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Summary Box 

What is already known on this topic:  

Detailed models of individual interactions, which may take many hours of supercomputer 

time to run, are a reliable way to predict the course of an epidemic, and to investigate 
counterfactual scenarios. 

The CovidSim model is the leading UK model, well-tested in influenza epidemics.  

What the study adds:  The predictions of the Imperial College model, including the 

inevitability of a second wave, were replicated and shown to be well realised in practice.  
Detailed investigation of the model show that it predicted that social distancing and 

school closures would suppress first-wave case numbers at the cost of a higher overall 

number of deaths, which number over 200,000 in all scenarios without a vaccine.  

Print Abstract 

Study Question: What information was available to government regarding school 

closure in March 2020 when the lockdown decision was taken. 

Methods: We ran calculations using the CovidSim code which implements the Imperial 

College individual-based model of the COVID epidemic. This model was used to produce 

“Report 9”, generally regarded as “The Science” behind the lockdown decision. We used 

only input data available in March 2020, but have adapted the code to more closely match 
the interventions which actually took place. By more detailed data analysis, we 

investigate the reason why general social distancing, school closures and isolation of 

younger people were predicted to increase the final number of deaths.  

Study Answer and Limitations:  CovidSim gives a good description of the epidemic, and 
predicts that isolation of less vulnerable people increases the final death toll.  The excess 



deaths are postponed to second and subsequent waves, and could be averted by a 

successful vaccination programme, which is not explicitly modelled.  

What the study adds:  We now know that the predictions of the Imperial College model, 

including the inevitability of a second wave, were well realised in practice.  Furthermore, 

Government was already aware in March that social distancing and school closures would 

suppress first-wave case numbers at the cost of higher overall deaths. 

1 Abstract 

Objective: to establish what information was available to government when the 

lockdown decision was taken. 

Design: Independent calculations using data known in March 2020 with the CovidSim 

code which implements the Imperial College individual-based model of the COVID 

epidemic.  

Main Outcome Measures: Replication of summary data reported to SAGE.  Detailed 
study of unpublished results, especially the effect of school closures.  

Results:  CovidSim would have given a good forecast of the subsequent data if initialised 

with a reproduction number (R0) about 3.5. We confirm the little-reported forecast that 
school closures and isolation of younger people were predicted to increase the final 

number of deaths, albeit postponed to a second and subsequent waves. We find that 

prompt interventions are highly effective at reducing peak ICU demand, but they also 

prolong the epidemic, in some cases causing more deaths long term. In the absence of an 
effective vaccination programme, none of the proposed mitigation strategies reduces the 

predicted total number of deaths below 200,000. This happens because COVID mortality 

is highly skewed towards older age groups.  

Conclusions:  It was predicted in March 2020 that a broad lockdown, as opposed to a 
focus on shielding the most vulnerable, would reduce immediate ICU demand at the cost 

of more deaths long-term.   The optimal strategy for saving lives in a COVID pandemic is 

different from that anticipated for an influenza epidemic with different mortality age-

profile. 

 

2 Introduction 

The UK national response to the coronavirus crisis has been widely reported as being 

primarily led by modelling based on work at Imperial College [1], although other models 

have been considered1. The key paper [2], which we will refer to as “Report 9”, 

investigated a number of scenarios using this code with the best parameterisation 
available at the time. Contrary to popular perception, the lockdown which was then 

implemented was not specifically modelled in this work. As the pandemic has progressed, 

the parameterisation has been continually improved with new data as it arrives. The main 

 
1 throughout this paper, we maintain the distinction between epidemiological “model”, and software 

implementations as “code” 



conclusions of Report 9 were not especially surprising. COVID has a mortality around 1% 

[3], so an epidemic in a susceptible population of 70M people would cause many 
hundreds of thousands of deaths. In early March there may have been a case-doubling 

time of around 3 days in the UK [4], meaning that within a week COVID cases could go 

from accounting for a minority of available ICU spaces, to exceeding capacity. 

Furthermore, with an onset delay of over a week, and limited or delayed testing and 
reporting in place, there would be very little measurable warning of the explosion in ICU 

demand. However, in one table in Report 9 it is shown that closing schools reduces the R 

number, but has the unexpected effect of increasing total deaths. In this paper, we 

reproduce the main results from Report 9, and explain why, in the framework of the 
model, these counter-intuitive results were obtained. We chose not to attempt to re-

parameterize the model, because we wanted to replicate the information available to 

policymakers at the time, specifically highlighting policies for which “suppressing the 
outbreak” and “saving lives” were conflicting choices. 

3 Methods 

The CovidSim model is developed from an influenza pandemic model [1,5,6]. The original 
code used for Report 9 has not been released. However, the Ferguson group has led an 

effort with Microsoft, GitHub and the Royal Society RAMP-initiative to recreate the model: 

this version has been stringently externally validated [7]. We used GitHub tagged version 

0.14.0 + additional patches dated before 03-06-2020 to which we refer the reader for full 
technical details [8]. Input files relevant to Report 9 were supplied by Ferguson et al. [9] 

and were included in the GitHub release. CovidSim models the UK at the most detailed 

level possible without requiring personal data. The model simulates millions of individual 

“people” going about their daily business at home, within their community and at schools, 

universities, places of work, hospitals etc. The geographical representation of the UK is 

taken from census data, so the “people” in each area have appropriate distribution of age, 

health, wealth and household size. Simulated schools and workplaces have “people” with 

appropriate numbers, age distribution and commuting distances in line with national 
averages for each. The network of interactions is age dependent: people interact mainly 

with their own age group and with family, teachers and carers. The virus initially infects 

random members of this network of interacting co-workers, strangers, friends and 
family. Whenever an infected person meets a non-infected one, there is a probability that 

the virus spreads. This probability depends on the time and proximity of the interaction, 

and the infectiousness of the person given their stage of disease. Infected people may 

become hospitalised, and may die, with probability dependent on age, pre-existing 
conditions and stage of disease. This extremely detailed model is then parameterised 

using the best available expert clinical and behavioural evidence [5], with the 

coronavirus-specific features being updated as more data comes in from the worldwide 

epidemic [8]. Therefore, the model has the required complexity to consider non-
pharmaceutical interventions (NPIs), which reduce the number of interactions between 

“people” in the model (see Table.1). To predict policymaking, it is assumed that these 

interventions are implemented when ICU bed occupation is observed to reach a 
particular “trigger” level. The model contains far more realistic detail than the data 

available. So results are averages over many runs with different starting conditions, all of 



which are consistent with known data. The real epidemic is just one of these possibilities, 

so the code determines the range of scenarios which should be planned for. This is 
particularly important when there are low numbers of localised outbreaks: the prediction 

that local spikes will occur somewhere is reliable, and the most likely places can be 

identified, but predicting exactly when and where is not possible with the level of data 

available. All interventions reduce the reproduction “R” number, and slow the spread of 
the epidemic. However, a counter-intuitive result presented in Report 9 (their Table 3 

and Table A1) is the prediction that, once all other considered interventions were in 

place, the additional closure of schools and universities would increase the total number 

of deaths. Similarly, adding general social distancing (SD) to a scenario involving case 
isolation and household quarantine, with appropriate estimates for compliance, was also 

projected to increase the total number of deaths. 

3.1 Patient and public involvement 

Patients or the public were not involved in the design, or conduct, or reporting, or 
dissemination plans of our research. All data used was retrieved from existing, public 

sources as referenced. 

4 Results 

The result tables for the scenarios presented in the original report were 

straightforwardly reproduced by averaging over 10 simulation runs with the same 

random number seeds as used in Report 9. The simulations are run for 800 days, with 

day 1 being 01 January 2020. The intervention period lasts for 3 months (91 days), with 
some interventions extended for an additional 30 days. The mitigation scenarios in 

Report 9 considered R0=2.2 and R0=2.4, but we initially only considered R0= 2.4. As 

highlighted in [8] the results we obtain here are not precisely identical to those in Report 
9, since they are an average over 10 stochastic realisations, the population dataset has 

changed to one that is open-source, and the algorithm used to generate the household-

to-place network has been modified to be deterministic. The stochasticity gives a variance 

around 5% in total deaths and ICU demand, which explains the discrepancies with Report 
9. More significant is the uncertainty of the timing of the peak of the infections, which is 

around ±5 days. We compare these predictions to the death rates from the actual 

trajectory of the disease [10,11]. We note that NHS England stopped publishing critical 

bed occupancy in March 2020[12], so it is not possible to compare ICU data from the 
model with reality. 

In Table 1 we show the critical care (ICU) bed demand, while in Table 2 we show total 

deaths, both using the same mitigation scenarios as presented in Report 9.  As in Report 
9, for each mitigation scenario we consider a range of ICU triggers.  In Table 1 we report 

the peak ICU bed demand across the full simulation for each trigger, as was presented in 

Report 9, but also include the peak ICU bed demand during the period of the intervention 

(first wave).  The latter we define as the period during which general social distancing 
(SD) was in place, when implemented.   



In Table 2 we also report the total number of deaths across the entire simulation, and also 

the number of deaths at the end of the first wave, again defined as the time at which 
general social distancing was lifted.   

The full simulation numbers we present in Tables 1 and 2 are essentially the same as 

those presented in Table A1 in Report 9.  As discussed earlier, the small difference 

between our numbers and those presented in Report 9 are probably because these are 
averaged over 10 stochastic realisations, the population dataset is slightly different, and 

the algorithm for generating the household-to-place network was changed to make it 

deterministic.  Table 2 also illustrates the counter-intuitive result that adding school 

closures to CI_HQ_SDOL70 increases the total number of deaths across the full simulation.  
Moreover, it shows that social distancing of over-70s only is more effective than general 

social distancing. 

It is clear from Tables 1 and 2 that in some mitigation scenarios peak ICU demand, and 
most deaths, occur during the period when the intervention is in place. There are, 

however, other scenarios where the opposite is true.  

The reason for this is illustrated in Figure 2.  The solid lines are the same mitigation 

scenarios as presented in Figure 2 of Report 9.  We also show some additional scenarios 
(dashed lines) not shown in Figure 2 of Report 9, but which are included in Tables 1 and 

2 and also in the Tables in Report 9. 

In the simulations presented here, the main interventions are in place for 3 months and 

end on about day 200 (some interventions are extended for an additional 30 days).  
Figure 2 shows that some intervention scenarios lead to a single wave that occurs during 

the period in which the interventions are in place.  Hence, the peak ICU bed demand 

occurs during this period, as do most deaths.      

There are, however, some interventions that suppress the infection so that there is then 

a second wave once the interventions are lifted.  For example, adding place closures to 

case isolation, household quarantine, and social distancing of those over 70 substantially 

suppresses the infection during the intervention period when compared to the same 
scenario without place closures.  However, this suppression then leads to a second wave 

with a higher peak ICU bed demand than during the intervention period, and total deaths 

that exceed that of the same scenario without place closures.   

We therefore conclude that the somewhat counter-intuitive results that school closures 
lead to more deaths are a consequence of the addition of some interventions suppressing 

the first wave, and failing to prioritise protection of the most vulnerable.  

When the interventions are lifted, there is still a large population of people who are 
susceptible and a substantial number of people who are infected. This then leads to 

second wave of infections that can result in more deaths, but at a later time.  Further 

lockdowns lead to a repeating series of waves of infection, unless herd immunity is 

achieved by vaccination, which is not considered in the model. 

A similar result occurs in some of the scenarios involving general social distancing (SD). 

For example, adding general social distancing to case isolation and household quarantine 



also strongly suppresses the infection during the intervention period, but then leads to a 

second wave that actually has a higher peak ICU demand than for the equivalent scenario 
without general social distancing. 

Figure 3 provides an explanation for how place closure interventions affect the second 

wave, and why an extra intervention may result in more deaths than the equivalent 

scenario without this intervention.  In the CI_HQ_SDOL70 scenario, without closures, a 
single peak of cases is seen. The data is broken-down into age groups, showing that 

younger people contribute most to the total cases, but that deaths come primarily from 

older groups. Adding the place closure intervention (and keeping all other things 

constant) gives the behaviour shown in the second row of plots. The initial peak is greatly 
suppressed, but the end of closures seems to prompt a second peak of cases amongst 

younger people. This then leads to a third, more deadly, peak of cases affecting the elderly 

when SDOL70 is removed. The postponement in the spread means there are more 

infectious younger people to infect the older age groups, a much larger fraction of whom 

then die.   

One criticism of school closure is that reduced contact at school leads to increased contact 

at home; meaning children infect high-risk adults rather than low-risk children. We 
investigated this by increasing the infection rate at home to an extremely high value. 

Figure 1 shows that this makes an insignificant difference compared to the overall effect 

of adding school closures2 to the other interventions.   

4.1 CovidSim's description of a second wave 

Although Report 9 does discuss the possibility that relaxing the interventions could lead 

to a second peak later in the year, we wanted to  explore this in more detail, using the 

latest set of parameter files included in the GitHub repository [8]. 

The interventions we consider are place closures (PC), case isolation (CI), household 
quarantine (HQ) and general social distancing (SD) which are implemented using the 

PC_CI_HQ_SD parameter file. Specifically, we use the parameter file available in the 

data/param_files sub-directory of the GitHub respository.  The only modification is to 

change the duration of the interventions to be 91 days.  

These interventions start in late March (day 83) and last for 3 months (91 days).  These 

simulations are also initialised so that there are about 15600 deaths by day 100 (April 

9th) in all scenarios, mostly infected before the interventions were implemented.3 This 
compares with Report 9 initiation which used then-reported deaths to March 14th.  

The results are presented in Figure 4. The top panel shows cumulative deaths, with data 

from [11] and [13], while the bottom panel shows ICU bed demand per 100000 people.  

Although our simulations do include Northern Ireland, the available reported data does 
not.  Therefore, the simulation results, and data, presented in Figure 4 are for England, 

Wales and Scotland only. We also consider a range of R0 values and find that values higher 

 
2 Despite the description of place closure interventions in Table 2 of Report 9, university closures are not 
included in the (PC_)CI_HQ_SDOL70 scenario parameter files [9]. 
3This is implemented by modifying the [Number of deaths accumulated before alert] parameter in the 

preUK_2.0.txt parameter file. 



than those considered in Report 9 best reproduce the data, with an R0 value between 3 

and 3.5 probably providing the best fit.  This is consistent with the analysis presented in 
[14], but we acknowledge that the data could also be fitted by changes to the other 

scenario parameters.  In both panels we also show the “Do nothing” scenario for R0 = 3.0.  

The ICU bed demand for the scenarios presented in Figure 4 show that the interventions 

are predicted to substantially reduce the ICU demand. 

Random antibody tests at the time of writing suggest some 5% of the population have 

been exposed to coronavirus [13,15].  In the context of modelling a second wave, this is 

small.  In the absence of interventions, predictions for the second wave are similar to 

those for the first. Assuming a similar response to a new wave, that exposure gives 
immunity, and that no vaccine become available, up to ten waves can be anticipated. 

In practice, it seems that mandatory and voluntary interventions will continue, and 

maintain the reproduction number close to 1.  This will keep ICU demand manageable, 

but it is worth noting that R=1 is also the value which prolongs the need for interventions 

for the longest time. At this level, the inhomogeneity of transmissions, particularly the 

unpredictability of superspreading events, becomes critical.  Despite the level of detail of 

the model, there is insufficient data to model real people: we saw that for a major national 
epidemic this introduces an uncertainty of about 5 days in the predictions.  At a local level, 

and with a lower R number, this uncertainty is greatly increased: it is impossible to 

predict when a particular town will suffer an outbreak (specifically, different towns are 

hit on different runs).   

 

5 Conclusion 

In this paper we used the recently released CovidSim code [8] to reproduce the mitigation 

scenarios presented in mid-March in Report 9 [2].  The motivation behind this was that 

some of the results presented in Report 9 suggested that the addition of extra 

interventions may actually increase the total number of deaths.  

We find that the CovidSim code reliably reproduces the results from Report-9, and that 

the model underlying CovidSim can accurately track the UK death-rate data.  To do so 

does require an adjustment to the parameters, a slightly higher R0 than considered in 

Report 9, and results in an earlier start to the epidemic than suggested by Report 9. We 
emphasize, though, that the unavailability of these parameters in early-March is not a 

failure of the model.  

We confirm that adding school and university closures to case isolation, household 
quarantine, and social distancing of those over 70 would lead to more deaths when 

compared to the equivalent scenario without the school and university closures.  

Similarly, general social distancing was also projected to reduce the number of cases but 

increase the total number of deaths compared with social distancing over 70s only.  We 

note that, in assessing the impact of school closures, UK policy advice has concentrated 

on reducing total number of cases, not number of deaths [16]. 



The qualitative explanation for this is that within all mitigation scenarios in the model, 

the epidemic ends with widespread immunity with a large fraction of the population 
infected. Strategies which minimise deaths involve having the infected fraction primarily 

in the low-risk younger age groups, e.g. focussing stricter social distancing measures on 

care-homes where people are likely to die rather than schools where they are not. 

Optimal death reduction strategies are different from those aimed at reducing the ICU 
burden, and different again from those which lower the overall case rate.  

We find that scenarios that are very effective when the interventions are in place, can 

then lead to subsequent waves during which most of the infections, and deaths, occur. 

Our comparison of updated model results with the published death data suggests that a 
similar second wave will occur later this year if interventions are fully lifted.   

Since this paper was written, UK policy has moved to more local interventions.  CovidSim 

models the geography of all towns, but the simulated people are only representative of 
the true population.  This uncertainty means that the model cannot reliably predict which 

town will suffer an outbreak. Specifically, whereas the timing of the national outbreak is 

uncertain by days, the timing of an outbreak in a given town is uncertain by months. 

CovidSim is the most precise model available, but massively more personal data would 
be needed to obtain reliable local predictions.  

Finally, we reemphasize that the results in this work are not intended to be detailed 

predictions for the second wave.  Rather, we are re-examining the evidence available 

from CovidSim at the start of the epidemic. More accurate information is now available 
about the compliance with lockdown rules and age-dependent mortality.  The difficulty 

in shielding care-home residents is a particularly important piece of health data that was 

not available to modellers at the outset.  

Nevertheless, in almost all mitigation scenarios, CovidSim epidemics eventually finish 

with widespread immunity, and the final death toll depends primarily on the age 

distribution of those infected, not the total number. 
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What is already known on this subject 

  

The Covid-Sim model is the most detailed individual-based model of the UK appropriate 

for simulation of the spread of an epidemic. 

The UK-wide lockdown was implemented as a highly effective way of reducing epidemic 

spread. 

 

What this study adds 

The model used for "Report 9" predicts that, in the absence of a vaccine, school closures 

result in more overall deaths than not closing schools.  

The code used, and results obtained in “Report 9” are independently verified and 

provided a good description of the subsequent spread of the epidemic at the national 
level, except that the R0 parameter was set too low. 

Mitigating a COVID epidemic requires different strategy from an influenza epidemic, with 

more focus on shielding the elderly and vulnerable. 

While total infections are at a low level, coronavirus manifests as localised spikes. 

Currently available data is insufficient to reliably predict exactly where these will occur.  
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Trigger Time  PC CI CI_HQ CI_HQ_SD CI_SD CI_HQ_S
DOL70 

PC_CI_HQ_SD
OL70 

0.1 1st wave 152 119 87 8 20 62 33 
0.1 total 152 119 87 115 84 62 51 
0.3 1st wave 153 119 87 10 22 62 34 
0.3 total 153 119 87 115 73 62 48 
1 1st wave 154 119 87 11 22 62 35 
1 total 154 119 87 104 59 62 37 
3 1st wave 159 119 87 13 22 62 37 
3 total 159 119 87 82 40 62 37 

Table 1: Table showing peak ICU bed demand (UK-wide, in thousands) for different intervention 

scenarios: home isolation of suspect cases (CI), home quarantine of family members (HQ), general 

social distancing (SD), social distancing of those over 70 (SDOL70) and “place closures” (PC), 

specifically the closure of schools and universities. More details of these NPIs are provided in Table 2 

of Report 9, which we reproduce in Appendix Figure 5. For each trigger value of cumulative ICU cases 

(again in thousands) we show the peak ICU demand, and the peak during the first wave when the 

interventions were in place (which is sometimes the same). 

 

 

Trigger Time  PC CI CI_HQ CI_HQ_SD CI_SD CI_HQ_S
DOL70 

PC_CI_HQ_SD
OL70 

0.1 1st wave 418 354 252 21 39 177 75 
0.1 total 496 416 355 440 402 262 357 
0.3 1st wave 456 378 281 32 58 200 104 
0.3 total 495 416 355 437 390 261 356 
1 1st wave 479 398 310 48 86 223 139 
1 total 494 416 355 428 370 261 351 
3 1st wave 490 407 325 70 114 237 172 
3 total 495 416 355 411 347 262 342 

Table 2: Table showing total deaths (UK-wide, in thousands) for different intervention scenarios and 

different ICU triggers. For each trigger value of cumulative ICU cases (thousands) we show the total 

deaths across the full simulation, and during the first wave. Bold numbers are the minimum achievable 

 

Figure 1: Effect of place closure. The CI_HQ_SDOL70 and PC_CI_HQ_SDOL70 intervention scenarios are 

compared. After the trigger at 100 cumulative ICU cases, all the interventions are in place for 91 days: 

the general social distancing runs to day 194, and the enhanced social distancing for over 70s runs for 

an extra 30 days. With Place Closure (PC), we also show the effect of increasing the amount of in-

household interactions by a factor (home) of up to 2. %the value of the relative household contact 

parameter is varied from 1.0 to 2.0 This shifts cases from first to later waves, but the additional PC 

intervention always leads to an increase in total cases and deaths. 

 

Figure 2: Flattening the curve. The solid lines are the same scenarios as presented in Figure 2 of report 

9.  We also show  three additional scenarios (dashed lines) for R0 = 2.4 which are summarised in Tables 

1 and 2. The PC_CI_HQ_SDOL70 scenario minimises peak ICU bed demand, but prolongs the epidemic, 



resulting in more ICU cases and deaths.  These illustrate why adding place closures (PC) to a scenario 

with case isolation (CI), household quarantine (HQ) and social distancing of those over 70 (SDOL70) 

can lead to more deaths than the equivalent scenario without place closures. Doing so suppresses the 

infection when the interventions are present, but leads to a second wave when they are lifted, which 

happens on around day 200. The total number of deaths in the CI_HQ_SDOL70 scenario is 260,000, 

while for PC_CI_HQ_SDOL70 it is 350,000.  Similarly, comparing general social distancing (SD) with 

equivalent scenarios without SD, the second wave peak in the CI_HQ_SD scenario is actually higher 

than the first wave peak in the CI_HQ scenario. 

 

Figure 3: Simulated values for daily virus cases (left) and deaths (right), for scenarios CI_HQ_SDOL70 

(top) and PC_CI_HQ_SDOL70 (bottom). Interventions are triggered by reaching 100 cumulative ICU 

cases. After the trigger, all the interventions are in place for 91 days: the general social distancing runs 

to day 194, and the enhanced social distancing for over 70s runs for an extra 30 days. Results are 

broken down into age categories as indicated, with SDOL70 interventions affecting the three oldest 

groups. In the CI_HQ_SDOL70 scenario we see a single peak of cases, with greatest infection in the 

younger age groups but most deaths occurring in the older. In the PC_CI_HQ_SDOL70 scenario we see 

three peaks in the plot of daily cases, with the first peak occurring at a similar time for CI_HQ_SDOL70 

above, but with reduced severity. The second peak seems to be a response to the ending of Place 

Closure (PC), and most affects the younger age groups, therefore having little impact on the total 

deaths. The third peak affects the older groups, leading to a significant increase in the total deaths. 

 

Figure 4: Refit of the CovidSim March parameterization based on death data through to June. The top 

panel shows cumulative deaths, with data from [11] and [13], while the bottom panel shows ICU bed 

demand per 100000 people. We considered a range of R0 values and find that values higher than that 

considered in Report 9 best reproduce the data.  A good fit also requires us to assume that the epidemic 

started earlier than was previously suggested in Report 9.  We see that CovidSim provides a good fit 

to the data with a value of R0 between 3 and 3.5 and (inset) predicts that the ICU demand would 

probably be limited to around 10 per 100000. 

 

Figure 5: Table defining the interventions considered in CovidSim copied from Report 9.  


