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ABSTRACT

Measuring cosmic shear in wide-field imaging surveys requires accurate knowledge of the redshift distribution of all sources. The
clustering-redshift technique exploits the angular cross-correlation of a target galaxy sample with unknown redshifts and a reference
sample with known redshifts. It represents an attractive alternative to colour-based methods of redshift calibration. Here we test the
performance of such clustering redshift measurements using mock catalogues that resemble the Kilo-Degree Survey (KiDS). These
mocks are created from the MICE simulation and closely mimic the properties of the KiDS source sample and the overlapping
spectroscopic reference samples. We quantify the performance of the clustering redshifts by comparing the cross-correlation results
with the true redshift distributions in each of the five KiDS photometric redshift bins. Such a comparison to an informative model is
necessary due to the incompleteness of the reference samples at high redshifts. Clustering mean redshifts are unbiased at |∆z| < 0.006
under these conditions. The redshift evolution of the galaxy bias of the reference and target samples represents one of the most
important systematic errors when estimating clustering redshifts. It can be reliably mitigated at this level of precision using auto-
correlation measurements and self-consistency relations, and will not become a dominant source of systematic error until the arrival of
Stage-IV cosmic shear surveys. Using redshift distributions from a direct colour-based estimate instead of the true redshift distributions
as a model for comparison with the clustering redshifts increases the biases in the mean to up to |∆z| ∼ 0.04. This indicates that the
interpretation of clustering redshifts in real-world applications will require more sophisticated (parameterised) models of the redshift
distribution in the future. If such better models are available, the clustering-redshift technique promises to be a highly complementary
alternative to other methods of redshift calibration.

Key words. cosmology: observations – surveys – large-scale structure of Universe – galaxies: distances and redshifts

1. Introduction

Weak gravitational lensing (WL) experiments have been estab-
lished as one of the most sensitive cosmological probes (e.g.
Bartelmann & Schneider 2001; Troxel et al. 2018; Hikage et al.
2019; Hildebrandt et al. 2020a). The aim of these experiments
is to statistically probe the distribution and evolution of large-
scale matter structures by studying the effect of their gravita-
tional field on the propagation of light. The main observable ef-
fect - coherent distortions in the images of background galaxies
- is very weak and can only be observed statistically from large
samples of galaxies with well-measured shapes. In this regime,
tight control of systematic errors is essential throughout the anal-
ysis (Mandelbaum 2018).

These efforts include a precise, unbiased calibration of the
source redshift distribution for very large galaxy samples (e.g.
Hoyle et al. 2018; Tanaka et al. 2018; Wright et al. 2020). Com-
plete spectroscopy is unfeasible for such surveys consisting of
tens of millions of faint galaxies so that secondary estimates for
the redshift distributions are required, for example redshifts from
multicolour photometry known as photometric redshifts (photo-
z; see Salvato et al. 2019 for a review). Weak lensing by the
large-scale-structure of the Universe (a.k.a. cosmic shear) is a

statistical effect, integrated along the line-of-sight so that red-
shift precision for individual galaxies is not critically important.
Typically, the sources used for the measurement are divided into
several so-called tomographic redshift bins. It is the redshift dis-
tributions of the sources in these bins that are required to model
the observed signals. These distributions, and most importantly
their mean redshifts, need to be estimated with very high accu-
racy, which is challenging with photometric redshifts alone due
to degeneracies in colour-redshift space and incompleteness of
spectroscopic template libraries.

In order to meet the stringent requirements on the accuracy
of the mean redshifts (as opposed to accuracy of the individual
redshifts per se), modern cosmic shear surveys have developed
different methods of redshift calibration. If a survey contains a
sub-sample of galaxies with spectroscopic redshift (spec-z) mea-
surements, this sub-sample can be used to estimate the redshift
distribution of the full survey. However, it is in principle required
that this sub-sample is representative of the full WL source sam-
ple. If that is not the case, some re-weighting of the spec-z sam-
ple can - under certain conditions - still yield an unbiased esti-
mate of the true redshift distribution (Lima et al. 2008). This re-
weighting method, implemented via k-nearest-neighbour match-
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ing (kNN) or self-organised-maps (SOM), has been used widely
in the WL literature (Bonnett et al. 2016; Masters et al. 2016;
Hildebrandt et al. 2017, 2020a; Wright et al. 2020; Buchs et al.
2019).

A complementary approach to estimate redshift distributions
with the help of a spec-z calibration sample uses galaxy angu-
lar cross-correlation measurements (Newman 2008; Matthews
& Newman 2010; Schmidt et al. 2013; Ménard et al. 2013; Mc-
Quinn & White 2013). Galaxy samples that overlap in redshift
show some correlation of their angular positions on the sky.
Hence, a measurement of this angular cross-correlation function
can yield an estimate of the redshift distribution of an unknown
sample if the other sample has accurately known redshifts. The
great appeal of this method is that it does not require a reference
spec-z sample that is representative of the unknown target sam-
ple so long as both overlap in redshift (Newman 2008). For ex-
ample, a bright reference sample can be used to estimate the red-
shift distribution of a faint target sample via cross-correlations
as bright galaxies cluster with faint galaxies; they are both trac-
ers of the same underlying matter field. This makes such a cross-
correlation approach especially attractive for faint target samples
that are hard to study spectroscopically in a representative way.
Here we will concentrate on this approach, a method that is also
dubbed ‘clustering redshifts’.

Any measurement of galaxy clustering - and hence also clus-
tering redshift measurements - is affected by the unknown bias of
the galaxies with respect to the underlying matter density field,
which depends on galaxy type and evolves with redshift. Clus-
tering redshifts need to be corrected for this bias before they can
be used to estimate redshift distributions for cosmological infer-
ence. While the absolute value of the galaxy bias is not important
for the clustering-redshift method, any redshift evolution of the
galaxy bias within either the reference or the target samples will
introduce a skew in the estimates of the redshift distributions.
Thus, this bias evolution needs to be estimated and corrected for.
While this is straightforwardly done for the reference sample, by
estimating its angular auto-correlation function and exploiting
its precise redshift information, such a correction is not possible
for the target sample. Instead, self-consistency relations can be
formulated that estimate the galaxy bias evolution of the target
sample by dividing this sample into redshift slices of different
width.

The aim of this work is to assess the performance of the
clustering-redshift methodology and the bias corrections de-
scribed above. We use the optical and infra-red weak lensing
surveys KiDS (Kilo-Degree Survey, Kuijken et al. 2015) and
VIKING (VISTA Kilo Degree, Edge et al. 2013) as reference to
create a simulated, realistic target galaxy sample, as well as a set
of simulated spectroscopic calibration samples which are used
as a reference in the clustering redshift measurements. These
mock catalogues, based on the MICE simulation (Fosalba et al.
2015a,b; Crocce et al. 2015; Carretero et al. 2015; Hoffmann
et al. 2015), include effects such as gravitational lensing, evolv-
ing galaxy bias and spectroscopic selection effects which allows
us to quantify the impact of these systematics on the clustering
redshift measurements. The cross-correlation measurements are
analysed with an updated methodology similar to the one pre-
sented in Hildebrandt et al. (2020a). We quantify the residual bi-
ases in such a clustering redshift experiment by comparing to the
known redshift distributions of the simulated mock catalogues.
This yields realistic best-practice solutions that can be used with
contemporary and future cosmic shear surveys.

The paper is organised as follows. In Sect. 2, we present the
simulated datasets that form the basis of this work, in particu-

lar the detailed creation of the catalogues. We note that these
mock catalogues have already been used to validate the DIR and
SOM redshift calibration methods in Wright et al. (2020) and
Joudaki et al. (2020). The theory behind and implementation of
the clustering-redshift technique for this work and differences to
previous KiDS clustering redshift measurements are covered in
Sect. 3. Results are presented in Sect. 4 and discussed in Sect. 5
before the paper is summarised in Sect. 6.

2. Simulated data

To assess the performance of the KiDS clustering-redshift
methodology, we must construct a simulated dataset that is simi-
larly complex as the observational data, particularly with respect
to photometric properties and selection effects. In this section we
describe the construction of such realistic mock galaxy samples
that closely resemble the KiDS+VIKING-450 (KV450, Wright
et al. 2019) cosmic shear sample (Sect. 2.1) and spectroscopic
reference samples (Sect. 2.2), which we subsequently use to
verify our clustering-z methodology. We start from an existing
galaxy mock catalogue and add properties like a photometry re-
alisation, galaxy weights and photometric redshifts (photo-z) in a
post-processing pipeline. This pipeline represents a blueprint for
the construction of future KiDS mock samples and is publicly
available at https://github.com/KiDS-WL/MICE2_mocks.

The basis for our mock creation is the MICE simulation (Fos-
alba et al. 2015a). MICE is a dark matter-only simulation gen-
erated in a box of width L = 3.1 h−1Gpc, thereby allowing con-
struction of a light cone that covers an octant of the sky. The
simulation assumes a flat Λ-CDM cosmological model, with
Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.044, σ8 = 0.8, and h = 0.7.
The simulation traces the evolution of ∼ 6.9 × 1010 particles with
mass 2.9 × 1010 h−1M�, from an initial redshift of zinit = 100 to
the present day. This high particle density allows the simulation
to match (to within a few percent, Fosalba et al. 2015a) the-
oretical predictions for matter clustering even on small scales
(k ∼ 1 h Mpc−1); scales which are of particular interest for clus-
tering redshift measurements.

An additional strength of the MICE simulation is the avail-
ability of a synthetic galaxy and halo catalogue1 for the full
light-cone. This catalogue was generated by identifying halos
using a Friends-of-Friends algorithm (Crocce et al. 2015), and
subsequently populating these halos with galaxies using a mix-
ture of halo occupation distribution (HOD) and halo abundance
matching (HAM) techniques (Carretero et al. 2015) up to a red-
shift of z ≈ 1.4. This redshift limit implies that we are not be
able to model the tails of the redshift distribution of the KV450
cosmic shear sample, which extends beyond z = 1.4. However,
the incompleteness of our spectroscopic reference samples (see
Sect. 2.2) would make a clustering redshift calibration of these
tails difficult. For all analyses in this work, we use the second
version of this galaxy catalogue, which we simply refer to as
MICE2. This catalogue provides galaxy positions, shapes, stellar
masses, and simulated photometry for many photometric band-
passes, such as those utilised by Euclid (Laureijs et al. 2011),
Sloan Digital Sky Survey (SDSS, York et al. 2000), the Dark
Energy Survey (DES, Flaugher et al. 2015), and the VIKING
survey (Edge et al. 2013). As a result, the MICE2 galaxy cata-
logue comes pre-packaged with simulated photometry in filters
similar (or identical) to those used in KV450 (ugriZY JHKs).

1 Distributed on https://cosmohub.pic.es/ (Carretero et al.
2017)
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As the MICE2 catalogue was constructed with gravitational
lensing applications in mind, it includes both shear (split in two
components, γ1 and γ2) and convergence (κ) information at the
position of each galaxy (Fosalba et al. 2015b). Besides the shape,
gravitational lensing also affects the position and magnifies the
flux of galaxies through changes in the observed solid angle.
Therefore, both true and lensed galaxy positions are listed in
MICE2. Photometry contained within the catalogue does not,
however, include a consideration for the effects of magnification.
We utilise this fact to investigate the impact of magnification on
our redshift calibration methodology: we perform our analysis
using catalogues with lensed positions and magnified fluxes, and
then again using a catalogue containing true positions and un-
magnified fluxes (see Sect. 4.2). Our method for implementing
flux magnification is provided below.

The methods applied to the underlying dark matter-only sim-
ulation to obtain the MICE2 galaxy catalogue and our sample
selection strategies (see Sect. 2.1) are similar to the efforts to de-
sign the Buzzard Flock synthetic sky catalogues (DeRose et al.
2019) for DES. Some key differences are that MICE has a higher
particle density and therefore mass resolution, whereas the Buz-
zard mocks implement gravitational lensing with full ray-tracing
opposed to MICE2 which computes lensing observables using
the Born approximation.

2.1. KV450 mock catalogue

The combined KV450 dataset, including object detection, forced
optical and infrared photometry, and photometric redshifts
(photo-z), is described in detail in Wright et al. (2019). The pri-
mary strength of this dataset lies with the addition of the infrared
ZY JHKs-bands, from the VIKING survey (Edge et al. 2013;
Venemans et al. 2015), to the KiDS optical ugri dataset (de Jong
et al. 2017), thereby significantly improving the performance of
the photo-z (particularly at z & 0.9) obtained via template-fitting
with BPZ (Bayesian Photometric Redshift, Benítez 2000).

The effective survey area of the KV450 dataset is 341.3 deg2

(Wright et al. 2019). This sample is limited to sources with suc-
cessful photometric estimates, made using the Gaussian Aper-
ture and PSF (GAaP, Kuijken 2008) photometric pipeline, in
all nine bands. GAaP is a technique that allows to accurately
measure colours by accounting for differences in the point
spread function (PSF) in each filter. This is achieved by mea-
suring fluxes with a filter-dependent, spatially varying kernel
that Gaussianises the PSF. All sources are assigned lensing
weights obtained from lensfit (Miller et al. 2007, 2013; Fenech
Conti et al. 2017; Kannawadi et al. 2019). This weighting ef-
fectively selects extended sources with r-band apparent mag-
nitudes in the interval 20 . r . 25 (Wright et al. 2019), re-
sulting in an effective surface density (Heymans et al. 2012)
of neff = 7.38 arcmin−2. Furthermore, in Hildebrandt et al.
(2020a) we selected sources for cosmic shear tomography as be-
ing those within the photo-z window 0.1 < ZB ≤ 1.2, where
ZB is the photo-z point-estimate returned by BPZ. We split these
sources into five non-overlapping tomographic bins with bound-
aries ZB ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.2}.

The mock sample that we create based on MICE2 mimics the
same selection function, object weights, and photometric red-
shifts, thereby allowing us to apply the same tomographic photo-
z selection on the mocks as in the real KV450 dataset. This re-
quires us to generate photometric realisations, which match the
KiDS photometric noise properties, based on the MICE2 model
magnitudes. We can do this using, per filter, the observed median
photometric depth and PSF (see Table 1).

Table 1. Median limiting magnitudes and PSF FWHMs for each filter
in the KV450 dataset.

Filter PSF FWHM
(arcsec)

GAaP Magnitude
Limit (1σ, AB)

u 1.0 25.5
g 0.9 26.3
r 0.7 26.2
i 0.8 24.9
Z 1.0 24.9
Y 1.0 24.1
J 0.9 24.2
H 1.0 23.3
Ks 0.9 23.2

We require only a relatively small fraction of the full MICE2
octant to match the area of the KV450 footprint. Due to the
way in which the lightcone was constructed from the simu-
lation box, the completeness of the MICE2 galaxy catalogue
varies with position (see Fosalba et al. 2015a). Therefore we
select a rectangular region between 35◦ < R.A. < 55◦ and
6◦ < DEC < 24◦, which has a reportedly high complete-
ness down to iDES = 24.0 mag. Using this subset as a basis,
we construct our mock KV450 photometric sample by apply-
ing the following series of steps: application of evolution correc-
tions2, application of flux magnification, construction of photo-
metric apertures, realisations of photometric noise, assignment
of shear-measurement weights, and computation of photometric
redshifts. The MICE2 completeness limit, quoted above, is nom-
inally brighter than the corresponding KV450 i-band magnitude
limit (see Table 1). However, the shear-measurement weights
preferentially select bright objects such that the completeness
limit is not an issue for our sample selection.

We start our mock sample construction by first selecting,
from MICE2, the raw simulated photometry (which is noise-
less, uncorrected for evolution and magnification, and expressed
in AB apparent magnitudes per filter X: mraw

X ) which uses pho-
tometric band-passes X that are most similar to those used in
KV450. For the OmegaCAM ugri-bands and VISTA Z-band we
use the provided SDSS u′g′r′i′z′-band fluxes. For the VISTA Y-
band we use the DES y-band. The VISTA JHKs-bands are pro-
vided natively within the catalogue.

Following the recommendation of Fosalba et al. (2015b),
we apply a redshift dependent evolution correction to all fluxes
within the MICE2 catalogue:

mevo
X (ztrue) = mraw

X − 0.8 [arctan (1.5 ztrue) − 0.1489] , (1)

where mevo
X is the evolution-corrected apparent magnitude in fil-

ter X, mraw
X is the raw simulated apparent magnitude in filter X,

and ztrue is the true redshift of the source. We then approximate
the effect of magnification on our fluxes, again following the rec-
ommendation of Fosalba et al. (2015b, see Eq. 21), with the cor-
rection:

mmag
X = mevo

X − 2.5 log10(1 + δµ), (2)

where δµ ≈ 2κ in the weak lensing limit. We then define the
‘true’ magnitude of each source in band X, mtrue

X , as either mmag
X

(for the magnified case) or mevo
X (for the unmagnified case).

We now derive ‘observed’ photometric quantities (magni-
tudes and uncertainties) per-filter, by adding representative pho-
tometric noise to the values of mtrue

X . This requires us to match

2 The evolutionary correction ensures a better match in the galaxy
number density between MICE2 and observational data.
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Fig. 1. Comparison of the colours and magnitudes for the KV450 (red) and MICE2 mock (blue) cosmic shear samples. All histograms are
unweighted, but objects with zero lensfit weight are excluded from both samples. The simulated distributions match the data well, except that
MICE2 fluxes tend to be bluer overall.

the photometric signal-to-noise (SN) of the simulations, again
per-filter, to that which is observed in KiDS and VIKING imag-
ing. In order to simulate realistic photometric errors, we need to
estimate an effective aperture size for each galaxy. We first de-
rive the half-light radius RE,i from the tabulated disk and bulge
radii as well as the bulge-to-total flux ratio of the two compo-
nent Sérsic (1963) profiles of the MICE2 galaxies. Based on this
projected galaxy size we compute a corresponding photometric
aperture the KiDS pipeline would apply: The per-filter aperture
major (aap

X,i) and minor axes (bap
X,i) are

aap
X,i =

√
σ2

PSF,X + (2.5RE,i)2 and (3)

bap
X,i =

√√
σ2

PSF,X +

2.5bint
i

aint
i

RE,i

2

, (4)

where σPSF,X is the filter X PSF standard deviation (derived from
the FWHM, see Table 1), and the intrinsic major-to-minor axis
ratio aint

i /b
int
i of source i. Using the aperture area Aap

X,i = πaap
X,ib

ap
X,i,

the SN ratio values of SNX,i can now be computed as:

SNX,i = 10−0.4
(
mtrue

X,i −mlim
X

) √√πσ2
PSF,X

Aap
X,i

k , (5)

where mlim
X is the observed GAaP magnitude limit in filter X

(see Table 1) and k is a free scaling parameter. We compare the
distributions of SNX in the simulation with the observed signal-
to-noise distributions, as determined from the correspondingly
measured GAaP magnitude. By varying the scaling parameter,
we find that a good match between the simulated and observed
distributions is achieved at k ≈ 1.5 in all filters. We then com-
pute Gaussian uncertainties in magnitude and generate observed
magnitudes:

mobs
X,i = mtrue

X,i + x with x ∼ N
(
0,

2.5
ln 10

1
SNX,i

)
. (6)

We use these magnitudes in Eq. 5, substituting mtrue
X,i with mobs

X,i , to
derive the observed SN per filter and source, SNobs

X,i . Finally, we
perform a quasi-detection in each band, only keeping magnitude

information for sources with SNobs
X,i > 1.0. We note that the pre-

cise implementation of this detection limit is not critical due to
the implementation of the shape measurement weights that limit
our analysis to significantly higher SN anyway.

All cosmic-shear sources in KV450 have an associated
shape-measurement weight, which is assigned based on the con-
fidence of their shape measurement. As we do not have simu-
lated imaging for the MICE2 dataset, we cannot recreate this
value from the simulations directly. Instead we exploit the fact
that these weights are strongly correlated with magnitude (par-
ticularly the r-band magnitude, as this is the band which is used
for galaxy shape measurement). Therefore, to assign shear mea-
surement weights to simulated sources, we simply perform a
kNN matching in 9-dimensional magnitude space between the
simulated and real photometric datasets; the simulated data then
inherit the shear weight of the nearest neighbour in the data. In
cases where there is no nearest neighbour match within a 1.0 mag
Euclidean radius, we assign a weight of zero3. This assignment
produces well behaved shape-measurement weights, while also
encoding any strong selection effects that are present in the data
but overlooked in our simulation setup.

The resulting colour and magnitude distributions for the
mock and real photometric data are shown in Fig. 1. These distri-
butions match the data fairly well, except for the u and g-bands;
MICE2 galaxies are typically bluer than we see in the data. The
mock galaxy magnitudes do not reproduce the faint tails of the
near-infrared photometry seen in KV450, which we attribute to
stronger depth variations seen in the VIKING data, which are
not modelled in our analytic prescription (Eq. 5).

Finally, we perform a photo-z estimation for the simulated
data using our observed magnitudes and magnitude uncertain-
ties. To ensure consistency with the data, we implement the same
photo-z code (i.e. BPZ) and setup; that is, we use the same red-
shift prior (Raichoor et al. 2014) and template set (Capak 2004)
as described in Wright et al. (2019). A difference between the
simulations and the data, however, lies in the redshift priors ap-
plied to the simulations. As we know a priori that the mock cat-
alogue only contains galaxies within 0.07 . z . 1.41, we limit

3 This situation arises in about 2 % of the cases, in particular for the
faintest galaxies with r & 24.
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Fig. 2. Comparison of statistics of the scaled photo-z bias δz =
(zB − zspec)/(1 + zspec) of the KV450 (red) and MICE2 mock (blue)
datasets. The galaxies used for this compilation originate from DEEP2,
VVDS, and zCOSMOS. The columns from left to right show statistics
as a function of spectroscopic redshift, photometric, and r-band mag-
nitude (shown as histograms in the bottom row). The rows from top to
bottom show the median-absolute-deviation (σm), mean (µδz), and the
outlier fraction (ζ0.15, the fraction of objects with δz > 0.15).

the BPZ redshift-prior to this range. We also reject objects if their
aperture photometry cannot be measured in the i-band, the refer-
ence magnitude for the redshift prior, to avoid spurious photo-z
estimates.

The resulting mock photometric redshift properties are well
matched to the KV450 data as shown in Fig. 2. Following Wright
et al. (2019), we measure statistics of the scaled photo-z bias dis-
tribution, δz = (zB − zspec)/(1 + zspec), as a function of spectro-
scopic redshift, photometric redshift, and r-band apparent mag-
nitude. We find agreement between the mocks and data in each
of the test statistics explored: distribution scatter (σm; estimated
using the normalised median-absolute-deviation from median,
nMAD), mean bias (µδz), catastrophic outlier fraction (ζ0.15; the
fraction of sources with |δz| > 0.15), and relative counts. In par-
ticular, we highlight the similarities between the scatter and out-
lier fractions seen as a function of photo-z, which are closely
matched between the mocks and the data.

2.2. Spectroscopic mock catalogues

The KV450 photometric dataset has spatial overlap with a rich
set of spectroscopic surveys, which are needed for optimal red-
shift calibration. For a detailed discussion of all available spec-
troscopic data which intersect the KV450 footprint, we refer the
interested reader to Hildebrandt et al. (2020a). Here we briefly
summarise the spectroscopic selection functions and how to im-
plement these on the MICE2 mocks for the subset of the datasets
which we use for clustering redshift measurements. These sam-
ples can be divided in two categories. First, there are four wide-
area spectroscopic surveys with a combined overlap with KV450
of 212.0 deg2, namely the Sloan Digital Sky Survey (SDSS,
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Fig. 3. The distribution of the mock spectroscopic samples within the
mock KV450 footprint (indicated by the axes limit).

Alam et al. 2015), the 2-degree Field Lensing Survey (2dFLenS,
Blake et al. 2016), the Galaxy and Mass Assembly (GAMA,
Driver et al. 2011) survey, and the WiggleZ Dark Energy Sur-
vey (WiggleZ, Drinkwater et al. 2010). Secondly, KiDS relies
on deep spectroscopic surveys, which each have a post-masking
overlap area with KiDS of less than 1 deg2, to calibrate the high-
redshift portions of the redshift distributions; the DEEP2 Galaxy
Redshift Survey (DEEP2, Newman et al. 2013), the VIMOS
VLT Deep Survey (VVDS, Le Fèvre et al. 2013), and the Cos-
mic Evolution redshift survey (zCOSMOS, Lilly et al. 2009). As
with the KV450 mock galaxy sample, we aim to create mock
spectroscopic samples with similar complexity as seen in the ac-
tual spectroscopic data.

We start our mock spectroscopic source generation by sim-
plifying the complex footprints of each of our spectroscopic
samples by selecting rectangular regions which respect their size
and the various overlaps between each other and with the true
KV450 data. These footprints can be seen in Fig. 3, demonstrat-
ing the various spatial overlaps between the different samples in
our spectroscopic compilation and matching (in area) those of
the corresponding data samples within a few percent.

Next, we apply the spectroscopic target selection functions
(where possible) and adjustments (where necessary) to obtain
the closest match possible between our mock and data spectro-
scopic redshift distributions. These selection functions are all
magnitude- and/or colour-dependent, and are variously based
on imaging that is either shallower (2dFLenS, GAMA, SDSS,
and WiggleZ) or deeper (DEEP2, VVDS, and zCOSMOS) than
the KV450 imaging. As a result, we are able to use the mock
KV450 photometry (i.e. mobs

X,i ) to perform spectroscopic selec-
tions for the former samples, but revert to the noiseless photom-
etry (i.e. mmag

X,i ) for the selection of the latter samples. A tabular
summary of these selection functions and additional plots for
VVDS and zCOSMOS can be found as supplementary material
in Appendix A.

2.2.1. SDSS

SDSS covers large parts of the northern KiDS fields. Our sam-
ple consists of galaxies from the SDSS Main Galaxy Sample
(Strauss et al. 2002), BOSS (Baryon Oscillation Spectroscopic
Survey, Dawson et al. 2013), and the QSO sample (Schneider
et al. 2010) at high redshifts. The selections applied to MICE2
for each of these samples are given in Table A.1, and differences
with respect to the literature are justified in the following.
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Fig. 4. Comparison of colour and magnitude distributions for the sim-
ulated (blue) and observed (red) BOSS LOWZ and CMASS datasets.

First, we approximate the main galaxy sample by selecting
objects with mobs

r,i < 17.7, which is slightly brighter than the
literature limit of 17.77 (Strauss et al. 2002). We attribute this
small discrepancy to the different magnitude definitions used in
SDSS and our mock KV450 dataset (i.e. simple Petrosian vs
our 2.5Re aperture fluxes). Our updated selection gives a bet-
ter match between the mock and simulated redshift distributions
for the SDSS main galaxy sample.

The BOSS LOWZ and CMASS samples use a set of auxil-
iary colours, based on gri-band model magnitudes and optimised
for the selection of luminous red galaxies (LRGs), which are de-
fined as:

c‖ = 0.7 (g − r) + 1.2 (r − i − 0.18); (7)
c⊥ = (r − i) − (g − r)/4 − 0.18; and (8)
d⊥ = (r − i) − (g − r)/8. (9)

These auxiliary colours can be directly computed for our MICE2
sources given the available bandpasses: mobs

X,i for X ∈ gri. We are
therefore able to apply the literature colour-cuts for the LOWZ
and CMASS samples (Dawson et al. 2013), albeit again with
some minor modifications. These modifications are applied to
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Fig. 5. The MICE2 stellar mass distributions for the BOSS mock sam-
ple in bins of redshift, normalised to their peak value. The comparison
to Fig. 10 in Maraston et al. (2013) reveals significantly lower stellar
masses in the highest redshift bin.

construct better matches between the simulations and data in
colour and magnitude space: see Fig. 4 for a comparison of these
values between our mocks and the data.

To verify the fidelity of our BOSS selection, we compare
the distributions of stellar mass, in bins of redshift, between our
mock sample (see Fig. 5) and those of Maraston et al. (2013,
see their Fig. 10). At redshifts below z ∼ 0.6 our BOSS sam-
ple is in good agreement with Maraston et al. (2013), except for
a constant 0.2 dex systematic offset between the two samples.
This systematic offset is not surprising, given the systematic dif-
ferences between the Maraston et al. (2013) stellar population
synthesis models and those of Bruzual & Charlot (2003), which
are used to estimate MICE2 stellar masses. Sources with z > 0.7
in our mock sample, however, have a significantly lower stellar
mass than the corresponding BOSS galaxies in Maraston et al.
(2013). Whereas in Maraston et al. (2013) this redshift bin has
the highest mean stellar mass, we find that high-redshift MICE2
BOSS galaxies have the lowest mean stellar mass; an offset of
∼ 0.5 dex in mass. This in turn suggests that the biasing of these
galaxies will differ in the simulations compared to the data. We
expect this to have a minor impact on the results presented here.
It could however be of importance in other applications of this
dataset which are more sensitive to the absolute value of the
galaxy bias.

There is no obvious way to implement the SDSS QSO sam-
ple within MICE2, as the simulation does not include active
galactic nuclei in the galaxy catalogue construction. We there-
fore approximate the selection of quasars using physical proper-
ties. We assume that quasars are triggered exclusively in dense
environments (Mhalo > 1 × 1013 M�), are always hosted by cen-
tral galaxies (flag_central = 1), and their hosts have high
stellar masses Mstellar > 1 × 1011 M�. This selection yields a
sample with both a number density and redshift distribution sim-
ilar to those found in the observed QSO sample.

2.2.2. 2dFLenS

2dFLenS is similar to the BOSS sample, but occupies the south-
ern KiDS fields and consists of three subsamples with different
selection functions: the low-z, the mid-z, and the high-z sam-
ple. The selection criteria for each of these samples are given
in Table A.2. The low-z and mid-z selections are very similar to
the BOSS LOWZ and CMASS selections, and are based on the
same complement of gri-magnitudes and auxiliary colours (i.e.
Eq. 7-9, Blake et al. 2016). We apply these cuts again with minor
parameter fine-tuning to better reproduce the observed redshift
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Fig. 6. Comparison of colour and magnitude distributions for the sim-
ulated (blue) and observed (red) DEEP2 datasets.

and colour/magnitude distributions. The high-z sample, how-
ever, contains additional selections incorporating fluxes from the
Wide-field Infrared Survey Explorer (WISE, Wright et al. 2010)
W1-band (central wavelength λ̄ = 3.6µm), which is not available
in MICE2. We approximate this selection using the VIKING Ks-
band (central wavelength λ̄ = 2.15µm) in place of W1. While not
exact, comparisons between the redshift distributions in MICE2
and the 2dFLenS data suggest that this approximation is suit-
able for the selection accuracy required in this work. Further-
more, 2dFLenS applies a density downsampling after selecting
targets according to the criteria in Table A.2, resulting in ap-
proximately half the density of the corresponding BOSS LRG
samples. This downsampling is partly comprised in our modi-
fied selection, which yields an approximately 30 % higher den-
sity than the 2dFLenS data sample. We consider this difference
sufficiently small for our purposes that we do not implement an
additional downsampling for the MICE2 sample.

2.2.3. GAMA

GAMA is a flux-limited spectroscopic survey distributed over
three equatorial fields that overlap with the northern KiDS fields.
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Fig. 7. Left: DEEP2 spectroscopic data in R− I-B−R colour space with
the original target selection indicated in green, right: MICE2 galaxies
(based on noiseless model magnitudes) with the original and the fiducial
data selection indicated in blue.

The survey data used here (Driver et al. 2011; Liske et al.
2015) is highly complete (> 98 %) to the magnitude limit of
r = 19.8 mag, with the bulk of galaxies residing at redshifts of
zspec . 0.4. We find that a single r < 19.87 selection is best
suited to reproduce the redshift distribution of GAMA in our
MICE2 mocks.

2.2.4. WiggleZ

WiggleZ is the deepest of the wide area surveys overlapping with
KV450, extending to zspec . 1.1. This dataset spans the gap be-
tween the wide and deep spectroscopic datasets. The WiggleZ
selection function (Drinkwater et al. 2010) consists of a number
of cuts which both include and exclude certain parts of the far-
UV to near-IR colour-colour space, and are summarised in Ta-
ble A.3. As we do not have mock UV photometry in the MICE2
catalogues, we are unable to fully reproduce the literature selec-
tion function of WiggleZ. This deficiency means that our initial
selection function produces a markedly different redshift distri-
bution in the mocks compared to the data. To accurately model
the redshift distribution of WiggleZ we are therefore required
to - after performing all the possible selections - apply a direct
matching of the simulation and data redshift distributions. We do
this via a direct redshift-dependent down-sampling of our initial
WiggleZ sample to match the simulations to the data.

2.2.5. DEEP2

DEEP2 has been covered by KiDS- and VIKING-like obser-
vations in two fields at R.A. ≈ 2 h and 23 h. Sources in these
fields are pre-selected by colour to target galaxies in the range
0.75 . zspec . 1.5. This is achieved by cuts in the Johnson B-R,
R-I colour-colour space (Newman et al. 2013). These selections
are listed in Table A.4, and the resulting colour- and magnitude-
distributions are shown in Fig. 6. Johnson magnitudes are avail-
able within MICE2, and so we are able to apply this selection
directly to the simulations. When we apply these cuts to MICE2,
however, we find significant contamination by low redshift ob-
jects in the sample, and a clear shift of the cut-off redshift from
z > 0.75 to z > 0.65. Informed by the redshift distribution of the
B-R, R-I colour-colour space within MICE (shown graphically
in Fig. 7), we adjust two of the colour cuts to obtain redshift
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Fig. 8. The DEEP2 redshift distribution in comparison to the redshift
distribution of MICE2 galaxies selected with the original colour cut
(Newman et al. 2013, green) and our fiducial colour cut (blue)

and colour distributions that are closer to those observed in the
DEEP2 observations. The influence of our updated colour-cuts
in DEEP2 can be seen in Fig. 8, which shows clearly that our
updated colour cuts yield a closer match to the observed DEEP2
redshift distribution. We hypothesise that the need for different
colour cuts in MICE2 is partially due to our use of noiseless
magnitudes in the sample definition, but moreover is because of
an extension of the colour-redshift space, at intermediate red-
shifts, to more negative colours than is seen in the data. Finally,
we model spectroscopic incompleteness within the DEEP2 sam-
ple using the redshift-completeness function presented in New-
man et al. (2013), which shows a clear decrease in the fraction
of sources with high-confidence (nQ ≥ 3) redshifts with increas-
ing R-band magnitude. Finally, we randomly downsample the
remaining sample to ∼ 60 % of its initial size, to obtain a similar
number of objects as found in the observational data.

2.2.6. VVDS

The VVDS field at R.A. ≈ 2 h is selected via a combination
of both a wide-field selection and a deep-drill selection realised
by simple magnitude cuts which add additional spectra over the
whole 0 < zspec . 1.3 redshift range. However, the deep sam-
ple is overwhelmingly dominant in this field, and so we opt to
simulate this selection only. The deep sample is defined by a
simple Johnson I-band magnitude limit, I < 24.0. We find that
implementing this limit in the simulations, without modifica-
tion, results in a sample well matched to the observations. We
implement the literature spectroscopic success rate for VVDS
(Le Fèvre et al. 2005, Figs. 13.a/b, 16) as a function of both
I-band magnitude and true-redshift. These selections are per-
formed independently; that is, we assume no correlation between
the sources removed in the selection. Finally, the VVDS spectro-
scopic sample has a roughly 25 % completeness in the 2hr field;
we find, however, that a ∼ 17 % completeness is required to re-
produce (in MICE2) the number density of VVDS spectra seen
in the observations. Hence, we down-sample the VVDS mock
catalogue to that density. A comparison of observed and simu-
lated colours/magnitudes in VVDS can be found in Fig. A.1.

2.2.7. zCOSMOS

As with the VVDS sample, our zCOSMOS sample is a combi-
nation of two distinct subsamples: the public ‘bright’ and a pro-
prietary ‘deep’ sample. The deep sample in zCOSMOS prefer-
entially targets objects at z > 1.5, which is beyond the maximum
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Fig. 9. The redshift distributions of the spectroscopic data cata-
logues (red) compared to their corresponding MICE2 mock counter-
parts (blue). The idealised sample in the bottom right panel is used for
benchmarking purposes only.

redshift available in MICE2. Therefore, we opt to simulate only
the bright selection, which is defined by Johnson I-band mag-
nitudes in the range 15.0 < I < 22.5. We apply this selection
as-is to MICE2, finding good agreement in the colours and red-
shift distributions between the simulations and the observations.
We apply the spectroscopic success rate for zCOSMOS, which is
given as a joint function of I-band magnitude and redshift (Lilly
et al. 2009, Fig. 3). Finally, we randomly down-sample the re-
sulting spectra by 33 %, to match the observed zCOSMOS spec-
troscopic number density. Figure A.2 shows zCOSMOS and our
mock sample in colour and magnitude space. We note the ab-
sence of the deep sample creates a clear dearth of spectra at faint
magnitudes, but does not seem to systematically bias the colour-
colour space in our zCOSMOS simulation.

2.2.8. Idealised spectroscopic sample

Finally we create an idealised mock spectroscopic sample, de-
fined by selecting MICE2 sources with r < 24.0 that lie within
the footprint of our 2dFLenS and SDSS mock galaxy samples.
This sample is then sparse-sampled to a number density that is
∼ 10 % of the mock KV450 number density. Such an idealised
sample allows the computation of clustering redshifts for our
mock KV450 sample excluding the influence of spectroscopic
selection functions, and therefore allows us to estimate the influ-
ence of these selections on our results.

The final redshift distributions of all our mock spectroscopic
compilations are shown in Fig. 9. The mock redshift distribu-
tions agree well with their data counterparts for both mean and
median statistics (excluding those whose data distributions ex-
hibit considerable tails above max (zsim) = 1.4) to within |∆z| .
0.05 (see Table 2). These samples are quite different from Scot-
tez et al. (2018), who also use MICE2 to study the performance
of clustering redshifts, since the ones presented here reflect some
of the complications that arise in practice with spectroscopic
reference samples, such as realistic spatial overlaps or redshift
incompleteness, which results in more complex selection func-
tions.
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Table 2. Comparison of galaxy densities and median redshifts of the
spectroscopic data and mock samples.

Survey
nMICE /

arcmin−2
nspec /

arcmin−2 zmedian
MICE zmedian

spec

2dFLenS 0.020 0.015 0.51 0.50
GAMA 0.289 0.292 0.21 0.22
SDSS (all) 0.052 0.047 0.46 0.54
WiggleZ 0.063 0.072 0.57 0.57
DEEP2 2.96 2.96 0.96 0.96
VVDS-02h 2.54 2.52 0.74 0.69
zCOSMOS 4.56 4.58 0.59 0.52

3. Redshifts from cross-correlations

Due to the gravitational clustering of matter in the Universe, the
positions of objects which reside in a common volume (i.e. in
the same large-scale structure) are highly correlated. Conversely,
the positions of objects from disparate volumes/structures are
uncorrelated (except for a small contribution from magnification,
see e.g. Gatti et al. 2018). We can use this fact to constrain the
redshift distributions of an ensemble of extragalactic sources by
measuring the amplitude of their angular cross-correlation with
a tracer sample of galaxies with known redshifts. This approach
to redshift distribution estimation is known as ‘cross-correlation
redshifts’ or simply ‘clustering redshifts’.

3.1. Basic formalism

In the literature there are several different approaches to cluster-
ing redshift estimation (e.g. Newman 2008; McQuinn & White
2013; Ménard et al. 2013). In this work we follow an approach
similar to Johnson et al. (2017), described briefly here.

Consider two samples of extragalactic objects which overlap
in three dimensions:

1. A reference sample (s) with known angular positions and
redshift distribution ns(z) obtained from secure point redshift
estimates (typically spectroscopic redshifts).

2. A target sample (p), also with known angular positions but
without precise redshift information (typically selected pho-
tometrically); the redshift distribution of this sample, np(z),
is what we wish to recover.

The angular cross-correlation of sources within the reference and
target samples, at a fixed reference-sample redshift z and sepa-
ration angle θ, can be estimated by projection along the line of
sight:

wsp(θ, z) = bs(θ, z)
∫ ∞

0
dz′ np(z′) bp(θ, z′) ξ

[
R(θ, z, z′), z

]
, (10)

where np(z) is the redshift probability distribution of the target
sample and bs(θ, z) and bp(θ, z) are terms for the scale dependent
redshift evolution of the linear galaxy bias in both samples. Fi-
nally, ξ(R, z) is the matter auto-correlation function at redshift z
and comoving, 3-dimensional separation

R(θ, z, z′) =

√[
χ(z) − χ(z′)

]2
+

[
fK(z′) θ

]2 . (11)

Here, χ(z) is defined as the radial comoving distance and fK(z)
as the comoving angular diameter distance to a given redshift z.

In practise we compute the cross-correlation in narrow bins
of redshift of which each has a width of ∆z (this bin width can

vary with redshift). In the following we will make a series of as-
sumptions that allow us to simplify Eq. (10) significantly. First,
we assume that the redshift distributions and bias evolution terms
ns(z), np(z), bs(z) and bp(z) are constant over the interval of each
redshift bin. In presence of significant sample variance, strongly
varying sample selections, or insufficiently fine redshift binning,
this assumption is likely violated, potentially causing biases in
the recovered redshift distribution np(z). Secondly, we assume
that the redshift bins have sufficient radial extent such that neigh-
bouring bins are uncorrelated. This allows us to reduce the inte-
gration limits in Eq. (10) to a single bin and combined, these two
assumptions yield

wsp(θ, z) = np(z) bs(θ, z) bp(θ, z)
∫ z+∆z

z
dz′ ξ

[
R(θ, z, z′), z

]
. (12)

The remaining integral is then simply the angular matter auto-
correlation function of that particular bin, wmm(θ, z). Finally, we
express the angular separation θ in terms of the projected physi-
cal scale r = θ χ/(1 + z) at given redshift z using the flat-sky and
small-angle approximations:

wsp(r, z) = np(z) bp(r, z) bs(r, z)wmm(r, z). (13)

In a similar manner we can derive terms for the reference
and target sample angular autocorrelation functions. Analogous
to Eq. (10) we define

wss(θ, z) = bs(θ, z)
∫ z+∆z

z
dz′ ns(z′) bs(θ, z′) ξ

[
R(θ, z, z′), z

]
. (14)

Applying the same assumptions as in Eq. (12) yields

wss(θ, z) =
b2

s (θ, z)
∆z

∫ z+∆z

z
dz′ ξ

[
R(θ, z, z′), z

]
, (15)

where we have substituted ns(z) ≡ 1/∆z since the redshift dis-
tribution does not vary over ∆z. Again, we identify the integral
as the angular matter auto-correlation function wmm(θ, z) of that
particular bin and rearrange to obtain an expression for the ref-
erence sample bias evolution

bs(θ, z) =

√
∆z

wss(θ, z)
wmm(θ, z)

. (16)

By repeating this approach we obtain an analogous term for the
target sample bias evolution (substituting s→ p in Eqs. 14-16).

After expressing the angles in projected physical separation
we can express the bias terms in equation (13) by the sample
autocorrelation functions and solve for our redshift distribution
of interest:

np(z) =
wsp(r, z)√

∆z2 wss(r, z)wpp(r, z)
. (17)

In summary, it is possible to estimate an unknown redshift dis-
tribution np(z) by measuring the cross-correlation of p with our
tracer sample of known redshift s. However, this redshift esti-
mate is degenerate with the redshift evolution of the bias factors,
bs(z) and bp(z), which can be, in principle, measured through the
individual sample auto-correlation functions wss and wpp.

The simple relation, presented in Eq. (17), requires some
non-trivial assumption, such as linear galaxy bias, which is typ-
ically violated on small scales, and parameterising the redshift
distributions and bias terms through step functions. Depending
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on the chosen redshift binning and the clustering of the refer-
ence and target sample, this can introduce significant systematic
errors. Furthermore, it is very challenging to correct for the tar-
get sample bias, since measuring wpp requires binning the target
sample into the same narrow redshift bins ∆z that we use to slice
the reference sample. This would require accurate redshift point
estimates for all galaxies in the target sample. We give a brief
overview of the most common literature approaches to bias mit-
igation below.

3.2. Cross-Correlation Methods and Bias Mitigation

Newman (2008) and Matthews & Newman (2010) parameterise
galaxy bias by modelling the correlation functions with power
laws:

ξ(r, z) =

(
r

r0(z)

)−γ(z)

, (18)

where r0 is the correlation length, and γ defines the shape of
the correlation function. Assuming linear biasing, the cross-
correlation can be written as ξsp =

√
ξss ξpp and r0,sp and γsp can

be calculated from the parameters of the auto-correlation func-
tions. Newman (2008) obtains r0,ss(z) and γss(z) by fitting the
reference sample’s auto-correlation function, measured in bins
of redshift, and an average value for γpp by fitting the angular
auto-correlation function of the target sample. Since r0,pp cannot
be measured without redshift information, the authors assume
that it is constant which allows to break the degeneracy of the
redshift distribution and the galaxy bias. They apply an iterative
approach to obtain an estimate for r0,pp averaged over the redshift
baseline of the target sample:

1. Make an initial guess for r0,pp and compute r0,sp(z) and γsp(z).
2. Estimate the redshift distribution np(z) by fitting the mea-

sured cross-correlation with the power-law model.
3. De-project the angular auto-correlation using Eq. (12) and

the redshift distribution from step 2, and thereby obtain a
new guess for r0,pp.

4. Repeat steps 2 and 3 until convergence is reached.

Newman (2008) restricts the cross-correlation measurements to
scales of 2 < r < 10Mpc to avoid the highly non-linear biasing
regime where the assumption ξsp =

√
ξss ξpp might no longer be

valid.
McQuinn & White (2013) and an extension by Johnson et al.

(2017) build on Newman (2008)’s approach and construct an es-
timator that optimally weights the correlation scales to improve
the signal-to-noise ratio of the recovered clustering redshift dis-
tribution.

Ménard et al. (2013) and Schmidt et al. (2013) demonstrate
that using small scales for the correlation measurements is ex-
tremely valuable, as these scales carry the strongest correlation
signal. They conclude that the systematic errors introduced by
violating the assumption of linear, deterministic bias are out-
weighed by an improved signal-to-noise ratio when measuring
on scales r < 1 Mpc. Furthermore, they suggest using a single-
bin correlation measurement:

w̄sp(z) =

∫ rmax

rmin

dr W(r)wsp(r, z) , (19)

where W(r) ∝ rβ is a weight function. For β = −1 this amounts
to weighting galaxy pairs by their inverse separation distance,
which further increases the signal-to-noise ratio and the sensi-
tivity to galaxy bias by up-weighting the smallest scales.

The authors also suggest two methods of bias mitigation
for the reference and target samples. First, the reference sample
auto-correlation function yields an estimate of the bias evolution
with redshift, when measured on the same scales and with the
same weighting as the cross-correlation function (see Eq. 17):

ñp(z) =
w̄sp(z)
√

∆z w̄ss(z)
= np(z)

√
∆z w̄pp(z) , (20)

where the barred correlation functions are scale-weighted ac-
cording to Eq. (19). Here we have defined ñp(z) as clustering
redshift distribution corrected for the reference sample bias. Sec-
ondly, they note the correlation between the width of the target
sample redshift distribution and its sensitivity to the galaxy bias
redshift evolution. By pre-selecting narrow redshift bins (e.g. us-
ing magnitudes, colours or photometric redshifts) the impact of
the redshift-evolution of the bias can be reduced. Additionally,
Newman (2008)’s iterative bias technique can be applied to each
bin individually to recover the step-wise redshift evolution of the
bias.

Finally, Davis et al. (2018) parameterise the bias of the target
sample through a simple power-law:

Bα(z) = (1 + z)α ∝
√

∆z w̄pp(z) . (21)

The normalisation of this parameterisation is arbitrary; it is de-
generate with the normalisation of the resulting redshift distribu-
tion.

3.3. Bias mitigation with self-consistency

In Hildebrandt et al. (2020a) we adopted a method to constrain
the bias of the target sample using an analytical model (e.g.
Eq. 21), which is based on ideas developed in Schmidt et al.
(2013), Ménard et al. (2013), and Morrison et al. (2017). The
method leverages the response of clustering redshifts to the tar-
get sample bias as a function of the target sample redshift distri-
bution width.

3.3.1. Method

We split the target sample into Nbin (preferentially narrow) bins
using a secondary redshift indicator, such as photometric red-
shifts. Then we measure clustering redshifts ñp, j(z) for each of
these bins. If the bias evolves with redshift, the sum of these
binned measurements must differ from a clustering redshift mea-
surement ñp,tot(z) (Eq. 20) over the full target sample:

Nbin∑
j=1

W j ñp, j(z) , ñp,tot(z) , (22)

where W j is the total weight of the j-th tomographic bin, ob-
tained by summing over the individual weights of all galaxies
contained in that bin. This is because each of the ñp, j(z) is nor-
malised individually and this normalisation factor depends on
the mean bias amplitude per bin and allows, in principle, to break
the degeneracy between redshift and bias evolution. A toy-model
demonstration of this effect can be seen in Fig. 10. We assume
a flat redshift distribution in all bins, shown in blue, and a red-
shift evolution of the sample bias of Bα(z) ∝ (1 + z)α, where
we set α = 0.5. This results in the recovered, biased clustering
redshift distributions shown in red. The left- and right-hand side
of this figure correspond to the left- and right-hand side terms of
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Fig. 10. Toy-model showing the impact of the bias evolution on cluster-
ing redshifts for wide redshift distribution compared to measurements
on narrow redshift bins.

Eq. (22). Whereas the full sample has the complete bias evolu-
tion imprinted, the normalisation of each redshift bin leads to a
sawtooth-shaped redshift distribution.

These differences between the full sample redshift distribu-
tion and the sum of the redshift bins allows us to constrain the
bias evolution, if we have a sufficiently accurate model. We can
estimate the model parameter α of the bias model Bα(z) by min-
imising

∆(α) =

∫
dz

norm
(

ñp,tot(z)
Bα(z)

)
−

Nbin∑
j=1

W j norm
(

ñp, j(z)
Bα(z)

)
2

, (23)

where norm[ f (z)] = f (z)
/ ∫ ∞

0 dz′ f (z′).
The advantage of this approach is that it allows us to correct

for any combination of biases in clustering redshifts, b̄p(z), b̄s(z)
or the combination of both. The bias model, however, must be
fairly simplistic since the amount of information that can be ex-
tracted from Eq. (23) is small and depends on total number of
bins and the degree of overlap of their respective redshift dis-
tributions. The greater the overlap between the redshift bins is,
the stronger is the correlation between their redshift distributions
and the harder it is to constrain the bias evolution. Furthermore,
this approach assumes that all bins follow the same universal
bias evolution. This is not true in general, since any redshift bin-
ning will select a different population of galaxies which cluster
differently. This effect is small for the tomographic redshift bins
of the KV450 mock galaxy sample, but may be larger for more
complex sample selections. Finally, we note that this mitigation
approach can be applied to a variety of the existing clustering-
redshift methods (see overview in Sect. 3.2) as a post-processing
step.

We will call this mitigation approach ‘self-consistent bias
mitigation’ (SBM) in the following.

3.3.2. Tests on mock data

We apply the SBM to both, clustering redshifts obtained from
the idealised reference sample as well as from the compilation of
realistic reference samples, to assess whether it is able to recover
the bias evolution terms correctly. In either case we expect the
SBM best fit to match

√
∆z w̄pp(z) (see Eq. 20) when applied to

ñp(z), where we have already corrected the reference sample bias
by measuring its autocorrelation function. We conduct additional
tests, namely fitting the raw cross-correlations w̄sp(z) with

Bβ(z) = (1 + z)β ∝
√

∆z2 w̄ss(z) w̄pp(z) (24)
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Fig. 11. Bias model (blue lines; corresponding to the bold-face num-
bers in Table 3) fitted directly to the unaccounted bias terms of the raw
(black data points; top panel) and the reference sample bias corrected
clustering redshifts (black data points; bottom panel) for the idealised
setup. The correlation amplitudes are re-normalised.

Table 3. Best-fit values for the bias model parameter β (modelling the
reference and target sample bias), α (modelling only the target sample
bias), and γ (null test). The top group summarises the results obtained
using the SBM and the bottom group results from direct fits to the mea-
sured correlation function terms.

Method Setup β α γ

SBM idealised −0.03 ± 0.11 −0.09 ± 0.10 −0.26 ± 0.10
realistic 0.50 ± 1.05 0.88 ± 1.05 0.82 ± 1.04

direct fit idealised 0.31 ± 0.03(?) 0.21 ± 0.01(?) —
realistic −0.06 ± 0.04 0.18 ± 0.02 —

Notes. The top group summarises the fit results from the SBM, the bot-
tom group from direct fits to the auto-correlation function terms. The
two values marked by (?) correspond to the blue model fits in Fig. 11.

and fitting the fully bias-corrected clustering redshifts np(z)
(Eq. 17) with Bγ(z) = (1 + z)γ. The latter serves as a null test,
since there should be no residual bias evolution, hence Bγ(z) ≈ 1
and γ ≈ 0.

We validate these SBM parameter estimates by directly fit-
ting the bias model to the autocorrelation terms, i.e. fitting the
right hand side terms with the left hand side models of Eqs. (20)
and (24). These autocorrelation terms and direct fits are pre-
sented in Fig. 11. The correlation measurements reveal that the
bias evolution is small for all the mock data samples. The galaxy
bias of the target sample increases by ≈ 25 % over the MICE2
redshift baseline. Furthermore, the direct fitting shows that the
power-law bias model (Eq. 21) is able to recover the global trend
of the bias evolution, despite having only a single free parameter.
The best-fit values for α, β and γ obtained from both, the SBM
and the direct auto-correlation function fits, are summarised in
Table 3.

The results we obtain from the idealised mock sample using
the SBM are not in agreement with the direct fits and instead pre-
dict negative values in all three cases. The values themselves are
relatively small though because the idealised sample is purely
magnitude limited and hence should not show a very strong bias
evolution. This example illustrates the limitations of the SBM.
The impact of this on the mean redshifts is discussed in Sect. 4.1.

In case of the realistic mocks we find that α, determined via
the SBM, is of order unity but, due to the large parameter un-
certainty, consistent with the value expected from the idealised
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setup. We note that the uncertainties reported in Table 3 are sig-
nificantly larger than those reported in Hildebrandt et al. (2020a).
This results from the-wizz error estimates adopted by Hilde-
brandt et al. (2020a), which we find underestimate the true un-
certainty on the measured correlation functions at high redshifts.
Our revised pipeline yet_another_wizz (see Sect. 3.4 below)
provides accurate error estimates that serve to increase the over-
all uncertainty on α.

3.4. Implementation

We have used clustering redshifts to obtain the redshift distribu-
tions of the KiDS-450 and the KiDS+VIKING-450 datasets in
previous works (Hildebrandt et al. 2017, 2020a). The major dif-
ference to the latter is that we are using an improved implemen-
tation of the Schmidt et al. (2013) clustering-redshift method.

Previously, we used the-wizz4 (Morrison et al. 2017) for
clustering redshifts and a python-binding5 of the spherical pix-
elation library STOMP (Scranton et al. 2002) for efficient angu-
lar correlation measurements. The issue with this approach is
that STOMP (and therefore the-wizz) approximates the corre-
lation annulus, in which the pairs are counted, by selecting en-
tire STOMP pixels. Since we compute correlations on constant
physical scales, the area of the annulus may change discretely
with position and redshift, depending on the STOMP pixel reso-
lution and the angular diameter corresponding to the given pro-
jected physical separation. This can cause biases in the recov-
ered redshift distribution. During the development stage of this
project, the latest version of the-wizz, which no longer depends
on STOMP, was not yet available. Therefore we implemented a
simplified version of the-wizz, called yet_another_wizz6 to
circumvent the pixelation problems. Similar to the-wizz, this
code measures the correlation on a single annulus of fixed pro-
jected physical separation rp, weighted by the inverse distance
of the pairs. Even though the calculation of rp(z) requires assum-
ing a cosmological model, the results are only very weakly de-
pendent on the choice of cosmological parameters. The inverse
distance weight significantly increases the signal-to-noise ratio
of the correlation amplitude (Schmidt et al. 2013). Similar ap-
proaches have been used e.g. by McQuinn & White (2013) or
Alarcon et al. (2019) to optimise the correlation signal.

We compute the single-bin correlation amplitude (see
Eq. 19) from pair counts using the Davis-Peebles correlation es-
timator (Davis & Peebles 1983)

w̄ =
nR

∫ rmax

rmin
dr W(r) DD(r)

nD
∫ rmax

rmin
dr W(r) DR(r)

− 1 (25)

with an inverse distance weight W(r) ∝ r−1. DD is the number
of (ordered) pairs7 between reference and target sample galaxies
and DR between reference galaxies and target sample random
points. The ratio nR/nD (sum over the galaxy weights divided by
the sum over the random point weights) accounts for the average
density of the data catalogue and its typically much larger ran-
dom representation. In general it would be favourable to use the
Landy-Szalay estimator (Landy & Szalay 1993) instead of the
Davis-Peebles estimator, albeit this would come at the cost of
increased computational complexity. We find that the difference

4 https://github.com/morriscb/the-wizz
5 https://github.com/jlvdb/astro-stomp3
6 https://github.com/jlvdb/yet_another_wizz
7 Each pair is weighted by the product of the individual weights of the
partners.

between the estimators in our analysis is negligible compared to
other systematic errors, such as the evolving target sample bias.
Finally, we choose to measure all angular correlations on scales
from rmin = 100 kpc to rmax = 1000 kpc. This range is a good
trade-off between high signal-to-noise and measuring on scales
with highly non-linear biasing.

The whole clustering-redshift pipeline as well as our boot-
strap resampling-based method for combining cross-correlation
measurements from different reference samples and covariance
estimation is described in detail in Appendix B.

4. Results

In this section we report the results of applying our method to
the KV450 simulations. We focus on the effects of galaxy bias,
the choice of measurement scales, and the effect of lensing mag-
nification.

4.1. Impact of galaxy bias

There are different degrees of bias correction that can be applied
before getting a redshift estimate nCC(z) from cross-correlation
measurements:

1. The raw cross-correlation with no correction (nCC = w̄sp),
2. Mitigating the reference sample bias using its auto-

correlation function (nCC = ñp, Eq. 20),
3. Additionally mitigating the target sample bias with the SBM

(nCC = ñp/Bα), and
4. Mitigating the target sample bias using its auto-correlation

function (nCC = np, Eq. 17, only possible on mock data using
the true redshifts).

It is difficult to directly compare each of these four redshift esti-
mates. Due to negative correlation amplitudes, originating from
systematic effects and statistical noise, it is dangerous to inter-
pret cross-correlation-derived redshift estimates directly as prob-
ability distributions. This prevents us from using them directly
in cosmological applications such as cosmic shear, unless we
model the redshift distributions such that negative amplitudes
are mitigated.

We implement this modelling by adopting the true target
sample redshift distribution p(z) as a model and fit it to the clus-
tering redshift estimate nCC(z), allowing a free normalisation am-
plitude A and a free shift parameter ∆z. We minimise

χ2 =
[
nCC(z) − A p(z + ∆z)

]T C−1 [
nCC(z) − A p(z + ∆z)

]
, (26)

where we shift p(z) according to ∆z and apply the binning of
the cross-correlation to the model redshift distribution. We per-
form these fits jointly for all tomographic bins8 to capture the full
correlation of the shift parameters ∆zi. These shift parameters
∆zi ≈ 〈zCC〉i − 〈ztrue〉i (presented in Sect. 4.1.1) give us a direct
estimate of the systematic shifts in the four different redshift es-
timates listed above, which may originate from evolving galaxy
bias or a breakdown of the assumption of the cross-correlation
formalism (see Sect. 3.1). Albeit, one has to keep in mind that,
by design, this shift-fitting approach is mostly sensitive to the
overall shape of the redshift distribution rather than individual
outliers or noise fluctuations at the tails of the distribution.

In practical applications we do not have access to the true
target sample redshift distributions. We therefore repeat the pro-
cedure with redshift distributions constructed using the direct

8 See Appendix 3.4 for a summary of the covariance estimation recipe.
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Table 4. Shift fit parameters for different bias correction methods for clustering redshifts obtained using the idealised and realistic spectroscopic
mock samples using the true redshift distributions as fit model.

Setup n(z)-type 100 × ∆z1 100 × ∆z2 100 × ∆z3 100 × ∆z4 100 × ∆z5 χ2 ndof

idealised

w̄sp −0.08+0.11
−0.13 −0.12+0.09

−0.11 −0.40+0.12
−0.08 −0.79+0.13

−0.20 −0.07+0.20
−0.18 263.0 215

ñp −0.22+0.08
−0.14 −0.15+0.10

−0.10 −0.51+0.12
−0.12 −0.80+0.12

−0.18 −0.26+0.16
−0.19 261.5 215

ñp/Bα −0.15+0.12
−0.12 −0.14+0.09

−0.10 −0.45+0.13
−0.10 −0.70+0.16

−0.14 −0.19+0.21
−0.23 249.5 215

np −0.24+0.12
−0.11 −0.16+0.10

−0.09 −0.68+0.10
−0.13 −0.82+0.10

−0.17 −0.76+0.41
−0.33 282.0 215

realistic

w̄sp −0.32+0.47
−2.10 0.74+0.19

−0.17 0.01+0.20
−0.39 −0.41+0.44

−0.49 −2.55+2.27
−2.89 234.6 100

ñp −0.44+0.43
−0.48 0.31+0.22

−0.19 −0.36+0.19
−0.24 0.60+0.64

−0.58 0.32+0.49
−2.40 157.3 100

ñp/Bα 0.83+0.37
−0.93 0.20+0.41

−0.60 −0.17+0.54
−0.60 −1.55+0.38

−0.71 −0.93+4.00
−1.18 93.7 100

np −0.88+0.25
−0.33 0.38+0.20

−0.14 −0.46+0.16
−0.26 0.61+0.65

−0.56 0.30+0.87
−0.45 169.2 100
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Fig. 12. Visualisation of the shift parameters ∆zi from fitting the true redshift distributions to the clustering redshifts obtained using the idealised
(left side) and the realistic (right side) spectroscopic mock samples. The colours indicate different bias correction methods applied: the raw cross-
correlation (blue), reference sample bias corrected (orange), additionally the target sample bias corrected using the SBM (green) and the target
sample bias corrected using the sample autocorrelation function (red).

calibration method (DIR, Lima et al. 2008; Hildebrandt et al.
2020a) as fit model (presented in Sect. 4.1.2). In short, these
DIR redshift distributions are obtained by re-weighting a spec-
troscopic calibration sample such that it has the same properties
in colour and magnitude space as the target sample (the KV450
cosmic shear sample) and are therefore fundamentally different
from clustering redshifts. By using photometrically determined
redshift estimates as a fit model, our approach can be consid-
ered similar to the DES redshift calibration, presented in Gatti
et al. (2018). We however approach the problem from a different
perspective: Instead of using the clustering redshifts to calibrate
the DIR redshift distributions, we utilise the DIR to interpret the
clustering redshifts. One can easily construct a variety of more
sophisticated and hence more complex models than simply shift-
ing an existing redshift estimate to interpret clustering redshifts.
However, fitting these models requires a better understanding
of the data covariance, in particular at high redshifts, which are
dominated by a small number of deep spectroscopic fields.

4.1.1. Clustering-z accuracy given the true n(z)

The best-fit ∆z and χ2-values for using the true redshift distribu-
tions as fit model are summarised in Table 4 and visualised in
Fig. 12. Almost all shift parameters are smaller than |∆z| < 0.01,
the goal for the KiDS redshift calibration, indicating an insignif-
icant overall bias of the recovered redshift distributions. The
clustering redshifts obtained from the idealised reference sam-

ple suggest a slight tendency to underestimate the true redshifts,
especially in the third and fourth tomographic bins. These shifts
are likely related to the finite binning of the clustering redshifts
with a constant comoving width of ∆χ ≈ 88 Mpc, which results
in a different number of sampling points that cover the peaks of
each of the tomographic bins. Furthermore, the results are insen-
sitive to bias corrections given the small evolution of the bias
with redshift of the idealised and target samples (see Fig. 11).
The clustering-z data points for ñp(z) and the best-fit model are
shown in Fig. 13. The signal-to-noise ratio is good enough to re-
veal details of the redshift distributions such as the outlier popu-
lation in the tail of the third tomographic bin.

This is no longer true when using the realistic reference sam-
ple (Fig. 14). There is a smaller fraction of high redshift ref-
erence galaxies, considerably increasing the uncertainty on the
redshift distributions at z > 0.7. Still, the overall shape of the
clustering redshifts closely matches the true redshift distribu-
tions after correcting for the reference sample bias. In the highest
tomographic bin, the shift parameter reduces significantly to be
within |∆z| < 0.01 after removal of the reference sample bias
via its auto-correlation function. As for the idealised case, ad-
dressing the target sample bias does not improve the results any
further. To the contrary, the SBM bias correction increases the
shifts and their uncertainty in most cases.
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Fig. 13. Plot of the reference sample bias corrected clustering redshifts (black data points) fitted with the shifted true redshift distributions (blue,
re-binned to the 45 data points) for all tomographic bins of the idealised mocks.
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Fig. 14. Plot of the reference sample bias corrected clustering redshifts (black data points) fitted with the shifted DIR redshift distributions (blue,
re-binned to the 22 data points) for all tomographic bins of the realistic mocks.

Table 5. Shift fit parameters for different bias correction methods for clustering redshifts obtained using the idealised and realistic spectroscopic
mock samples using the DIR redshift distributions as fit model.

Setup n(z)-type 100 × ∆z1 100 × ∆z2 100 × ∆z3 100 × ∆z4 100 × ∆z5 χ2 ndof

idealised

w̄sp 0.98+0.50
−0.52 0.73+0.43

−0.42 3.02+0.53
−0.56 −2.06+0.42

−0.43 0.25+0.45
−0.43 2069.5 215

ñp 1.03+0.50
−0.52 0.77+0.42

−0.43 2.83+0.53
−0.52 −2.21+0.42

−0.43 −0.09+0.45
−0.46 2371.1 215

ñp/Bα 1.18+0.53
−0.58 0.95+0.44

−0.42 2.85+0.52
−0.52 −2.16+0.42

−0.43 −0.09+0.45
−0.46 2123.4 215

np 1.18+0.52
−0.55 0.77+0.42

−0.43 2.49+0.53
−0.51 −2.37+0.42

−0.43 −0.66+0.47
−0.54 2587.4 215

realistic

w̄sp 3.31+0.60
−0.88 2.39+0.40

−0.40 4.56+0.51
−0.52 0.10+0.94

−0.49 −1.37+0.89
−1.61 635.9 100

ñp 2.24+0.67
−0.72 1.88+0.47

−0.43 3.37+0.50
−0.69 0.97+0.44

−0.40 1.31+0.84
−0.81 638.8 100

ñp/Bα 4.46+0.97
−1.63 2.37+0.59

−0.40 4.46+2.66
−0.90 −2.64+0.76

−0.82 −0.77+2.03
−1.87 203.6 100

np 2.15+0.60
−0.68 2.04+0.42

−0.41 3.47+0.52
−0.61 0.97+0.46

−0.40 0.70+0.71
−0.83 675.3 100

4.1.2. Clustering-z accuracy given the DIR n(z)

We repeat the analysis, but now use the DIR redshift distribu-
tions as fit model. This yields an estimate of the offset between
the mean redshift of the best-fit models 〈zmodel〉i and the mean
redshift of the true redshift distributions 〈ztrue〉i. These offsets

∆zi = 〈zmodel〉i − 〈ztrue〉i ≈ 〈zCC〉i − 〈ztrue〉i (27)

(presented in Table 5 and Fig. 15) are then our estimate of the
shift of the mean clustering redshifts 〈zCC〉i with respect to the
truth. We note that these DIR redshift distributions have been
corrected for biases in the mean redshift (see Wright et al. 2020).
Even if the models were not corrected and significantly biased
instead, this procedure would still serve as a test to detect dis-
crepancies between the model and the clustering redshifts since
they would suffer from different systematic effects (see Hilde-
brandt et al. 2020b for a toy model).

The shift parameters obtained for the DIR and the idealised
setup are within |∆z| = 0.01 for the 1st, 2nd, and 5th tomographic

bin. This is not true for the third and fourth bin where the offset
is |∆z3,4| & 0.02. We attribute this to the fact that the DIR red-
shift distributions are broadened compared to the true redshift
distributions due to photometric noise (compare the blue lines
in Figs. 14 and 16). This broadening reduces the skewness in
these two DIR redshift distributions, which results in a bias when
these more symmetric DIR n(z) are fit to the correctly skewed
clustering-z data points. The true redshift distributions in bins
1, 2, and 5 are less skewed to begin with and hence suffer less
from this DIR-specific broadening/symmetrising. The broaden-
ing also affects the reduced χ2-values for the joint fits, which
reach up to 12, indicating a very poor fit between DIR and clus-
tering redshift distributions.

The same poor goodness of fit can be observed when fitting
the realistic mocks. There the reduced χ2-values are of order 6,
reflecting the significantly larger uncertainty at z > 0.7. Most
shift parameter values are similar to the results from the ide-
alised setup, but shifted by 0.01. This is probably driven by the
strong degradation of the signal-to-noise ratio with redshift, with
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Fig. 15. Visualisation of the shift parameters ∆zi from fitting the DIR redshift distributions to the clustering redshifts obtained using the idealised
(left side) and the realistic (right side) spectroscopic mock samples. The colours indicate different bias correction methods applied: the raw cross-
correlation (blue), reference sample bias corrected (orange), additionally the target sample bias corrected using the SBM (green) and the target
sample bias corrected using the sample autocorrelation function (red).
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Fig. 16. Plot of the reference sample bias corrected clustering redshifts (black data points) fitted with the shifted DIR redshift distributions (blue,
re-binned to the 22 data points) for all tomographic bins of the realistic mocks.

Table 6. Shift fit parameters for two different correlation scales determined from the idealised mock data, once with lensing enabled and once
disabled. The fits are based on ñp(z) using the true redshift distributions as model.

Scale (kpc) Lensing 100 × ∆z1 100 × ∆z2 100 × ∆z3 100 × ∆z4 100 × ∆z5 χ2 ndof

100 − 1000
off −0.40+0.12

−0.12 −0.18+0.06
−0.09 −0.39+0.10

−0.10 −0.60+0.13
−0.19 0.14+0.23

−0.25 279.4 215
on −0.22+0.08

−0.14 −0.15+0.10
−0.10 −0.51+0.12

−0.12 −0.80+0.12
−0.18 −0.26+0.16

−0.19 261.5 215

500 − 1500
off −0.58+0.17

−0.23 0.10+0.12
−0.20 −0.28+0.14

−0.10 −0.02+0.21
−0.20 0.89+0.40

−0.30 214.3 215
on −0.24+0.29

−0.15 0.14+0.14
−0.17 −0.44+0.21

−0.12 −0.20+0.32
−0.28 0.29+0.24

−0.88 234.5 215

the high signal-to-noise low-z data points driving the fit to the
broadened DIR n(z) high. The effect of the bias mitigation is
comparable, both in magnitude and direction of shift, to fitting
the clustering redshifts with the true redshift distributions.

We therefore conclude that the offsets inferred with the shift-
fit method are predominantly dictated by the accuracy of (the
shape of) the model redshift-distributions. In cases where the
redshift distributions are well matched to the truth, shifts are
minimal. Conversely when the distribution shape is discrepant
from the truth, the shift method breaks down. The reduced χ2

may be useful as diagnostic to detect such cases but should not
be over-interpreted.

4.2. Scale dependence and magnification

The clustering-redshift formalism assumes linear, deterministic
galaxy bias. Our fiducial scale of 100 kpc to 1000 kpc is well
within the non-linear biasing regime and therefore the relation

in Eq. (17) is not guaranteed to hold on such small scales. We
additionally measure clustering redshifts using the idealised ref-
erence mock sample on the slightly more conservative scales of
500 kpc to 1500 kpc. Reducing the inner radius from 500 kpc to
100 kpc yields an approximate gain in signal-to-noise ratio of
about 50 % and we need to test whether changes in the small
scale clustering in combination with the improved sensitivity
leads to systematic shifts in our analysis. For this comparison we
employ clustering redshift estimates, which are corrected for the
reference sample bias and fit with the true redshift distributions,
since these exhibit the smallest statistical uncertainties

We find that the best-fit parameters (Table 6) are in good
agreement between both scales for the low redshift tomographic
bins. For the two highest tomographic bins we detect a small pos-
itive shift when using scales of 500 kpc to 1500 kpc. We note that
these shifts are still smaller than the redshift binning of the cross-
correlation measurements. The uncertainty of the ∆zi is roughly
a factor two larger when using scales of 500 kpc to 1500 kpc,
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which is due to the smaller clustering signal on large scales and
the smaller logarithmic extent of the interval 500 kpc to 1500 kpc
compared to 100 kpc to 1000 kpc. These larger uncertainties re-
sult in differences of the ∆zi between the two scales that are al-
ways insignificant at <∼ 2σ. In summary, we find no strong indi-
cation that measuring on sub-Mpc scales biases the KiDS clus-
tering redshifts significantly. For future surveys, however, this
test should be repeated, as redshift calibration requirements will
be more restrictive, and reference/target sample selections will
change.

The cross-correlation between two galaxy samples arises not
only from gravitational clustering, but also from correlations in-
troduced by background sources that are lensed by foreground
structures. This has two effects, first it changes the effective sur-
vey area through a change in solid angle and secondly it in-
creases the sample depths through magnification (e.g. Morrison
et al. 2012; Choi et al. 2016). This additional correlation may
become dominant at the tails of the clustering redshifts where
the overlap between the reference and target samples is low
(Gatti et al. 2018). Since the shift-fitting is mostly insensitive
to changes in the tails of the distributions, we expect that magni-
fication has little impact on our results.

To test this assertion we repeat the clustering redshift mea-
surements and the model fitting on a version of our MICE2
mock catalogues in which we have switched off all lensing mag-
nification effects. The corrections are measured using the true
galaxy positions and the galaxy samples are selected from galaxy
colours and photometric redshifts that are based on magnitudes
with no flux magnification applied. The shift parameters (Ta-
ble 6) from both samples agree within their respective uncer-
tainties. The systematic shifts induced by lensing magnification
in particular is not a concern for KiDS clustering redshifts since
they are significantly smaller than the KiDS redshift calibration
goal of |∆z| < 0.01.

5. Discussion

In the following we discuss the results from Sect. 4 and highlight
some of the challenges that need to be overcome for clustering-z
to become a fully complementary tool for redshift estimation.

The results we find in Sect. 4.1 are very encouraging. We
are able to constrain the redshifts bias of the KV450 like mock
galaxies within |∆zi| ≤ 0.006 when applying the shift-fit with
the true redshift distributions. These figures may even improve
with upcoming data releases which allow us to utilise more over-
lap of KiDS with SDSS and 2dFLenS. However, the aforemen-
tioned figures are sensitive to systematic features in the redshift
distributions that serve as a model for the shift-fit. When we fit
the clustering redshift data points with the DIR redshift distri-
butions, we see shifts of up to |∆zi| . 0.04. These shifts are
enhanced by the broadening of the DIR n(z), which is induced
by photometric noise. This broadening in combination with
the redshift-dependent signal-to-noise ratio of the clustering-z
based on the realistic mock data yields a significant bias. In fu-
ture KiDS analyses we will utilise SOM redshift distributions
(Wright et al. 2020) for our shift fit analyses. These redshift dis-
tributions are more robust than their DIR counterparts, demon-
strating reduced photometric broadening and overall bias. Using
the SOM redshift distributions as a fit model, we expect, will
therefore improve the modelling of clustering redshift estimates.

We find qualitatively different behaviour between our recov-
ered ∆zi estimates when calibrating with idealised and realistic
mock reference samples. We hypothesise that this is driven by

the two following effects. First, the bias evolution of the ide-
alised reference sample is small since its amplitude varies only
by approximately 25 % over the full redshift baseline. Secondly,
the bias evolution has very little impact on the redshift distribu-
tion if it is sufficiently narrow. If the bias changes by 25 % over
the full redshift range this also means that it only changes by
∼ 5 % over each of the tomographic bins, an effect that is lost in
the noise. Even if there is an outlier population of galaxies e.g.
at high redshift, correcting for the evolving galaxy bias may well
change the true mean redshift significantly, but the shift-fitting is
mostly unaffected, since the model is not flexible enough to ac-
count for high-z outliers. This explains why the idealised mock
setup is stable against changes of the sample bias. The realistic
mock, however, has more complex clustering properties since it
utilises a mixture of different reference samples. Thus, the spec-
troscopic bias correction has a significant impact, as can be seen
by comparing the blue and orange data points in the right-hand
panel of Fig. 12.

We therefore conclude that it is sufficient, at the sensitivity of
KV450, to solely correct the reference sample bias in clustering-
z estimates. This assessment, however, is dependent on the clus-
tering properties of the target sample. As a result, this conclusion
will need to be revisited in future KiDS-like analyses that utilise
different source-sample selections (such as those that may be in-
duced by additional colour-based selections; Wright et al. 2020).
The same applies to stage-IV surveys. The challenging redshift
calibration requirements of these programs will likely demand a
careful treatment of the target sample bias evolution.

In the future these results can be improved upon by optimis-
ing the combination of the results from different reference sam-
ples. The KiDS footprint and the calibration fields overlap with a
rich set of spectroscopic surveys. This allows us to calibrate red-
shifts to z = 1 and beyond, but adds the additional challenge of
combining independent measurements into an unbiased redshift
estimate. We solve this problem by employing a bootstrap re-
sampling combination method (see Appendix B). The main issue
with this approach is that it violates a basic assumption of boot-
strap resampling: the individual spatial regions (defined by KiDS
pointings and the deep spectroscopic pointings) are not statis-
tically equivalent. Each of the spectroscopic reference samples
has a different density, redshift distribution, and clustering prop-
erties. Thus, the number of surveys (and hence also pointings)
that contribute to the combined cross-correlation amplitude vary
for the 22 redshift bins (in case of the realistic mock setup). This
is problematic especially if the clustering of the reference galax-
ies varies over a short redshift interval, such as in the transition
region between the wide surveys (which dominate the z . 0.7
regime) and the deep spectroscopic surveys (which dominate the
high redshifts). Figure 14 shows a systematic feature at exactly
this redshift that biases the resulting clustering redshifts. Fortu-
nately, this is not reflected in the shift parameters since the fit
is only sensitive to the overall shape of the redshift distributions
due to the very restricted model we are fitting.

Stage-IV surveys, such as Euclid or the Vera C. Rubin Ob-
servatory Legacy Survey of Space and Time (LSST), will be in a
similar situation as KiDS since they likewise overlap with a num-
ber of (mostly, but not necessarily) spectroscopic reference sam-
ples that have distinct properties. Therefore, additional efforts
are vital in order to make clustering redshifts a competitive and
complementary method to meet the strict requirements of these
projects. This can be achieved by either exploring other combi-
nation methods or by optimising the reference samples such that
they bridge the gap between low-redshift, wide area surveys and
high-redshift surveys with low area coverage.
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Another fundamental issue for the clustering-z method is
correcting for the galaxy bias evolution of the target sample.
The bias evolution estimates we obtain from the SBM do not
agree with the results from directly fitting the bias model to the
auto-correlation terms. By design the SBM picks up any other
redshift-dependent systematic error that skews the full source
sample in a different way than the weighted sum of the individ-
ually normalised tomographic bin measurements. On the other
hand, recovering the bias evolution requires a sufficiently accu-
rate bias model. Furthermore, individual tomographic bins can
have a slightly different bias evolution due to their selection cri-
teria. Hence, a perfect agreement between both methods is prob-
ably too much to expect.

Regardless of the underlying cause for the disagreement, the
left-hand panel of Fig. 12 shows that this disagreement in the
galaxy bias evolution estimates for the target sample has a van-
ishing impact on the recovered redshift bias parameters ∆zi. This
can be explained by the fact that the bias of the KiDS mock sam-
ple evolves very little with redshift. Even a somewhat inaccurate
correction does not have a strong influence on the end result.
The issue becomes more evident when applied to the realistic
mock clustering redshifts (right-hand panel of Fig. 12). Due to
the low reference sample galaxy densities at high redshifts, the
signal-to-noise ratio drops significantly at z > 0.7. The highest
tomographic redshift bin, which contributes essential informa-
tion to determine the bias evolution via the SBM, is not well
constrained by the clustering redshifts. Consequently, the uncer-
tainty of the bias corrected redshifts and the shift parameters ∆zi
is greatly increased, dominating the total error budget.

The only solution to this problem seems to be a more com-
prehensive spectroscopic calibration sample at high redshift that
can reliably probe the core of the redshift distributions of the
highest-redshift tomographic bins used in cosmic shear studies.

6. Summary and outlook

In this paper we detail the creation of mock catalogues based on
the MICE2 simulation that closely resemble the KiDS-VIKING-
450 (KV450) dataset and its overlapping spectroscopic calibra-
tion samples. We use this mock data to replicate the clustering
redshift estimates for KV450 and estimate their accuracy in di-
rect comparison to the true redshifts in the simulation. The main
result is that clustering-z with KV450-like quality can reliably
calibrate residual biases in the redshift distribution of typical
galaxy samples used in cosmic shear measurements if the shape
of the redshift distribution is a priori well known. After correct-
ing for evolving galaxy bias of a realistic spectroscopic reference
sample via a measurement of its auto-correlation function, the
clustering-z recover the mean redshifts of all five tomographic
bins at better than |∆zi| < 0.006. Without this correction, the
highest-z tomographic bin shows a bias of ∆z5 ≈ 0.026, under-
lining the importance of the bias modelling of the spectroscopic
sample.

Further correcting for the evolving galaxy bias of the target
sample, constrained by comparing a weighted sum of the n(z)
of all five tomographic bins (individually normalised) to the full
source sample, does not lead to a further reduction in the bi-
ases. This indicates that the very mild bias evolution of the KiDS
source galaxies does not need to be corrected at this level of pre-
cision.

Next we used redshift distributions estimated from multi-
colour photometry by re-weighting a deep spectroscopic cali-
bration sample (determined using the direct calibration method
of the form presented by Lima et al. 2008) to constrain the high

redshift tails of the clustering redshifts and to interpret them as
probability distributions. Even with an idealised reference sam-
ple for the cross-correlation measurements, these noisy DIR red-
shift distributions are not fully able to model the clustering red-
shifts, due to a systematic shape mismatch between both distri-
butions. This is exacerbated when using a more realistic refer-
ence sample, yielding biases of up to |∆zi| ≈ 0.04. The differ-
ence, seen between our results when using the true and the DIR
redshift distributions as our fit model, demonstrates an important
conclusion for clustering redshift calibration. When performing
the shift-fitting with a model that is the same shape as the true
redshift distribution, the resulting best-fit solution is a good rep-
resentation of the truth, regardless of the model bias itself. There-
fore, these biases may be reduced by fitting redshift distributions
estimated via the less noisy and less biased SOM redshift distri-
butions of Wright et al. (2020), or alternatively by increasing the
amount of information extracted from the clustering redshifts. A
possible approach would be to use fit-models that are more flexi-
ble than a fixed redshift distribution with a single free parameter.
Such models must be constrained to positive amplitudes, as for
example the Gaussian mixtures that we employed in Hildebrandt
et al. (2020a). However, fitting more complex models requires a
better understanding of the covariances of clustering redshifts,
especially when derived from a combination of different refer-
ence samples. In the long run, exploiting the full potential of
synergies between clustering- and photometry-based redshift es-
timates (e.g. Sánchez & Bernstein 2019; Alarcon et al. 2019)
seems to be the most promising strategy to meet the stringent
redshift requirements of upcoming stage IV survey missions.
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Fig. A.1. Comparison of colour and magnitude distributions for the
simulated (blue) and observed (red) VVDS-02h dataset.

Appendix A: Spectroscopic Mock Sample Selection

Here we present the spectroscopic selection functions and
their modifications for selecting these samples on MICE2 as
described in Sect. 2.2: SDSS in presented in Table. A.1,
2dFLenS in Table. A.2, WiggleZ in Table A.3 and DEEP2
in Table A.4. Furthermore we show the remaining magnitude-
, colour- and colour-colour plots comparing the spectroscopic
data to the mock samples of VVDS-02h (Fig. A.1) and zCOS-
MOS (Fig. A.2).

Appendix B: Clustering-redshift pipeline

The yet_another_wizz package is an end-to-end pipeline for
clustering redshift estimation. It not only allows the user to com-
pute clustering redshifts, but also takes care of the bias mitiga-
tion. In the following we summarise our pipeline, step-by-step,
from the input data to the final, bias corrected clustering red-
shifts.

1. Spatial regions: We estimate the uncertainties and covari-
ance of our clustering redshifts using bootstrap re-sampling.
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Fig. A.2. Same as Fig. A.1 but for the zCOSMOS dataset. The missing
tails in the i- and Z-band originate from the zCOSMOS galaxies with
z > 1.4 which do not exist in MICE2.

Therefore, we split the input data catalogues and the spectro-
scopic randoms into spatial regions. For the wide area spec-
troscopic fields the most convenient choice in KV450 was to
divide the data based on the KiDS VST pointings. For the
mock data used here we mimic the pointings by creating a
20 × 22 grid with each cell covering 0.7 deg2, the mean, un-
masked area of a KiDS pointing.

Due to their small area the deep spectroscopic fields were
treated as one region each, no matter how many VST point-
ings were required to cover the spectroscopic footprints. As
a result, there were four spatial regions originating from the
deep fields, since the two DEEP2 fields (02h/23h) were con-
sidered separate entities. The mock catalogues replicate this
behaviour but instead of two smaller DEEP2 mock cata-
logues we use one larger contiguous catalogue.

2. Random generation: We generate a uniform mock-KV450
random catalogue for each spatial region independently, ef-
fectively scaling the random density based on the mean den-
sity of each pointing. We adopt the same strategy that we
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Table A.1. Summary of the selection functions applied in MICE2 compared to the literature selection functions, for the SDSS Main galaxy
sample, the BOSS CMASS and LOWZ samples, and the SDSS QSO sample. All selections here invoke ‘and’ logic: rule1&rule2& etc. A long dash
(—) indicates a selection which cannot be applied to MICE2. Deliberate adjustments that yield a better match in the simulated and real redshift
distributions are highlighted in bold-face.

Sub-sample SDSS Selection MICE2 Object Selection Comments
Main rpet < 17.77 r < 17.7

LOWZ
16.0 < r < 19.6 16.0 < r < 20.0
|c⊥| < 0.2 |c⊥| < 0.2
r < 13.5 + c‖/0.3 r < 13.35 + c‖/0.3

CMASS

17.5 < i < 19.9 17.5 < i < 20.1
d⊥ > 0.55 d⊥ > 0.55
i < 19.86 + 1.6(d⊥ − 0.8) i < 19.98 + 1.6(d⊥ − 0.7)
r − i < 2.0 r − i < 2.0

QSO
— flag_central == 1

Substitute selection to compensate that
MICE2 does not contain quasars.

— log10(Mhalo) > 13.3
— log10(M?) > 11.2

Table A.2. Summary of the selection functions applied in MICE2 compared to the literature selection functions for the 2dFLenS sample. All
selections here invoke ‘and’ logic: rule1&rule2& etc.Deliberate adjustments that yield a better match in the simulated and real redshift distributions
are highlighted in bold-face.

Sub-sample 2dFLenS Selection MICE2 Object Selection Comments

low-z, Cut I
16.0 < r < 19.2 16.5 < r < 19.2
r < 13.1 + c‖/0.3 r < 13.1 + c‖/0.32
|c⊥| < 0.2 |c⊥| < 0.2

low-z, Cut II
16.0 < r < 19.5 16.5 < r < 19.5
|c⊥| > 0.45 − (g − r)/6 |c⊥| > 0.45 − (g − r)/6
g − r > 1.3 + 0.25(r − i) g − r > 1.3 + 0.25(r − i)

low-z, Cut III
16.0 < r < 19.6 16.5 < r < 19.6
r < 13.5 + c‖/0.3 r < 13.5 + c‖/0.32
|c⊥| < 0.2 |c⊥| < 0.2

mid-z

17.5 < i < 19.9 17.5 < i < 19.9
r − i < 2.0 r − i < 2.0
d⊥ > 0.55 d⊥ > 0.55
i < 19.86 + 1.6(d⊥ − 0.8) i < 19.86 + 1.6(d⊥ − 0.9)

high-z

r −W1 < 2(r − i) r −Ks > 1.9(r − i)

Used r − Ks as substitute for missing
r −W1 in MICE2.

r − i > 0.98 r − i > 0.98
i − Z > 0.6 i − Z > 0.6
19.9 < i < 21.8 19.9 < i < 21.8
z < 19.95 z < 19.9

use for processing the KiDS data, where this local density
estimation is designed to mitigate observational density vari-
ations in the data. Since we measure correlations for each
spatial region independently (see next paragraph), we are not
concerned that this strategy destroys large-scale correlation
modes. Finally, we clone the photometric and weight dis-
tributions for the random catalogues by randomly sampling
from their distributions in the mock data catalogue. Simi-
larly, we generate spectroscopic random catalogues, cloning
the spectroscopic redshift.

3. Cross-correlation: We measure the cross-correlation be-
tween the KV450 mock data and each of the mock spectro-
scopic samples within an annulus of 100 kpc to 1000 kpc.9
Limiting ourselves to such small scales is necessary due
to the small size of the deep spectroscopic fields. The red-
shift resolution of our measurement is given by the binning

9 We note that Hildebrandt et al. (2017) used significantly smaller
scales of 30 kpc ≤ r < 300 kpc to enable a clustering-z measurement
from the deep fields alone.

of the spectroscopic data: for the idealised mock setup we
use 45 comoving bins and the realistic mock setup 22 co-
moving bins between 0.01 ≤ zspec < 1.42. We measure the
cross-correlations for the full sample and also for each tomo-
graphic bin, weighting the galaxy pairs by the KiDS lensfit-
weight.

4. Reference sample bias: We determine the reference sam-
ple bias evolution for each cross-correlation measurement
by measuring the sample auto-correlation function using
the same constant comoving binning and the same physical
scales. With this proxy for the bias evolution we correct the
cross-correlation measurements according to Eq. (20).

5. Combining measurements: So far we have independent es-
timates for the KiDS redshift distribution for each of the spa-
tial regions defined above that overlap with the footprints of
the spectroscopic mock samples (see Fig. 3). The contribu-
tion of each measurement to the combined redshift distribu-
tion varies with redshift, depending on the reference sam-
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Table A.3. Summary of the selection functions applied in MICE2 compared to the literature selection functions for the WiggleZ sample. All
selections here invoke ‘and’ logic: rule1&rule2& etc.Deliberate adjustments that yield a better match in the simulated and real redshift distributions
are highlighted in bold-face. A long dash (—) indicates a selection which cannot be applied to MICE2.

Selection Type WiggleZ Selection MICE2 Object Selection Comments

Exclusion

g < 22.5 g < 22.5
i < 21.5 i < 21.5
r − i < g − r − 0.1 r − i < g − r − 0.1
r − i < 0.4 r − i < 0.4
g − r > 0.6 g − r > 0.6
r − z < 0.7(g − r) r − z < 0.7(g − r)

Inclusion

NUV < 22.8 —

UV selection is mimicked by weighted
sampling to match the n(z)’s.

20.0 < r < 22.5 20.0 < r < 22.5
FUV − NUV > 1 or no FUV —
−0.5 < NUV − r < 2.0 —
S/NNUV > 3.0 —
Match within 2.5 ′′ —

Table A.4. Summary of the selection functions applied in MICE2 compared to the literature selection functions for the DEEP2 sample. The
magnitude and colour selections are linked by ‘and’ logic, whereas the individual colour cuts invoke ‘or’ logic. Deliberate adjustments that yield
a better match in the simulated and real redshift distributions are highlighted in bold-face.

Selection Type DEEP2 Selection MICE2 Object Selection Comments
Magnitude 18.5 < R < 24.0 18.5 < R < 24.0

Colour
B−R < 2.45 (R− I)−0.2976 B − R < 2.0 (R − I) − 0.4

Compensate noiseless model magnitudes
and template differences, see Fig. 7.

R − I > 1.1 R − I > 1.1
B − R < 0.5 B − R < 0.2

ple redshift distribution. We apply a spatial bootstrapping
approach to merge the cross- and auto-correlation measure-
ments into a single redshift distribution estimate ñp(z). First,
we create create a pool of pair counts DD and DR from each
spatial region for each redshift bin z j. Then we sum the pair
counts from all Nreg regions and re-compute the correlation
estimator (from Eq. 25)

w̄(z j) =

∑Nreg
n DDn(z j)∑Nreg
n DRn(z j)

− 1 (B.1)

for the cross- and auto-correlation functions and calculate
ñp(z j) from Eq. (20).

This combination method violates a basic assumption of
classical bootstrapping, since the sub-samples (spatial re-
gions) are not statistically equivalent. Each of our spectro-
scopic samples has a different density, redshift distribution
and biasing which can potentially bias the combined cluster-
ing redshifts.

6. Target sample bias: Since we can assume that the bias evo-
lution of the KiDS mock galaxies is the same everywhere,
except for sample variance, we apply the correction after
combining the measurements. We use the self-consistency
bias mitigation described in Sect. 3.3 and assume that the
sample bias is approximately given by Eq. (21). We constrain
the model parameter α using Eq. (23) by comparing the red-
shift distribution estimate of step 5 for the full KiDS mock
sample and the weighted sum of the tomographic bins. The
weight of a bin is given by the sum of the lensfit-weights of
all galaxies in that bin, divided by the sum of the weights of
all galaxies between 0.1 < zphot ≤ 1.2.

We also explore one alternative way of correcting the tar-
get sample bias. Analogous to step 4 we compute the sample
auto-correlation function using the true redshifts of the mock

galaxies and combine the measurements with the bootstrap
method from step 5. According to Eq. (17), this should give
the most accurate clustering redshifts and we use it to vali-
date the bias fitting approach. Certainly, such an approach is
not possible on real data.

7. Covariance Estimation: To estimate uncertainties and a co-
variance matrix for the clustering redshifts we apply boot-
strap resampling based on the spatial regions. We implement
this in the same way as the survey combination in step 5, but
instead of summing all regions together, we randomly draw
with replacement from the pool of spatial regions to generate
samples. We propagate the bias mitigation to these samples
which allows us to compute uncertainties from the standard
error and a covariance matrix.

There are two key differences between yet_another_wizz
and the-wizz which we used previously in Hildebrandt et al.
(2020a). yet_another_wizz is no longer built around the pix-
elation library STOMP. Furthermore, we removed one of the most
distinct features of the-wizz, which is its ability to create look-
up-tables with galaxy indices for each pairs. This allows to com-
pute clustering redshifts for arbitrary sub-samples of the photo-
metric galaxies at any later time by querying the look-up table
before summing the pair counts and computing the correlation
estimator. Creating the look-up table is very time-consuming and
our datasets are not big enough to harvest the full potential of
this approach. Instead, yet_another_wizz stores just the pair
counts for each reference source, giving the user the freedom to
change the redshift binning of the correlation measurements at a
later stage.
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