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PyGNA: a unified framework for geneset 
network analysis
Viola Fanfani, Fabio Cassano and Giovanni Stracquadanio* 

Background
The availability of high-throughput technologies enables the characterization of cells 
with unprecedented resolution, ranging from the identification of single nucleotide 
mutations to the quantification of protein abundance [1]. However, these experiments 
provide information about genes and proteins in isolation, whereas most biologi-
cal functions and phenotypes are the result of interactions between them. Protein and 
gene interaction information are becoming rapidly available thanks to high-through-
put screens [2], such as the yeast two hybrid system, and downstream annotation and 

Abstract 

Background: Gene and protein interaction experiments provide unique opportunities 
to study the molecular wiring of a cell. Integrating high-throughput functional genom-
ics data with this information can help identifying networks associated with complex 
diseases and phenotypes.

Results: Here we introduce an integrated statistical framework to test network 
properties of single and multiple genesets under different interaction models. We 
implemented this framework as an open-source software, called Python Geneset 
Network Analysis (PyGNA). Our software is designed for easy integration into existing 
analysis pipelines and to generate high quality figures and reports. We also developed 
PyGNA to take advantage of multi-core systems to generate calibrated null distribu-
tions on large datasets. We then present the results of extensive benchmarking of the 
tests implemented in PyGNA and a use case inspired by RNA sequencing data analysis, 
showing how PyGNA can be easily integrated to study biological networks. PyGNA 
is available at http://githu b.com/strac quada niola b/pygna  and can be easily installed 
using the PyPi or Anaconda package managers, and Docker.

Conclusions: We present a tool for network-aware geneset analysis. PyGNA can either 
be readily used and easily integrated into existing high-performance data analysis 
pipelines or as a Python package to implement new tests and analyses. With the 
increasing availability of population-scale omic data, PyGNA provides a viable approach 
for large scale geneset network analysis.
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sharing in public databases [3, 4]. Thus, it is becoming obvious to use interaction data to 
map single gene information to biological pathways.

Integrating interaction information with high throughput experiments has proven 
challenging. The vast majority of existing analytical methods are based on the concept 
of over-representation of a candidate set of genes in expert curated pathways or net-
works [5, 6]; however, this approach is strongly biased by the richer-get-richer effect, 
where intensively studied genes are more likely to be associated with a pathway [7], ulti-
mately limiting the power of new discoveries. Many methods have now been proposed 
to directly integrate network information for function prediction [8–10], module detec-
tion [11], gene prioritization [12] and structure recognition [13]. However, results are 
usually sensitive to the underlying network interaction model used and test statistics 
[14], and performing analyses across different tools is not feasible, as the vast majority 
of this software comes either as a web application or visualization plugins. While web 
applications are simple to use for targeted analyses, they are also difficult to integrate in 
high-throughput data analyses pipelines.

With the increasing availability of biological interaction resources and the devel-
opment of standardized high-throughput analysis pipelines, a unified and easy to use 
framework for network characterization of genes and proteins could generate useful 
information for downstream experimental validation.

Here we build on recent advances in network theory to provide an integrated statistical 
framework to assess whether a set of candidate genes (or geneset) form a pathway, that is 
genes strongly interacting with each other. We then extended this framework to perform 
comparisons between two genesets to find similarities with other annotated networks, as 
a way to infer function and comorbidities. We called our statistical tests geneset network 
topology (GNT) and geneset network association (GNA) tests, respectively (Fig. 1a). We 
implemented our tests into a Python package, called Python Gene Network Analysis 
(PyGNA). It is important to note that the tests implemented in our software are not an 
exhaustive list of all the approaches presented in literature; here we favoured well estab-
lished models with test statistics easy to interpret [14]. Nonetheless, PyGNA provides a 
flexible API to implement and benchmark new network-based statistical tests, while tak-
ing advantage of our data processing and statistical testing framework.

We tested the GNT and GNA tests implemented in PyGNA on synthetic datasets to 
assess the performance (true positive rate and false positive rate). We then present how 
to use PyGNA to analyse high-throughput RNA sequencing data generated by The Can-
cer Genome Atlas (TCGA, [15]) and how to interpret network analysis results.

PyGNA is released as an open-source software under the MIT license; source code 
is available on GitHub (http://githu b.com/strac quada niola b/pygna ) and can be installed 
either through the PiP or Anaconda package managers, and Docker. Our software is 
designed with modularity in mind and to take advantage of multi-core processing avail-
able in most high-performance computing facilities. PyGNA facilitates the integration 
with workflow systems, such as Snakemake [16], thus lowering the barrier to introduce 
network analysis in existing pipelines.

The manuscript is organized as follows; “Methods” section describes the statisti-
cal network framework implemented in PyGNA, whereas   “Implementation” section 
describes PyGNA APIs and command line interface (CLI) options. In “Results” section, 

http://github.com/stracquadaniolab/pygna
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we present benchmarking results on simulated data and how to apply PyGNA to analyse 
RNAseq experiments. We conclude by discussing how PyGNA compares to other exist-
ing tools and why it represents an advancement for geneset network analysis.

a

b

Fig. 1 The PyGNA analysis workflow. a Outline of the GNT and GNA tests. Given an input network, PyGNA 
maps genes to network nodes, performs GNA and GNT tests, and then outputs the results in CSV format. b 
Complete workflow. We recognize three main use-cases where PyGNA can be used, including (i) network 
analysis of high-throughput experiments, (ii) network analysis of curated genesets and iii) simulations of 
networks and genesets for algorithms benchmarking. PyGNA can perform GNT analysis on single or multiple 
genesets, along with GNA analysis to identify network associated with other genesets or pathways. Results 
are provided as CSV files and as high quality PDF figures
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Methods
We hereby introduce basic notation and properties for network analysis, describ-
ing interaction models, test statistics and hypothesis testing methods implemented in 
PyGNA.

Let G = (V ,E) be a network, or graph, with |V| nodes and |E| edges. Let A be a matrix 
|V | × |V | , with Aij = 1 if there is an edge between node i and j and 0 otherwise; we 
denote A as the adjacency matrix of the network G. We hereby consider only undirected 
graphs, thus the adjacency matrix is symmetrical Aij = Aji ; however, all the tests we 
present can be applied to directed networks and weighted networks. Moreover, unless 
otherwise stated, we consider only the largest connected component (LCC) of the net-
work; while this is not strictly necessary, distance measures are often not informative 
when computed over disconnected graphs. We denote as degree of a node i, deg(i), the 
number of edges associated with it. In this context, nodes represent genes or proteins, 
whereas edges the intervening interactions, e.g. physical, genetic interactions.

Let S = s1, . . . , sn be a geneset consisting of n genes, we want to quantify the strength 
of interaction between genes in the geneset (geneset network topology, GNT) and with 
genes in another geneset (geneset network association, GNA).

Interaction models

We denote as interaction model, a function that quantifies the strength of interaction 
between any two nodes in a network. Here we introduce three interaction models with 
different properties and complexity.

A direct interaction model assumes that two nodes interact only if there is an edge 
between them; this is the most efficient model to evaluate as it requires only the inspec-
tion of the adjacency matrix.

Under a shortest path interaction model, instead, we assume that the strength of inter-
action between two genes is a function of their distance on a network G, that is closer 
genes are more likely to interact. Thus, we denote with i → j a path in G from node i to 
node j, whose length, lij , is the number of edges from i to j. We then quantify the strength 
of interaction between two genes, i and j, as the length of the shortest path from i to j, 
denoted as sij ; w.l.o.g, shortest paths can be also computed over directed and weighted 
networks.

Finally, we introduce a probabilistic model of gene interactions, namely the Random 
Walk with Restart (RWR) model. Let W be a stochastic matrix inferred from the adja-
cency matrix A, the probability of reaching node i from node j after k steps is (Wk)ij 
[17]. However, for k big enough, the probability of interaction between nodes converges 
to a quantity proportional to the degree of the nodes, thus neglecting local structure 
information. We here instead consider a random walk with restart model (RWR), where 
it is possible to return to the starting node with fixed probability β (set to 0.85 unless 
otherwise stated [18]). We can then estimate analytically the probability of interaction at 
steady state as follows:

where Ā is the normalized adjacency matrix obtained as Ā = AD−1 , with D being the 
diagonal matrix of node degrees. In this case, the matrix H can be interpreted as the heat 

(1)H = β(I − (1− β)Ā)−1
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exchanged between each node of the network [11]. It is also worth noting that the above 
formulation is agnostic to direction and weights of the edges.

These three interaction models capture different topological properties. Direct models 
provide information about the neighborhood of a gene and its observed links. However, 
they might not be sufficiently powered to detect mid- and long-range interactions, thus 
statistics defined under these models are usually sensitive to missing links. Conversely, 
modelling gene interactions using shortest path provides a simple analytical framework 
to include local and global awareness of the connectivity. However, this approach is also 
sensitive to missing links and small-world effects, which is common in biological net-
works and could lead to false positives [19]. Propagation models provide an analytical 
model to overcome these limitations, and have been shown to be robust for biological 
network analysis [20]. While its interpretation is not necessarily straightforward, the 
RWR model is more robust than the shortest path model, because it effectively adjusts 
interaction effects for network structure; it rewards nodes connected with many shortest 
paths, and penalizes those that are connected only by path going through high degree 
nodes.

Based on the above interaction models, we have implemented and tested different sta-
tistics, which are described in detail below.

Geneset network topology statistics

Let S = s1, . . . , sn be a geneset of n genes, each mapped to a node in G = (V ,E) . We are 
interested in testing whether the strength of interaction between nodes of the geneset is 
higher than expected by chance for a geneset of the same size.

Under a direct interaction model, the importance of a geneset S can be quantified as 
the number of edges connecting each node in S to any other node in the network; we 
refer to this quantity as the total degree of the node. Thus, we define the total degree 
statistic for a geneset S as:

While TTD could be helpful to have an idea of how relevant and well characterized the 
nodes in the geneset are, we do not expect this statistic to be informative on the strength 
of interaction withing a geneset.

Conversely, with the direct interaction model, the strength of interaction for a gen-
eset S can be quantified as the number of edges connecting each node in S to any other 
node in the geneset; we refer to this quantity as the internal degree of the node. Thus, we 
define the internal degree statistic for a geneset S as:

where deg(i,  S) is the internal degree of gene i in geneset S. In practice, the internal 
degree statistic captures the amount of direct interactions between genes in a geneset, 
and thus a geneset showing a network effect should have TID values close to 1. However, 
the main limitation of this model lies in the fact that it only captures direct interactions, 

(2)TTD =
1

n

∑

i∈S

deg(i)

(3)TID =
1

n

∑

i∈S

deg(i, S)

deg(i)
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whereas biological networks are usually characterized by medium and long range 
interactions.

Another way to assess the strength of a network effect is the size of the largest con-
nected components of the graph induced by the geneset S, hereby denoted as TM . A 
main concern regarding direct interaction methods is that they could fail in presence 
of missing links, which is a well-known problem in biological networks analysis, where 
experimental screens are often not sensitive enough to detect all existing gene/protein 
interactions.

A shortest path interaction model allows to overcome this limitation by explicitly tak-
ing into account the distance between nodes. Here we define the test statistic TSP for the 
geneset S as follows:

which is the average of the minimum distance between each gene and the rest of those 
in S [21].

Conversely, under a RWR model, we can consider hij ∈ H as the heat transferred from 
node i to node j, which can be used as a measure of interaction strength between the 
nodes in the geneset S, as follows:

Geneset network association statistics

Let S1 and S2 be two geneset with n and m genes respectively, we want to estimate the 
association between S1 and S2 as a function of the strength of interaction between their 
nodes.

Under a shortest path model, the association statistics USP is defined as follows:

whereas, under a RWR model, we measure association as a function of the heat, UH , 
transferred between the two genesets as follows:

where we consider also the heat withhold by a gene, when there are overlapping genes 
between S1 and S2.

Hypothesis testing

The topological and association statistics are ultimately used for hypothesis testing. To 
do that, we need a calibrated null distribution to estimate whether the observed statistics 

(4)TSP(S) =
1

n

n∑

i=1

min
j∈S

sij

(5)TH (S) =
∑

i,j∈S,i �=j

hij

(6)

USP(S1, S2) =
1

n+m

∑

i∈S1

min
j∈S2

sij +
∑

j∈S2

min
i∈S1

sij

−
1

2
(TSP(S1)+ TSP(S2))

(7)UH (S1, S2) =
∑

i∈S1,j∈S2

hij + hji
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are more extreme than what expected by chance. Closed form definition of null distri-
butions is possible only for very simple network models, which are often unrealistic. 
Therefore, we reverted to a bootstrap procedure to estimate null distributions of the test 
statistics, conditioned on the geneset size; while this approach can be computationally 
taxing, in practice, we observed that ≈ 500 bootstrap samples are sufficient to obtain a 
stable distribution (see Additional file 1).

Thus, w.l.o.g, let Q be the null distribution of the test statistic q estimated for a geneset 
of size n, and q̄ the observed value. It is possible to derive an empirical p-value as follows:

where I is the indicator function returning 1 if and only if the evaluated condition is true, 
and unit pseudo-count is added for continuity correction. It is straightforward to adapt 
this formula to the case of testing whether a test statistic is smaller than expected by 
chance.

The default sampler generates null distributions by sampling nodes uniformly at ran-
dom. However, certain metrics might be particularly sensitive to local network structure, 
especially when they solely rely on degree-related statistics to characterize a geneset. To 
overcome this problem, we also implemented an additional sampler that generates null 
distributions matching the degree distribution of the tested dataset.

For the GNA tests, it is important to note that we are now dealing with two genesets. 
Hence, a null distribution can be computed either by sampling two random genesets or 
by sampling only one of the two; we recognize that the latter is more conservative, and 
is recommended when checking for association with known pathways (see Additional 
file 1).

Benchmarking geneset network tests

Rigorous benchmarking of network analyses tools is challenging, because there is no 
ground truth for geneset network analysis [14].

Stochastic block models (SBM) have been shown to be a reasonable model for analyz-
ing biological networks [22]; importantly, since SBM define a generative process over 
networks, they can be used to create networks with controllable features, including 
modules (also often referred as clusters). Let M : k × k be a stochastic block model with 
k blocks, where Mij represent the probability of a node in block i to be connected to 
(or interact with) a node in block j. A new network with n nodes can be generated by 
assigning each node to a block and adding edges probabilistically using the block model 
matrix. It is straightforward to note that if Mii >> Mij for any j, the genes in block i are 
likely to show a network effect. Hence, by modulating the values on the diagonal of the 
block model matrix, we can assess the performance of GNT tests by analyzing the gen-
esets made of the genes in a block. Conversely, we expect to find a significant association 
between two blocks i and j if Mij >> Mkl , with i, j  = k , l . By parametrizing the off-diag-
onal terms of the block model matrix, it is possible to assess the performance of GNA 
tests (see Additional file 1 for a graphical representation of the SBMs).

While the SBM are useful to simulate networks with controllable structures, they 
are difficult to adapt to modelling networks with highly connected nodes (hubs), 

(8)P(q̄ ≥ Q) =
(
∑|Q|

i=1
I(Qi ≥ q̄))+ 1

|Q| + 1
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which are common in biological networks. Thus, here we introduce a stochastic gen-
eration procedure to build networks with hubs, which can then be used for assessing 
the performances of GNT tests. We hereby describe each model in detail.

SBM for GNT benchmarking

We use the SBM framework to simulate a network with k blocks, with a baseline prob-
ability of interaction within and between blocks, p0 . We then select k+ < k blocks 
from the SBM matrix and set their within probability of connection M+

ii = αp0 , where 
α > 1 is a scaling factor controlling the strength of interaction of the genes within 
block i compared to the rest of the genes in any other block. Intuitively, each of the k+ 
blocks represents a geneset with a significant network effect, thus a robust GNT test 
should be able to detect them.

Ultimately, by varying the size of highly connected blocks, the baseline probability 
of interaction p0 and the strength of interaction α , it is possible to assess the power, 
true positive rate (TPR) and false positive rate (FPR) of GNT tests under different 
conditions.

SBM for GNA benchmarking

Similar to the approach outlined for GNT benchmarking, we used the SBM framework 
to generate network with multiple gene clusters to assess the performance of GNA tests.

We use the SBM framework to simulate a network with k blocks, with a baseline 
probability of interaction within and between blocks, p0 . We then selected k+ blocks 
at random and set their within block connection probability to M+

ii = αp0 and their 
between blocks connection to M+

ij = γ p0 for i  = j and α, γ > 1 . We then repara-
metrize γ as a function α , in order to control the relationship between the within and 
between block connection probability. Let β = γ /(α − 1) , we can set the between 
block connection probability as M+

ij = p0 + βp0(α − 1) . With this parametrization, 
we can directly simulate 3 different scenarios: 

1 if β = 0 ⇒ M+
ij = p0 , the connection probability between blocks is equal to the 

baseline, thus genes in a block are highly connected.
2 if 0 < β < 1 ⇒ p0 < M+

ij < M+
ii  , then the connection probability between the 

blocks is higher than the baseline, and thus we obtain assortative genesets.
3 β > 1 ⇒ M+

ij > M+
ii  , then we have non assortative genesets, thus we expect them to 

be detected by a GNA test.

After building a network, we then generate genesets by selecting two distinct blocks, 
i,  j, with m nodes each, and add π ×m nodes from block i and (1− π)×m nodes 
from block j; for simplicity, we picked genes from blocks containing the same number 
of genes. The GNA testing is then performed between the SBM blocks and the novel 
mixture blocks. By varying the size of highly connected blocks and their interaction 
probability, along with the geneset composition, it is possible to assess the true posi-
tive rate (TPR) and false positive rate (FPR) of GNA tests.
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High degree nodes model for GNT benchmarking

The high degree nodes (HDN) model generates networks with a controllable number of 
hubs, nhd , whose probability of connection with another node, phd , is higher than the 
baseline probability p0 assigned to any other node in the network. The model is fully 
specified by four parameters, namely the number of nodes in the network, n, the num-
ber of HDN nodes, nhd , the baseline connection probability, p0 , and the HDN connec-
tion probability, phd > p0.

In order to benchmark GNT tests in presence of HDN nodes, we created geneset as a 
mixture of HDNs and non HDN nodes; we denoted these genesets as extended genesets. 
Specifically, each geneset is made of πhd × nhd nodes, with πhd ∈ (0, 1] , and ρπhdnhd 
random high degree nodes, where ρ is the ratio between high degree nodes and other 
nodes in the network (see Additional file 1 for a graphical representation).

With the HDN model, we can replicate a common scenario where the tested geneset 
is made of a few master regulators and many, possibly, unrelated genes. Here, the idea is 
that a robust GNT test should have a low false positive rate, even when observed statis-
tics might be skewed by few highly connected nodes.

Implementation
PyGNA is implemented as a Python package and can be used as a standalone command-
line application or as a library to develop custom analyses. In particular, our framework 
is implemented following the object oriented programming paradigm (OOP), and pro-
vides classes to perform data pre-processing, statistical testing, reporting and visuali-
zation. Here we provide an overview of the package structure and available interfaces, 
although the complete API documentation is available at: https ://githu b.com/strac quada 
niola b/pygna . Our basic workflows are summarized in Fig. 1b.

Input/output functions

Our software can read genesets in Gene Matrix Transposed (GMT) and text (TXT) 
format, while networks can be imported using standard Tab Separated Values (TSV) 
files, with each row defining an interaction. For diffusion analysis, instead, we require a 
Comma Separated Value (CSV) file specifying weights for each gene. It is important to 
note that parsers for new data can be easily implemented by extending the ReadData 
abstract class.

To facilitate the integration in bioinformatics pipelines, e.g. downstream analysis of 
DESeq2 results [23], we implemented a Utility class to enable input filtering, gene 
name conversion and GMT file creation.

PyGNA stores results as CSV files, for downstream manipulation and sharing, 
although new formats can be supported by extending the Output class. It is important 
to note that performing tests on large networks using either shortest path or random 
walk models is computationally taxing. However, since the node pairwise metrics are 
dependent only on the network structure, they can be computed upfront as part of a 
pre-processing step. Here, we save matrices in Hierarchical Data Format (HDF5) for-
mat, using the pytables framework [24], for efficient matrix storage. On this point, we 

https://github.com/stracquadaniolab/pygna
https://github.com/stracquadaniolab/pygna
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designed PyGNA to performs efficiently both on low-memory machines, using mem-
ory mapped input output, and high-performance computing environments, by loading 
matrices directly into memory.

Analysis functions

The GNT and GNA analysis are implemented by the StatisticalTest, and the Sta-
tisticalComparison classes, respectively. It is important to note that PyGNA can be 
easily extended to use different test statistics by defining new Python functions; on this 
point, in our online documentation, we provide a complete example on how to build 
GNT tests based on closeness centrality of the nodes.

A bottleneck of our network analysis framework is the bootstrap procedure used to 
obtain a null distribution for hypothesis testing. However, the resampling procedure is a 
seamlessly parallelizable process, since each randomly sampled set of nodes is independ-
ent from the others; thus, we implemented a parallel sampler using the multiprocessing 
Python library, allowing the user to set the number of cores to use. If only one core is 
requested, the multiprocessing architecture is not set-up, sparing the overhead incurred 
by setting up a scheduler for running only one thread (see Additional file 1). It is impor-
tant to note that, currently, Python 3.8 is required in order to process large matrices on 
multi-core CPUs.

Visualization functions

PyGNA has been developed to generate high quality figures for each analysis and to 
export networks and genesets in standard formats compatible with graph visualization 
software, such as Cytoscape [25]. The visualization functions are implemented as part 
of the PygnaFigure class, which comes with sensible default parameters to maximize 
figures readability.

There are four main types of figures currently implemented in PyGNA, namely bar 
plots, point plots, heatmaps and volcano plots, to visualize to GNT and GNA results.

Barplots are used to plot the GNT results for a single statistic. For each geneset a red 
bar represents the observed statistic, whereas a blue one represents the average of the 
empirical null distribution. To denote significance of each test we annotate the plot with 
stars, according to the −log10(p-value) . An example is presented in Fig. 4c, as part of our 
results.

Conversely, a dot plot can be used to summarize multiple tests for the same geneset. 
In order to show all the results in the same figure, the observed values are transformed 
in absolute normalized z-scores, such that all significant tests have z-score > 0 and are 
marked with a red dot. An example is discussed in Fig. 4a.

GNA results can instead be visualised on heatmaps, with the color gradients used to 
report the strength of association between two genesets. When an all-vs-all test is con-
ducted, as in Fig. 5, a lower triangular matrix is shown, with stars denoting significance. 
If, instead, a M-vs-N test was conducted, a complete heatmap would be included in the 
plot.

Alternatively, volcano plots can be used to visualize one-vs-many GNA results, for 
testing a geneset against a large number of datasets (e.g. gene ontologies). The plot 
shows the normalized z-score on the x-axis and the −log10 of the p-value adjusted to 
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control the False Discovery Rate (FDR) on the y-axis. Significant results are shown with 
red crosses, whereas not significant associations are represented by blue dots. We also 
annotate the plot with the top 5 scoring terms. An example of this plot is presented in 
the Additional file 1.

We provide more detailed information and tutorials in our online documentation.

Network properties

On top of the statistical testing framework, we provide functions for the basic charac-
terization of the network and geneset. General information, such as number of nodes 
and edges, average degree, connected components of the graph can all be retrieved from 
command line and saved in textual formats or shown in a GraphML file.

Network simulation functions

PyGNA provides a comprehensive simulation framework to generate networks with dif-
ferent structures and properties for benchmarking purposes, as described in “Bench-
marking geneset network tests” section. Moreover, since we allow the user to implement 
further statistical tests, we provide a full pipeline to generate a benchmark dataset to 
compare the results with those available in this paper.

Model descriptions and implementation details are also available in our online 
documentation.

Command line interface and workflow system integration

PyGNA implements a standard Unix-like command line interface with robust default 
options set for all functionalities. Using a CLI interface facilitates integration with work-
flow analysis systems, such as Snakemake [16]. We have developed Snakemake pipe-
lines to perform network analysis, available at https ://githu b.com/strac quada niola b/
workfl ow-pygna , which can be readily integrated into existing workflows.

Results
We designed PyGNA as a tool to streamline network analysis of biological data. Here 
we perform an extensive analysis of the performances of the GNT and GNA tests imple-
mented in PyGNA and then, we present a common use case regarding the analysis of 
cancer RNA sequencing (RNA-seq) experiments, providing basic guidelines to interpret 
PyGNA results.

Network simulations and algorithm benchmarking

GNT benchmarking with SBM and HDN

We used the SBM and HDN network models to assess the performance of the GNT tests 
implemented in PyGNA.

To do that, we first generated networks using the SBM model using the parameters 
reported in Table 1 (GNT-SBM). Given the large number of parameters, we restricted 
our analyses to networks generated using k = 7 blocks. For each network, we set ⌊k/2⌋ 
blocks with connection probability αp0 to simulate genesets with a network effect, which 
we denoted as positive genesets, whereas the remaining k − ⌊k/2⌋ were denoted as 

https://github.com/stracquadaniolab/workflow-pygna
https://github.com/stracquadaniolab/workflow-pygna
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negative genesets. For each possible parameter setting, we generated 10 networks and 
corresponding genesets for a total of 5400 positive and 5400 negative genesets.

We found that TID , TH and TSP are the statistics with the best overall performances 
(Fig. 2a), with TPR > 70% for all instances, whereas TM and TTD were able to detect 

Table 1 GNT and GNA benchmark parameters

For each model, we report the name of the parameter, a short description and its setting. A dash is reported when the 
parameter is not used

Parameter Description GNT-SBM GNT-HDN GNA-SBM

n Number of nodes 1000 1000 1000

k Number of blocks 7 – 9

p0 Baseline connection probability 0.01, 0.02, 0.05 0.006, 0, 02 0.01, 0.02

m Size of the geneset 20, 50, 100 9, . . . , 200 50, 80

α Within block connection probability 
scaling

2, 3, 5, 10 – 2, 5

β Between block connection probability 
scaling

0 – 0, 10

phd HDN connection probability – 0.5, 0.2, 0.1, 0.08, 0.05, 0.01 –

a

b

Fig. 2 GNT benchmarking. a Performance of all GNT tests on the SBM networks. We show True Positive 
Rate (TPR) and False Positive Rate (FPR) (y-axis) of each GNT test (colors) for different values of α (x-axis). As 
expected, as the value of α increases, all tests improve their detection performance, with TH and TID having 
consistently TPR > 0.75 . Conversely, for FPR we do not see a strong effect as α increases, with most tests 
having FPR ∼ 5% . b Extended geneset high degree nodes (HDNs) networks used to quantify FPR. Genesets 
have been selected with increasing number of HDNs (x-axis) and random nodes to HDNs ratios (colors); for 
each analysis, we report the False Positive Rate (FPR). As the ratio between random and HDNs increases ( ρ ), 
we notice that TSP has better performances. Interestingly, TID is the only one with FPR < 5% in all conditions
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a network effects only for highly connected genesets. In general, we found that all 
tests are robust to false positives ( FPR < 10% for all tests), with TSP being the most 
conservative.

We then used the HDN model to estimate the FPR of the GNT tests with respect to 
networks with hubs. Here we generated networks using the parameters reported in 
Table 1 (GNT-HDN) and generated 10 networks for each parameter setting. For each 
network, we then created extended genesets with by varying πhd = 0.1, 0.2, 0.5 and 
ρ = 2, 2.5, 3, 4 . For each combination of πhd and ρ we generated 3 random genesets, 
for a total of 30 datasets for each combination of network and geneset parameters. It is 
important to note that for increasing p0 , phd and π values, the extended genesets begin 
to form connected clusters; these cannot be considered false positives, albeit being 
generated at random. Thus, for each geneset, we first computed the size of the largest 
connected component (LCC), and discarded those genesets with more than 75% of the 
genes belonging to the LCC.

Here we found that our tests have a low FPR ( < 10% ) regardless of geneset composi-
tion and network structure. Interestingly, while TSP was the most robust on SBM net-
works, it is the most sensitive to HDN in the networks, with FPR as high as 20% even for 
genesets with only 3 HDNs (Fig. 2b). In this case TID is the most robust test (FPR< 10% ), 
while TH has FPR> 0.2 when the number of HDN increases.

Taken together, the TID statistic is the one achieving the best performances and it is 
faster to compute respect to the other best performer, TH , which requires the compu-
tation of a random walk matrix. Nonetheless, for exploratory analyses, we recommend 
using the TH test, which is confirmed to be well powered to detect network effects and 
has a low FPR, and might less sensitive to missing links. We would also point out that, 
since PyGNA provides implementations of the GNT analysis under different models 
of interaction, ensemble analyses could be useful in practice to increase the power of 
detecting network effects.

GNA benchmarking with SBM

We tested also the performance of GNA tests by generating networks and genesets as 
outlined in "SBM for GNA benchmarking" section and using the parameters reported 
in Table 1. For each network, we set two groups of blocks, k+ = 4 and k− = 4 , both of 
size m, along with another one including the remaining N − k ×m nodes. We then set 
Mij = γ p0 , for i = 1, . . . , 7 and j = i + 1 . For each pair of blocks, we generated genesets 
with a varying mixture of nodes π = {0.04, 0.06, 0.1, 0.12} ; with these genesets, we can 
test associations between highly connected and partially overlapping genesets. For each 
network and geneset parameter, we generated 10 runs, for a total of 2640 datasets. For 
both UH and USP , we then assessed the TPR, as the ratio of significant tests between 
genesets with β = 10 , and the FPR, as the ratio of significant tests between genesets with 
β = 0.

We found that UH has higher TPR than USP , regardless of network structure and gen-
eset composition (see Fig. 3). However, it is more prone to false discoveries when the 
number of overlapping nodes increases. In particular, when two genesets do not have 
high inter-connectivity, but share more than 5 out of 50 nodes the test is always signifi-
cant. Importantly, all tests between non overlapping genesets are not significant.
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Taken together, our results suggest that for UH is a well powered test for exploratory 
analyses, whereas USP might be more appropriate for verifying known associations.

Fig. 3 GNA benchmarking. a Performance of all GNA tests on SBM benchmark data. On the left column, 
we report the True Positive Rate (TPR) and False Positive Rate (FPR) for UH , while on the right column we 
report the same metrics for USP . On the x-axis, we show different geneset sizes, while we denote the overlap 
between the tested genesets with colors. For example, for size 50 and 4% of overlap the two geneset share 
2 nodes. We notice that UH has TPR > 0.95 , while USP is consistently below 0.75. Moreover, the FPR analysis 
confirms better performance for UH , albeit it is skewed by many overlapping nodes. On this point, when two 
genesets share 6 or more nodes out of 50, UH always considers them as positives

a b

c

Fig. 4 GNT analysis of TCGA RNA sequencing experiments. a Summary of the GNT results on the TCGA 
datasets. For each geneset analysed, a summary of all test results is reported. In order to make results 
comparable, observed test statistics are transformed in normalised z-scores. All results are in a scatter plot, 
where significant tests are marked with a red dot. We can notice that only the TCGA Lung Squamous Cell 
Carcinoma geneset is significant for all topology tests. b Null empirical distribution (blue) and observed 
value (red bar) for a significant rwr test on the TCGA Lung Squamous Cell Carcinoma geneset. c Barplot 
of the GNT module analysis on all TCGA datasets. For each geneset, we report both the observed statistic 
and the empirical null distribution average. Stars are used to identify significance of the test. Here, DLBC 
(p-value:6.99× 10−3 ) and LUSC (p-value: 8.99× 10−3 ) are significant, while the other terms are not
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Use case: network analysis of RNA sequencing experiments

RNA-seq experiments aim at finding genes that are up or down regulated between 
two or more conditions. As a use case, we analyzed RNA sequencing data generated 
by The Cancer Genome Atlas (TCGA) project [15] for 6 different types of cancer (see 
Additional file 1). Specifically, we selected 4 epithelial tumors, including 2 from uro-
genital tissues (BLCA and PRAD), 1 from breast (BRCA) and 1 from lung (LUSC), 
and 2 from liquid cancers (LAML and DLBC).

Here we are interested in finding whether differentially expressed genes in each can-
cer show a network effect, and whether they are similar to any other cancer analysed. 
It is possible to address these questions using the GNT and GNA tests implemented 
in PyGNA.

To do that, we retrieved TCGA data and performed differential expression analysis 
(DEA) using the TCGABiolinks package [26]. Here we found that there are no con-
trol samples in TCGA for LUSC, LAML, and DLBC; in this case, we instead used gene 
expression data from the Genotype-Tissue EXpression (GTEX) project [27], as control, 
and the TCGA tumor data processed by the Recount2 project [28], in order to avoid 
biases introduced by different RNA quantification pipelines (see Additional file 1). Taken 
together, we retrieved 6 datasets providing mRNA abundance for ≈ 15000 genes for 
each tumor and performed differential expression analysis. For each dataset, we consider 
significant all genes with FDR < 0.01 and |logFC| > 3 (see Additional file 1).

We then used PyGNA to perform GNT analysis and GNA analysis between all 
cancer datasets, using the BioGRID interaction network [29], a publicly available 
repository of protein interactions defining a human protein interaction network of 
17331 nodes and 283991 edges. For each test, PyGNA returns the results as a CSV 
file, which includes descriptive statistics and the parameters of the null distribution 
used for hypothesis testing. Our workflows are summarized in Fig. 1 and Snakemake 
pipelines are available at: https ://githu b.com/strac quada niola b/workfl ow-pygna .

ba

Fig. 5 GNA analysis of TCGA RNA sequencing experiments. a Heatmap of the observed values of the GNA 
test under a RWR interaction model, UH , where darker colors denotes larger observed UH values and stars 
denote statistical significance. b Heatmap of the observed values of the GNA test under a shortest path 
interaction model, USP . A divergent palette marks distant datasets with blue hues, and close ones with red 
hues, ( USP < 0)

https://github.com/stracquadaniolab/workflow-pygna
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We then used the PyGNA plotting tool (paint-summary-gnt) to visualize a sum-
mary of the GNT results for all datasets (Fig. 4a), where we report the test statistic as a 
z-score, to make them comparable across different tests. Interestingly, only differentially 
expressed genes in lung and lymphoid cancers show a significant network effect, albeit 
this is detected by all tests for lung cancer and only by TH and TID lymphoid neoplasm. 
Interestingly, we did not observe any network effect for the other cancers; this could be 
explained by the fact these cancers might be controlled not by one highly connected net-
work, but by multiple distinct ones.

We then used PyGNA diagnostic plot generated by the GNT analysis to visualize the 
effect size and the null distribution of the test statistic for one of our significant datasets; 
in Fig. 4b, the plot shows the observed value of the TH statistic for lung cancer (vertical 
red line) being located in the upper-tail of the null distribution (blue area), suggesting 
that a network effect has been detected.

We again used the PyGNA plotting tool (paint-datasets-stats) to present a sum-
mary of the GNT TM results for all datasets (Fig. 4c). For each geneset, we report both 
the observed statistic and the empirical null distribution average. Stars are used to iden-
tify significance of the test. Here, DLBC (p-value:0.00699) and LUSC (p-value: 0.00899) 
are the only cancers with a statistically size of the induced module.

We then performed a GNA analysis between all differentially expressed genesets using 
the command (paint-comparison-matrix) in PyGNA. While most of them does not 
seem to show a consistent network effect, we can use the GNA to test whether each set 
of differentially expressed genes are more connected with each other than expected by 
chance. Using either UH and USP tests, we found a significant association between breast, 
bladder, and prostate carcinomas, and between leukemia and lymphoid neoplasms 
(Fig. 5); this is clearly shown through darker gradients for strongly associated genesets, 
and by the star notation to report statistical significance. This result is consistent with 
other gene expression analyses, which have shown that anatomically related cancers or 
with similar histopathology share similar changes in gene expression [30]. Interestingly, 
we found a significant association between lung and lymphoid neoplasms; this might be 
explained by the fact that lungs contain a vast lymphatic network, which might also be 
dysregulated in lung tumors.

Taken together, we have shown how PyGNA enables network analysis of RNA 
sequencing datasets and provide useful biological insights. The availability of informa-
tive diagnostic and descriptive plots provides a simple entry point for downstream 
expert analyses.

Discussion
The availability of biological interaction data has propelled the development of a pleth-
ora of network analysis methods, with the promise of linking single genes and protein 
information into networks to understand biological processes.

We surveyed publicly available, documented and actively maintained network anal-
ysis tools and found that, currently, PyGNA is the only available framework for com-
prehensive statistical network analysis under different interaction models (see Fig.  6). 
Currently, most software is available as web applications rather than stand-alone tools, 
usually performing only quantitative analyses with no statistical testing. This brings 
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major limitations both for data interpretation and downstream integration into exist-
ing data analysis pipelines (e.g. RNA-seq and variant calling workflows); PyGNA directly 
addresses these problems, by implementing statistical analysis tools into a modular soft-
ware package.

We further reviewed available tools by classifying their functionalities either as GNT 
or GNA, whether they perform statistical analysis and whether they provide a com-
mand line interface (CLI). We found two tools performing GNT on user defined gen-
esets: TopoGSA [31] and NetworkAnalyzer [32]. TopoGSA is a web application 
implementing network topology geneset analysis. It evaluates topological properties 
of the subnetwork induced by an input geneset, such as average shortest path length, 
node degree and clustering coefficient. An empirical p-value is obtained through per-
mutations, but the limited number of samples generated do not ensure a stable distribu-
tion for hypothesis testing. TopoGSA checks also for similarities with known pathways 
just by comparing network properties, but no statistical testing is performed, which 
ultimately limits its utility for interpreting the data. The application presents results in 
interactive tables and plots, and facilitate access to pre-computed networks of several 
organisms, along with the option to import user-defined networks. NetworkAnalyzer 

Fig. 6 State-of-the-art tools for geneset network analysis. Comparison between publicly available, 
documented and actively maintained network analysis tools. For each tool, we reviewed the type of networks 
and genesets that can be given as input (e.g. multi-organism, external/custom defined), and whether a tool 
can generate tables and figures. The majority of tools provides only one type of network analysis, either GNT 
or GNA, with few of them providing association tests between multiple user defined genesets. We also noted 
that, for many tools, there are no statistical testing procedures. Conversely, PyGNA enables comprehensive 
statistical network analysis under different interaction models, testing both single geneset topology and 
multiple genesets association. Moreover, PyGNA takes input user-defined networks, regardless of their type 
and organism, and provides results in comma separated value (CSV) files and PDF figures
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is a Cytoscape plugin, which estimates topology features of the subnetwork induced by a 
geneset, including centrality measures, average shortest path, node degree distribution. 
Differently from TopoGSA, it only provides descriptive statistics but no statistical analy-
sis can be performed.

PyGNA instead provides robust topological statistical testing under different interac-
tion models, which enables in depth analysis of the data, and represents a better solution 
for topology analysis.

Interestingly, we found GNA analysis to be a more popular application, in particular to 
study association with known pathways. The vast majority of tools perform association 
analysis using either over-representation analysis (ORA), which is usually a variant of 
Fisher’s exact test, or geneset enrichment analysis (GSEA, [33]). However, none of them 
explicitly allows association analysis between multiple user-defined genesets. There are 
three available tools commonly used for GNA analysis with known pathways: Webge-
stalt [34], network enrichment analysis (NEA, [35]), and Enrichnet [10].

Webgestalt is a comprehensive suite for geneset analysis, which implements conven-
tional ORA and GSEA analysis, and performs association testing as network topology 
association (NTA) test using Gene2Net (http://www.gene2 net.org/). First, a subnet-
work is built from the input geneset by adding relevant neighbours using a random 
walk model, as implemented in NetWalker [36]. Then, the application performs ORA 
between the genes in the inferred subnetwork and a pathway databases. We found Web-
gestalt to be the most comprehensive tool for GNA, as it includes multiorganism and 
multiplatform support, interactive plots and downloadable results. NEA performs GNA 
by computing an enrichment score between an input geneset and a pathway, as a func-
tion of the number of edges shared between the two. The statistical significance of the 
score is assessed by randomly permuting the edges in the network; recently, a binomial 
test has been implemented to reduce the running time. NEA has been implemented both 
as an R package, NEArender [37], and as a web application, EviNet [38], which pro-
vides access to multiple network and pathway repositories (e.g. GO, KEGG, Biocarta). 
Enrichnet performs GNA analysis between a user-defined geneset and a predefined 
list of biological pathways. The application uses RWR to compute interaction probabili-
ties between the input geneset and each pathway. The interaction probabilities are trans-
formed into a score, Xd ; intuitively, Xd is a measure of how close the geneset is to the 
pathway compared to all the others. As the Xd score does not allow a direct statistical 
testing, it is combined with Fisher-test FDR corrected p-values from an ORA, to find the 
threshold for significance. Enrichnet is a useful tool for direct comparison of ORA and 
a GNA, albeit it was last updated in 2012 and new pathways cannot be imported.

Since PyGNA provides also API for statistical network analysis, we also reviewed 
Ritan [39], an R package that provides functions for genesets and networks analysis in 
R. Ritan provides ORA testing between a geneset and pathways, provides functions to 
export networks for Cytoscape and iGraph, but it does not include any GNT or GNA 
off-the-shelf functionality. Finally, we would like to point out that the vast majority of 
GNA tests, are designed and optimized to perform association tests with specific data-
sets (e.g. KEGG pathways or Gene Ontology), rather than addressing the more general 
problem of network association; this poses substantial technical challenges for any rigor-
ous benchmarking experiment based on synthetic networks.

http://www.gene2net.org/
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Taken together, our software is the only available solution to easily investigate net-
work properties under different interaction models and perform statistical testing. 
We recognize that web applications are easier to interact with, fast to use for small 
scale and targeted analyses, since they do not require any setup and integrate many 
network and pathway genesets. However, we have designed PyGNA with flexibility 
and scalability in mind; we provide both command line interface and open APIs to 
extend GNT and GNA analysis using different topology measures. Moreover, the sup-
port for multi-core processing and easy integration with Snakemake allows to run 
PyGNA on multiple datasets and experiments at a glance

Conclusions
The availability of gene and protein interaction data provide unique opportunities 
to understand the cellular wiring underpinning most common complex phenotypes. 
However, integrating network and gene-level information has been challenging. Gen-
eset network analysis provides a statistical framework to test the presence of inter-
actions between genes associated with a phenotype, thus providing a useful tool for 
downstream analysis of high-throughput data. However, there are only few tools 
for statistical geneset network analysis, and usually are limited to specific interac-
tion models, lack statistical testing methods or are only accessible through web 
applications.

Here we present a modular Python package, called Python Geneset Network Anal-
ysis (PyGNA), to perform statistical geneset network analysis under different inter-
action models. As networks analysis results are sensitive to the underlying gene and 
protein interaction model, it is important to perform these analyses using different 
models to gain confidence on the observed network effects. Different from existing 
applications, we designed PyGNA to be easily integrated into workflow systems and 
rapidly provide a comprehensive network characterization of input genesets. Our 
software takes advantage of multi-core architectures and can work both on desktop 
and high-performance computing environments, thus lowering the computational 
requirements to perform network analysis. Our software is available on GitHub 
(http://githu b.com/strac quada niola b/pygna ) and can be easily installed from PyPi, 
Anaconda and as a Docker container.

We have shown how PyGNA can be used as part of biological data analysis pipe-
lines, in particular as downstream analysis tool for differential expression experi-
ments, exploratory geneset analyses, and as a network simulation framework. It is 
also worth mentioning that, while the package development has been motivated by 
the need for an integrated tool for biological data analysis, ranging from RNAseq 
experiments to evolutionary genomics [40] PyGNA is agnostic to input data types 
and could easily be adopted to analyse non-biological networks, including social and 
communication networks, where the information can be summarized into sets of 
nodes (e.g. users of a Facebook group).

PyGNA is not only a stand-alone application, but also a Python library that can be 
easily integrated into other software; thus, we envision our framework as an open-
source platform to develop network statistical tests.

http://github.com/stracquadaniolab/pygna
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Availability and requirements

Project name: PyGNA
Project home page: https ://githu b.com/strac quada niola b/pygna 
Operating system(s): Platform independent
Programming language: Python
Other requirements: pandas, numpy, scipy, matplotlib, pyyaml, tables, seaborn, 
palettable, networkx, statsmodels, argh, mygene (Python 3.8 is required to use 
large matrix analysis on multiple processors)
License: MIT license
Any restrictions to use by non-academics: Not applicable

Supplementary information
Supplementary information accompanies this paper at https ://doi.org/10.1186/s1285 9-020-03801 -1.

Additional file 1. contains all supplementary materials and figures referenced in the main manuscript. Section 1 
1.1 describes more in depth th paralle sampling performance, Section 1 1.2 describes the stability of empirical null 
distributions, Section 1 1.3 describes the geneset network association bootstrapprocedures, Section 1 1.4 describes 
materials and preprocessing stepts for the TCGA data analysis. Section 2 is instead dedicated to the supplementary 
figures that are referenced in the main text.
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