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Abstract

MeCP2 is an abundant protein in mature nerve cells, where it binds to DNA sequences con-

taining methylated cytosine. Mutations in the MECP2 gene cause the severe neurological

disorder Rett syndrome (RTT), provoking intensive study of the underlying molecular mech-

anisms. Multiple functions have been proposed, one of which involves a regulatory role in

splicing. Here we leverage the recent availability of high-quality transcriptomic data sets to

probe quantitatively the potential influence of MeCP2 on alternative splicing. Using a variety

of machine learning approaches that can capture both linear and non-linear associations,

we show that widely different levels of MeCP2 have a minimal effect on alternative splicing

in three different systems. Alternative splicing was also apparently indifferent to develop-

mental changes in DNA methylation levels. Our results suggest that regulation of splicing is

not a major function of MeCP2. They also highlight the importance of multi-variate quantita-

tive analyses in the formulation of biological hypotheses.

Author summary

Rett Syndrome (RTT) is a devastating neurological disorder affecting approximately 1 in

10,000 female births. Most cases of RTT are caused by mutations in the gene identified as

methyl-CG binding protein 2 (MECP2) which is an epigenetic reader of DNA methyla-

tion. Although the primary function of MeCP2 is to recruit NCoR to methylated sites in

the genome, the downstream effect on gene expression is subtle and multiple additional

functions have been proposed. Here we focus on the influence of MeCP2 on one of these:

alternative splicing to generate different messenger RNAs from a single primary tran-

script. Using machine learning approaches, we show that neither MeCP2 nor DNA meth-

ylation influence alternative splicing. Our results emphasize the importance of multi-

variate quantitative analyses and they challenge the over-interpretation of causal relation-

ships based on high-throughput data sets.
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Introduction

MeCP2 (methyl CpG binding protein 2) is an important mediator of epigenetic regulation in

mammalian cells, and particularly in neurons [1–3]. Mutations that lead to depletion or over-

expression of the MECP2 gene are associated with severe neurological diseases, most notably

Rett syndrome, a devastating autism-spectrum disease affecting approximately 1 in 10,000

female births [4]. MeCP2 is a chromatin protein that binds to modified cytosine residues, pri-

marily mCG [5], the most abundant modification in mammalian genomes, but also mCA, par-

ticularly mCAC [6], which is a feature of neuronal cells [7, 8]. This association with chromatin

enables MeCP2 to interpret epigenetic signals to modulate gene expression events. By far the

best documented role of MeCP2 is repression of transcription: several large-scale studies have

confirmed this role, and proposed mechanistic models that can account for the effect of

MeCP2 on transcription [9–11]. Other roles for MeCP2 have also been hypothesised, however,

including chromatin compaction, micro-RNA processing, and regulation of alternative splic-

ing (reviewed in reference [12]). These hypotheses highlight alternative roles of MeCP2 in

orchestrating gene expression at transcriptional and post-transcriptional levels, but they have

varying degrees of support from data.

In this paper, we focus on the possibility that MeCP2 is a regulator of alternative splicing.

This was first proposed after a physical interaction with the splicing factor YB1 was observed

[13] in 2005. Subsequent studies provided additional support; most recently via a modest but

significant association between changes in DNA methylation and intron retention in the tran-

sition between promyelocytes and granulocytes [14]. A role of MeCP2 in splicing is plausible

from a mechanistic perspective [9–11] if binding of the protein serves as a “brake” for poly-

merase, leading to a reduced transcription rate, which in turn can alter splicing preferences

[15]. These studies relied on correlative, univariate analyses of data from experiments which

were not designed to specifically test the association of MeCP2 with splicing. This renders the

conclusions vulnerable to confounding effects, which could explain both changes in splicing

and DNA methylation/MeCP2 occupancy. Although a measure of significance of the associa-

tion (assuming no confounding factors) was deduced, the effect size was not quantified. As a

result, questions regarding the extent to which variation in splicing can be attributed to

changes in DNA methylation or MeCP2 levels remain open.

Here we revisit the evidence for this phenomenon, leveraging recent, high-quality data sets

which track transcriptomic changes in experiments specifically designed to reflect changes in

MeCP2 activity. These new data sets offer an unprecedented opportunity to tackle this ques-

tion statistically, providing a quantitative estimate of MeCP2’s effect while carefully controlling

for confounding effects.

Results

It has been suggested that DNA methylation regulates alternative splicing through different

mechanisms [16]. We evaluated the relationship from two perspectives: either dependent on

MeCP2 or independent of MeCP2. Considering the former first, we sought transcriptomic

data sets from cells or tissues with different controlled levels of MeCP2 while keeping DNA

methylation constant. Several comprehensive data sets have recently been collected in situa-

tions that closely mimic this idealised scenario (Table 1). In particular, our previous work [9]

captured transcriptomic data sets in Lund Human Mesencephalic (LUHMES)-derived human

dopaminergic neurons that expressed widely different levels of MeCP2, while total levels of

DNA methylation remained constant. Additionally, Boxer et al. [17] comprehensively cap-

tured transcriptomes and methylomes from wildtype (WT) and MeCP2 (KO) mouse brain tis-

sues. To investigate the latter, we examined the Dnmt1/3a/3b triple-knockout mouse
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embryonic stem cells (DNMT-TKO mESCs) that lack DNA methyltransferase activity [18, 19].

Yearim et al. performed splicing analyses on a relatively low-coverage data set and suggested

that DNA methylation may influence splicing of alternate exons [18]. Therefore, we sought to

revisit this conclusion using a more recent, higher coverage DNMT-TKO dataset [19] to inves-

tigate the role of DNA methylation in influencing alternative splicing independent of MeCP2.

Finally, it is also possible that splicing regulation is due to a combination of changes in MeCP2

levels and DNA methylation. In early postnatal brain, the level of genomic mCA, a major

determinant of MeCP2 binding, concurrently increases with the level of MeCP2 [5, 20, 21].

Stroud et al. [20] profiled the transcriptomes and methylomes of differentiating mouse neu-

rons in the first few weeks after birth. Therefore, developing neurons can be considered an

ideal scenario where one can investigate the combined effects of MeCP2 and DNA methyla-

tion. For completeness, we also re-analysed the non-neuronal data sets from promyelocytes

and granulocytes [14] which first led to suggest the potential link between MeCP2, DNA meth-

ylation and alternative splicing. MeCP2 RNA expression levels show predominant expression

in neurons and brain tissue while mESCs and granulocyte express significantly lower levels (S1

Fig). All of these data sets provide a good level of replication and high sequencing depth, with

the exception of the early developmental time points of [20], where experimental constraints

limited the achievable depth.

Adequate sequencing coverage is important for robust alternative splicing analysis, and

some of the data sets we employ, particularly the early developmental times in the Stroud et al.

data [20], have relatively low coverage. To address this, we use a recently proposed splicing

quantification strategy, BRIE (Bayesian Regression for Isoform Estimation [22]), which uses

Bayesian sequence-derived, informative priors to provide robust estimates of splicing ratios

even at very low coverage levels such as encountered in single cell RNA-seq data.

Summary statistics for all the data sets used, including sequencing depth and replication

level, are provided in Table 1.

Table 1. Sequencing data sets considered for multi-variate quantitative analysis.

Accession Source Total RNA-seq

Coverage

Reps Type

GSE125660 [9] MeCP2 WT Neurons 218.2 × 106 pairs 4 BS-seq, RNA-seq, ChIP-seq

MeCP2 KO Neurons 214.2 × 106 pairs 4 RNA-seq, ChIP-seq

MeCP2 OE4x Neurons 217.5 × 106 pairs 4

MeCP2 OE11x Neurons 220.4 × 106 pairs 4

GSE128186 [17] WT brain tissue 713.9 × 106 reads 10 BS-seq, RNA-seq

MeCP2 KO brain tissue 796.5 × 106 reads 10

GSE64910 [18] WT mESCs 49.1 × 106 reads 2 BS-seq, RNA-seq

DNMT-TKO mESCs 50.3 × 106 reads 2

GSE67867 [19] WT mESCs 357.3 × 106 reads 3 RNA-seq

DNMT-TKO mESCs 364.8 × 106 reads 3

GSE103214 [20] Pv Neurons (1 week) 37.7 × 106 reads 2 BS-seq, RNA-seq

Pv Neurons (3 weeks) 27.6 × 106 reads 1

Pv Neurons (8 weeks) 97.5 × 106 reads 2

Vip Neurons (1 week) 17.9 × 106 reads 1

Vip Neurons (3 weeks) 57.9 × 106 reads 2

Vip Neurons (8 weeks) 45.3 × 106 reads 2

GSE48307 [23]

GSE85517 [14]

Promyelocytes 63.5 × 106 reads 1 BS-seq, RNA-seq, ChIP-seq

Granulocytes 59.7 × 106 reads 1

https://doi.org/10.1371/journal.pgen.1009087.t001
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Differential splicing analysis questions the function of MeCP2 and DNA

methylation as a global regulator of alternative splicing

To explore the effects of MeCP2 on splicing and gene expression, we initially performed differ-

ential splicing and differential gene expression analyses for a number of data sets which inves-

tigated changes in MeCP2 levels (Table 1). Varying the abundance of MeCP2 in cultured

human neurons over a wide range (absence (KO), 1x (WT), 4x and 11x wildtype (OE) levels) is

accompanied by many changes in gene expression relative to wildtype (KO = 178; 4xOE =

2548; 11xOE = 2348 at a significance threshold of p-adjusted value < 0.05), but relatively few

differential splicing events (KO = 101; 4xOE = 120; 11xOE = 73 at a significance threshold of

Bayes factor� 3) (S2A and S2B Fig). We observe lower number of differential splicing events

in KO mouse brain (57) compared to changes in gene expression (2943) (S2C and S2D Fig).

This suggests that changing the levels of MeCP2 (in vitro or in vivo) results in sizable changes

in transcription but negligible changes in splicing.

In WT mouse neurons, where levels of DNA methylation and MeCP2 increase during

development, we found that the number of differential splicing events (489, 408) is lower com-

pared to the number of differential gene expression events (1122, 538) when 8 weeks old and 1

week old Parvalbumin (Pv) and Vasoactive intestinal peptide (Vip) neurons are compared

(S2E and S2F Fig). Comparisons between 8 weeks old and 3 weeks old Pv and Vip neurons

showed more differential splicing events (60, 527) than differentially regulated genes (4, 118)

(S2E and S2F Fig). Based on this analysis, we could not establish whether MeCP2 and DNA

methylation predominantly perturbs transcription or alternative splicing in developing neu-

rons. Because of the increase in CA methylation [20, 21] and the dynamic nature of alternative

splicing [24] in brain development, it is necessary to investigate the role of DNA methylation

independent of developmental effects and MeCP2. Therefore, we performed similar analysis

for DNMT-TKO mESCs in comparison to WT mESCs. In the absence of DNA methylation,

many genes are differentially regulated (7342), but there are relatively few differential splicing

events (134) (S2G and S2H Fig). Based on this analysis, DNA methylation predominantly per-

turbs transcription, with a much smaller effect on splicing. In a separate data set for

DNMT-TKO mESCs [18], the number of differentially regulated genes (102) was only margin-

ally higher than number of differential splicing events (71) (S2I and S2J Fig). Differential gene

expression analysis was not possible on the RNA-seq data set of Promyelocytes and Granulo-

cytes [14, 23] due to the absence of replicates. The lower number of differential splicing events

compared to differentially expressed genes is consistent at different significance thresholds (S2

Fig) in all comparisons except in developing neurons. To investigate whether differential splic-

ing events are directly associated with context specific DNA methylation or MeCP2 binding,

we performed correlation analysis on significanctly altered events (S2B, S2D, S2F, S2H and S2J

Fig). We found that there is no apparent linear relationship between changes in splicing and

changes in DNA methylation or MeCP2 binding (S1 Table) except a modest one for Pv neu-

rons (highlighted in S1 Table). By performing classical differential gene expression and differ-

ential splicing analysis, we find that MeCP2 primarily functions as a regulator of gene

expression and has minimal effect on splicing. Whether the primary role of DNA methylation

and neuronal development is in influencing gene expression or alternative splicing, is uncer-

tain. To test this in a more quantitative manner, we used machine learning techniques in our

subsequent multivariate analysis.

Sequence features are highly predictive of splicing ratios

Machine learning approaches have previously shown that genomic sequence features are

highly predictive of exon inclusion/exclusion ratios (splicing ratios) and the splicing code
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assembled using these features helped characterise alternative splicing on a genome-wide scale

[25, 26]. The splicing ratios were calculated using several independent methods, and our analy-

sis indicated a strong correlation between results obtained with different methods (S3A and

S3E Fig). Methods that directly model splicing ratios such as Miso [27] and BRIE [22] showed

particularly strong agreement (S3A Fig). To quantify the explanatory power of sequence fea-

tures in predicting splicing ratios in the current data sets, we used two independent multivari-

ate regression models: Linear Regression and Random Forest Regression, the latter being a

flexible non-parametric approach. We first validated that the relationship between the splicing

code and splicing ratios [25, 26] could be confirmed for all the data sets described in Table 1

We find that both models explain 50%-65% of the variation (Fig 1A, 1B, 1D, 1E and 1F left

panels). This effect is quantified by the metric fraction of variation explained (FVE) which is

analogous to R2. When using splicing ratios from MISO, we still retain 35%-50% of the explan-

atory power of sequence-derived features (Fig 1A, 1B, 1D, 1E and 1F right panels). We note

that predictive models achieved lower accuracy in Vip neurons and Pv neurons during early

mouse brain development (Fig 1C), possibly due to the highly dynamic nature of splicing in

early development [24]. We confirm that splicing ratios can be accurately regressed against

sequence-derived features and this analysis provided positive controls for further analysis.

MeCP2 changes account for a negligible fraction of splicing variation

We then probed whether changes in inclusion/exclusion ratios between different cell types

could be explained by changing levels of MeCP2. We refer to differential exon inclusion/exclu-

sion between different cell types as splicing variation (not to be confused with splicing ratios,

which are the ratio of inclusive/exclusive isoform abundance within the same sample). Since

global changes in transcription correlate with MeCP2 levels [9] and sequence-derived features

can predict splicing ratios (Fig 1) [25, 26], our hypothesis is that any role of MeCP2 in regulat-

ing splicing should be reflected in improved predictions of differential exon inclusion/exclu-

sion. Since global DNA methylation remains constant in neurons expressing multiple levels of

MeCP2 (S4A Fig), we assume that DNA methylation at exons and introns also remain con-

stant. To allow for the possibility that MeCP2 regulation of splicing might be dependent on the

local sequence context, we used regression models with both MeCP2 levels and sequence fea-

tures as input variables.

When we quantified the explanatory power of contrasting MeCP2 levels (in vitro) by

regressing splicing variation against sequence features and MeCP2 binding, we could only

explain 0-3% of the splicing variation regardless of the quantification method or model (Fig

2A left panel). In some instances, the model fit is extremely poor, as evidenced by negative lev-

els of splicing variation explained (Fig 2A right panel). To recapitulate a similar situation in
vivo, we used data sets from [17] which profiled transcriptomes and methylomes of WT and

MeCP2 KO mouse brain tissues at very high sequencing depth. We found that DNA methyla-

tion levels, quantified from WGBS-seq, are statistically indistinguishable between WT and

MeCP2 KO mice brains (S4B and S4C Fig): correlations between methylomes of different WT

replicates are identical to correlations between methylomes in WT and KO samples. This fur-

ther supports our assumption that DNA methylation remains constant in neurons expressing

different levels of MeCP2. In mouse brain data sets, when we quantified the explanatory power

of MeCP2 by regressing splicing variation against sequence features, the model fit was once

again poor, with negligible or even negative levels of splicing variation explained (Fig 2B).

Importantly, the 57 differentially spliced genes in this data set did not show any significant

level of differential methylation (S1 Table), ruling out a potentially confounding effect of a

compensatory local change in methylation. Therefore, multiple levels of MeCP2 (in vitro and
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in vivo) combined with sequence features cannot predict splicing variation, suggesting that

MeCP2 does not regulate splicing, even when sequence context is taken into account.

DNA methylation changes account for a negligible fraction of splicing

variation

MeCP2 binding in neurons is strongly associated with DNA methylation in a CG and CA con-

text [6]. We asked whether changes in context specific DNA methylation in developing brain,

Fig 1. Fraction of variance explained by regressing sequence features against splicing ratios. (A) Cultured human

neurons expressing multiple levels of MeCP2 [9](B) Wildtype (WT) and MeCP2 Knockout (KO) brain tissue [17](C) Pv
and Vip neurons at 1 week, 3 weeks and 8 weeks [20] (D) DNMT-TKO and WT mESCs [18](E) DNMT-TKO and WT
mESCs [19] (F) Promyelocytes and Granulocytes [14, 23]. See Table 1 for detailed information about data sets.

https://doi.org/10.1371/journal.pgen.1009087.g001
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the primary determinant of MeCP2 binding, affects splicing variation. To do so, we calculated

the changes in DNA methylation at alternative exons and surrounding regions for both dinu-

cleotides CG and CA (Fig A in S1 Appendix) in developing mouse neurons [20]. In this

instance, splicing variation is the difference in splicing ratio across Pv and Vip neurons at dif-

ferent ages. We quantified the explanatory power of methylation features by regressing splicing

variation against features derived from DNA methylation, as well as sequence features. The

fraction of variance explained by the models is 0-10% (Fig 3A left panel). The analysis fails to

capture any relationship (linear/non-linear) when splicing variation is regressed against DNA

methylation alone (S5A Fig). Notice, however, that the inclusion of sequence features accounts

for context-specific effects of DNA methylation, in a scenario where MeCP2 is essential for

normal function of nerve cells. Therefore, context specific DNA methylation and sequence fea-

tures in developing neurons are only at best modest predictors of splicing variation.

We then specifically set out to test whether changes in DNA methylation and their sequence

context can predict splicing variation independently of MeCP2. To investigate the relationship

between DNA methylation and alternative splicing independent of MeCP2 and developmental

effects, we chose DNMT-TKO mESCs which lack DNA methylation [18, 19]. As these cells also

express low levels of MeCP2 (S1 Fig), this analysis is important to rule out any confounding

effects on our conclusions possibly caused by the high correlation between MeCP2 binding

and DNA methylation in neuronal cells. Here, splicing variation is the difference in splicing

ratio between DNMT-TKO mESCs and WT mESCs. We quantified the explanatory power of

methylation features by regressing splicing variation against DNA methylation and associated

DNA sequence features. Both regression models are able to account for a minimal fraction (0-

10%) of the observed variance in splicing ratios (Fig 3C left panel). In a separate DNMT-TKO
mESCs data set, the accuracy was lower (0-5%) (Fig 3B left panel). Therefore, DNA methyla-

tion when considered in a scenario independent of MeCP2 and developmental effects cannot

predict splicing variation.

The promyelocytes-granulocytes data set is the only one where methylation levels com-

bined with sequence features do appear to explain a small fraction of variance in splicing

Fig 2. Explanatory power of varying MeCP2 levels (in vitro and in vivo). (A) Fraction of variance explained by regressing

splicing variation against sequence features combined with MeCP2 binding in cultured human neurons [9]. (B) Fraction of

variance explained by regressing splicing variation against sequence features combined with changes in DNA methylation in WT
and MeCP2 KO mouse brain [17].

https://doi.org/10.1371/journal.pgen.1009087.g002
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variation (5-10%) (Fig 3D). However, even in this case, the fraction of variance explained

remains modest when compared to the explanatory power of sequence features in predicting

splicing ratios (65% at best and 25% at worst, Fig 1 left panels). It is important to stress that

both regression models perform worse when DNA methyation features alone are used to pre-

dict splicing variation (S3B Fig), rendering the initial observation moot [14]. In addition to the

absence of replicates, as noted above, a further reason for exercising caution is that this study

did not explicitly control for changes in MeCP2 abundance.

Discussion

MeCP2 is a major interpreter of the cell’s epigenetic state whose effects on transcription are

extensively categorised and recognised as consistent in multiple systems [2, 6, 9–11]. In addi-

tion to its effects on gene expression, multiple other potential functions for MeCP2 have been

Fig 3. Fraction of variance explained by regressing splicing variation against sequence features along with DNA methylation

features. (A) Pv and Vip neurons at 1 week, 3 weeks and 8 weeks [20](B) DNMT-TKO and WT mESCs [19](C) DNMT-TKO and

WT mESCs [18](D) Promyelocytes and Granulocytes [14, 23].

https://doi.org/10.1371/journal.pgen.1009087.g003
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proposed. However, its high abundance in neurons and pervasive presence in the chromatin

environment create difficulties in attributing functions to MeCP2 based purely on observa-

tional studies. One often cited function of DNA methylation and its cognate interpreter,

MeCP2, is regulation of alternative splicing. Here we have used multivariate analysis of recent

data sets to examine this hypothesis in systems where either DNA methylation levels or

MeCP2 levels are varied either alone or in combination. The results reveal that MeCP2’s role

as a global regulator of RNA splicing is minimal and therefore of questionable biological

significance.

While statistically our conclusion is robust, it must be qualified in several ways. First of all,

we focused on detecting a global role in splicing for MeCP2. The fact that MeCP2 variation

explains a negligible fraction of global splicing variation does not imply that MeCP2 plays no

role in regulating splicing for specific transcripts. Our analysis would not detect a role of this

kind, which would require more targeted experiments to characterise and validate any affected

genes. It should however be pointed out that our analysis of splicing variation of WT and

MeCP2 KO mouse brains highlighted that changes in splicing were not associated with any sig-

nificant changes in DNA methylation at the same loci, suggesting that even a gene-specific role

of MeCP2/DNA methylation in regulating splicing is likely to be complex and/ or indirect. A

second important reservation is that the small splicing effects that we did detect are not neces-

sarily unimportant. Diseases associated with MECP2 mutations are long-term pathologies,

indicating that cells can survive for years in the presence of MeCP2 aberrations. Therefore, it is

likely that the molecular effects of MeCP2 will be subtle, a point well-made previously [2, 6, 9–

11]. Thirdly, it should be noted that our best-controlled data sets and most of our analyses

apply to neuronal cells where MeCP2 is both abundant and strongly implicated in neuronal

cell physiology. While it is appropriate that questions relating to MeCP2 function should focus

on neuronal data sets, this might overlook effects in other cell types. Indeed, we did detect a

modest statistical association between combined DNA methylation and DNA sequence fea-

tures in the promyelocyte-granulocyte transition, although there was no relationship between

DNA methylation alone and alternative splicing in this system. MeCP2 was initially implicated

in regulation of alternative splicing in this myeloid lineage, but genetic depletion of MeCP2

specifically in non-brain tissues has no obvious phenotypic consequences, indicating that the

protein is dispensable outside the central nervous system [28].

On a more general note, our analysis sounds a note of caution regarding the risks of over-

interpretation of experiments that rely on high-throughput data. While such experiments are

key in expanding our understanding of molecular physiology, univariate analyses can mask

confounding factors. Hence, we argue that biological hypotheses arising from observational

studies should always be further validated by carefully designed experiments and supported by

multivariate statistical analyses.

Materials and methods

Sequencing data sets

Table 1 details the data sets used in the analysis. These include RNA sequencing (RNA-seq)

and Bisulfite sequencing (BS-seq) libraries quantifying DNA methylation levels in Dnmt1/3a/
3b triple-knockout (DNMT-TKO) and wildtype (WT) mouse embryonic stem cells (mESCs).

Also, data sets concerning MeCP2 include RNA-seq and Chromatin immunoprecipitation fol-

lowed by sequencing (ChIP-seq) libraries from post-mitotic (day 9 of differentiation) human

neurons expressing multiple levels of MeCP2 and BS-seq libraries quantifying DNA methyla-

tion patterns from wildtype MeCP2-expressing neurons; RNA-Seq and BS-Seq libraries from

mouse neuronal subtypes paravalbumin (Pv-) and vasoactive-intestinal-peptide (Vip-)
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expressing interneurons in mouse brain at different post-natal ages; RNA-seq and BS-seq

libraries from cells of the mouse myeloid lineage, namely Granulocytes and Promyelocytes.

Information about genome assemblies, annotation, software versions and command-line argu-

ments are detailed in S1 Appendix.

Quantification of splicing ratios

RNA-Seq data sets are downloaded and sequencing reads are mapped to the reference genome

using HISAT2 [29] aligner. Splicing ratios are quantified using Miso [27], BRIE [22] and Cuf-

flinks [30]. We found Cufflinks to perform poorly in simulated data with known C values

(S3D Fig) when the sequence reads were single-end (S1 Appendix). The Pearson correlation

between Cufflinks and Miso quantification in our data sets reflects this (representative scatter

plot S3E Fig). Because two of the data sets that we have considered are sequenced with single-

end reads and the resultant suboptimal modelling (S3F Fig), we decided to omit Cufflinks

quantifications and regression models from further analyses.

Differential gene expression

Gene counts are extracted using featureCounts [31] from alignment files. Subsequently, differ-

ential gene expression is estimated using DESeq2 [32].

Differential splicing

Differential splicing is estimated using Miso [27].

Quantification of DNA methylation patterns

Processed BS-Seq data sets described in Table 1 are downloaded and DNA methylation ratio

(mC basecalls to the count of all reads C as m̂C ¼
mC
C ) at individual nucleotide for CG and CA

dinucleotides is accumulated as BigWig [33] tracks. DNA methylation is calculated in two

metrics: 1) Region-specific mean methylation defined as m̂C ¼

P
mC

NC
where NC is the number

of C’s within the region 2) Region-specific methylation density defined as M̂C ¼
NC �m̂C

L where L
is the length of the region. These two metrics are calculated for all the genes such that every

gene has separate quantifications for CA and CG dinucleotides. For each gene, several specific

regions are considered 1) ASE (alternative spliced exon) 2) combination of all exons contain-

ing the ASE 3) combination of all exons without the ASE 4) combination of all introns 5) com-

bination of all introns without the ASE. A visual representation of the specific regions is

described in S1 Appendix.

Quantification of ChIP-seq signal

Processed ChIP-seq data sets described in Table 1 are downloaded and log2
ChIP
Input signal is calcu-

lated using bigWigAverageOverBed [33] for regions around the alternative exon. A

visual representation of the specific regions is described in S1 Appendix.

Regressing splicing ratios with sequence features

First, we use an inverse probit transformation of our splicing ratios C i.e, y = F−1(C) to

map splicing ratios from the interval [0, 1] to the whole of the real numbers. Subsequently, we

model the transformed splicing ratio y as a function of a set of j covariates (sequence features)

X 2 Rj
. We split the data, fit the model and compute the coefficient of determination (FVE)

which is analogous to R2, 5 consecutive times (with different splits each time) to avoid
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overfitting. The FVE calculated is the amount of variation in the test set that can be explained

by the covariates (sequence features). FVEðy; ŷÞ ¼ 1 �

Pn

i¼0
ðyi � ŷ iÞ

2

Pn

i¼0
ðyi � �yÞ2

where �y ¼ 1

n

Pn
i¼0

yi. This is

applied for both regression approaches.

Linear regression. We model the y (transformed splicing ratio) as a linear function of X
(sequence features). To regularize the weight and noise parameters in the regression problem,

we follow the regularization approach [34, 35] which is implemented in the scikit-learn
[36] package. Information about arguments and parameters are detailed in S1 Appendix.

Random forest regression. We generate random decision trees that are fitted on sets of

training data from X (sequence features) and y (transformed splicing ratio) to form a meta

estimator known as random forests [37], implemented in scikit-learn [36] package.

Using averaging from a number of trees, we predict the transformed splicing ratio y on the

test data.

Regressing differential splicing ratios with differential DNA methylation

and sequence features

As discussed in the previous section, we use the same approach for the modelling. In this

instance, we add more covariates in the form of DNA methylation features. For the mean

methylation metric, we use an inverse probit transformation and take the difference.

DF� 1ðm̂CÞ ¼ F� 1ðm̂Ct
Þ � F� 1ðm̂Cc

Þ

where t = treatment/time − point and c = control/time − point. For the methylation density

metric, we calculate the difference directly.

DM̂C ¼ M̂Ct
� M̂Cc

We calculate the differential splicing ratio i.e, Δy = ΔF−1(C)

DF� 1ðCÞ ¼ F� 1ðCtÞ � F
� 1ðCcÞ

and model it to a set of covariates which now consists of sequence features and DNA methyla-

tion feautures.

Supporting information

S1 Table. Pearson (r) correlation between changes in splicing ratios and changes in DNA

methylation for all data sets.

(PDF)

S1 Fig. MeCP2 expression across data sets considered for analysis (refer Table 1) as counts

per million quantified from RNA-seq data.

(TIF)

S2 Fig. Number of differential gene expression and splicing events across data sets. (A)

Number of differentially regulated genes and (B) Number of differential splicing events in cul-

tured neurons expressing multiple levels of MeCP2 [9] (C) Number of differentially regulated

genes and (D) Number of differential splicing events in MeCP2 KO mouse brains compared to

MeCP2 WT [17] (E) Number of differentially regulated genes and (F) Number of differential

splicing events in developing mouse neurons [20] (G) Number of differentially regulated

genes and (H) Number of differential splicing events in DNMT-TKO mESCs [19] (I) Number

of differentially regulated genes and (J) Number of differential splicing events in DNMT-TKO
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mESCs [18].

(TIF)

S3 Fig. Modelling transformed splicing ratios y = F−1(C), estimated using different quan-

tification methods, against sequence features X. (A) Representative example of correlation

between quantification methods BRIE and Miso. (B) Representative scatter plot showing pre-

diction of splicing ratios using linear regression model learned from BRIE’s quantification and

sequence features. (C) Representative scatter plot showing prediction of splicing ratios using

linear regression model learned from Miso’s quantification and sequence features. (D) Com-

parison of splicing ratio estimation of known C from simulated data at different coverage. (E)

Representative example of correlation between quantification methods Cufflinks and Miso.

(F) Representative scatter plot showing prediction of splicing ratios using linear regression

model learned from Cufflinks’ quantification and sequence features.

(TIF)

S4 Fig. DNA methylation levels in neurons expressing multiple levels of MeCP2. (A)

Referencing results from our previous work [9]. High Performance Liquid Chromatography

(HPLC) quantification of methylated cytosines in neurons expressing wild-type, 4 times and

11 times MeCP2. (B) CG and (C) CA methylation across introns quantified from bisulfite

sequencing of WT and MeCP2 KO mouse brains (GSE128172 [17]).

(TIF)

S5 Fig. Fraction of variance explained by regressing DNA methylation features against dif-

ferential splicing ratios in (A) developing mouse neurons [20](B) Promyelocytes and Granu-

locytes [14, 23].

(TIF)

S1 Appendix. Detailed information about software, software versions and command line

arguments used for analysis.

(PDF)
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