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ABSTRACT
Background Little is known about the roles of myeloid cell subsets in kidney injury and in the limited ability
of the organ to repair itself. Characterizing these cells based only on surfacemarkers using flow cytometry
might not provide a full phenotypic picture. Defining these cells at the single-cell, transcriptomic level
could reveal myeloid heterogeneity in the progression and regression of kidney disease.

Methods Integrated droplet– and plate-based single-cell RNA sequencing were used in the murine, re-
versible, unilateral ureteric obstruction model to dissect the transcriptomic landscape at the single-cell
level during renal injury and the resolution of fibrosis. Paired blood exchange tracked the fate of mono-
cytes recruited to the injured kidney.

Results A single-cell atlas of the kidney generated using transcriptomics revealed marked changes in the pro-
portion and gene expression of renal cell types during injury and repair. Conventional flow cytometry markers
wouldnothave identified the12myeloid cell subsets.Monocytes recruited to thekidneyearly after injury rapidly
adopt a proinflammatory, profibrotic phenotype that expresses Arg1, before transitioning to become Ccr21

macrophages that accumulate in late injury.Conversely, a novelMmp121macrophagesubset actsduring repair.

Conclusions Complementary technologies identified novel myeloid subtypes, based on transcriptomics in
single cells, that represent therapeutic targets to inhibit progression or promote regression of kidney disease.

JASN 31: ccc–ccc, 2020. doi: https://doi.org/10.1681/ASN.2020060806

CKD affects approximately 10% of the global pop-
ulation1 and is a major risk factor for ESKD and
cardiovascular disease.2–4 It is now recognized that
CKD is not always progressive, but that regression
of albuminuria and improvement in renal function
can occur if the injurious stimulus is removed.5–7

Furthermore, regression of established fibrosis,
the best histologic predictor of outcome,8 has
been observed after prolonged normalization of
blood glucose levels after successful pancreas trans-
plantation.9,10 However, the cellular and molecular
pathways mediating injury regression are poorly
understood, partly because renal biopsies are rarely
performed in patients who are clinically improving.
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The innate immune system has been implicated in
both progression and regression of fibrosis in multiple
organs, including the kidney.11–15 Recruitment of proinflam-
matory monocytes16,17 to the injured kidney via CCL1-CCR2
signaling18,19 may exacerbate tissue damage through the re-
lease of proinflammatory factors and by activating myofibro-
blasts. Tissue macrophages are heterogeneous and inherently
plastic, and may adopt different phenotypes in response to
environmental cues. Hence, they may be injurious, but, in
addition, they may mediate repair by scavenging cell debris,
degrading excess extracellular matrix (ECM), and by secreting
factors that may promote regeneration of injured tissue.20–23

Most studies have used panels of cell surface markers to
characterize myeloid cell subsets by flow cytometry; however,
this approach is inherently biased and is unlikely to capture the
full phenotypic spectrum. Recent advances in transcriptomics,
including single-cell RNA sequencing (scRNA-seq), have
facilitated detailed analysis of myeloid cells in the healthy
kidney, and after AKI,24–26 and in other organs.27–31 However,
macrophage heterogeneity during regression of fibrosis in the
kidney remains uncertain. Hence, in this study, we employ
scRNA-seq to characterize myeloid cell subsets in the revers-
ible, unilateral-ureteric-obstruction (R-UUO) model, in
which we32 and others33 have demonstrated regression of
established tubulointerstitial fibrosis after reversal of ob-
struction. We identified myeloid cell subsets that were indis-
tinguishable using standard flow cytometry markers, with the
relative proportions of the subsets changing dynamically dur-
ing injury and repair. Pseudotime analysis and paired blood
exchange (PBE) support dynamic changes in monocyte and
macrophage phenotype in response to induction and removal
of injury. Similar myeloid cell phenotypes are observed in the
human kidney, suggesting theymay represent specific targets to
slow progression of CKD or promote renal repair.

METHODS

Animal Models
All protocols and surgical procedures were approved by the
Animal Ethics Committee, University of Edinburgh. Animal
experiments were conducted in accordance with the United
Kingdom Animals Scientific Procedures Act 1986, under
Home Office project licenses 70/8093 and 70/8867.

R-UUO Model
The R-UUO model was performed as previously described.32

Briefly, 8-week-old male C57BL/6JOlaHsd mice (Enviago)
underwent laparotomy, and the left ureter was isolated and
the distal portion was ligated twice with 6/0 black-braided silk
sutures close to the bladder. In mice that required reversible
ureteric obstruction, a silastic tube was placed around the ure-
ter immediately proximal to the ligature to prevent excessive
dilation. After 7 days of obstruction, the ureter was reanasto-
mosed into the bladder, and the peritoneum and skin were

sutured closed. Mice were euthanized by carbon dioxide nar-
cosis and dislocation of the neck at day 2 (UUO-2) or day 7
(UUO-7) after UUO, or 7 (R-UUO 1 week), 14 (R-UUO
2 weeks), or 28 days (R-UUO 4 weeks) after ureteric rean-
astomosis after 7 days of obstruction. SMART-seq2 studies
used MacGreen mice,34 in which the Csf1r promoter drives
enhanced green fluorescent protein (EGFP) as a reporter
specific to myeloid cells.

PBE
Male C57BL/6NCrl mice, which are homozygous for CD45.2,
were paired with male Ly5.1 mice (Charles River), which are
CD45.1/CD45.2 heterozygotes. Four pairs of mice were used.
The PBE was performed as previously described.35 Briefly, all
animals had a right jugular venous catheter inserted before the
UUO surgery. At 1 day post-UUO, 153150-ml aliquots of
whole blood were exchanged between each animal in the
pair over a 20-minute period. Two pairs were euthanized at
both 2 and 7 days post-UUO, and whole blood and kidney
tissue (UUO and contralateral kidney) was harvested.

Immunohistochemistry
Kidney tissue was fixed and formalin-fixed, paraffin-
embedded, 4-mm tissue sections were prepared. Sections
were rehydrated and staining was performed using the Se-
quenza system (Thermo Scientific, Waltham, MA). Sections
were incubated with the avidin/biotin blocking kit (SP2001;
Vector Laboratories) and blocked with serum-free protein
block (X0909; Dako). Tissue sections were incubated with
primary antibody (Supplemental Table 1) diluted in anti-
body diluent (S202230; Dako UK Ltd.), overnight at 4°C, be-
fore incubation with biotinylated secondary antibody
(Supplemental Table 1) for 30 minutes at room temperature.
Vectastain RTU ABC Reagent (PK7100; Vector Laboratories)
was then applied, followed by incubation with the DAB1
Substrate Chromogen System (K3468; Dako), and then
counterstaining with hematoxylin before dehydration and
mounting with Pertex mounting medium (3808707E; His-
tolab Products AB). The stained section was scanned with a
Zeiss Axio Scan.Z1 Slide Scanner (Carl Zeiss Microscopy).

Significance Statement

The innate immune system is central to injury and repair in the
kidney, but the heterogeneity of myeloid cell subsets behind these
processes is unknown. Complementary technologies—including
bulk tissue transcriptomics, integrated droplet– and plate-based
single-cell RNA sequencing, and paired blood exchange—resolved
myeloid cell heterogeneity in a murine model of reversible unilateral
ureteric obstruction, creating a single-cell atlas. The identified novel
myeloid subsets could be targeted to ameliorate injury or enhance
repair, including anArg11monocyte subset present during injury and
Mmp121 macrophages present during repair. Standard flow cy-
tometry to detect cell surface markers would have missed these
subsets. Complementary techniques capture the complexity and dy-
namics of monocyte, dendritic cell, and macrophage phenotypes in
the injured and repairing kidney.
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The percentage of DAB staining per section (n56–8 per
group) was determined by ImageJ.

Immunofluorescence
Slides were de-waxed in xylene (235 minutes), rehydrated,
and antigen retrieved (7 minutes at 60% microwave power).
Slides were allowed to cool at room temperature, mounted in
Sequenza (Thermo Fisher) racks, rinsed twice in PBS, and
blocked for 45 minutes in Gentex block (120 ml) at room
temperature. Primary antibodies were incubated at the con-
centrations in Supplemental Table 1 in antibody diluent
(Abcam) and incubated overnight at 4°C. Slides were then
washed twice with PBS, and secondary antibodies were added
at a concentration of 1:200, diluted in antibody diluent, and
incubated at room temperature for 30 minutes. Slides were
again washed twice with PBS and then blocked with Gentex
block for 45 minutes at room temperature. The second pri-
mary antibody was added to the slides, and incubated at 4°C
overnight. Slides were washed and secondary antibodies ap-
plied. For dual immunofluorescence, the slides were boiled in
10 mM citrate and blocked with serum-free protein block for
1 hour before incubation of the second primary antibody. The
antibodies were visualized by incubation with tyramide red or
green (Perkin Elmer) for 10 minutes. After washing, slides
were mounted with 49,6-diamidino-2-phenylindole (DAPI)
Fluoromount-G (Southern Biotech) and a coverslip was ap-
plied before visualization.

Bone Marrow–Derived Macrophage Culture
The hind legs of C57BL/6JOlaHsd mice were removed before
the skin and underlying muscle were excised with sterile scis-
sors and forceps to isolate the femur. The bone marrow
was then flushed out in DMEM (Gibco) containing 10%
L929 conditioned medium, 10% FCS, and 1% penicillin-
streptomycin. Cell suspensions were cultured for 1 week in
60-ml, sterile Teflon pots at 37°C with 5% carbon dioxide.
Macrophages were then plated into six-well plates, incubated
with 10mg FITC-conjugated collagen (D12052), and left over-
night. Cells were collected and run through flow cytometry to
quantify the FITC signal.

RNA Extraction, Gene Expression, and Bulk RNA-seq
Total RNA from cortical kidney tissue was isolated using
the RNeasy kit (Qiagen, Hilden, Germany), following the
manufacturer’s instructions. For quantitative PCR analysis
of targeted gene expression, cDNA was synthesized from
1 mg of template RNA, using the QuantiTect Reverse Tran-
scription Kit (Qiagen, Venlo, Netherlands). Quantitative PCR
was performed using the PerfeCTa FastMix II Probe Master
(VWR, Lutterworth, United Kingdom) and TaqMan Gene Ex-
pression Assay–specific primers (Life Technologies;
Supplemental Table 2) and normalized to hypoxanthine-
guanine phosphoribosyltransferase.

Before RNA-seq, RNA integrity was checked using Agilent
Nano Chips, and only samples with an RNA integrity number

greater than sevenwere used in subsequent analysis. Fourmice
per group underwent RNA-seq, with the animals selected on
the basis that their Havcr1 gene expression, as determined by
quantitative RT-PCR, was closest to the mean of that group.
A poly(A) library was constructed and run on a HiSeq2500,
using 23100-bp, paired-end (PE) sequencing. FastQC was
used for initial quality control (QC), reads were mapped
to the mm10 transcriptome using RSEM and Bowtie2, and
DESeq2 was used for differential gene expression analysis.
Data were deposited in the National Center for Biotechnology
Information Gene Expression Omnibus database (accession
number GSE145053).

The shinyNGSR package was used to generate gene clusters
in Figure 1C. Genes with an average fragments per kilobase of
transcript per million mapped reads of less than one across
all groups were excluded from analysis. Genes that were not
significantly differentially expressed (DE; adjusted P,0.05,
determined using DESeq2 R package) in any group (compared
with sham) were excluded from analysis. Using the feature-
based clustering module of the shinyNGS package, 7810 genes
were assigned to one of six clusters, based on expression
change between each of the groups.

Kidney Digestion for Flow Cytometry and Single-Cell
Sequencing
Immediately after euthanasia, mice were perfused with 10 ml
PBS. Kidneys were excised, decapsulated, and placed in ice-
cold PBS. Equal portions of renal cortex from each mouse
were finely minced in digest buffer (4.25 mg/ml Collagenase
V [Sigma-Aldrich, St. Louis, MO], 6.25 mg/ml Collagenase
D [Roche, Basel, Switzerland], 10 mg/ml Dispase [Thermo
Scientific], and 300 mg/ml DNase [Roche] in RPMI 1640
[10% FCS, 1% penicillin/streptomycin/L-glutamine]) before
homogenization in gentleMACS C Tubes, using the gentle-
MACS Dissociator (Miltenyi Biotec, Auburn, CA). Samples
were incubated at 37°C with shaking to maximize digestion.
The kidney suspension was then subjected to a second gentle-
MACS homogenization and digestion, neutralized with an
equal volume of FACS buffer (PBS, 2mM EDTA, and 2% FCS).
Kidney cell suspensions were then passed sequentially through
100-, 70-, and 40-mm sieves. Any residual red blood cells were
lysed by Red Blood Cell Lysis Buffer (Sigma-Aldrich). Cells were
resuspended in ice-cold FACS buffer, ready for use.

Flow Cytometry
Single-cell suspensions were incubated with Fc Block (BD
Biosciences, San Jose, CA) and then incubated with precon-
jugated antibodies (Supplemental Table 3) in round-
bottomed plates. Controls were set up, including unstained
cells, beads with single stains of each antibody, and fluoro-
phore minus one controls. DAPI was used to distinguish live
and dead cells. For cellular composition analysis, the following
antibodies were used: CD45, CD31, LTL, PDGFRb, and F4/80.
For SMART-seq2 experiments, cells were incubated with the
antibodies CD45, CD11b, CD11c, F4/80, MHCII, CD206,
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Figure 1. Phases of progression and regression of fibrosis in the R-UUO model are associated with dynamic changes in the renal
transcriptome. (A) Male 6- to 8-week-old C57BL/6J mice underwent either UUO or sham surgery, and were either euthanized 2 days
later, or left obstructed for 7 days and then euthanized, or had their ureter reimplanted to reverse obstruction before euthanasia at 1, 2,
or 4 weeks post UUO (n56–8 per group). (B) Representative images and quantification of fibrosis (collagen III) and fibroblast (PDGFR-b),
myofibroblast (a-smooth muscle actin [a-SMA]), or macrophage (F4/80) accumulation during the R-UUO model. Scale bar, 50 mM.
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CD64, and CD24; with a lineage dump gate including TCRb
(T cells), CD19 (B cells), Siglec-F (eosinophils), and Ly6G
(neutrophils); all conjugated to BV421 and run on the BD
FACS ARIA II. For PBE, blood and tissue were analyzed on
the BD 6L LSRFortessa using the following antibody panels:
for blood, CD45.1, CD45.2, CD3, F4/80, GR-1, CD11b, and
CD19; for kidney tissue, CD45.1, CD45.2, F4/80, Ly6C,
MHCII, CD11b, CD206, CD24, and CD64; with a dump
gate including TCRb, CD19, Siglec-F, and Ly6G. All files
were exported in FCS format and analyzed with FlowJo
software version 10.

Single-Cell Droplet Library Preparation
For scRNA-seq analysis on the 103 Genomics platform,
single-cell suspensions from renal cortex were prepared
from pools of three animals from each group, as outlined by
the 103 Genomics Single Cell 39 Reagent Kit User Guide ver-
sion 2. A total of 50,000 live (DAPI2) cells were sorted on the
BD FACSARIA II. Samples were washed twice in PBS (Sigma),
followed by centrifugation at 500 3 g for 5 minutes at 4°C.
Sample viability was assessed using trypan blue (Sigma) with
an automated cell counter (Bio-Rad), and the appropriate
volume for each sample was calculated. The chip was loaded
with 10,700 cells per lane.

After droplet generation, samples were transferred onto a
prechilled 96-well plate, heat sealed, and reverse transcrip-
tion was performed using a C1000 Touch Thermal Cycler
(Bio-Rad). After reverse transcription, cDNA was recovered
using the 103 Genomics Recovery Agent, and a Silane Dyna-
Bead (Thermo Fisher) cleanupwas performed. Purified cDNA
was amplified and cleaned using SPRIselect beads (Beckman).
Samples were diluted at 4:1 (elution buffer [Qiagen]/cDNA)
and an initial concentration check was performed on a Qubit
fluorometer (Invitrogen) to ensure adequate cDNA concen-
tration. The final cDNA concentration was checked on a
bioanalyzer (Invitrogen).

SMART-seq2 Library Preparation
For the SMART-seq2 experiment, we performed flow cytom-
etry for n53 animals per group, and sequenced one animal per
group. The flow cytometry patterns within each group were
broadly similar, mitigating against the selected animal being
unrepresentative of the group. A single, live (DAPI1), EGFP1
(Csf1r1) cell was sorted into each well of a 96-well plate, and
all fluorochrome information was recorded using the index-
sort capability of the BD FACS ARIA II. Equal numbers of cells

from each time point were sorted into each plate to reduce
batch effect, with 192 cells per time point included in total.
Single cells were processed as previously described.36 Briefly,
cells were lysed immediately in lysis buffer containing 5%
RNase inhibitor and 0.025% Triton X-100. Oligo(dT) primers
were added and reverse transcriptionwas performed. SMART-
seq2 libraries were prepared according to the previously de-
scribed protocol,36 with a few modifications37: at step 5, 0.1ml
of the External RNA Controls Consortium (ERCC) spike-in
mix (10:5 diluted, 4456740; Life Technologies) was addedwith
0.1 ml of 100 mMoligo(dT) primer and 1 ml of dNTP mix and
0.8ml of water, yielding the same concentrations of primer and
oligo as originally reported. Fluidigm protocol (PN 100-7168
M1) was used for tagmentation library generation. The final
cDNA concentration was checked on a bioanalyzer (Agilent).

Sequencing
The 103 libraries were pooled and normalized by molarity
before being sequenced across four lanes on a single Illumina
flow cell. Sequencing was performed on an Illumina HiSeq
platform, with a target of approximately 350 million PE reads
per lane, giving approximately 525 million PE reads per sam-
ple, comprising 23150-bp PE configuration and 8-bp
index reads. The SMART-seq2 libraries were sequenced as
83 96-well plates, which were pooled and sequenced on an
Illumina HiSeq 4000 (50-bp, single-end reads). Data were de-
posited in the National Center for Biotechnology Information
Gene Expression Omnibus database (accession number
GSE140023).

scRNA-seq Analysis
For the droplet-based dataset, the cellranger mkfastq wrap-
per (Cell Ranger Single Cell Software suite 2.1.0, http://
10xgenomics.com) de-multiplexed the Illumina output BCL
files to library-specific FASTQ files. Subsequently, alignment
was performed using the cellranger count function, using
STAR aligner 2.5.1b38 against the Ensembl mouse reference
genome version GRCm38.68. Correction and filtering of cell
bar code and unique molecular identifiers followed, and the
retained bar codes were quantified and used to generate a gene
expression matrix. Summary sequencing statistics are pro-
vided in Supplemental Table 4. The SMART-seq2 raw reads
were similarly mapped against the Ensembl mouse reference
genome version GRCm38.68, using the STAR RNA-seq
aligner,38 with the additional inclusion of the sequences for
the ERCC spike-ins.

****P,0.0001 versus sham, #P,0.05 versus UUO, ##P,0.01 versus UUO, ###P,0.001, ####P,0.0001 versus UUO. (C) Unbiased clus-
tering analysis of bulk RNA sequencing data from the renal cortex of mice (n54 per group) during the R-UUO time course identified six
discrete temporal patterns of gene expression. Representative genes and enriched pathways are provided for each cluster. The
number of genes included in each cluster is as follows: Down-regulated 1562; Early injury, 779; Pan-injury, 1479; Late injury, 1619; Late
injury/reversal, 1708; and Reversal specific, 663. Shaded error range is the SD of the mean scaled gene expression for each animal.
Dark and light blue pathways are those demonstrating gene enrichment at a false discovery rate of ,0.05 and .0.05, respectively.
FDR, false discovery rate; IHC, immunohistochemistry; RT-qPCR, quantitative RT-PCR.

JASN 31: ccc–ccc, 2020 Renal Myeloid Heterogeneity 5

www.jasn.org BASIC RESEARCH

http://10xgenomics.com
http://10xgenomics.com
http://jasn.asnjournals.org/lookup/suppl/doi:10.1681/ASN.2020060806/-/DCSupplemental


For our droplet-based dataset, a standard sequence of filter-
ing, highly variable gene selection, dimensionality reduction,
and clustering were performed using the scRNA-seq analysis R
package Seurat (version 2.3.4).39 After alignment and initial pre-
processing, we began our R workflow with 15,046 genes across
7073 cells in our sham group, 16,450 genes across 5088 cells in
our UUO-2 group, 17,368 genes across 7124 cells in our UUO-7
group, and 17,227 genes across 6096 cells in our R-UUO group.
To exclude low-quality cells in both single-cell experiments,
we then filtered cells that expressed ,300 genes and less than
500 unique molecular identifiers, and to exclude probable dou-
blets, cells with.10,000 unique molecular identifiers and,3000
genes were removed. This would have removed the majority of
injured and apoptotic cells.40 We used a mitochondrial filter to
remove cells in which .50% of genes were mitochondrial, con-
sistent with other renal-specific scRNA-seq projects.41,42 This is a
higherfilter thanhas beenused innonrenal single-cell analysis, but
reflects the high mitochondrial content in renal tubular epithelial
cells. Any gene not expressed in at least three cells was removed.

For the SMART-seq2 data, identical metrics were used as
above, but the mitochondrial filter threshold was lowered to
25%, and cells with .25% of reads mapping to the ERCCs
were additionally excluded. After filtering and QC, 15,046
genes across 4540 samples of sham mice, 16,450 genes across
3101 samples of the UUO-2 mice, 17,368 genes across 5563
samples of UUO-7 mice, 17,227 genes across 4308 samples of
the R-UUO mice, and 13,517 genes across 362 samples in the
SMART-seq2 datawere taken forward for analysis, resulting in
92 cells in the sham group, 102 cells in UUO-2, 103 cells in
UUO-7, and 65 cells from the R-UUO group.

Normalization was performed using the Seurat package to
reduce biases introduced by technical variation, sequencing
depth, and capture efficiency. We used the default global-
scaling normalization method “logNormalize,” which nor-
malized gene expression per cell by the total expression and
multiplied the result by a scaling factor before log transforma-
tion. We then scaled the data and regressed out variation be-
tween cells due to the number of unique molecular identifiers
and the percentage of mitochondrial genes.

The expression matrix subsequently underwent dimen-
sionality reduction, using principal component analysis of
the highly variable genes within the dataset. Using Seurat’s
FindVariableGenes function (and computed using the LogVMR
argument) we used log-mean expression values between 0.0125
and three, and a dispersion cutoff of 0.5 to select genes. Principal
component analysis was performed using these selected genes,
and 20 principal componentswere identified for subsequent anal-
ysis in eachdataset, selected bothvisually using the elbow point on
the elbow plot and via the jackstraw method.

Further cluster-based QC was performed in the droplet
data using the density-based spatial clustering algorithm
DBscan, which was used to identify cells on a t-distributed
stochastic neighbor embedding (tSNE) map. We initially set
an eps value of 0.5 and removed clusters with fewer than ten
cells. The remaining cells were then clustered againwith an eps

value of one, followed by removing the clusters with,20 cells.
Of note, this allowed identification of a cluster characterized
by high expression of heat-shock genes, including Fos, Jun,
and Atf3. This cluster was removed because it was considered
to be an artifact of cell stress due to the experimental protocol,
as recently described.43 This procedure removed 158 (3.4%)
cells from a total of 4540 cells in sham mice, 137 (4.4%) of
3101 cells in UUO-2 mice, 167 (3%) of 5563 cells in UUO-7
mice, and 83 (1.9%) of 4308 cells in R-UUO mice.

Clusters were then identified using Seurat’s FindClusters
function, built using the first ten principal components and
a resolution parameter of 1.5. The original Louvain modular-
ity optimization algorithm was used. tSNE (using the Rtsne
package Barnes–Hut implementation) was then used for fur-
ther dimensionality reduction and visualization, which was
run on a reduced dimensional space of the first five to ten
dimensions, using perplexity values of 15–50.

For all single-cell differential expression tests, we used the
Wilcoxon rank-sum test to identify a unique expression profile
for each cluster, with differential expression tested between
each cluster and all other clusters combined. The FindAll-
Markers test, as implemented in Seurat, returns an “adj_pval”
(Bonferroni-adjusted P values) and an “avg_logFC” (average
log fold change) for each gene. Genes were ranked in order of
average log fold change and visualized using heatmaps.

The process of acquiring the myeloid subsets required a
combination of cluster-based cell pruning and a gene-based
cell filter. The clusters were annotated by cell type, using the
generated DE marker genes, and recognized markers from
known biology and from the single-cell literature to date. All
myeloid clusters were then isolated, renormalized, and re-
scaled as described above, and were processed again through
the pipeline described above, although without the DBscan
QC step. Clustering resolution was lowered for each down-
stream implementation of the FindClusters function, and
again clusters were identified based on DE genes. Any non-
myeloid cell clusters were removed, and the data were, once
again, reprocessed and reclustered. This entire process was
repeated three times in total, with successively higher resolu-
tions used to generate greater numbers of clusters, to coerce
any nonmyeloid cells into forming distinct clusters that could
be removed as the data became cleaner. The expression of
52 key nonmyeloid genes was then assessed, and any cell ex-
pressing such genes was removed. Finally, tSNE graphs were
visually inspected, and any unusual clusters were manually
selected and DE genes inspected—any stray unwanted cluster
was manually pruned and the data reprocessed as before.

Differential Proportion Analysis
Differential proportion analysis was developed to detect
changes in population proportions across groups within
single-cell experiments. The algorithm is described in detail,
along with source code, by Farbehi et al.44 Briefly, this ap-
proach uses a novel permutation-based statistical test to
analyze whether observed changes in proportions of cell
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populations were greater than expected by chance. This ap-
proach attempts to consider sources of technical variation
within the experimental technique, such as differing absolute
cell numbers within the experiment, cell-type capture bias (a
known feature of current single-cell workflows45), and varia-
tion due to in silico analysis (cluster assignment accuracy, for
example). A proportion table of clusters per phenotype/group
is created from the count table, and the difference in cluster
proportion is compared with a null distribution. This distri-
bution is constructed by random permutations of random
subsamples of cluster labels across a random proportion of
total cells. A new proportion table is generated from these
data, and the process is repeated multiple times, with the re-
sulting difference in cluster proportions across the data form-
ing the null distribution. The observed distribution is then
compared with this null distribution, and final P values are
calculated based on the minimum P values of any observed
increases or decreases in proportion. As per the original pa-
per,44 we used a w parameter of 0.1, where lower values will
trend toward a stricter test (fewer significant hits), and higher
values trend toward higher numbers of significant hits.

Assignment to Myeloid Cell Phenotype on the
Immunological Genome Project Consortium
Cluster Identity Predictor (version 246) was used to generate
Spearman correlation values for each cluster within our own
data, as compared with cluster gene signatures with Immuno-
logical Genome Project (ImmGen) mouse immune cell data-
sets based on the entire gene expression dataset. The algorithm
first subsets genes common to both datasets before using a
one-to-many (cluster-to-references) calculation of correlation
coefficients. A single correlation coefficient is calculated for
each reference cell type and for each cluster, allowing each
cluster in our experiment to be analyzed against each known
cell type in the reference file and scored for its overall similar-
ity. To further validate these assignments, we used SingleR27 to
assign myeloid cell classification, using the murine ImmGen
dataset, and create a consensus matrix with our classifications.
Briefly, this pipeline is based on correlating reference bulk-
transcriptomic datasets of pure cell types with single-cell gene
expression. Similarly to the Cluster Identity Predictor, a Spear-
man coefficient was calculated for single-cell gene expression,
with each of the samples in the reference dataset based only on
the variable genes in the reference dataset. This is performed
iteratively until a classification is reached. One myeloid cluster
mapped to a mixture of cells and expressed cell cycle genes,
such as Mki67 and Top2a, consistent with proliferation and
was therefore assigned to the proliferation cluster.

Assignment to Myeloid Phenotype in Recovery from
Ischemia-Reperfusion Injury
To compare the transcriptome from our myeloid cell clusters
with that of myeloid cells in the kidney during recovery from
renal ischemia-reperfusion injury (IRI), we used the datasets
generated by Lever et al.47 and deposited in the Gene

Expression Omnibus (GSE121410). We used SingleR soft-
ware, as previously described, to align our macrophage clus-
ters to embryonic and adult resident renal macrophages from
healthy kidneys, and macrophages and infiltrating monocytes
in kidneys from mice 6 days after IRI.

Ligand-Pair Interactions
Heatmaps and dotplots of number of ligand-pair interactions
were generated using the CellphoneDB tool (https://www.
cellphonedb.org/) developed by the Teichmann Lab (Wellcome
Sanger Institute, Cambridge, United Kingdom).48 The lower cut-
off for expression proportion of any ligand or receptor in a given
cell type was set to 10%, and the number of permutations was set
to 1000. The clusters were not subsampled.

Platform Integration
Because our SMART-seq2 library included an index sort,
the transformed FACS data corresponding to each cell was then
exported as .fcs files and analyzed using FlowJo software. The
index-sort datawere then extracted using the index FlowJo plugin
available fromFlowJo exchange. These datawere thenmatched to
the cell bar code and imported as both a separate “protein” assay
and as metadata into the Seurat object to allow for visualization.

Our droplet-based and SMART-seq2 datasets were then
integrated using the “anchoring” approach introduced in
Seurat version 3.49 Here, we created an integrated reference data-
set and transferred the cell type labels onto our SMART-seq2 data.
Briefly, this approach requires identification of “anchors”between
the datasets, which represent shared biologic states. This involves
jointly reducing the dimensionality of both datasets using diago-
nalized canonic correlational analysis before searching formutual
nearest neighbors in the new shared space. The paired cells are
treated as anchors that represented shared biology across the data-
sets. Anchors were identified using the default parameters of the
FindIntegrationAnchors function, with the argument dims51:20.

To map the monocyte, dendritic cell (DC), and macro-
phage clusters onto conventional flow cytometry myeloid
cell gates, we used UUO-2, UUO-7, and R-UUO, respectively,
because not all clusters were represented at all time points in
the SMART-seq2 dataset.

Pseudotime Analysis
Lineage reconstruction and pseudotime inference was per-
formed using the slingshot package.50 This method works by
learning cluster relationships in an unsupervised manner and
constructing smooth curves representing the lineage across
two visualized pseudotime dimensions. Briefly, this involved
first creating the raw expression matrix of the subsetted cells
that were classified as “Arg11 monocyte,” “Ly6c21 mono-
cyte,” and “Ccr21 macrophage” by Seurat. This was followed
by filtering genes not expressed in any cluster with less than ten
cells, and having at least three reads within that cluster. Full
quantile normalization was then performed before dimen-
sionality reduction using diffusion maps via the destiny pack-
age.51 Next, cells were clustered to allow slingshot to infer a
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Figure 2. scRNA-seq analysis identifies discrete renal cell types, with dynamic changes in the proportion and transcriptome of each cell
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global structure of the lineage, using a Gaussian mixture mod-
eling implemented inMclust,52 revealing eight underling clus-
ters in the data. Slingshot then constructed the cluster-based
minimum spanning tree and fitted the principal curve.

Pathway Analysis
Gene set enrichment analysis (GSEA) and over-representation
analysis (ORA) were used to identify enriched pathways
based on the DE genes, using WebGestalt (http://www.
webgestalt.org/). For GSEA, we generated a rank for each
gene in the list of DE genes using the formula rank5(average
log fold change)3(2log [adjusted P value]). To perform ORA
of bulk RNA-seq data, significantly DE genes were selected for
the algorithm based on a minimum of two-fold upregulation
(or 50% of baseline for the downregulated genes) against the
appropriate comparator (e.g., UUO-2 versus sham when con-
sidering early injury). Enrichment categories were discarded if
theycontained less thanfiveor.2000genes.These thresholdswere
calculated by WebGestalt based on the number of overlapping
genes between the annotated genes in the category and the refer-
ence gene list for the ORA method. For the GSEA method, cate-
gories were discarded if they contained,15 genes or.500 genes.
TheBenjamini–Hochbergmethodwas used to correct formultiple
testing during ORA, and the top ten enriched categories—as
ranked by false discovery rate—were selected. The reference
gene list used was the Illumina MouseRef-8. We used path-
way gene sets from the protein analysis through evolutionary
relationships, PANTHER (http://www.pantherdb.org), Re-
actome, and Kyoto Encyclopedia of Genes and Genomes
(https://www.genome.jp/kegg/) as our reference gene lists.

Statistical Analyses
Animal group size was determined from previous pilot exper-
iments. Comparisons between two unpaired, non-normally
distributed data points were carried out via Mann–Whitney
test. Comparisons between two unpaired, normally distrib-
uted data points were carried out via t test. Comparisons be-
tween multiple groups were performed with one-way ANOVA
with the Tukey multiple comparison test. All statistical anal-
ysis was performed using GraphPad Prism version 10.

RESULTS

Degradation of Excess ECM after Reversal of Ureteric
Obstruction Is Associated with Persistence of Immune
Cells
To determine the pathways that mediate renal injury and re-
pair, we used the murine R-UUO model (Figure 1A). Within

7 days of ureteric obstruction (UUO-7), there was expansion
of interstitial PDGF-b1 cells (Figure 1B), activation to a-smooth
muscle actin1myofibroblasts (Figure 1B, Supplemental Figure 1A),
and collagen deposition (Figure 1B), with induction of tubular
injury markers such as Havcr1 (encodes kidney injury
molecule-1; Figure 1C). After reimplantation of the ureter,
there was a decline in Havcr1 expression, a significant reduc-
tion in interstitial PDGFR-b1 cells with loss of myofibroblastic
phenotype (a-smoothmuscle actin2) (Supplemental Figure 1A),
and a gradual regression of collagen deposition over 4 weeks
(Figure 1B), as has been observed previously.33 Macrophages
(F4/801) accumulated in the kidney during UUO, and persis-
ted through the early stages of R-UUO, before trending toward
baseline levels by 4 weeks after reversal (Figure 1B), consistent
with previous findings in this model.33

We first performed bulk RNA-seq of the renal cortex in the
R-UUO model, which revealed six discrete temporal patterns
of gene expression (Figure 1C, Supplemental Figure 1, B–D,
Supplemental Table 5). Three of the clusters were character-
ized by gene upregulation predominantly during the injury
phase: “early injury” genes (UUO-2 only) were enriched for
damage-associated molecular pattern–Toll-like receptor
(TLR) signaling, MAPK signaling, and oxidative stress path-
ways (Figure 1C); “pan-injury” genes included cell cycle genes
and markers of kidney injury (Havcr1 and Lcn2); and “late
injury” genes (UUO-7) were enriched for ECM components,
ECM crosslinkers, and inhibitors of ECM degradation.

Two clusters were characterized by gene activation predom-
inantly during R-UUO and were enriched for genes implicated
in innate and adaptive immunity (Figure 1C). Remarkably, five
of the top ten genes induced specifically after R-UUO (Lyz1,
Mmp12, Gpnmb, Ccl8, and Retnla; Supplemental Figure 1, D
and E) were also induced in macrophages in our model of
resolution of liver fibrosis.23 Multiple podocyte-specific genes
were also included in the cluster upregulated during reversal,
consistent with the loss of tubular mass and relative glomerular
preservation in this model of predominantly tubular injury.

The patterns of gene expression in the R-UUO model were
consistentwith those observed in a ratmodel of reversible diabetes
and hypertension (Supplemental Figure 1, F and G),53 suggesting
commonmechanisms of injury and repair acrossmultiplemodels
andorgans,23with regressionoffibrosis being characterized by the
presence of a specific macrophage phenotype.

scRNA-seq Demonstrates Dynamic Changes in the
Proportion of Intrinsic and Immune Cells during the
R-UUO Model
To characterize the heterogeneity of cells during injury and
repair and to ascribe the bulk-transcriptomic changes to

over 100,000 iterations. *P,0.05. (E) Violin plots of Egf and Lcn2 (encodes neutrophil gelatinase-associated lipocalin) gene expression
in the loop of Henle/distal convoluted cell cluster. The y axis shows the log-scale normalized read count. a–c, PCT subclusters colored
by shared nearest neighbor; DCT, distal convoluted tubule; LoH, loop of Henle; Mac, macrophage; Mono, monocyte; NK, natural killer
cell; PCT, proximal convoluted tubule; S1, S1 segment.
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Figure 3. scRNA-seq analysis identifies 12 discrete myeloid cell clusters, with dynamic changes in the proportion of cells assigned to
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specific cell types, we performed scRNA-seq on single-cell
suspensions from the renal cortex of animals at four time
points: baseline, UUO-2, UUO-7, and 2 weeks after R-UUO.
Unsupervised clustering of the aggregated data from approx-
imately 17,500 individual transcriptomes identified 15 dis-
crete clusters (Figure 2, A and B, Supplemental Figure 2,
A–D, Supplemental Table 6), which were classified using es-
tablished cell-specific markers in murine kidneys (Figure 2C,
Supplemental Figure 2B).41 Because this is the first scRNA-seq
dataset during renal injury and reversal of fibrosis, we
have created an interactive tool for data exploration at
http://www.ruuo-kidney-gene-atlas.com/.

Differential proportional analysis44 determined that, after
UUO, there was a marked reduction in the proportion of cells
derived from the proximal tubule, which partly reversed after
R-UUO (Figure 2D). Additionally, there were dynamic
changes in the tubular transcriptome after UUO, with induction
of injury markers such as Lcn2 (adjusted P51.45 3 102293)
and reduced expression of Egf, a biomarker of tubular cell
health (adjusted P55.67 3 10205) (Figure 2E).54,55 There
was early recruitment of neutrophils and natural killer cells
to the obstructed kidney, followed by expansion of macro-
phages and T cells, which persisted beyond the reversal of ob-
struction, as observed previously in the repair phase in a model
of IRI (Figure 2D).26 The changes in cell proportions were
replicated on flow cytometry using markers of key cell types:
proximal tubule cells (LTL), endothelial cells (CD31), fibro-
blasts/pericytes (PDGFR-b), immune cells (CD45), and
F4/80Hi and F4/80Lo macrophages (Supplemental Figure 2E).
Of note, although we detected a small number of cells express-
ing podocyte genes, these were too few to constitute a discrete
cluster, as has been reported previously.42 This likely reflects
the difficulty in isolating single glomerular cells from whole
kidney cortex, whereas extraction of single nuclei is more effi-
cacious, with small-nuclear RNA-seq detecting 20-fold more
podocytes.42 Similarly, we may not have captured other glo-
merular cells, such as endothelial or mesangial cells and
monocytes or macrophages, that are unique to the glomerulus.

scRNA-seq Reveals Myeloid Heterogeneity during
Injury and Repair
Our previous data in the kidney and liver suggest a pivotal role
for the plasticity of myeloid cells in injury and repair.23,53 To
further characterize the myeloid cell heterogeneity and phe-
notype, we repeated the SNN clustering specifically on mye-
loid cells, partitioning these cells into 12 clusters (Figure 3A).
We first assigned clusters as monocytes, macrophages, or DCs
by generating Spearman correlation values for each cluster
as compared with gene signatures of mouse immune cells

obtained from ImmGen (Figure 3B, Supplemental Figure 3,
A and C). We then refined this classification using cluster-
defining DE genes (Supplemental Figure 3B, Supplemental
Table 7) and the following genes encoding cell surface protein
markers that define specific myeloid cell subsets on flow cy-
tometry: Itgam (CD11b), Adgre1 (F4/80), Fcgr1 (CD64), Itgax
(CD11c), and H2-Aa (MHCII) (Figure 3, C and D).

Early Accumulation of Ly6c21 and Arg11 Monocytes
after Ureteric Obstruction
We identified the first of three monocyte clusters as patrolling
monocytes because they expressed Nr4a1 and Itgal, which are
implicated in survival56,57 and adhesion56,58 of CX3CR11/
Ly6C2 patrolling monocytes. We classified the second cluster
as inflammatory Ly6C1 monocytes because they expressed
Ly6c2, Ccr2, F13a1, and Chil3 genes.24 Cells in this cluster in-
creased at UUO-2 (Figures 3, A and E and 4A), indicating early
recruitment of Ly6C1 inflammatory monocytes to the kidney
during injury.

A third cluster uniquely expressed Arg1 (Figure 3, C and D)
and additionally markers of Ly6C1 inflammatory monocytes,
including Ccr2, Chil3, and F13a1, although not Ly6c2 (Figures
3D and 4B). DE genes in this cluster included early response
genes (Ier3, Fos, Jun), hypoxia genes (Hif1a,Vegfa), proinflam-
matory genes (Thbs1, Spp1), profibrotic genes (Tgfb1, Tgfbi),
and genes encoding ECM components (Fn1, Ecm1) or ECM
crosslinkers (Tgm2; Figure 4B). These Arg11 cells were exclu-
sively present at UUO-2 (Figure 3, A and E), and the profi-
brotic gene expression suggested they may initiate fibrosis by
interacting with mesenchymal cells. Accordingly, we deter-
mined expression of ligand-receptor pairs between each
monocyte subset and mesenchymal cells (Figure 4C). More
monocyte ligand–mesenchymal receptor pairs were expressed
in Ly6c21 and Arg11 monocytes than patrolling monocytes.
In addition, compared with the Ly6c21 cells, the Arg11

cells demonstrated greater potential for Fn1-integrin,
Pdgfa-Pdgfrß, and Tnf-Tnfsfr1 signaling to mesenchymal cells.
Taken together, these data suggest Arg11 cells may be derived
from recruited Ly6C1 monocytes that become activated
acutely in the hypoxic and inflammatory milieu of the injured
kidney toward a profibrotic phenotype.

Macrophages Adopt Differing Phenotypes during
Injury and Resolution Phases
We identified five clusters (Figure 3B) that expressed genes
consistent with macrophage identity, including those encod-
ing CSF1 receptor (Csf1r), MHCII (H2-Aa), and Cd81, a con-
served marker of renal macrophages (Figure 3, C and D).24

We define a first cluster as quiescent resident macrophages,

marker genes in each cluster. The x axis shows the log-scale normalized read count. (D) Heatmap of selected marker gene expression in
each cluster, calculated using Wilcoxon signed-rank test. The color scheme is based on z-score distribution. (E) Relative proportions of
each cell type at each time point. Statistical significance tested using differential proportional analysis with a mean error of 0.1 over
100,000 iterations. *P,0.05. Mac, macrophage; mono, monocyte; IFN, interferon.
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detected exclusively in kidneys that underwent sham surgery
or were de-obstructed (Figure 3, A and E). In contrast to other
macrophage clusters, these cells did not express Spp1, which
encodes osteopontin, a marker of activated macrophages59

that promotes renal injury after UUO.60 Although they were
tagged by proximal tubular genes, the expression was much
lower than in tubular cells (Figure 2C); therefore, this likely
represents ambient tubular RNA, which is most prevalent in
sham or R-UUO mice due to the higher proportion of prox-
imal tubular cells (Figure 2D).

A second macrophage cluster expressed high levels ofMrc1
(encodes mannose receptor), and cells from this cluster were
most commonly observed at UUO-7 and, to a lesser extent, at
R-UUO (Figures 3, A and E and 5A). The Mrc11 cells

expressed multiple scavenger receptors (Mrc1, Fcrls, Stab1),
suggesting a role in scavenging debris/excess ECM
(Figure 3D). In addition, they expressed Igf1, which is upre-
gulated in reparative macrophages in the liver23 and promotes
regression of cirrhosis and liver regeneration,61 and Apoe,
which dampens inflammation62 and promotes regeneration.63

TheMrc11 cells exhibited lower H2-Aa expression, indicating
downregulation of MHCII. This is of interest because resident
renal macrophages downregulate MHCII and adopt a pheno-
type consistent with embryonic macrophages during repair
from acute ischaemia-reperfusion injury (IRI).47 To assess
this further, we compared the transcriptome of our macro-
phage clusters with those of embryonic kidney macrophages,
resident renal macrophages before and after IRI, and
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infiltrative monocytes.47 The transcriptome of theMrc11 cells
most closely aligned to embryonic macrophages, consistent
with reprogramming toward a developmental phenotype to
facilitate renal repair (Figure 5B).

A third macrophage cluster predominantly comprised cells
from UUO-7 kidneys. Cells in this cluster expressed Ccr2
(Figure 3D), raising the possibility they may be derived from
Ly6C1/CCR21 monocytes that are recruited to the injured
kidney before transitioning to adopt a transcriptome highly
similar to resident macrophages (Figures 3, C and D and 5B).

A fourth cluster was uniquely characterized by expression
of IFN-stimulated genes (Figure 3, C and D). Although their

function remains unknown, similar cells have been observed
after injury in other organs, including the heart.28

Intriguingly, a finalmacrophage cluster was observed solely
in kidneys that had undergone R-UUO. These cells were char-
acterized by expression of Mmp12, a macrophage-specific
metalloproteinase, and scavenger receptors (Mrc1, Fcrls), sug-
gesting they may be involved in matrix remodeling (Figures 3,
C and D and 5C). In addition, theMmp121 cluster–expressed
genes implicated in efferocytosis and lipid transport, suggest-
ing they may be involved in clearance of apoptotic cells
(Supplemental Figure 3D). This is in keeping with our pre-
vious work, where Mmp121 expression defines a reparative
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macrophage phenotype that mediates regression of liver
fibrosis.23 In response to phagocytosis of collagen (Figure 5D),
bone marrow–derived macrophages upregulated the degrada-
tive enzymes expressed in reparative macrophages including
Mmp12, Gpnmb, and Lyz123 (Figure 5E), suggesting they may
switch to a matrix-degrading phenotype on encountering
scarred matrix. Although theMmp121 cells mapped to mac-
rophages on the ImmGen databases (Figure 3B), they mor-
phologically resembled monocytes and expressed low levels
of F4/80 (Figure 5C) but high levels of Ccr2 (Figure 3C). Further-
more, their transcriptome most closely aligned to monocytes in-
filtrating the kidney during recovery from IRI (Figure 5B). Taken
together, these data suggest they may be derived frommonocytes
that adopt a unique Mmp121 phenotype on encountering a
kidney during the reparative phase after injury.

DCs Adopt a Migratory Phenotype during Late-Stage
Injury and Resolution
We assigned three clusters as DCs, expressing MHC genes
(H2-Aa) but not macrophage markers (Cd81, C1q;
Figure 3D). One cluster expressed Itgae (encodes CD103),
whereas another expressed Cd209a, consistent with type 1
and type 2 conventional DCs (cDC1, cDC2), respectively.24

cDC1s and cDC2s were proportionally fewer in UUO-7 before
returning during R-UUO (Figure 3, A and E). In contrast, the
third DC cluster, which expressed Ccr7, was not detected in
sham animals, but appeared by UUO-7 and persisted through
R-UUO (Figure 3, A and E). This cluster mapped specifically
to lymph node DCs in the ImmGen database (Supplemental
Figure 3A). Taken together, the data suggest that, after
kidney injury, resident DCs upregulate Ccr7 and this may pro-
mote migration to draining lymph nodes by binding to
CCR19/CCR21.64

Conventional Flow Cytometry Does Not Capture the
Full Heterogeneity of Myeloid Cells
To assess how our scRNA-seq–derived clusters corresponded
to conventional cytometry, we performed scRNA-seq using
plate-based SMART-seq2 technology, which enabled linkage
of each transcriptome to an abundance of cell surface markers
(FACS intensity) using index sorting.65 We repeated the
R-UUO model using MacGreen mice (express EGFP under
the Csf1r promoter) and performed flow cytometry, gating
on CD451MacGreen1TCRb2CD192Ly6G2Siglec-F2 myeloid
cells. There was expansion of the CD11b1F4/80Lo population
at UUO-2, consistent with early recruitment of monocytes in

response to injury (Figure 6A). ByUUO-7,monocyte recruitment
had diminished, but there was an increase in CD11b1F4/80Hi

macrophages, which persisted through 2 weeks after R-UUO
(Figure 6A).

We captured 192 individual CD451MacGreen1TCR1b2

CD192Ly6G2Siglec-F2 myeloid cells from each time point
for scRNA-seq on the SMART-seq2 platform (Figure 6B).
This dataset was then integrated with the original droplet
dataset, with SMART-seq2 cells distributed through every
cluster (Figure 6, B and C). Index linkage demonstrated mod-
erate correlation between the gene and corresponding surface
protein expression in each cluster (Figure 6D). Next, we
mapped the cells from each myeloid cluster onto the mono-
cyte and macrophage gates on flow cytometry (Figure 6E).
Cells from the Ly6c21 and patrolling monocyte clusters
mapped to the CD11b1F4/80Lo monocyte gate, as expected.
Conversely, resident, Mrc11, Ccr21, and IFN-response mac-
rophages all mapped appropriately to the CD11b1F4/80Hi

macrophage gate. Cells from the Arg11 cluster straddled the
monocyte and macrophage gates (Figure 6E), with a propor-
tion of the Arg11 cells colocating with Ccr21 macrophages
in the CD11bHiF4/80Hi region, suggesting they may be tran-
sitioning to Ccr21 macrophages. Furthermore, trajectory
analysis supported transition of Ly6c21 monocytes to Ccr21

macrophages, with Arg11 monocytes representing an inter-
mediate transitional state (Figure 6G). Cells from the
Mmp121 cluster also straddled themonocyte andmacrophage
gates (Figure 6E), consistent with their intermediate F4/80
expression on immunofluorescence (Figure 5B). Cells from
the cDC1 and Ccr71 clusters were CD11b2F4/802, whereas
the cDC2s mapped to the CD11b1F4/80Lo monocyte gate
(Figure 6E). Cells from the proliferating myeloid cluster
were observed predominantly at UUO-2 and mapped to the
monocyte and, more particularly, the macrophage gates
(Figure 6F). Consistent with this, the scRNA-seq cell cluster
designated as proliferating cells (express Mki67) predomi-
nantly expressed macrophage markers, with representation
of all macrophage clusters.

Monocytes Recruited Early after UUO Transition to a
Macrophage Phenotype
Pseudotime trajectory analysis and flow cytometry data sug-
gested that Ly6c1 monocytes recruited to the obstructed kid-
ney transitioned to Ccr21 macrophages by UUO-7. To test
this hypothesis, we performed PBE between Ly5.1 mice
(CD45.1/CD45.2 heterozygous) and C57BL6/J mice

seq2 protocol before integration with the 103 dataset. (C) Uniform Manifold Approximation and Projection (UMAP) of the combined
103 and SMART-seq2 dataset. (D) Dotplot of cell surface protein and corresponding gene expression in each cluster. The size of the
dot denotes the percentage of cells in each cluster expressing the relevant gene/protein; the intensity of color represents mean gene/
protein expression. (E) Representative flow cytometry plots from UUO-2, UUO-7, and R-UUO (2 weeks) illustrate mapping of cells from
each myeloid cluster onto the CD11b1F4/80Lo monocyte and CD11b1F4/80Hi macrophage gates. (F) Mapping of proliferating cells
(red) at each time point onto the flow cytometry plots. (G) Pseudotime analysis of the transcriptomes of the Ly6c21, Arg11, and Ccr21

clusters. Mac, macrophage; mono, monocyte.
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Figure 7. Paired blood exchange (PBE) demonstrates that CCR21 macrophages observed at UUO-7 are derived from donor mono-
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(CD45.2 homozygous) (Figure 7A). Immediately after the
PBE, approximately 40% of total CD451 circulating cells
were derived from the donor (Figure 7B). The proportion
of donor-derived circulating monocytes/neutrophils fell rap-
idly to approximately 1% within 24 hours, with negligible
numbers persisting through to UUO-7 (Figure 7C, full gating
strategy in Supplemental Figure 4A). There was a similarly
rapid reduction in the proportion of donor-derived circulat-
ing T and B lymphocytes; however, a small number of donor
lymphocytes persisted in the circulation through UUO-7
(Figure 7C).

To determine the fate of donor monocytes recruited to the
obstructed kidney, we performed flow cytometry on kidney
cell suspensions, gating on CD451CD641TCRb2CD192

Ly6G2Siglec-F2 myeloid cells (Supplemental Figure 4B). At
UUO-2, donor cells were recruited preferentially to the ob-
structed kidney (Figure 7D) and mapped almost exclusively to
the CD11b1F4/80Lo monocyte gate (Figure 7E). Indeed, they
spanned the monocyte “waterfall,” suggesting transition from
Ly6CHi/MHCLo monocytes toward a Ly6CLoMHCIIHi

macrophage-like phenotype Figure 7D). By UUO-7, the
majority of donor cells were located in the CD11b1F4/80Hi

macrophage gate, and they expressed high levels of CCR2
compared with the global macrophage population
(Figure 7F). In combination with the trajectory analysis and
flow cytometry data, these data suggest donor monocytes are
recruited selectively to the obstructed kidney by UUO-2, tran-
sition to a CCR2Hi macrophage by UUO-7, and, hence, are the
likely source of the cells in the Ccr21 macrophage cluster ob-
served at UUO-7 in the scRNA-seq dataset (Figure 3A).

Myeloid Cell Subsets Correlate with Fibrosis in Human
Kidney Disease
We next assessed whether similar myeloid cell phenotypes
were observed in the human kidney using the Human Protein
Atlas (Figure 8A). Cells that stained with F13A1 (marker of
Ly6c21 monocytes) and DOK2 (Arg11 monocytes) were lo-
cated specifically in focal areas of injury/inflammation,
whereas ITGAL (patrolling monocytes) was largely restricted
to cells within the circulation. CD68, a pan-macrophage
marker (including a marker of resident macrophages), was
widely distributed in the healthy kidney, whereas mannose
receptor (Mrc11 macrophages) and CCR2 (Ccr21 macro-
phages) localized to areas of tissue injury. IRF8 and CD209,
markers of types 1 and 2 conventional DCs, respectively,

localized to areas of renal injury, with CCR7 (Ccr71migratory
DCs) staining a cluster of cells that resembled a tertiary lym-
phoid follicle. Furthermore, in biopsy specimens of healthy
donors and patients with diabetic nephropathy or FSGS
(https://www.nephroseq.org/resource/login.html), expres-
sion of each myeloid marker correlated with expression of
Col1a1 (encodes collagen I; Figure 8B). Expression of
Mmp12 was not detected in the healthy human kidney or in
patients with CKD, which is consistent with the fact that cells
in theMmp121 cluster were specific to the resolution phase of
kidney injury.

DISCUSSION

Our scRNA-seq studies, the first detailed characterization of
myeloid cell heterogeneity in the kidney during progression
and regression of fibrosis, have identified novel monocyte and
macrophage subsets not previously observed in the kidney.

Acute injury induces a novel population of cells that are
transcriptomically aligned to monocytes but that uniquely ex-
press Arg1. Although Arg1 has traditionally been thought of as
a marker of alternative macrophage activation,67 the Arg11

cells do not express other markers of alternative activation,
such as Mrc1 or MHCII-encoding genes, suggesting that
in vitro immune activation assays do not reflect the complex
in vivo milieu. Indeed, the Arg11 cells express proinflamma-
tory and profibrotic genes, and future work should determine
whether specific depletion of these cells could reduce disease
severity. Intriguingly, a novel Mmp121 macrophage subset
emerged specifically during the resolution phase.We have pre-
viously reported a similar macrophage phenotype during the
resolution of liver disease, suggesting common reparative
mechanisms across organs.23 Our in vitro studies suggest
that ingestion of excess ECM or cell debris may be a stimulus
for induction of this phenotype; however, their cellular origin
and role in resolution requires further study because strategies
to induce this phenotype may enhance scar degradation in the
diseased kidney and other organs. To definitively conclude that
theMmp121macrophages we identified are essential to repair,
as our studies infer, functional studies in MMP122/2 mice
demonstrating a lack of repair would be required.

Uniquely, we have integrated plate-based and droplet
scRNA-seq with index linkage to map our myeloid subsets
onto monocyte and macrophage gates on flow cytometry.

illustrating approximately 40% of circulating cells were derived from donors after the exchange (CD45.11CD45.21 cells in C57BL/6;
CD45.21/1 cells in Ly5.1 mice). (C) Percentage of circulating immune cells derived from paired donor over the experimental time
course (n54 pairs immediately post-PBE and at UUO-2; n52 pairs at UUO-7). (D) Illustrative flow cytometry plots mapping donor cells
(red) and recipient cells (gray) to the CD11b1F4/80Lo monocyte and CD11b1F4/80Hi macrophage gates, the monocyte waterfall in
obstructed and contralateral kidneys at 2 days post-UUO, and the expression of CCR2 and MHCII 7 days post-UUO. (E) Average
number of donor cells mapping to the CD11b1F4/80Lo monocyte and CD11b1F4/80Hi macrophage gates in obstructed kidneys at 2
and 7 days after UUO. (F) The expression of CCR2 (mean fluorescent intensity, MFI) on the donor cells compared with the host cells
from the CD11b1F4/80Hi macrophage gate in obstructed kidneys 7 days after UUO. n54 per group. *P,0.05 by Mann–Whitney test.
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Importantly, the novel myeloid subsets would not have been
identified by conventional markers on flow cytometry, high-
lighting the utility of scRNA-seq to characterize myeloid het-
erogeneity in an unbiased andmore detailed way. Based on the
DE genes in each subset, we suggest a panel of cell surface
markers could be used in combination to differentiate the cells
from each myeloid cluster on flow cytometry (Table 1), with

the caveat that there is only a modest correlation between gene
expression and cell surface marker expression of the corre-
sponding protein.

To track the fate of circulating immune cells recruited to the
kidney, we used PBE, which has previously been used to assess
the effects of donor serum35 but not, to our knowledge, to
track immune cells. By combining PBE, flow cytometry, and
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pseudotime analyses, we demonstrate early recruitment of
monocytes specifically to the obstructed kidney and that these
subsequently adopt a macrophage phenotype, but continue to
express CCR2. These results suggest circulating monocytes are
the source of the large Ccr21 macrophage cluster observed at
UUO-7 in the scRNA-seq dataset, which is consistent with
lineage tracing and parabiosis studies after myocardial infarc-
tion.28 Remarkably, although they continue to express Ccr2,
their transcriptome is otherwise almost identical to resident
macrophages. Genetic or pharmacologic inactivation of CCR2
after renal IRI reduces the expansion of F4/801 macrophages
in the kidney and the severity of renal fibrosis, suggesting
CCR21 cells may be detrimental,19 although it is unclear
whether they remain detrimental once they transition to a
macrophage phenotype. One advantage of PBE over parabio-
sis or bone marrow transfer is that the donor cells persist at
large numbers in the circulation for a relatively short time,
and, therefore, enable the tracking of cells at multiple discrete
time points after injury or during resolution of disease. Future
studies using PBE may help determine whether cells in the
Mmp121 cluster are indeed derived from infiltrating mono-
cytes entering a repairing kidney. The short circulating time of
donor cells may also be a limitation of the technique, in that
only a small proportion of recruited cells are derived from the
donor, therefore, a limited number of cells are available for
downstream analysis. Further refinements including perform-
ing several consecutive PBEs may increase the yield.

In summary, by combining multiple complementary tech-
nologies, our studies have identified novel subsets of myeloid
cells, which may also be present in human kidney disease and,
hence, may represent therapeutic targets to inhibit progres-
sion and enhance resolution of kidney disease.
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Table 1. Cell surface markers for assignment of myeloid clusters by flow cytometry

Cluster
F4/80

(Adgre1)
CD11b
(Itgam)

CD64
(Fcgr1)

MR
(Mrc1)

CD40
(Cd40)

CCR2
(Ccr2)

Ly6C
(Ly6c2)

CCR1
(Ccr1)

CD11a
(Itgal)

CD203
(Itgae)

CD209
(Cd209a)

CCR7
(Ccr7)

Resident
macs

111 11 11 1 2 2 2 2 2 2 2

Mrc11 macs 111 111 11 111 2 2 1 2 2 2 2

IFN-
response
macs

111 11 111 1 11 2 2 2 2 2 2 2

Ccr21 macs 11 11 11 1 11 2 2 2 2 2 2

Mmp121

macs
1 1 2 11 1 2 2 2 2 2 2

Ly6c21

monos
2 11 2 2 111 111 1 1 2 2 2

Arg11

monos
2 111 1 2 1 2 111 2 2 2 2

Patrolling
monos

2 1 2 2 2 2 2 111 2 2 2

cDC1 2 2 2 2 2 2 2 2 111 2 2

cDC2 2 11 2 2 2 2 1 2 2 111 2

Ccr71 DCs 2 2 2 2 2 2 2 2 2 2 111

Gene expression (italicised in brackets) of corresponding cell surface proteinmarkers that could be used to assign cells tomyeloid clusters on flow cytometry.Macs,
macrophages; monos, monocytes; IFN, interferon.
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Supplemental Figure 1  

A Immunofluorescence for PDGFR-+ and -SMA+ indicates that a proportion of PDGFR-+ 

cells co-express -SMA+ at UUO-7 indicating activation to myofibroblasts; 1 week following 

R-UUO, the interstitial PDGFR-+ cells no longer express -SMA+, which is now restricted to 

the arterial smooth muscle walls. B Principal component (PC) analysis of RNA sequencing data 

from bulk cortical kidney tissue from animals undergoing sham surgery, or at UUO-2, UUO-7, 

or 1- 2- or 4-weeks post R-UUO (n=4/time-point). C Heatmap of differentially expressed genes 

created using Pheatmap R package. Rows were clustered via unsupervised hierarchical 

clustering. D Expression of exemplar genes aligning to each cluster E Expression of Gpnmb, 

Mmp12, Retnla and Ccl8 genes in RNAseq dataset F Pathways enriched for genes that are 

induced in the kidney of Cyp1a1mRen2 rats during diabetes and hypertension, but which 

revert towards baseline following tight glycaemic and blood pressure control (52) G Pathways 

enriched for genes that are persistently elevated in the kidney of Cyp1a1mRen2 rats despite 

onset of tight glycaemic and blood pressure control (52). 

 

Supplemental Figure 2 

A Top 10 differentially expressed genes by fold change in each cluster, calculated using 

Wilcoxon signed-rank test. The colour scheme is based on z-score distribution. B Violin plots 

showing the expression levels of selected marker genes in each cluster. The x axis shows the 

log-scale normalized read count. C Top 10 differentially expressed genes by fold change in 

each cluster across the sham, UUO-2, UUO-7 and R-UUO (2 weeks) libraries analysed 

individually using Wilcoxon signed-rank test. The colour scheme is based on z-score 

distribution D Separate tSNE plots restricted to cells from each separate time-point coloured 

by shared nearest neighbour (SNN) allocated cluster, annotated by cell type E Flow cytometry 

was employed to determine the proportion of total kidney cells at each time point comprised 

by proximal tubular cells (PT), endothelial cells (EC), fibroblasts (PDGFR-β), immune cells 

(CD45), and F4/80Hi or F4/80Lo macrophages. 

 

Supplemental Figure 3 
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A Top 5 Immunological Genome Project (ImmGen) reference cell types per cluster ranked by 

Spearman’s correlation coefficients with full dataset details following a cluster-to-references 

analysis using cluster identify predictor v2. B Top 10 differentially expressed genes by fold 

change per cluster, calculated using Wilcoxon signed-rank test. The colour scheme is based 

on z-score distribution C Consensus matrix of ImmGen reference cell types using SingleR 

generated labels (bottom) with final classifications D Violin plots of efferocytosis genes across 

the myeloid cell clusters. The y-axis shows the log-scale normalized read count. 

 

Supplemental Figure 4 

A Flow cytometry gating strategy for characterizing circulating blood immune cells into B-cells 

(CD19+), monocyte/neutrophils (Gr-1+), and T-cells (CD3+) using the D2 blood sample as an 

exemplar. B Flow cytometry gating strategy for sorting myeloid cells in the kidney. Lineage 

dump gate includes TCRβ, CD19, Ly6G and SiglecF all on the same fluorophore to exclude T-

cells, B-cells, neutrophils and eosinophils respectively. 

 

Supplemental Table 1 

Antibodies utilised in immunohistochemistry/immunofluorescence studies. 

 

Supplemental Table 2 

Taqman probes used for qRT-PCR in studies. 

 

Supplemental Table 3 

Antibodies utilised in Flow Cytometry 

 

Supplemental Table 4 

Summary of 10x sequencing statistics 

 

Supplemental Table 5 

Bulk RNA-Seq matrix of differentially expressed genes in each gene cluster, expressed in 

FKPM. 
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Supplemental Table 6 

Single cell RNA-Seq table of differentially expressed genes in the global data as described in 

Fig. 2, expressed per cluster, where avg_logFC is the average log fold change between the 

cluster in question and the remaining clusters, pct.1 and pct.2 is the percentage of cells 

expressing the gene in question in the cluster in question the remaining clusters, and 

p_val_adj is the adjusted P-value following Bonferroni correction for multiple hypothesis 

testing. 

 

Supplemental Table 7 

Single cell RNA-Seq table of differentially expressed genes in the myeloid only data as 

described in Fig. 3, expressed per cluster, where avg_logFC is the average log fold change 

between the cluster in question and the remaining clusters, pct.1 and pct.2 is the percentage 

of cells expressing the gene in question in the cluster in question the remaining clusters, and 

p_val_adj is the adjusted P-value following Bonferroni correction for multiple hypothesis 

testing and rank is the assigned rank for gene set enrichment analysis calculation. 

 

 

 


