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Automatic split-generation for the Fukaya category
TIMOTHY PERUTZ! AND NICK SHERIDAN?

ABSTRACT. We prove a structural result in mirror symmetry for projeetCalabi—Yau (CY) man-
ifolds. Let X be a connected symplectic CY manifold, whose Fukaya cageféX) is defined
over some suitable Novikov fiell; its mirror is assumed to be some smooth projective schéme
over K with ‘maximally unipotent monodromy’. Suppose that sombt-gmnerating subcategory
of (a dg enhancement ofp°?Coh(Y) embeds intaF(X): we call this hypothesis ‘core homolog-
ical mirror symmetry’. We prove that the embedding extermsm equivalence of categories,
D°Coh(Y) = D™(F(X)), using Abouzaid’s split-generation criterion. Our résware not sensitive
to the details of how the Fukaya category is set up. In workfigparationPy, we establish the
necessary foundational tools in the setting of the ‘reéaBukaya category’, which is defined using
classical transversality theory.
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1 Introduction

1.1 Standing assumptions

Let k be a field of characteristic zero afid:= AR a Novikov field overk, whereR c R is an additive
subgroup: that is,

o0
. A . ;
K:= E cj-qJ.cjek,AjeR,jlngOAj:+m
j=0

Let (X,w) be a compact, connected, Calabi-Yau symplectic manifbldimension 21 (‘Calabi-Yau’
here meansy(TX) = 0).

Let Y — M = SpecK be a smooth, projective, Calabi-Yau algebraic scheme afiveldimensiom
(‘Calabi-Yau’ here means the canonical sheaf is trivial).
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1.2 The Fukaya category

We consider the Fukaya category %f denotedF(X). Of course, there are a number of possibilities
in defining the Fukaya category, which depend on varioustiatdi choices. We will always restrict
ourselves to definitions whet&(X) is aZ-graded,K-linear A, category (in particular, the curvature
10 vanishes).

In 82, we give alist of properties that we need the Fukaya categ@qy to have in order for our results
to work. We expect these properties to hold very generadlyws do not tie ourselves to a particular
version of the Fukaya category.

It will be proven in P (in preparation) that a version called thedative Fukaya categorhas all of
these properties, so the range of applicability of our tesslnot empty. Let us briefly outline what
that construction looks like, so the reader can keep a ctesample in mind.

It depends on a choice @alabi-Yau relative Khler manifold that is, a Calabi-Yau Ehler manifold
(X, w), together with an ample simple normal crossings divBar X, and a proper Ehler potentiah
for w on X\ D: in particular,w = da is exact onX \ D, wherea := d°h. Its objects are closed, exact
Lagrangian branek C X\ D. Floer-theoretic operations are defined by counting pdsaidmorphic
curvesu: ¥ — X, with boundary on Lagrangians X \ D (transversality of the moduli spaces is
achieved using the stabilizing divisor method of Cielielzadd Mohnke CMO07]). These counts of
curvesu are weighted by—2(@¥: so the category is defined ov&r = AR, whereR contains the
image of the map

H2(X7 X \ D) — Rv
u — w(u — «a(du).
The resulting curved\,, category is denoted(X, D)curv. We then definef(X, D), which is an honest

A, category (one without curvature): its objects are objett§ (X, D)curv, €quipped with bounding
cochains.

The analogues of the necessary properties in the monotesecheae also been establishedSn¢13
(but in that situation, X is not Calabi-Yau so our results do not apply). It is expedtet work in
preparation of Abouzaid, Fukaya, Oh, Ohta and ORBQ "] will prove that the Fukaya category of
an arbitrary symplectic manifold has all of the necessaoperties except for that described ig.8
(which ought to hold in full generality, but is easier to peder the relative Fukaya category).

We emphasise that, if you want to apply our results to youodate version of the Fukaya category,
you just need to verify that it has the properties outline§2n

1.3 Split-generating the Fukaya category

Now let us recall Abouzaid’s split-generation criteriésbo10], adapted to the present setting (following
[AFOT], see alsolRS17] and [Shel13 for the monotone case). It concerns the open-closed Sty

(1) OC: HH.(F(X)) — QH(X).

Theorem 1.1 Let A be a full subcategory dF(X). If the identitye € QH°(X) lies in the image of
the map

2) O€la: HH_n(A) = QH(X),
then A split-generate$.
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Remark. WhenX is a Liouville manifold, Theoreri.1was proved (for the wrapped Fukaya category)
in [Abo1(]. It is expected to be proven in full generality iAFO™].

There is also a dual version, involving the closed-opemgtmap:
CO: QH(X) — HH (F(X)).

Theorem 1.2 Let A be a full subcategory df(X). If the map
COl4: QH™M(X) — HHZ(A)
is injective, thenA split-generate$ .

Remark. Theoremil.2is expected to be proven for Fukaya categories of compaqilsgtic manifolds
in [AFO™].

In 83.1, we explain how Theoremk.1andl1.2 are proved, in particular, which of the properties from
82 they rely on.

1.4 Homological mirror symmetry

For anyA., categoryC, we denote bytw™ C’ the split-closed triangulated envelope (denotETwC)’
in [Sei08 §84c]).

Let D, Coh(Y) be adg enhancement of the bounded derived category of cohereatess°Coh(Y):
we regard it as &-graded, K-linear, triangulatedA,, category. Becaus¥ is projective, thedg
enhancement is unique up to quasi-equivalencelL®1pP, Theorem 8.13]. Itis split-closed, in thg,,
sense (seeSeil4 Lemma 5.3]).

Definition 1.3 X andY are said to bdénomologically mirrorif there exists amA,, quasi-equivalence
of K-linear, Z-graded, triangulated, split-closéd,, categories

P tw™ F(X) — D§,Con(Y).

Here, ‘tw™’ denotes the split-closed triangulated envelope (Se#08 §4c]).

1.5 Maximally unipotent monodromy

We can think ofY — M as a family ofk-schemes parametrized byt: there is an associated
Kodaira—Spencer map
KSelass: TM — HY(Y, TY),

where TM = Derg K is the k-relative tangent space, ar@Y is the K-relative tangent sheaf (see

Definition 1.4 We say thaty — M is maximally unipotenif
KS(9g)" # O.
Here,n is the relative dimension of — M, and the power is taken with respect to the natural product

on the tangential conomology,
HT (Y) ;== H(Y,N TY).
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Example 1.5 Supposék = C andK = A” = C(q)). Let T denote the monodromy of the family

aboutq = 0, acting in the middle algebraic de Rham cohomolétf(Y/M). By the ‘monodromy
theorem’, one ha3 = TsT, = T,Ts, WhereTs has finite order, andT{, — 1)"*1 = 0. Recall that the
family is said to havenaximally unipotent monodronify Ts =1 (soT = T,) and T — 1)" # O (see,
e.g., [CK99, §5.2]). If the family has maximally unipotent monodromyen it is maximally unipotent
in the sense of Definitiofh.4 (hence the name).

Remark. If X andY are a Calabi-Yau mirror pair (in the sense of Hodge theoraticor symmetry
[CK99)), thenY will always be maximally unipotent. Indeed,is conjugate to exp{2ri Res(Vq/q4q)),
and so it suffices to show thdtes(Vq,qq) is nilpotent of exponent precisely. The mirror to this
statement is the obvious fact thaf][€ H*(X; C) is nilpotent of exponent precisety, by nondegeneracy
of w. Note that we use the classical (not quantum) product sireane working at they = 0 limit
(see CK99, §8.5.3)).

1.6 Main theorem

Definition 1.6 Let X andY be asin 8.1, andY be maximally unipotent. We say that sughand Y
satisfycore HMSif there exists a diagram

F(X) D5, Coh(Y)
) o)
A—Y .3

where
1) BcC D*d’gCof(Y) is a full subcategory which split-generates;
(2) A C F(X) is afull subcategory; and
(3) ¥: A — B isaquasi-equivalence &, categories.

For the purposes of the following theorem, we assume thdtukaya categoryf(X) has the properties
outlined in 8.2

Theorem A Suppose thaX andY satisfy core HMS. Therl. split-generate§(X). It follows thatX
andY are homologically mirror (via a quasi-equivalence extagdp ).

We now record a further result. The following definition isrin [Ganl13:

Definition 1.7 If the identity e € QH®(X) lies in the image of the open-closed map, then we say
that F(X) is non-degenerate

Theorem B LetX andY be asin .1, andY be maximally unipotent. IK andY are homologically
mirror, thenF(X) is non-degenerate.

The importance of TheoreB is that, with some further work, non-degeneracy is sufficien the
closed-open and open-closed maps to be isomorphisms. Hsipmwved in Ganl3 in the case of
Liouville manifolds, and will be extended i5PS1% (in preparation) in the case at hand.
TheoremsA andB will be proved in 8.4. The basic idea of the proof of Theoreis this: check that
A satisfies the hypothesis of Theordn2, by transferring it (via core HMS) to an equivalent hypotkes
on B, which turns out to be equivalent to maximal unipotenc off he idea for TheorerB is similar.



6 Perutz and Sheridan

1.7 The relative and absolute Fukaya categories

Let us make one remark on potential applications of our tetmbymplectic topology. As we mentioned
in 81.2, whenX is equipped with an appropriate divisDr(possibly normal-crossings), one can define
the relative Fukaya categof¥(X, D) [Sei02 Shel5hPS: its objects are exact Lagrangian branes in
the complement ob. One can also define the absolute Fukaya categi@) [FOOO09 AFO™"]. Its
objects are Lagrangian branesxn

Conjecture 1.8 (compare $hel5hAssumption 8.1]) There is an embeddinglaf, categories
3) F(X,D) C F(X)

(possibly after extending the coefficients¥(X, D) to a larger Novikov field). The embedding respects
open-closed string maps.

The embedding3) appears far from being essentially surjective, as its Bnaansists of Lagrangian
branes inX which are exact in the complementBf a very restricted class.

Clearly, the absolute Fukaya categdfyX) is more complicated and interesting from the point of
view of symplectic topology: it's harder to understand Laggians inX than it is to understand exact
Lagrangians inX \ D. Nevertheless, observe the following. Af C F(X, D) satisfies the hypothesis

of the split-generation criterion Theoreil, then the image ol under the embedding) will also
satisfy the hypothesis of the split-generation criterginge the embedding respects open-closed maps),
and hence split-generate.

Now suppose that we have established core HMS for the relgtikaya categoryd C F(X, D) isafull

A, subcategory which is quasi-equivalent to a split-genegatilll dg subcategoryB C DggCor(Y).
TheoremA implies thatA split-generates§ (X, D): infact, the proof shows that it satisfies the hypothesis
of Theoreml1.1 It follows that the image ofA under @) split-generatesF(X), so in fact we have a
guasi-equivalence

(4) tw™ F(X) = D§,Con(Y).
In particular, homological mirror symmetry holds for thesalute Fukaya categor§(X), not just for
the relative Fukaya categotj(X, D).

Hence, to prove homological mirror symmetry for the absolatikaya category4], it suffices to
separate the problem into two parts:

(1) Prove core HMS for the relative Fukaya category;
(2) Prove Conjecturé.8.

Part (1) can be approached by following the blueprint ‘compute tkece Fukaya category of \ D,
then solve the deformation problem when one plugs the divisak in’, first outlined in ei03.
This has been carried out for the quartic K3 surfaceSeil4 and for higher-dimensional Calabi-Yau
hypersurfaces in projective space 8he13 (with the caveat that the mirror is a categoryegfuivariant
coherent sheaves on a scheme with maximally unipotent mmongdin those cases, so some minor
alterations to our arguments are necessary). In many caked$hP9g, the pseudoholomorphic curve
theory involved in partX) can be treated using the stabilizing divisor method.

Part @) is a foundational question, about how one sets up one’s inggaces of pseudoholomorphic
curves, and has nothing to do with mirror symmetry. If onestarcts the relative Fukaya category and
the absolute Fukaya category within the same analytic fnarie it may be rather trivial (compare
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the argument in the monotone caSihgl13). However, the relative Fukaya category usedShé15h
PS is constructed using stabilizing divisors, which whileeyhhave the advantage of making the
pseudoholomorphic curve theory classical, have the disgdge of not extending in any straightforward
way to give a construction of the absolute Fukaya categdttyolagh see CW15): so to achieve part
(2), one would have to relate the stabilizing divisor framewtar the Kuranishi space framework of
[FOO009 AFO™], which we have not done. This is a crucial step if one wantsito homological
mirror symmetry for the relative Fukaya category (such asrésult proved in$hel5h where part
(2) was labelled as an assumption with no claim of proof) intmblmgical mirror symmetry for the
absolute Fukaya category, and hence say something abarttpectic topology oiX.

1.8 Applications

The case thaK is a Calabi-Yau Fermat hypersurface in projective space,[athe intersection oX
with the toric boundary of projective space, was considéng&hel5h. Core HMS was proved for a
certain full subcategonA C (X, D), consisting of a configuration of Lagrangian sphereXinD.
Split-generation was proved (based on the assumptionputithroof, that the relative and absolute
Fukaya categories are related as explained in the prevemi®s), by explicitly computingdH" (A)
then applying Theorem.2 The results in this paper remove the need for this explmihgutation
of HH"(A) (by transferring it to the algebraic geometry side by col3{ where it is known by the
Hochschild-Kostant-Rosenberg isomorphism), and forraate whole argument.

Core HMS has been proved for the full subcategdryc F(T*B/T*By) of Lagrangian sections of a
non-singular SYZ torus fibrations with base an integral effimanifold B [KS01]. The mirror is the
dual torus fibration, interpreted as a rigid analytic spatkar than as a scheme, adds mirror to the
category of vector bundles (which split-generates thevddrcategory of coherent sheaves, because the
mirror space is smooth). In the case of abelian varieties,aam prove a similar result, interpreting
the mirror instead as an abelian varieBuk0d. Assuming that the Fukaya category can be shown
to satisfy the properties axiomatised i@ & this case, our arguments (with appropriate modifications
if the mirror is a rigid analytic manifold) should completeese core HMS results to a full proof of
homological mirror symmetry (for products of elliptic ces; this was carried out by a different method
in [AS10Q). This allows one to study Lagrangians which are not sestif the torus fibration, in terms
of coherent sheaves on the mirror space.

More generally (i.e., allowing for singularities in the Lraggian torus fibration), a sketch proof of core
HMS on the cohomology level is outlined for Gross-Siebertramipairs in ABC 09, Chapter 8].
The subcategonyl consists of an infinite family of sections of the Lagrangiarus fibration, which
are mirror to the powerg§)(r) of the ample shea®(1) on the mirror variety (which split-generate the
derived category of coherent sheaves). Assuming the Fuatgmory can be shown to satisfy the
properties axiomatised inZ8in this case, and that the sketch proof of core HMS can be durre an
actual proof, our arguments should complete this core HMElréo a full proof of homological mirror
symmetry for Calabi-Yau Gross-Siebert pairs.

1.9 Acknowledgments
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2 The Fukaya category

Let X andK be as in 8.1 We will give a list of properties that we need the Fukayagaitg F(X) to
have in order for our results to work.

2.1  Quantum cohomology

Quantum cohomolog®H* (X) := H*(X; K) as aK-vector space; the grading is the standard one. Itis
equipped with the graded -linear quantum cup produset, defined by counting pseudoholomorphic
spheress: CP* — X, weighted by’ e K. Itis associative and supercommutative, and the identity
elemente € H*(X; K) is also an identity for. Itis a Frobenius algebra with respect to the Poiacar
pairing:

(ax B,7) = (a,Bx7).

Remark. These properties have been established for the quantunmabbgy of a semipositive
symplectic manifold in, for exampleMS04].

2.2 Fukaya category

The Fukaya categor§(X) is a Z-graded,K-linear, cohomologically unital, propek., category (in
particular, it has no curvaturg:® = 0). Henceforth in this section we will abbreviate it By

Remark. When X is a Liouville manifold, the Fukaya category was constrddte[Sei0§. In the
completely general case, a construction of the Fukaya egtediowing for a single Lagrangian object
was given in FOOO09.

2.3 Closed-open string map

There is a graded map & -algebras,
CO: QH'(X) — HH"(F).

For any object of J, there is a map oK-algebrasHH" () — Homi;(L, L); composingCO with this
map yields a graded map &f-algebras, which we denote by

CO%: QH"(X) — Homiy(L, L).
This map is unital (the magO ought also to be unital, but we don’t need that).

Remark. The idea that there should exist an algebra isomorphismdegt@H" (X) andHH" (F) goes
back to Kon95|. CO was constructed (under the namg, and allowing only for a single Lagrangian)
in [FOOO0O09 §3.8]. The conjecture that it ought to be an algebra homphism is mentioned in
[FOOO10 §6]. WhenX is a Liouville manifold, the construction aO (and the fact that it ought to
be a homomorphism of Gerstenhaber algebras) was explaingei0g. In this context it is a map
from symplectic cohomology to Hochschild cohomology of thepped Fukaya category (see also
[Ganl]d).
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2.4 Open-closed string map

There is a graded map @fH’ (X)-modules
OC: HH.(F) — QHT"(X),

whereHH. (F) acquires itSQH" (X)-module structure via the mapO, and its naturaHH" (F)-module
structure.

Remark. OC was constructed (under the name and allowing only for a single Lagrangian) in
[FOOO09 §3.8]. WhenX is a Liouville manifold, OC was constructed (from Hochschild homology
of the wrapped Fukaya category to symplectic cohomologyAbol1(Q. It was proved to be a module

homomorphism in the same setting tBgn13 and (in the convex monotone case) R913.

2.5 Weak proper Calabi-Yau structure

We define §] € HHp(F)Y by
[¢](c) := (OC(a), €).

[¢#] is an n-dimensional weak proper Calabi-Yau structoreJ: that is, the pairing

Homi(K, L) @ Homl* (L, K) 3 Homil(K, K) — HHy@) Y K
is non-degenerate. As a consequence, it induces an isoisiorph
) HH"(F) — HH.(3)"[-n]
that sendsy — [¢] N« (see, e.g.,.$hel3 Lemma A.2]).
The closed-open and open-closed string maps respect thesiddiuality maps), in the sense that the
following diagram commutes:

a—{a,—)

QH(X) ————— QH"(X)"[-2n]

» e

HH" () HH.(F)V[—n].

Remark. There is a notion of ‘strict cyclicity’ of amA., category, which is strictly stronger than a
weak proper Calabi-Yau structure; the Fukaya endomorpligimalgebra of a single Lagrangian was
shown to be strictly cyclic infuk1d. The construction of the weak proper Calabi-Yau strucfufle
was outlined for the exact Fukaya category$ej08 §12j], see also3eilQ §5].

®)

2.6 Coproduct

Let y{< denote the left Yoneda module ov&rcorresponding to an objeét, let )i denote the right
Yoneda module oveff corresponding tK, and letFa denote the diagonal¥ F) bimodule. The
coproduct is a morphism off({ ) bimodules,

A: Fa — Yk @r Dk

Remark. When X is a Liouville manifold, the coproduct was constructed tfoe wrapped Fukaya
category) in Abol1d.
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2.7 Cardy relation
The diagram
HH. ()[n] ——= QH"(X)
lHH.(A) leoo
H™ (1)

HH. (Vk ®x Yk) — Homix(K, K)

commutes up to a sign-L)"(1/2,

Remark. When X is a Liouville manifold, this version of the Cardy relatioragvproved (for the
wrapped Fukaya category) iApol1(Q.

2.8 Kodaira—Spencer maps

We recall the definition of theategorical Kodaira—Spencer mdpr a K-linear A, categoryC:
KSca: Dergy K — HH2(Q)
KScal§) = &%),

wherep* denotes thé\, structure maps, written with respect to a choic&ebasis for each morphism
space inC (see Fhel5a§3.5]; this class is closely related to tdaledin clasgKal07, Lunl1().

We have

(6) CO([w]) = KScar(@dq) € HHA(F),
where [u] € QH?(X) is the class of the symplectic form.

3 Split-generation

3.1 Abouzaid’s argument
Assume that the results of Sectidhg, 2.2, 2.3, 2.4, 2.6and2.7 hold.

Theorem 3.1 (Theoreml.1l) Let.A be a full subcategory af(X). If the identitye € QHO(X) lies in
the image of the map

(7 O€la: HH_n(A) = QH(X),
then A split-generates(X).

Proof The proof is identical to that obo10, Theorem 1.1]. m|

Now assume that the results 02.% hold.

Theorem 3.2 (Theoreml.2) Let.A be a full subcategory af(X). If the map
(8) COla: QHZ(X) — HHZ(A)
is injective, thenA split-generates(X).

Proof By 82.5, (8) is dual to ). In particular, if the former is injective, the latter isrgctive, hence
contains the identity in its image. The result follows by Theorehl m|
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3.2 The Kodaira—Spencer map and split-generation

Now assume that the results o2.8 hold.

Definition 3.3 We say that & -linear A, categoryA is n-potentif
KScat(aq)Un 7’é Oa
whereU denotes the Yoneda product " (A).

Theorem 3.4 Let X be as in §.1: connected, Calabi-Yau, artth-dimensional; and lefl C F(X) be
a full subcategory. IfA is n-potent, thenA split-generates(X).

Proof By the results of 8.8,

CO([w]) = KScal(adg) € HH?(A).
BecauseCO is an algebra homomorphism b2 §,
(9) CO ([w]*") = KScat(q0g)™" € HH?(A).

BecauseA is n-potent, this class is non-zero. Becausés connected anerdimensionaI,QHZ”(X)
has rank 1, so the fact thadl)(is non-zero implies tha@] is injective. The result follows by Theorem
1.2 |

Remark. Theorem3.4 does not hold if we violate our standing assumption théX) is Z-graded,
which can only be expected whehis Calabi-Yau (for example, wheX is monotone, the best one can
hope for is that the grading groupZ&/2N). That is because the proof crucially uses the fact @tat”

is 1-dimensional, which need not hold for other grading geouHowever, Theorerh.2 may still be
applied (compare§hell).

4 Hochschild—Kostant—Rosenberg

4.1 The HKR isomorphism

LetY — M be asin §.1 Thetangential cohomologgf Y is defined to be the cohomology of the
sheaf of polyvector fields:

HT*(Y) := €D HP(Y, A9TY);
p+g=
it is a gradedK-algebra, via wedge product of polyvector fields. Swawé9§ defines the Hochschild
cohomology ofY to be
HH(Y) := Exty, v(AL Oy, ALOv),

whereA: Y — Y x Y is the diagonal embedding. Itis a grad€dalgebra, via the Yoneda product.

The Hochschild—Kostant—Rosenberg isomorphisiiiiR62, GS88aSwa96 Yek02] is an explicit quasi-
isomorphism

A A0y — P Jldl,
q
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which induces an isomorphism
(10) HKR: HT"(Y) — HH"(Y)
(see [Calos, Corollary 4.2)).
There is also an isomorphish\f05, Toe0q
(11) HH' (Y) = HH" (D, Coh(Y)).
Composing the two yields an isomorphism
HKRcat : HT"(Y) — HH" (D5, Con(Y)),
which we call thecategorical HKR isomorphism

4.2 The categorical HKR map and deformation theory

We have the classical Kodaira—Spencer map (we recall theititafiin SectionA.6)
KSciass: Deri K — HY(Y, TY) € HTA(Y),
and the categorical Kodaira—Spencer mapd15a83.5]
KScat: Dery K — HH?(D3,Coh(Y)).

These classes are related in the expected way:

Proposition 4.1 We have
HKRcat © KSclass = KScat-

We were not able to locate a proof of this result in the litemat although the statement will surprise
no-one: we present a proof in Appendix

4.3 The twisted HKR map

This isomorphismHKR does not respect the algebra structures: this can be ‘ted'dry twisting by
the square root of the Todd class. Thus, one defines

I*: HT(Y) — HH(Y)
I"(@) = HKR (td$/2 A a) .
The mapl* respects the algebra structure (s€&10, Corollary 1.5]; this result was first claimed in
[Kon03, Section 8.4], see als&€hl05, Claim 5.1]).

The isomorphism X1) respects the algebra structure: so composing it Withyields an algebra
isomorphism
tatt HT'(Y) = HH" (D, Coh(Y));

this should be regarded as the mirror to the closed—openGtiap

Corollary 4.2 WhenY has trivial canonical sheaf,
(12) Icat © KSclass = KScat-

Proof WhenY has trivial canonical sheaf, the degree-2 component%é? tehnishes; so the maps
HKR,1*: HY(TY) — HHZ(Y)
coincide. The result then follows immediately from Progiosi4.1 m|
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4.4 Proofs of TheoremsA and B
Let X andY be asin 8.1, andY be maximally unipotent.

Theorem 4.3 (TheoremB) If suchX andY are homologically mirror, the(X) is non-degenerate.

Proof BecauseY is maximally unipotentKSgjas{dy)" # 0. Becauser has trivial canonical sheaf by
hypothesis, we have

lgat(KSclasiaq)) = KScat(aq)
by Corollary4.2. Becausd?; is an algebra isomorphism, it follows that
0 # 132t (KSciasd0g)") = KScar(@)™".
In particular, D5, Col(Y) is n-potent (Definitior3.3).

Because Hochschild cohomology and the categorical Kod&pancer map are Morita invariant (see,
e.g., Bhel5a84.4] for Morita invariance oKScy), it follows from homological mirror symmetry that
F(X) is n-potent. As in the proof of Theoref4, this implies thatCO is non-zero in degreen? and
hence (dually) thaO€ is non-zero in degree 0, and hence that the ideetityQH®(X) is in the image:
so F(X) is non-degenerate. |

Theorem 4.4 (TheoremA) Suppose that core HMS (Definitiah6) holds. ThenA split-generates
F(X).

Proof As in the proof of TheorenB, one proves thaDQgCor(Y) is n-potent. Core HMS requires a
split-generating subcategofy C D3, Coh(Y). The restriction mapiH' (D5, Coh(Y)) — HH"(B) is an
isomorphism, by Morita invariance of Hochschild cohomagtogp B is n-potent.

Core HMS also requires a subcategotyC F(X) that is quasi-equivalent t®; by Morita invariance
of the categorical Kodaira—Spencer map, it follows tHais n-potent. Hence, by Theoref4, A
split-generatesF(X). |

A The Hochschild—Kostant—Rosenberg isomorphism and the Kaaira—
Spencer map

The aim of this appendix is to prove the following:

Proposition A.1 (Propositiond.1) For any¢ € Derg K, the isomorphism
HKRcar: HT'(Y) — HH'(D§,Coh(Y))
takesKScjasd§) t0 KScar(§) -

Let us give a preview of the proof. We recall the constructibthe isomorphismHKRg5;:. First, we
have the HKR isomorphismHKR62, Swa96 Yek0Z]

HKR: HT'(Y) — Exty, (A.Oy, A, Oy).

Next, we have the isomorphism
EXt.YXY(A*OY7 A>I<(9Y) = EXt;a.-bimod(aa a’)
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(see pwa96 Theorem 3.1]). Here, we fix an open affine coverYafand a is the corresponding
diagram ofK-algebras of functions, in the sense of Gerstenhaber arac8¢bee ¢S88a §28])).
Next, we have the isomorphism
EXt:a.-bimod(aa a’) = EXt:a.!-bimod(a!a a’!)a
wherea! is the ‘diagram algebra’: thisis the ‘special conomologynparison theorem’ of Gerstenhaber
and SchackGS83 GS88H.
Next, we have the isomorphism
Extii-pimoa(@l, @!) = Hap(a-mod),
where the latter is Lowen and Van den Bergh's Hochschild oadlogy of the abelian categoty-mod:
see V05, Theorem 7.2.2].
Finally, we have the isomorphisms
H;p(amod) = Hyp(Coh(Y)) = HH'(DE,Coh(Y)),
proved in [VO5, Corollary 7.7.3 and Theorem 6.1].
For each of these Hochschild cohomology-type algebras, efieaala ‘deformation class’ associated
to ¢ (equal to KSgasd€) in HT2Z(Y), and to KSca(€) in HH2(D3gCor(Y))), and prove that each
isomorphism in the chain respects deformation classesach dip until the categories start appearing
(with H(a-mod)), we associate a deformation class to an arbitrary fidéodeformation of the
schemeY, of which the deformations associated to a derivation obthee are a special case.

A.1 Deformations of algebras

We begin the proof of Propositioh 1 with local considerations, based on an account by Bezrukava
Ginzburg BGO7].
Let K be afield, andh an associativék -algebra. The multiplication map
m:a®ga—a

is a surjective map ofa( a)-bimodules. Defing, := kerm, as an §, a)-bimodule; it is isomorphic to
the space ofK-relative) noncommutative 1-form3i° [CQ95. The map

d:a—= O, dx=x®1-1®Xx
is the universal noncommutative derivation of(i.e., the universal mag’: a — B, whereB is an
(a,a) bimodule, satisfyingd/(x-y) = d’x-y+ x-dy).
If aiscommutative, thef, = Ia/la2 is the space of commutative 1-forms: the induced mhap — 2,
is the universal commutative derivationafi.e., the universalmag/ : a — B, whereB is ana-module,
satisfyingd’(x-y) = x-d'y +y - d’x).

The Atiyah class. The short exact sequence of bimodules
(13) 0—- Q) —a®a—a—0
gives rise to a morphism — Q3°[1] in the derived category ofa(a)-bimodules: this morphism is
called thenoncommutative Atiyah classnd denoted
At € Extaopinoa(a, 25°).
If a is commutative, we consider the short exact sequence ofchites
(14) 0—Q, »a®a/l>—a—0,
which gives rise to theommutative Atiyah class
At, € Extlyinoa(a, Q).
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The Kodaira—Spencer class. Let V be a finite-dimensionaK -vector space, and
K. := K[V]/V? =~ K & V*.

Let A be aK.-deformation ofa, i.e., a freeK.-algebra equipped with &-algebra isomorphism
A ®k_ K = a. Thus one has a surjective homomorphismA — a with kernel isomorphic t0/* ® a,
and squaring to 0. This gives rise to a short exact sequen@e gfbimodules CQ95 Corollary 2.11]

(15) 0=V ®a 9% S ea i @ a 2 Qe 0.

This yields a mapg2i¢ — V* ® a[1] in the derived category ofa(a)-bimodules: this morphism is
called thenoncommutative Kodaira—Spencer claasd denoted

HRC € EXt:alln-bimod(Qgc7V>k ® a)'

Now we consider the case thatand A are commutative: the analogue dfj is the conormal short
exact sequence af-modules

(16) 0—-V*®a—a®aa— Q2 —0,
which yields thecommutative Kodaira—Spencer class
Oa € Extl 4(Q.,V* @ a).

The deformation class. Bezrukavnikov and Ginzburg define tkheformation clas®f A to be the

composition of the Atiyah and Kodaira—Spencer classesdamlérived category ofa(a)-bimodules:
def,(A) 1= 0a o At, € Ext?,,. 4(a,V* ® a).

It is represented by the 2-extension that is the splicindn@fextensions definingt, andf, :

(17) 0>V ®a—a®ad) ®a—a®a—a—0.

Whena and A are commutative, we have an alternative description of gferthation class, in terms
of the commutative Atiyah and Kodaira—Spencer classes. dianve apply the obvious exact functor
a-mod — a-bimod to the short exact sequencks), and splice it with the short exact sequentd) to
obtain the 2-extension

(18) 0=V '®a—a®aa—a®a/l?—a—0.

There is an obvious homomorphism of exact sequences,aj pimodules from {7) to (18), equal
to the identity on both ends: so these 2-extensions givetoighe same class ifExt2.,; ,(a,a).
In particular, the 2-extensiorl®) is an alternative description of the deformation clasdidvia the
commutative case.

Cocycle representing the deformation class. Classically, the deformation class was defined by
giving an explicit Hochschild cocycle associated to theod®fition. To obtain a cochain complex
computingExt2.,. _.(a,V* ® a), we replace the diagonal bimodule by its bar resolutifa), where
Bg(a) = a®4+2_ This gives the Hochschild cochain complex
CC(a,V*®a) := Homi-pinea(B.(d),V* ® a)
= H Homk (a®%,V* ® a)
>0
equipped with the Hochschild differential
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To obtain a cocycle in this complex that represetus, (A), one chooses & -vector space splitting

A-—=a,
S
which induces an isomorphism &-vector spaces
A~2apV'®a.

The multiplication then takes the form
(29) ma@®v-b,caw-d =my(ac)d Ba(ac)+v-my(b,c)+w-my(a d).
The mapfa: a®a — V* ® a is a Hochschild 2-cocycle (becausw, is associative), hence defines a
class
[8A] € Extpinea(a, V* @ a).
Bezrukavnikov and Ginzburg state that this class coincidéstheir definition of the deformation class

def,(A): we write down a proof, since we will want to extend the prtmé more general setting in the
next section.

Lemma A.2 We have[5a] = def,(A).

Proof The 2-extensionl(7) definingdef,(A) gives rise to a morphism — V* ® a[2] in the derived
category of §,a) bimodules via the following diagram:
d
"
®

0
0—=V"®a——=a®aA )" ®aa a

o

0O—V'®a—>0.
Namely, the mapn, (viewed as a map of complexes as indicated by the diagranguas-isomorphism
by exactness of1(7), hence can be inverted in the derived category, so we oltii@rmorphism
a— V*®al[2].
On the other hand, we can replagavith B.(a), and write down an explicit chain map inverting the
guasi-isomorphismm, :
..—>a®a®a®a a®a®a——a®a——>0

B o e

0———V'®a——=a®A Q" ®aa a®a 0.

0

a 0

Here,
ds: a®b®c— a®dyb) ®c,

and
Ba: a®b®ced— a- pa(b,c)-d.
One easily verifies that this is a chain map (for this, it igphdlto observe that
Ba(a,b) = s(a) - s(b) — s(a- b),
as follows immediately from1(9)). It also invertsm,: this follows from the fact that the augmentation

of the bar resolution is also given Imy, . Hence, composing this quasi-inverse with the obvious raap t
V* ® a, we find the corresponding Hochschild cochain tofag as required. O
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A.2 Deformations of diagrams

We recall the notion of diagram of algebrasfollowing Gerstenhaber and Scha€k$88a817] (whose
notation and conventions we adopt). Lgthe a poset: we regard it as a category, with a unique map
i — jif i <j, and no other maps. I is a map inB, we denote the domain hyv and the codomain

by cv: sov € B(cv, dv).

A diagramover B is a contravariant functos: B — K-alg. We writeal for a(i), andy” for a(V):
soy': a® — a® is aK-algebra homomorphism.

Atiyah class. Gerstenhaber and Schack define an abelian categ@rimod of (a, a)-bimodules,
which has enough projectives and injectives. Applying thastruction from the previous section
locally, we have a short exact sequence

(20) 0—-Q—a®a—a—0,

which defines a map. — Q2°[1] in the derived category ofa(, a)-bimodules; the Atiyah class is the
corresponding class

1
Aty € Exty-pipoa(@: €23°)-

Kodaira—Spencer class. Now, let K. = K[V]/V? be as in the previous section. deformationof

a overK. is a diagramA of K.-modules ovei3, equipped with an isomorphisiA ®k_ K = a: so
eachA' is a deformation ofa' over K.. Again, we can apply the construction of the previous sactio
locally to obtain a short exact sequence

(21) 0—-V'®a—ap Q) ®pa— Q) =0,

which definesamaf® — V*®a[l] inthe derived category ofa, a)-bimodules; the Kodaira—Spencer
class is the corresponding class

Op € Extl ;i  4(Q",V* ® a).

Deformation class. We define the deformation clagsf,(A) := 6 o At, as before: it corresponds
to the 2-extension

(22) 0—-V'®a—apQdypa—ala—a—0.

We regard it as an element éfom(V, Ext2_,.  .(a,a)). If a and A are commutative, then it also
corresponds to the 2-extension

(23) 0= V'®a—apy »aa/l2—sa—0.

Cocycle representing the deformation class. In the case of a single algebra, the Hochschild cochain
complexCC' (a, V* ® a) has cohomologyExt;._,;..4(a, V* ® a), because the bar resolutidh (a) is

a projective resolution of the diagonal, 6)-bimodule. For a diagram of algebras, the bar resolution
B.(a') is locally projective(i.e., projective as anaf, a')-bimodule for alli), but notprojective as

an (@, a)-bimodule. To obtain a projective resolution af one must use Gerstenhaber and Schack’s
generalized simplicial bar resolutiomenoteds. B. (a) [GS88a §20].



18 Perutz and Sheridan

The resulting cochain complex is (in the notation G988a §21])
CCla,V*@a) = @D Homa-binea(SpBq(a),V* @ a)
p+g=r

=~ P [ cc@v, v @a”|,).
p+0g=r dimo=p
where the product is over gli-dimensional simplices in the posets.
Given a deformation of diagramA, and a splitting
Ai . ai

< = —

s
for all i (the s can be chosen independently), Gerstenhaber and Schack definchaing €
CC?%(a,V* ® a). Namely, 34 has a component for each 0-simplex

Y e CCal,v*@al),
BRab) = $@-s(b)—5(@-b),
and a component for each 1-simplex, i.e., for each morphigmi3(cv, dv):
,BS() c CCl(aCV, V* ® adV)7
W@ = Moa(v)— AWV)os.

Lemma A.3 We have[Sa] = def,(A).

Proof We follow the proof of LemmaA.2. We replacea by its projective resolutiors. B.(a), and
construct a morphism

(24) 8.B.(a) v {0=-V'®a—-akQfa—axa—0
A

whose composition with the augmentation from the rightehaitle toa is the augmentation of the
generalized simplicial bar resolution.

Giving a morphism Z4) is equivalent to giving a cocycle
56CCO(a,0—>V*®a—>a®QZf®a—>a®a—>0).
As proven in [5S88a §21], this cochain complex is isomorphic to

(25) [[cC@' v @a)ecCl@,a @ f ®a)® CCla!a' @al)
[

(26) o J[ccli@ v ea)ecc@,a ® Q) ®a)

i
(27) ® H CCo%ak, V* @ a').

iSjSk
The differential on this complex has three components:

6 — 5/+5//+5///

whered’ is the differential in the simplicial direction (it increasp), ¢” is the Hochschild differential (it
increases), andd” is composition with the differential in the complex8 V*®@a - a®@ Q)f ®a —
a®a— 0.

The morphism/3 we construct has a componefi®? & 5% & %0 in (25): it coincides with the
construction in the proof of LemmA.2, applied to the individual deformation&' with splittings s
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(in particular, 3%2 is the product of the cochairﬁ(ﬂ? defined above). It also has a componght & 0
in (26): this is the product of the cochai@’) defined above. The componeft? in (27) vanishes.
To prove that this3 is a cocycle, we must show that
(5/ + 5// + 5///)(50,2 + 50,1 + 50,0 + Bl,l) —0.
It follows from the proof of Lemmad.2, applied to each individual deformatich', that
(5// + 5///)(50,2 + 50,1 + ,80’0) —0.
So it remains to check that
§'(8%% + B+ B0 + (8" + 8" + 6")(BM) = 0.
Indeed, one easily verifies that
5892 4 5701 —
530 4§t —
5150,0 —
§pht =
Therefore, 3 defines a chain map. Becausf® = e ® e is the identity, its composition with
the augmentation of the 2-extension coincides with the angation of the generalized simplicial

bar resolution. It is clear that the composition with the mapV* ® a is the deformation class
Ba = %2 + L1 as required: this completes the proof. O

o0 0o

A.3 Derivations on the base

Let K. := K[e]/£2. Let ¢ € Der, K be ak-relative derivation ofK. There is a corresponding map of
K-algebras

K — K
k — k+4e-&(K).
Hence, to anyK-algebraa we can associate a deformation o¥&r,
A5 = a®k K,
whereK. is regarded as & -algebra via the above map. We denote the correspondingnaiation

class by
defa(€) 1= defa(A¢) € ExtZpinoala, a).

If we choose &K -basis fora, we obtain a natural splitting fok.: namely,

s@:=a®l-{@®e.
Here, ‘¢(a)’ denotes the map which appli€do the coefficients of with respect to the choséi-basis.
With respect to this splitting, the deformation cocycle is

Bae = E(My),
i.e., the matrix with respect to the chos&nhbasis is obtained by applying to the matrix of the
multiplication mapm,.

The same construction applies to diagramdKehlgebras: given a diagram and a derivatior <
Dery K, we obtain a deformation aof over K., namely

/Ag = a ®k K,
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and we denote the associated deformation class by
defa(€) 1= defa(A¢) € Ext2 pinoa(a, @).

Now suppose we choodé-bases for each', and form the associated splittingsas above: then we
can write the deformation cocycléa, explicitly. It has a componeryﬁﬁ}'&S for each 0-simplex, which
is equal to _ _ _

fmy): a' ®a' — a',
i.e., the result of applying to the matrix of the multiplication map with respect to thesbnk -basis;
it also has a componer;ﬁ(ﬂ;’l for each 1-simplex, which is equal to

Y a® - a,

i.e., the result of applying to the matrix of the restricting map", with respect to the chosek-bases
on the domain and codomain.

The fact thatsa, is a cocycle, and that it representsf,(€), follow from the results of the previous
section. In this case, the proofs amount to nothing moreapatying the product rule to the equations
Mai (Mai(+,+), ) = Mai (-, Mai(:,+)) (associativity ofa’), Mua(’(:), ¥'(:)) = "(Maa(:,)) (¢" is an
algebra homomorphism), angl'y¥ = " (a is a functor).

A.4 The diagram algebra

Given a diagram oK -algebrasa, Gerstenhaber and Schack define diegram algebraa!, which is
an ordinaryK-algebra; and they prove tlepecial cohomology comparison theorg@S583 GS88H,
which implies that there is an isomorphism

(28) EXt;a.-bimod(aa a’) = EXt;a.!-bimod(a!a al)

Furthermore, any deformatiof of a overK. induces a deformation af! over K., namelyA!; and
the isomorphismZ8) takesdef,(A) to def, (A!), as one easily shows from the explicit cochain-level
formula for the isomorphisn2g) derived in [GS83 §17].

As a particular case of this, § € Dery K, then the map48) sendsdef () to defai(€).

A.5 Deformation classes of categories

Let A be aK-linear A, category, and{ € Dery K. We have an associated deformation class
def 4 (€) := KSca(€) € HH2(A). It can be defined by giving an explicit cochain-level reyematative: if
we choose & -basis for each morphism space/n and write the matrices of th&,, structure maps
w* with respect to those bases, thést 4 () is represented on the cochain level\§y*). If B C A is

a full A, subcategory, there is an obvious restriction map

CC(A) — CC(B),
and it is obvious that this map takesf 4(£) to defg(£). In fact one can check that the deformation
class is a Morita invariant (se&hel5a8§4.4]).

In particular, one can consider the special case of an axdialinear categoryA, i.e., one for which
the A, structure maps:® vanish fors # 2. Lowen and Van den BerghV05] define the Hochschild
cohomology of an abelian catego€yto be

H3,(C) := HH (InjInd(C));
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we make the obvious definition
def3P(€) := definjinae) (€)-
They prove [V05, Theorem 7.2.2] that for any diagram there is an isomorphism
Hap(a-mod) = Ext)pinea(al, al),

which arises from the restriction map to the single-objabtategory ofa-mod consisting of a projective
generator whose endomorphism algebralis It follows that this isomorphism send&fgk_’mod(g) to

defai(§).

Now let Y be a quasi-projective scheme ou&r Let Oper(Y) denote the poset of open affine subsets
of Y. LetY = Ul,A be a finite open affine covering of, and let3 C Opern(Y) be the sub-poset
consisting ofA; := NjcyA for ) £ J C {1,...,n}. We obtain a diagram dK-algebrasa over 3,
namelya’ := Oy(A;), with the obvious restriction maps.

Lowen and Van den Bergh prove\[05, Corollary 7.7.3] that there is an isomorphism
Hap(Coh(Y)) = Hyp(a-mod).
The isomorphism respects deformation classes.

Finally, they consider a certaifg enhancement dD®?Coh(Y), which they denot&DP(Coh(Y)), and we
will denote DggCof(Y) (recalling that thedg enhancement is unique up to quasi-equivalence). They
prove [LV05, Theorem 6.1] that there is an isomorphism

H3,(Con(Y)) 2 HH' (D5, CoN(Y)).
The isomorphism respects deformation classes.

A.6 Deformations of schemes

As in the previous section, let be a quasi-projective scheme oJvEr Swan Bwa9§ defines the
Hochschild cohomology oY to be

HH"(Y) := Extyxv(A.Oy, A, Oy),
whereA: Y < Y x Y is the inclusion of the diagonal.
The construction of the algebraic Atiyah class globalizéamely, we have the short exact sequence
(29) 0— ALQY = Opey — ALOy — 0,
where Oy is the second infinitesimal neighbourhood of the diagondiis Bhort exact sequence
gives rise to a morphism, Oy — A,O[1] in DPCoN(Y x Y), whose associated class

Aty € Exty, v(ALOy, A7)

is the standard geometric Atiyah class.
The construction of the algebraic Kodaira—Spencer clagsglbbalizes. LeV be aK-vector space,

andK, = K[V]/V2 as before. Lely be a deformation o¥ overK., i.e., a schem@ overSpecK.,
equipped with an isomorphis®l xspec k. Spec K = Y.

Leti: Y — Y denote the inclusion of the central fibre of the deformatibhe conormal short exact
sequence
0V ®0y —i*Q), = Qy =0
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gives rise to a morphisrd, — V* @ Oy[1] in DPCoHY), whose associated class
KSy € Exty(Qy,V*® Oy)
>~ Hom(V,H(Y, TY))
is called theKodaira—Spencer map
The pushforward short exact sequence
0— V*® A0y = Ad*Q), — A Qy — 0
gives rise to a morphism QY — V* @ A, Oy in DPCoRY x Y). We define theleformation classf
Y, defy(Y) € V* @ HH?(Y), to be the composition of these two map<DRCoh(Y x Y):
defy()) := KSy o Aty € Extd, (A.Ov,V* ® A, Oy).
It follows from a result of @Gldararu [Cal05, Proposition 4.4] that for any class € H(Y,TY) =
Exty(QY, Oy),
HKR(a) = A, o Aty,
so in particular,
(30) HKR o KSy = defy()).

The deformation class is represented by the 2-extension
(31) 0= V*®0Oy — A*i*Q%; — OA(Z)Y — A,Oy — 0.

Now, let Y = U ;A a finite open affine covering as in the previous section, arttie associated
diagram ofK-algebras. There is an obvious exact fund@ah(Y x Y) — a-bimod, sendingF — T,
whereY := F(A; x Aj). It obviously sendsA,Oy — a. Swan proves$wa96 Theorem 3.1] that
this functor gives rise to an isomorphism

(32) Exty v(AxOyv, AL Oy) = Ext) imoa(@; @).

This functor obviously sends the short exact sequeBtet¢ the short exact sequen@3) defining the
deformation class in the commutative case. Hence, the igarsm V* ® (32) respects deformation
classes.

As a particular case of the above, fetc Der, K: then we obtain a deformatios := Y xk K.,
wherekK. is regarded as &K-algebra via a map determined yas in 8A.3. We define theclassical
Kodaira—Spencer mafwhich appears in the statement of Propositiof) to be
KSclass: Dery K —  HXY, TY)
KSclasd§) = KSyE(l)
(here, ‘1’ is regarded as an elementof= K). We define the deformation cladsfy () := defv()%).
It follows from (30) that

HKR(KSciasd€)) = defy ().
This completes the proof of Propositidnl: we have explicitly identified the isomorphisms
HT"(Y) = HH'(Y) = ... = HH"(D§,Coh(Y)),

shown that the first one takes the Kodaira—Spencer &&ggs{¢) € HT?(Y) to the deformation class
defy(€) € HH?(Y), and shown that all subsequent isomorphisms respectrdafiom classes, up until

denggCOHY) (5) = KScat(g).
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