrodynamics:

When the shear coupling coefficient χHI is zero the global scalar
order parameter S rises from zero in the isotropic phase to S = 1
in the βU → ∞ ordered limit. This is no longer true when χHI 6= 0
(Fig. 2; bottom row). As the hydrodynamic coupling is restored
by increasing χHI, the value of the scalar order parameter de-
creases for a given interaction constant. This occurs because fluc-
tuations in the velocity field introduce an additional source of
noise through Eq. 10 when χHI 6= 0. These fluctuations reduce
the order in the director field and move the system away from
the fully ordered state of S = 1. With full coupling, only the ro-
tational friction coefficient γR is seen to have no impact on the S
curve (Fig. 2; bottom row). This is because γR controls the rota-
tional relaxation dynamics and does not influence the equilibrium
state.

When χHI = 0, the mean number density is the only simulation
parameter seen to have any observable effect on the isotropic to
nematic transition and then only at extremely low values (Fig. 2;
top row). At the lowest number density the transition is less sharp
and occurs at a slightly higher interaction constant βU . While S
depends weakly on ρ when χHI = 0 (Fig. 3), it is a strong function
of number density when χHI = 1. Fig. 3 shows the global scalar
order parameter as a function of density for U = 15. When the
shear coupling parameter χHI is set to zero, the system remains
in the nematic state even at quite low densities. On the other
hand, when coupling is included, S increases from zero with mean
number density. In fact, the order parameter in Fig. 3 exhibits a
continuous transition and the nematic-MPCD algorithm possesses
a nematic-isotropic transition as a function of density when χHI =

1.
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Fig. 3 Nematic-isotropic phase transition as a function of average
number density for U = 15. Simulation parameters from § 2.5 are used.
Without shear coupling (χHI = 0), the global order parameter S is
relatively constant but when χHI = 1 the system exhibits a density
dependent second order phase transition.

Since there is a nematic-isotropic transition as a function of
density (Fig. 3), it is clear that the shear coupling coefficient has
a larger effect at lower number densities than it does at larger
densities. Fig. 4 shows the strong interaction limit of S (mea-
sured at βU = 100 and 500) for various densities as a function of
coupling. For a low mean number density of ρ = 5, Fig. 4 shows
that the strong limit drops from limβU→∞ S ≈ 1 when χHI = 0 to
only 0.038± 0.003 when the algorithm is fully coupled. Fluctu-
ations are pronounced because of the small number fluctuations
of particles in each MPCD cell. By increasing the mean number
density ρ, the continuum limit is approached and fluctuations be-
come less severe. When ρ = 20 and the algorithm is fully coupled
(χHI = 1), the strong interaction limit is S = 0.80± 0.01 (Fig. 4).
Throughout this work, we set the mean number density ρ = 20,
though a lower density may suffice in many situations.
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Fig. 4 Increased shear coupling (χHI) reduces the scalar order
parameter. The order parameter is measured in the highly nematic
phase at βU = 100 and 500. The other simulation parameters are given
in § 2.5.

When the algorithm is fully coupled with χHI = 1, the tumbling
parameter can also increase the susceptibility of the order field to
velocity fluctuations through Eq. 10. This can be seen in Fig. 2
(bottom row). When λ = 5, fluctuations in the shear rate D fully
disorder the system.

3.1.4 Hysteresis:

Hysteresis is expected in 3D due to the first order nature of the
nematic-isotropic transition. By comparing 3D nematic-MPCD
simulations initialised with the director field in the isotropic state
(as in in § 3.1) to those initialised in the nematic state, a striking
hysteresis loop is observed in Fig. 5. The interaction constant,
βU , is fixed throughout the duration of individual simulations. At
these system sizes, the width of the hysteresis is measured from
Fig. 5 to be β∆U∗ = 0.70± 0.03 and the difference in order pa-
rameters at the transition points is ∆S∗ = 0.20±0.04.

3.2 Defect Annihilation Dynamics
The process of transitioning from the isotropic to nematic phase
discussed in § 3.1 is controlled by the dynamics of topological de-
fects. Though the increasing interaction constant U generates lo-
cal order along a spontaneous direction nc, neighbouring regions
may break symmetry along any other direction. Therefore, many
±1/2 topological defects rapidly emerge from the disordered di-
rector field. Pairs of oppositely charged defects must approach
each other and annihilate for global ordering.

Since the 2D number density ρD = 0.0080±0.0005 of defects is
initially quite high, the annihilation rate RD = −ρ̇D is large but
falls rapidly (Fig. 6; inset a). As the density decreases, the aver-
age separation between topological defects increases and annihi-
lation events become less frequent (compare Fig. 6a showing an
example system at t = 40 to Fig. 6b showing the same system at
t = 400). A variety of scaling relations for the annihilation rate
RD (t) ∼ t−(ν+1) have been put forward. Mean-field arguments
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Fig. 5 Hysteresis loop in the isotropic/nematic transition. Simulations
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Simulation parameters from § 2.5 are used in 3D.

predict ν = 1, purely diffusive kinetics suggest ν = 0.5 and scaling
arguments give ν = 6/757. Furthermore, the scaling law possesses
short-time logarithmic corrections58,59. When measured on short
times between t ∈

[
10,103], the nematic-MPCD annihilation rate

appears to decay as ν = 0.74± 0.02 (Fig. 6) but the exponent
increases to ν = 0.83± 0.04 when evaluated over t ∈

[
102,104]

(Fig. 6), which is in agreement with the ν = 6/7 scaling predic-
tion.

3.3 Frank Elastic Coefficients

We have considered how the nematic state arises from the
isotropic state. Let us now consider the nematic response to dis-
tortions in the director field. Gradients in the director field n lead
to the free energy density per unit volume f = Ksplay (∇ ·n)2 /2+
Ktwist (n ·∇×n)2 /2+Kbend (n× (∇×n))2 /2. Splay, bend and twist
deformations are illustrate in Fig. 7; insets. Since distortion are
typically large compared to molecular length scales, the Frank
elastic coefficients Ksplay, Ktwist and Kbend are macroscopic mate-
rial properties.

One technique for obtaining the Frank coefficients from
particle-based simulations is to measure the equilibrium, ori-
entational fluctuation spectrum60–63. In reciprocal space,
the tensor order parameter for each wave vector is Q̂(k) =

ρ−1
∑

N
i=1

1
d−1

(
duiui− 1̂

)
exp(ik · ri). We work in a varying director-

based coordinate system, in which nc = [0,0,1] and the wave vec-
tor is in the 13-plane, i.e. k = [k1,0,k3]. In this coordinate system,
the equipartition theorem60 relates the the low |k| limit of the
orientational fluctuations to the Frank coefficients

〈
Q̂α3 (k) Q̂α3 (−k)

〉
=

9
4

SV kBT
Kα k2

1 +Kbendk2
3

(12)

for α = 1,2 (splay, twist). Through Eq. 12, the Frank coefficients
may be determined as fitting parameters of the fluctuation spec-
trum in reciprocal space. A large system size of V = 30× 30× 30
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(a) Director field at t = 40δ t. (b) Director field at t = 400δ t.
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Simulation parameters from § 2.5 are used with a 2D system size of
500×500. In the defect maps, colour denotes local scalar order
parameter and defects are mapped with red circles marking −1/2
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and N = 5.4×105 MPCD particles are used in the following simu-
lations to ensure sufficient statistics for many near-zero |k| values
and accurate fits.

The resulting Frank coefficients of the nematic-MPCD fluid are
shown in Fig. 7. Although splay, twist and bend deformations
may possess differing coefficients in some physical systems, sim-
ple scaling suggests that all three elastic constants are of or-
der ∼ U/a and theoretical considerations of the Maier-Saupe
self-consistent model64 predict Ki = `2ρUS2 [1+Ci]/6, where i =
{splay, twist,bend} and ` is a characteristic interaction distance.
The different constants Ci depend on the molecular details and
higher moments of the orientation distribution64. The nematic-
MPCD simulations ostensibly exhibit isotropic elasticity. This is
expected because, in the limit that the rod length is small com-
pared to the interaction length, the constants Ci are safely ne-
glected and the Frank coefficients are predicted to converge64.
Since the nematic-MPCD algorithm simulates point-like nemato-
gens with a characteristic interaction length equal to the finite cell
size, the one-constant approximation applies.

In agreement with simple scaling and the Maier-Saupe self-
consistent predictions, the measured elastic coefficients for the
nematic-MPCD algorithm are linear with respect to the interac-
tion constant U and number density ρ (Fig. 7). Together, they
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(N = {1.875,2.5,3.125}×106 nematogens) with χHI = 0. Insets a,b,c
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are fit to Ki = {84±4,113±6,142±7}U for ρ = {15,20,25}, re-
spectively, in Fig. 7.

3.4 Tumbling and Shear Alignment
Thus far, we have considered quiescent nematic fluids. We now
turn our attention to flowing systems. Microscopically, the direc-
tor field is influenced by shearing flows through Eq. 10 and as
described schematically in Fig. 8; inset.

In the infinitely dilute limit of a suspension of spheroidal par-
ticles, the bare tumbling parameter is a geometrical entity that
can be cleanly related to the particle aspect ratio p by λ =(

p2−1
)
/
(

p2 +1
)
, which goes to unity as p→ ∞ and is zero for

spheres (p = 1). However, interactions between nematogens in a
nematic fluid allow the actual tumbling parameter to deviate from
the isolated-slender-rod value and distributions of molecules can
exhibit effective tumbling parameters that are larger than unity.
Such fluids are referred to as aligning-nematics because there is a
stable alignment angle, the Leslie angle θL, between the director
and shear field.

By considering a Fokker-Planck equation for the probability
distribution of orientations, Archer and Larson65 found that
the flow tumbling behaviour of ellipsoidal particles with λ =(

p2−1
)
/
(

p2 +1
)

is determined by the tumbling parameter

λ
′ = λ

15S+48S4 +42
105S

. (13)

In the nematic-MPCD algorithm, λ is the specified simulation pa-
rameter for the bare tumbling parameter, the magnitude of which
can be set larger than unity. We shall see that λ ′ as given by
Eq. 13 is the resulting tumbling parameter of the nematic-MPCD
algorithm. In Eq. 13, S4 is the fourth moment of the Maier-Saupe
probability distribution. The distribution can be written as an
expansion of orthogonal Gegenbauer polynomials C(γ)

n (x) in d-
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dimensions as

fori (U,S,n) =
∞

∑
`=0

4`+1
2

S2`C
( d−2

2 )
2` (un) , (14)

where the moments are S2` =

〈
C
( d−2

2 )
2`

〉
. In 3D, the polynomials

are Legendre polynomials, while they are Chebyshev polynomials
in 2D. The first even moment is the scalar order parameter S ≡
S2 = d

d−1
〈
u2

n− 1
d
〉

representing the variance of the alignments
about the director, while S4 ≡S4 is the next non-zero moment.

3.4.1 Tumbling Nematic:

When λ ′ < 1, the nematogens continuously revolve or tumble.
The tumbling period is set by the Jeffery orbits to be

P =
2π

χHIγ̇
√

1−λ ′2
, (15)

where γ̇ is the shear rate.
Using Lees-Edwards boundary conditions51 to establish a shear

rate γ̇ = 0.01 across a periodic channel of height L = 50, we mea-
sure the tumbling period as a function of tumbling parameter λ ′

(Fig. 8). The period is relatively small when λ ′ is small and varies
very little as a function of tumbling parameter. However, as the
tumbling parameter increases, the period increases rapidly and
diverges as λ ′→ 1. The simulated tumbling periods are found to
be in good agreement with Eq. 15.

The tumbling period does not depend on the rotational friction
coefficient γR (Fig. 8). This is expected both from inspection of
Eq. 10 and from the realisation that the differential drag by the
shearing flow is what rotates the rod.

3.4.2 Shear-Aligning Nematic:

When the magnitude of the bare tumbling parameter λ is set so
that |λ ′| is larger than unity, the nematogens do not tumble but
rather align with the shear. For these tumbling parameters, Eq. 10
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Fig. 9 Leslie angles θL corrected for the tumbling parameter. Simulation
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in the nematic state. Ericksen diagram is inset and shows stable and
unstable orientations for θL.

has the solution

tanθL =±
√
|λ ′|−1
|λ ′|+1

. (16)

Good agreement is found between Eq. 16 and the simulations
using Lees-Edwards boundary conditions when the tumbling pa-
rameter (Eq. 13) is greater than unity. As the tumbling parameter
tends to 1+, the Leslie angle approaches zero. In this limit, the ne-
matogens orient along the flow direction. When λ ′� 1, the Leslie
angle of the nematic-MPCD fluid approaches π/4 as predicted by
Eq. 16.

3.5 Wall-Induced Ordering
Confining walls affect the nematic ordering. In the isotropic state,
anchoring can cause ordering in the vicinity of the walls. We
consider a 2D nematic-MPCD fluid confined between two no-slip
plates separated by L= 100. The plate at y= 0 enacts homeotropic
boundary conditions, which order the nematic fluid. The plate at
y = L is a non-anchoring boundary, which does not set a condition
for ui.

When the interaction constant is much less than the nematic-
isotropic transition value [βU ]∗ (§ 3.1), the order decreases to
the isotropic state far from the wall. As the interaction constant
is increased, the value of the scalar order parameter S0 (U) ≡
S (U,y = 0) at the wall increases (Fig. 10; inset). This signifies
that the anchoring is not infinitely strong and is strongly effected
by the value of U .

Additionally, the order extends further into the bulk fluid as
U increases. The characteristic distance the order extends from
the wall is a coherence length ξ (Fig. 10). One can predict that
the order decays as S (U,y) = S0 (U)e−y/ξ by considering the total
free energy functional to be the highest order term in the Landua-
De Gennes free energy and the deformation free energy. The co-
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herence length is a function of the elastic constant and the dis-

tance from the transition, ξ ∝

(
3Ksplay+2Ktwist

T−T ∗

)1/2
. As the nematic-

isotropic transition is approached, the coherence length diverges.
The nematic-MPCD simulations accurately reproduce the expo-
nential decay far below the transition point (Fig. 10; inset).

It was seen in § 3.3 that Ki ∼U so the coherence length takes
the form

ξ =

(
c1βU

1−U/U∗

)1/2
. (17)

The theory captures the rapid growth of the coherence length
near the nematic-isotropic transition but goes to zero as U → 0,
while the simulations do not (Fig. 10). The coherence length
of the nematic-MPCD does not go to zero because MPCD al-
gorithms are not able to resolve material properties on length
scales comparable to the cell size a. If a second fitting parameter
c2 = (1.505±0.005)a is included as in Fig. 10 to account for this
discretisation effect, then Eq. 17 well-represents the divergence
of the coherence length in the isotropic phase.

In the nematic phase, the order still decreases exponentially
from S0 but decays to a non-zero bulk value (Fig. 10; inset). Ex-
cept near the nematic-isotropic transition, the order parameter
falls steeply to its bulk value over a length scale comparable to a
single MPCD cell.

4 Conclusions
We have proposed a nematic-MPCD algorithm for simulating fluc-
tuating nematohydrodynamics. Nematic-MPCD uses traditional
Andersen-thermostatted MPCD with conservation of angular mo-
mentum to integrate the velocity field and a novel multi-particle
orientation dynamics (MPOD) collision operator to progress the
director field. By stochastically drawing orientations from the
local Maier-Saupe equilibrium distribution, the MPOD operator

updates the orientations without numerically evaluating gradi-
ents. In addition, the two-way coupling between the MPCD and
MPOD operators represents backflow and shear-alignment. We
have shown that this nematic-MPCD algorithm reproduces the
essential physical properties of a simple nematic fluid, such as
the nematic-isotropic phase transition, topological defects, Frank
elasticity and shear alignment.

The nematic-MPCD algorithm holds much promise as a tool
for simulating nematohydrodynamics, but future studies should
carefully investigate the anchoring strength (since modifications
to the no-slip conditions were required in traditional MPCD52–54)
and work towards kinetic theories to quantitatively predict the ne-
matic material properties , such as the Frank elastic and Leslie vis-
cosity coefficients, as functions of simulation parameters. Though
simple, the algorithm holds exciting potential for simulating a
wide variety of soft matter systems. For example defect dynam-
ics within topological microfluidic devices9 or porous media66

could be modelled, exploiting the ease with which the algorithm
can handle complicated confining geometries. It would also be
of interest to consider dispersed nanoparticles, carbon fibres67 or
swimmers68 within a liquid crystal host, and it is relatively easy to
imagine that generalized Maier-Saupe theories69 could be imple-
mented to in the MPOD collision operator to simulate cholesteric
or biaxial liquid crystals.
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