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  Abstract
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For a long time, post-mortem analysis of human brain pathologies has been purely descriptive, limiting insight into the
pathological mechanisms. However, starting in the early 2000’s, next generation sequencing and the routine application of bulk
RNA-sequencing and microarray technologies has revolutionized the usefulness of post-mortem human brain tissue. This has
allowed many studies to provide novel mechanistic insights into certain brain pathologies, albeit at a still unsatisfying resolution,
with masking of lowly expressed genes and of regulatory elements in different cell types. The recent rapid evolution of single cell
technologies has now allowed researchers to shed light on human pathologies at a previously unreached resolution revealing
further insights into pathological mechanisms that will open the way for development of new strategies for therapies.
In this review, we will give an overview of the incremental information that single cell technologies have given us for human
white matter pathologies, summarize which single cell technologies are available and speculate where these novel approaches may
lead us for pathological assessment in the future.

   

  Contribution to the field

This review article gives an overview of the use of modern “omics” approaches in the context of human white matter brain
pathologies and how these have contributed to our understanding of disease, with a special focus on novel single cell and single
nuclei technologies. As the use of these technologies in human brain tissue has only started to emerge recently and are developing
at a rapid speed, this article summarizes very recent work including many papers still in preprint at the forefront of this science.
We give an overview of different single cell/single nuclei technologies and possible validation techniques and discuss the advantages
and limitations from an experimenter point of view. Hence, the article explains single cell technologies for non-experts to help
them better understand how they can implement these in their own research and what to consider when planning an experiment.
We also outline how these technologies are changing and how this change will influence human brain pathology in the future.
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1 Abstract 10 

For a long time, post-mortem analysis of human brain pathologies has been purely descriptive, limiting 11 
insight into the pathological mechanisms. However, starting in the early 2000’s, next generation 12 
sequencing and the routine application of bulk RNA-sequencing and microarray technologies has 13 
revolutionized the usefulness of post-mortem human brain tissue. This has allowed many studies to 14 
provide novel mechanistic insights into certain brain pathologies, albeit at a still unsatisfying 15 
resolution, with masking of lowly expressed genes and of regulatory elements in different cell types. 16 
The recent rapid evolution of single cell technologies has now allowed researchers to shed light on 17 
human pathologies at a previously unreached resolution revealing further insights into pathological 18 
mechanisms that will open the way for development of new strategies for therapies. 19 

In this review, we will give an overview of the incremental information that single cell technologies 20 
have given us for human white matter pathologies, summarize which single cell technologies are 21 
available and speculate where these novel approaches may lead us for pathological assessment in the 22 
future. 23 

2 Introduction 24 

Classical approaches to study human white matter pathology 25 

Modern neuropathology has its origins in the late 19th and early 20th century, when famous 26 
neurologists or psychologists such as Santiago Ramon y Cajal, Jean-Martin Charcot and Alois 27 
Alzheimer started to describe and illustrate the central nervous system (CNS) and its pathological 28 
changes. These early, but still accurate and detailed illustrations of the brain and individual cells, were 29 
all based on histological stains observed through a simple light microscope. It took many years before 30 
pathology could reach another level of detail with the common use of antibodies to develop marker-31 
specific immunological stains that are still a state-of the art in modern research laboratories. Due to the 32 
combination with fluorescent labels and the development of better microscopes, this method has 33 
become a standard technique to study human pathology and it has helped us to gain a deep 34 
understanding of cellular and sub-cellular structures of the brain in health and disease. 35 

Multiple Sclerosis (MS), a chronic inflammatory and demyelinating neurodegenerative disease of the 36 
central nervous system, is a good example of how this descriptive pathology is still used, but it equally 37 
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applies to other pathologies. The characteristic lesions in white matter (WM) tracts can be classified 38 
into active, chronic active, chronic inactive and remyelinated lesions – so called shadow plaques 39 
(Lassmann et al., 1998). This still highly used classification system is based on presence of 40 
demyelination and the distribution of infiltrating immune cells in and around the lesions and is carried 41 
out with simple histological staining on post-mortem human tissue. So far, there are only limited ways 42 
of detecting the different lesion stages during the lifetime of a patient using non-invasive imaging 43 
techniques (Bruck et al., 1997;Hemond and Bakshi, 2018). Specific magnetic resonance imaging 44 
sequences enables detection of chronic active lesions where acute inflammation is happening at the 45 
lesion rim (Absinta et al., 2018) and these are associated with disability and ongoing tissue damage 46 
(Absinta et al., 2019) aiding prognosis. These new imaging paradigms are exciting but we are still far 47 
from a full picture of MS lesions either by pathology or live imaging. Moreover, we still have limited 48 
knowledge about molecular or mechanistic changes in MS lesions which are key to understanding the 49 
disease. 50 

With the development of new technologies in the 2000s, many labs started to use bulk RNA-sequencing 51 
(RNA-seq) or DNA-based microarrays to describe cellular and molecular changes in disease at the 52 
transcript level, to gain a deeper insight into functional pathological changes. This was the beginning 53 
of a revolution in pathology, helping define molecular markers of disease and raising new hypotheses 54 
for disease pathogenesis, to be tested experimentally. This revolution continues with new methods to 55 
identify transcripts from single cells or nuclei, and to identify these transcripts spatially on tissue. Here, 56 
we describe this revolution, and how this is evolving and will impact our understanding of human WM 57 
pathology. Although these techniques are applicable to a wide range of human WM CNS pathologies, 58 
this review will mostly use MS as an exemplar and only touch on other diseases where relevant. 59 

3 Modern approaches to study WM pathologies 60 

3.1 What have we learnt from whole transcriptomic approaches? 61 

Bulk RNA-seq is a method to detect the entirety of the transcriptome within a sample of interest, which 62 
can either be a whole piece of tissue or sorted cells from a tissue. This can be done in an unbiased way 63 
where RNA is isolated, fragments transcribed into cDNA, which are further linked with specific 64 
adapters making them compatible with next generation sequencing (NGS), which is then 65 
bioinformatically analyzed (Fig. 1A). Alternatively, in a more biased way, isolated RNA is loaded onto 66 
specific microarray chips containing probes for only predefined gene transcripts. Commercial 67 
microarrays contain a large numbers of probes for the most important gene transcripts spread over the 68 
whole genome so that it can still be relatively unbiased. However, early experiments also included 69 
home-made arrays with lower numbers of genes.  70 

The hallmark of WM MS pathology are the clearly distinguishable focal demyelinated lesions where 71 
myelin is lost. Therefore, due to its ease of detection and separation from the surrounding normal 72 
appearing white matter (NAWM), many groups have performed bulk transcriptome studies on MS 73 
tissue comparing these. In addition, probably in part due to its easier accessibility at least in life, many 74 
have been performed on body fluids such as blood or cerebrospinal fluid (CSF) but some also used 75 
whole brain or spinal cord tissue samples. Several review articles have already summarized these 76 
comparisons and discussed the technical challenges (Comabella and Martin, 2007;Kinter et al., 77 
2008;Dutta and Trapp, 2012). In summary (Fig. 4), the major findings are that all analyzed tissue 78 
sources express high numbers of inflammatory gene transcripts, although the inflammatory pathways 79 
differ. In addition, it became clear that NAWM is not equal to control WM, suggesting that MS is a 80 
more global disease than previously thought. Many other findings of transcript differences across these 81 
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studies were unique to a specific gene transcript in one study rather than having common ground 82 
between studies, providing interesting candidates to be investigated. Most surprisingly and against the 83 
common concept in MS that oligodendrocytes are the primary target of attack, it has been suggested 84 
that surviving oligodendrocytes around demyelinating lesions in the NAWM are induced by hypoxia 85 
to be neuroprotective and anti-inflammatory and are thus more actively involved in disease and perhaps 86 
limiting it (Graumann et al., 2003;Zeis et al., 2008). Very recently, heparan sulphate production by 87 
mature oligodendrocytes around demyelinating lesions has been shown to be one of the mechanisms 88 
in limiting demyelinating lesions (Macchi et al., 2020). Lindberg et al. (2004) came to similar 89 
conclusions regarding the NAWM and additionally pointed out that the immune response activation is 90 
different in the different compartments with a more cellular response in NAWM and a humoral 91 
response in lesions. Looking a bit closer into differences between demyelinated lesions, Tajouri et al. 92 
(2003) found that although both acute and chronic lesions share the majority of markers that are 93 
changed in MS in comparison to control, the fold change of those gene transcripts is however quite 94 
different. More recent publications have used bulk RNA-seq on MS tissue in a more complex way to 95 
explore either transcriptomic changes of microglia in the initial phase of MS (van der Poel et al., 2019) 96 
or transcriptomic changes in an hormonal context of the hypothalamus-pituitary-adrenaline (HPA)-97 
axis (Melief et al., 2019). The first study reported an increase in transcripts related to lipid metabolism 98 
in microglia sorted from NAWM that is similar to those found in active demyelinated lesions, however, 99 
whilst maintaining their homeostatic functions. The latter study found that gene expression networks 100 
in MS tissue correlate with the activity of the HPA axis and/or disease severity, showing that gene 101 
expression in a pathological context is not only regulated by the pathology itself, but also depends on 102 
other environmental factors. Thus, careful consideration of the experimental design and the case 103 
selection must be part of planning such an experiment.  104 

Bulk transcriptomic approaches have brought several advantages to the field, but as ever with evolving 105 
technology, also some challenges. In contrast to immunohistochemistry (IHC) or quantitative PCR 106 
(qPCR) studies of candidate genes, it is unbiased, or relatively unbiased (with microarrays) allowing 107 
detection of new mechanisms rather than only digging deeper into already known ones. It is also not 108 
dependent on good primers/antibodies or experimenter choice. Long interfering non-coding RNAs are 109 
a good example of this, as most of their roles are relatively understudied and one specific RNA was 110 
found to play an important region-specific role in a study on Multiple System Atrophy (MSA), another 111 
human WM neuropathology, suggesting regional differences of this  RNA to control brain function 112 
(Mills et al., 2015).  Another advantage, at least in theory, is that studies that are performed by different 113 
groups in different tissues should be easy to compare, as all capture RNA in an unbiased way. However, 114 
disadvantages are plentiful, limiting comparisons as early studies (at least) used low numbers of 115 
individuals as input and findings might thus not be representative for a larger MS cohort. Comparisons 116 
chosen have varied and have included: (1) Lesions versus NAWM (Whitney et al., 1999;Whitney et 117 
al., 2001;Tajouri et al., 2003), (2) Lesions/NAWM versus Controls (Graumann et al., 2003;Lindberg 118 
et al., 2004;Zeis et al., 2008;Zeis et al., 2018), and (3) different lesions and/or different regions of 119 
lesions (Lock et al., 2002;Mycko et al., 2003;Hendrickx et al., 2017). Furthermore, MS lesions can 120 
occur in all WM regions and transcriptional profiling may be different when the lesions from the 121 
different studies come from different regions, for example from cerebellar WM and frontal subcortical 122 
WM. Many of these studies used non-standardized RNA isolation methods, different types of 123 
microarrays (commercial and homemade) with different probe sets (quantity and type) and also 124 
different sensitivities for lowly abundant genes, which may explain why different studies found so 125 
many different results. Highly abundant genes may mask more subtle effects, and in MS, this often 126 
leads to the discovery that MS lesions are associated with demyelination and inflammation (Kinter et 127 
al., 2008) – not quite a surprise for an inflammatory demyelinating disease.  128 
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A further disadvantage is that bulk transcriptomic studies detect gene expression irrespective of their 129 
cellular source within the tissue, so that a signal may be lost if one gene transcript is significantly 130 
upregulated in one cell type, but downregulated in another. This becomes especially important when 131 
studying a tissue with little cellular heterogeneity, as bulk approaches are generally able to detect a 132 
shift in cell type proportions (e.g. more inflammatory cells in MS lesions), but are less good in detecting 133 
changes within similar cells sharing the majority of transcripts. 134 

3.2 How can complementary bulk approaches help address WM pathologies? 135 

Other technologies, such as proteomics and metabolomics may also illuminate human pathologies (Fig. 136 
1B, C). They are either suitable to help validate hypotheses generated by transcriptomics or to generate 137 
new hypotheses themselves. Proteomic approaches using different methods of mass spectrometry have 138 
been widely used (as summarized in (Farias et al., 2014;Farias and Santos, 2015)). Numerous studies 139 
have been performed on human blood and CSF samples, which are easier to obtain, and may allow the 140 
development of new disease biomarkers in living patients (Del Boccio et al., 2016) as well as 141 
elucidating potential mechanisms of pathogenesis. The scarcity of reliable blood or CSF biomarkers 142 
for MS has been quite sobering to date, which might also be due to the technical challenges of highly 143 
abundant proteins (e.g. albumin) in the samples that mask smaller changes. Few proteomic studies so 144 
far have been performed on human brain tissue itself, (Han et al., 2008;Broadwater et al., 2011;Ly et 145 
al., 2011) perhaps as a full proteomic overview of isolated brain tissue is technically challenging. This 146 
is due to the high abundance of proteins that cannot be captured by current technologies, mainly 147 
because of their dynamic range and the complexity, a reason why further subsampling of the tissue of 148 
interest might be helpful (Werner and Jahn, 2010). One study focussed on mitochondria in grey matter 149 
(GM), which suggested a dysfunction in the mitochondrial respiratory chain in MS (Broadwater et al., 150 
2011). In line with the findings of bulk transcriptomics data, proteins involved in inflammation and 151 
demyelination were upregulated in MS, but in order to find new disease mechanisms that can be 152 
targeted for therapies, more specific and sensitive techniques are needed. However, proteomics have 153 
been elaborately applied in mouse models of MS and the results from these studies may be worth trying 154 
to validate in humans. 155 
 156 
Metabolomics is a relatively newly termed “omics” approach to systemically study metabolites in a 157 
sample, and the first metabolomics studies in MS were performed in the 1990s (Lynch et al., 1993). 158 
This is useful as metabolites are usually the end product of a biological process allowing us to draw 159 
conclusions about function. Despite the novelty of this approach, it has already found a wide usage in 160 
MS and in its animal models, to try to identify biomarkers in body fluids like CSF, blood and urine. 161 
With this, it might also be possible to observe metabolites in different patients and respond to their 162 
individual needs by different drugs, which would be a first step to personalised precision medicine 163 
(Bhargava and Calabresi, 2016;Del Boccio et al., 2016). 164 
 165 
Techniques to study brain WM in bulk have greatly shaped understanding of WM diseases, but we 166 
now have the technology to examine pathological changes at a single cell level, gaining even deeper 167 
and new insights into these diseases. 168 

3.3 How do single cell transcriptomic techniques work? 169 

Single cell RNA sequencing (scRNA-seq) is a novel technology using the same principle of capturing 170 
and sequencing mRNAs in bulk approaches within a tissue, however with the improvement that 171 
individual mRNAs can be associated with each cell of origin. This is particularly important for brain 172 
pathologies, where not all cell types are equally affected, for example in MS, where oligodendroglia 173 
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are primarily lost. Although scRNA-seq is a relatively young technology – the first paper was published 174 
in 2009 (Tang et al., 2009) - many different commercial techniques are already on the market and new 175 
ones are emerging at a rapid speed (Svensson et al., 2018;Chen et al., 2019), possibly faster than the 176 
publication of this review. Whilst all of them aim to give a snapshot of the transcriptome of individual 177 
cells, they are quite different in the technology achieving this. All of them have their advantages and 178 
disadvantages depending on the specific scientific question to be answered, so choosing the right 179 
technique is an important step in the experimental design. For this, we should consider the number of 180 
cells available, the capture efficiency, transcriptome coverage and cost per cell. Several reviews have 181 
summarized and compared single cell RNA-seq technologies (Haque et al., 2017;Picelli, 182 
2017;Svensson et al., 2018;Chen et al., 2019). Despite the high number of technologies, from an 183 
experimental point of view, there are two approaches: studying a high number of cells at a lower 184 
resolution (up to tens of thousands of cells) or studying a low number of cells (generally <1000 cells) 185 
at a higher resolution.  186 
The first approach generally uses droplet-based technologies (Macosko et al., 2015;Zheng et al., 2017), 187 
whilst the second approach mainly uses well- or device-based technologies (Fig. 2A,B) to capture 188 
single cells (Picelli et al., 2014;Hagemann-Jensen et al., 2020) . Droplet-based methods use unique 189 
molecular identifiers (UMIs) and/or barcodes to label individual cells and mRNAs during the initial 190 
steps, so that the library preparation can be performed in bulk, rather than creating individual libraries 191 
in wells. As the droplet-based methods are aimed for high throughput, the costs per cell are much 192 
cheaper in comparison to well-based technologies. Also with this barcoding approach, copy numbers 193 
of mRNAs within a cell can at least in theory directly be measured, without the need of using additional 194 
standards such as External RNA Control Consortium (ERCC) spike-ins (Baker et al., 2005). In order 195 
to keep the sequencing costs at a realistic level, usually only the 3’ or the 5’ ends of the mRNA are 196 
amplified and sequenced, which only allows information of whether a gene is expressed or not, with a 197 
limited ability to examine splicing variants or SNPs. Conversely, with well- or device-based 198 
approaches, it allows study of splice variants of genes, but the cost per cell is higher.  199 
Sometimes, a combination of both techniques might be useful. Using unbiased droplet-based 200 
techniques to look at the entirety of cells in a tissue of interest helps to get an overview of all cells, 201 
including rare cell populations, and to find appropriate markers for these. This is especially useful in 202 
understudied tissues such as the human brain, as established markers for rodent cells are not always 203 
appropriate in humans. Cell populations of further interest, including rare populations or 204 
subpopulations can then be studied at a deeper resolution using a full-length sequencing approach, after 205 
isolation or enrichment using the previously identified markers. 206 
Currently, scRNA-seq experiments are cutting-edge and popular, generating much data and new 207 
hypotheses about the heterogeneity of cell function in all tissues with high impact publications. 208 
However, it is essential to validate these data and to keep the research question in mind, as sometimes 209 
a more classical approach will lead to an answer quicker, in an easier and cheaper way. Although bulk 210 
approaches seem to be outdated at the moment, these technologies have also improved and are still 211 
important tools in studying human pathologies. 212 

3.4 What are the challenges and drawbacks of performing human single cell RNA-seq? 213 

All of these single cell technologies were originally developed for cultured cells or rodent tissue, whilst 214 
their application to human tissue has only started to boom in recent years. Besides ethical constraints 215 
and the limited availability of human tissue (control equally as pathological tissue), there are more 216 
technical challenges that delayed the revolution in this field. Single cell technologies were developed 217 
for viable single cell suspensions, which is often not possible in WM pathologies, where most tissue is 218 
obtained post-mortem and not during biopsies. Hence, cell viability and tissue quality is often already 219 
below the accepted threshold to perform the experiments once the tissue arrives in the hands of the 220 
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researcher. By this time, surviving cells may be highly selected and their transcriptome likely to have 221 
changed dramatically, with degraded RNA resulting in bad data quality and lower biological meaning. 222 
Moreover, in order to reduce confounding factors, all samples should be run ideally together or at least 223 
in as small a number of batches as possible (Hicks et al., 2017), which is impossible when using fresh 224 
biopsy or autopsy material, as individual tissue samples are sometimes only available months apart. 225 
For these reasons, most research so far in human brain have used single nuclei (sn) RNAseq using the 226 
same technologies from archived and frozen tissue samples instead of fresh viable cells. On comparing 227 
cells versus nuclei, there is now the general consensus that although nuclei generally yield a lower 228 
number of reads, they can add useful information on the biology. This tissue source may even protect 229 
from immediate changes in the transcriptome resulting from cell stress during cell isolation and the 230 
proportional representation of the in-vivo situation may be more preserved, as during a live isolation, 231 
vulnerable cells are more likely to die resulting in their underrepresentation (Bakken et al., 2018;Wu 232 
et al., 2019). However, a new study suggested that using nuclei is not always a good alternative, as 233 
only highly abundant transcripts are detected and the more subtle changes related to the activation state 234 
of human microglia could not be distinguished (Thrupp et al., 2020).  To get a clear picture of the 235 
advantages and disadvantages of using nuclei or cells, more comparative work using the same tissues, 236 
experimental setups and sequencing depth will be helpful. However, given the high number of 237 
publications, it is already clear that snRNA-seq is an important tool to resolve biological questions, 238 
especially for human pathologies when no other tissue source is available. 239 
More generally, once the decision has been made to use cells or nuclei, other challenges arise. Although 240 
at first sight, plentiful rich data is a clear advantage, it can also lead to data overload, that nobody 241 
knows what to do with. Especially with droplet-based technologies, individual sc/snRNA-seq 242 
experiments generate so many data points that research groups may only process a small part of it: for 243 
example, the experimental design might include all unselected nuclei, however, only a certain cell-type 244 
may be analysed. Here is where open access sharing of these data is essential, allowing other groups 245 
to use these data to address their own research questions and save a lot of time. This also allows for 246 
some mitigation of expense, as the rapid development of these technologies comes at high cost. 247 
Although these techniques are becoming cheaper, the costs of commercial kits are still high and the 248 
cost per cell must be considered in the experimental plan. Homemade technologies are inevitably 249 
cheaper, but require knowledge and time to set up and may not be as robust and comparable between 250 
research labs as commercial ones. The costs for the sequencing should not be forgotten, which often 251 
equal the cost of the cell capture and cDNA library preparation. The depth of the experimental analysis 252 
obtained depends on the depth of sequencing.  253 
A major limitation of sc/snRNA-seq is the the number of transcripts that can be detected within a cell. 254 
Although the captured transcripts are often treated as representing the entirety of the transcriptome, in 255 
reality only about 5-20% of the transcripts are captured depending on the method, leaving about 80% 256 
of the biology undiscovered (Islam et al., 2014;Ding et al., 2020). These missing transcripts are usually 257 
ones with a low abundance that may represent more subtle changes between cell states. A recent 258 
advance is the development of a full-length sequencing method that reaches a significantly deeper 259 
transcriptome coverage per cell and thus results in a clearer separation of clusters (Hagemann-Jensen 260 
et al., 2020), but unfortunately, this method is not yet suitable for high throughput. Another limitation 261 
of these technologies comes from the way in which RNA is captured. Most methods use oligos to 262 
capture polyadenylated mRNA only and especially droplet-based methods, additionally only use 3’ 263 
amplification. Few technologies have been developed to amplify the 5’ end of the RNA, however the 264 
libraries are also prepared with the polyA-tail, still only accounting for the same type of RNA 265 
(Svensson et al., 2018;Chen et al., 2019). Other forms of biologically interesting RNAs, such as many 266 
microRNAs are not identifiable using this capture method and detection of splicing variants of genes 267 
is more limited (unless using full-length sequencing).  268 
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Once the sequencing data are generated, data storage is another often unconsidered problem. As 269 
datasets become bigger, in terms of sample number, cell number and sequencing depth, the output data 270 
files become bigger and too large to be stored on a standard computer, instead requiring big data servers 271 
or cloud storage, which come at a further cost. Data handling capacity challenges go hand in hand with 272 
increasing data size and depth, and analysis of these datasets generally requires a high-end workstation 273 
or, better, access to a computational cluster with the respective expertise. Associated with the fast 274 
development of scRNA-seq technologies, there is a large expansion in the available tools for data 275 
analysis, which are evolving all of the time and are generally open source and therefore free. This can 276 
gives a bewildering variety of options of how to analyse the dataset. The challenge here is to find the 277 
right tool that is suitable for the data of interest, as not all available tools are. Helpful comparisons have 278 
emerged, for example in an overview of 45 current tools to calculate pseudotime trajectories (Saelens 279 
et al., 2019), as not all of them are equally suited for every dataset. Another example would be the 280 
availability of different clustering methods, with Seurat (Satija et al., 2015), Monocle (Trapnell et al., 281 
2014) and Conos (Barkas et al., 2019) as highly used examples. Each of them uses a different algorithm 282 
and clustering approach, as outlined in (Duò et al., 2018) and might thus result in different final clusters 283 
of which all may be valid. These are only examples, but every step in the experimental and the analysis 284 
part has many options. One study outlined this problem and showed that using only a minimum of 285 
options in different steps and combining it in a different way already results in ~3000 different pipelines 286 
for analysis (Vieth et al., 2019). This field is as experimental as wet lab work, and it may be useful to 287 
use several analysis tools purporting to do the same thing on one dataset, in order to determine how 288 
robust the analysis is. However, ultimately, the only way to discover if the analysis is correct is to 289 
validate the results using other methods. 290 

3.5 What have we learnt about WM pathologies using single cell/nuclei transcriptomic 291 
approaches? 292 

Pioneering scRNA-seq analysis in rodent brain tissue clearly showed detection of all brain cells that 293 
were distinguishable by specific markers (Zeisel et al., 2015). Of interest to MS, a key study in mouse 294 
oligodendrocytes (Marques et al., 2016) first used scRNA-seq to report their heterogeneity suggesting 295 
different inherent functions of oligodendrocytes not only between the brain and the spinal cord, but 296 
even in the same region of the brain. The first studies using snRNA-seq on normal human brain tissue 297 
were proof of principle that this method was suitable in such a tissue and that there is cellular and 298 
regional heterogeneity (Habib et al., 2017;Lake et al., 2018) and were the starting point of many 299 
following studies. Not surprisingly, it did not take long before this technology was used to study brain 300 
pathologies including MS (Fig. 4). 301 

With this hitherto unreached resolution, cellular heterogeneity in MS tissue was demonstrated in 302 
oligodendrocytes, neurons, microglia and astrocytes (Jakel et al., 2019;Masuda et al., 2019;Schirmer 303 
et al., 2019;Wheeler et al., 2020) with disease-specific cell types or different heterogeneous states 304 
present in different proportions in MS compared to controls. In their study, Jakel et al. (2019) found 305 
heterogeneous oligodendroglial states in non-pathological brain tissue and contrary to the current idea 306 
that all oligodendrocytes in MS lesions are equally vulnerable, reported that some of these states were 307 
over- and some underrepresented. Although the functional role of this cellular heterogeneity is not yet 308 
clear, this skew in the proportions of different oligodendrocyte states seen in MS was present in both 309 
NAWM and in MS lesions, again adding to the evidence that NAWM is indeed not normal, as 310 
previously shown for microglia (van der Poel et al., 2019). Furthermore, these data were able to identify 311 
a small population of previously unknown oligodendroglia with immunological functions (Falcao et 312 
al., 2018;Jakel et al., 2019) which may influence disease pathogenesis as it suggests that 313 
oligodendrocytes may be an active player in the disease as well as a vulnerable target. This is of 314 
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importance, as therapeutic approaches simply aiming to increase differentiation of oligodendrocytes to 315 
improve remyelination may need to be reconsidered, as replacing the ‘correct’ type may be preferred. 316 
Another study using a similar approach to address the cellular composition of MS lesions found 317 
specific signatures for stressed oligodendrocytes, reactive astrocytes and activated microglia, 318 
especially at the rim of demyelinated lesions. As this study also included cortical grey matter tissue, 319 
the authors reported a selective loss of CUX2-expressing upper layer excitatory projection neurons in 320 
the grey matter both in demyelinated and partially remyelinated lesions (Schirmer et al., 2019). In line 321 
with the previous study, they also found that some stressed oligodendrocytes seem to be capable of 322 
antigen presentation. This again confirms that damage does not affect all cells equally and that there is 323 
still a large gap of knowledge about disease mechanisms in MS. These studies are mostly descriptive, 324 
but a recent study in zebrafish has demonstrated that two distinct subgroups of oligodendrocyte 325 
precursor cells (OPCs) identified by scRNA-seq are confirmed to be functionally distinct with one 326 
primarily making networks and the other primarily differentiating into oligodendrocytes to make 327 
myelin (Marisca et al., 2020). Although this study was performed on normal zebrafish, this may also 328 
be important as if this is similar in humans, it may again force us to rethink our therapeutic 329 
remyelination strategies in MS, aiming to stimulate differentiating OPCs selectively. With a focus on 330 
microglia, Masuda et al. (2019) described microglial heterogeneity for the first time in non-331 
pathological human brain and additionally found clusters of disease-related microglia in MS patients 332 
that were similar to rodent animal models of MS, but with a high inter-personal variability. A very 333 
recent study has directed its focus on astrocytes in MS showing that astrocytes in mice and human are 334 
also heterogeneous. The authors found a clear MS-associated astrocyte cluster actively promoting CNS 335 
inflammation by the regulation of gene expression (Wheeler et al., 2020).  336 

These technologies have also reached other human brain pathologies such as Alzheimer’s disease (AD) 337 
(Grubman et al., 2019;Mathys et al., 2019;Zhou et al., 2020), Huntington’s disease (Al-Dalahmah et 338 
al., 2020) and other psychiatric disorders (Renthal et al., 2018;Velmeshev et al., 2019;Nagy et al., 339 
2020). Although AD is usually considered a neuronal disease mostly of the GM, it has been surprisingly 340 
found that oligodendrocytes in the WM do show a significant transcriptional change in the disease 341 
apparently adapting their metabolism to neuronal degeneration (Mathys et al., 2019;Zhou et al., 2020). 342 
OPCs also seem involved, as in AD, OPCs repress apolipoprotein E (APOE), which is a genetic risk 343 
factor for this disease, strengthening the hypothesis that oligodendroglia actively contribute to 344 
pathogenesis (Grubman et al., 2019). This study used the known AD risk genes to study how these 345 
contribute to disease in a cell-specific manner, as a relevant strategy to focus the analysis of the wealth 346 
of data. Another recent study found that besides neurons, OPCs are majorly disturbed in major 347 
depressive disorder and this seemed to be coupled with their interaction with neurons rather than their 348 
ability to differentiate and myelinate (Nagy et al., 2020), which demonstrated that using this technology 349 
is important to disentangle the functions of subsets of cells. Most importantly, these new studies have 350 
started to shed new light on neurodegenerative and psychiatric diseases, moving away from a 351 
neurocentric view of these diseases with new recognition of the importance of glial cells in their 352 
pathogenesis - a shift in the research landscape. 353 

3.6 What other techniques can we use to complement the sc/snRNAseq approach? 354 

RNA-seq at a single cell/nuclei level is only the start, with the fast development of other single cell 355 
resolution technologies, including epigenetic methods. Assay for Transposase-Accessible Chromatin 356 
using sequencing (ATAC-seq) has already long been used to assess the bulk chromatin accessibility 357 
and the chromatin signature of cellular DNA (Buenrostro et al., 2013) including the human brain in 358 
health and disease (Corces et al., 2017;Bryois et al., 2018;Fullard et al., 2018), but can now also be 359 
done at the single cell/nuclear level (Fig. 2C). This adds information about transcriptional regulation 360 
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of different cell types and has already widely been used on rodent (Preissl et al., 2018;Sinnamon et al., 361 
2019), but also on human brain tissue (Zhong et al., 2020). A very recent study used this method to 362 
identify new single nucleotide polymorphisms (SNPs) with a more functional annotation than 363 
classically found with GWAS and found new risk-factors for Parkinson’s and Alzheimer’s disease 364 
(Corces et al., 2020). Bioinformatics tools are emerging to integrate scRNA-seq with scATAC-seq data 365 
in order to get a deeper understanding of the transcriptional and genomic landscape within one 366 
individual cell. Further explorations of the epigenomic landscape at a single cell level include DNA 367 
methylation profiling to detect methylation marks identifying regulatory programmes in different cell 368 
populations (summarized in (Fiers et al., 2018)). It is already possible to detect epigenetic marks and 369 
gene expression in the same cell, not only bioinformatically but also experimentally, as shown with the 370 
sc-GEM (single cell analysis of genotype, expression and methylation) assay on cultured human 371 
fibroblasts (Cheow et al., 2016) and its use on human tissue would be another highly valuable method 372 
to understand its pathology. 373 
Clearly, single cell DNA/RNA changes can imply function but protein detection adds a further level 374 
of information to determine a cell’s behaviour. Single cell technologies have also entered the protein 375 
field with Cytometry by time of flight (CyTOF), although this is not yet unbiased but requires a 376 
selection of markers of interest. This method uses metal-labelled antibodies to detect cellular antigens 377 
that are then analysed by mass cytometry. This approach is similar to classical Fluorescence-activated 378 
cell sorting (FACS), but with a broader separation of metals which overcomes the limit of the overlap 379 
of fluorophores and allows the use of around 40 antibodies together (up to 100 when considering 380 
isotopes as well). With a bioinformatics analysis approach, high numbers of single cells can be 381 
thoroughly profiled. This approach has been used to characterize a change in the populations of 382 
peripheral immune cells of MS patients (Bottcher et al., 2019a) as well as to characterize multiple 383 
different region-dependent populations of microglia in human brain that are clearly distinguishable 384 
from peripheral cells (Bottcher et al., 2019b). CyTOF can also directly be applied to histological tissue 385 
sections – called imaging mass cytometry – and can be used to profile individual cells whilst 386 
maintaining the spatial information. Although still a fledgling technique at the spatial level, this has 387 
already successfully been applied in MS brain tissue to characterize astrocytes and peripheral cells in 388 
MS lesions (Park et al., 2019) and to characterize the immune cell landscape within different lesions 389 
from an individual MS patient (Ramaglia et al., 2019).  390 
For a disease such as MS, spatial information is clearly very important, due to the focal nature of 391 
demyelinated lesions, but there may also be pathological changes in more restricted areas in other 392 
neurodegenerative pathologies as well, e.g. in AD. Although not yet at a single cell resolution, spatial 393 
transcriptomics technologies aim to capture the whole transcriptome of each of very small areas of a 394 
tissue section in an unbiased way in combination with histological analysis (Stahl et al., 2016). Using 395 
the same principle of capturing and barcoding mRNA as droplet-based methods, this technology allows 396 
location of the origin of an individual mRNA to a defined spot on a predefined grid on which the tissue 397 
has been placed, thus maintaining the spatial information. This technology is already being used on 398 
human tissue (Maynard et al., 2020), and with an earlier version in ALS (Gregory et al., 2020). With 399 
the clear advantage of capturing the transcriptome at a high resolution whilst maintaining spatial 400 
information, spatial transcriptomics technologies are clearly at the forefront of development and may 401 
in the future be more widely used than current sc/snRNA-seq technologies. They are either based on 402 
sequencing the transcripts in situ after having been barcoded (Ke et al., 2013;Lee et al., 2014;Wang et 403 
al., 2018;Gregory et al., 2020;Lundin et al., 2020;Maynard et al., 2020), or use highly multiplexed 404 
single molecular fluorescent in situ hybridisation probes detectable using confocal microscopy (Lubeck 405 
et al., 2014;Shah et al., 2016). The current limitation of sequencing-based methods is the low detection 406 
of transcripts. Multiplexed in situ methods on the other hand are restricted by the number of probes 407 
(hundreds to thousands) due to the limited availability of fluorophores and optical resolution of 408 
individual molecules, making them less suitable for an unbiased discovery-driven research approach. 409 
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However, recent developments have combined the methods, using sequential hybridisation with in situ 410 
sequencing to theoretically cover the whole transcriptome with only few fluorophores (Shah et al., 411 
2016;Eng et al., 2019). As a result, a higher number of transcripts per cell can be detected. Although 412 
these methods have not yet been implemented on human brain tissue, which will be challenging due to 413 
its high autofluorescence, this high resolution of individual mRNAs will not only allow the localization 414 
of cells within a tissue, but also will allow study of the subcellular localization of mRNAs, clear 415 
advantages in comparison to scRNA-seq methods. Unfortunately, these methods do only work well on 416 
thin tissue sections, limiting the information we gain from a three-dimensional point of view. 417 
Sequencing-driven spatial methods in particular are still expensive and are thus tend to be performed 418 
on small tissue pieces with few sections from an individual, which may introduce some bias to the 419 
biological findings. 420 
Validation of results, preferably on a separate cohort of tissue, is essential by classical 421 
immunohistochemistry/fluorescence and in situ hybridisation, and/or these burgeoning multiplexing 422 
technologies, mentioned above. These have allowed spatially detection of 100 different transcripts by 423 
in situ sequencing (Lundin et al., 2020) or around 100 proteins and 1000 genes using oligonucleotide 424 
labelling in a tissue section (Geiss et al., 2008;Kulkarni, 2011). Although imaging mass cytometry is 425 
usually used to characterize novel cell populations, it can clearly serve as a validation method for 426 
transcriptomic data as well. These require analysis tools to distinguish signals in different cells, but 427 
appear very useful and are likely to become standard to address human pathologies in the future. 428 

3.7 What does the future hold? 429 

The outputs of all of these technologies applied to human white matter pathologies are still no more 430 
than descriptive pathology – although on a much deeper level than was ever possible before and at least 431 
implying function. This work however, is just the start of a new era of single cell resolution techniques 432 
that will revolutionize human pathology and will most likely become a standard technology for 433 
pathological assessment. The richness of these data will allow us to take the next step, which is to 434 
address more functional changes to gain a deeper understanding of the diseases. For example, snRNA-435 
seq will allow us to study transcriptomic changes in a high numbers of cells in many different types of 436 
MS lesions which then may allow us to reclassify them on a functional level, namely their regenerative 437 
potential rather than using the classical degenerative description. Moreover, these data may allow us 438 
to determine lesion markers that can be used for PET-imaging and will thus be an invaluable tool for 439 
disease diagnosis, prognosis and response to therapies. Furthermore, as most of the data are gained in 440 
a similar way and deposited with its metadata on open-source databases, it is then easier to compare 441 
many brain regions (such as WM and GM, or brain and spinal cord) or diseases with each other, to 442 
gain a much clearer picture of the cellular architecture of our brain. The Human Cell Atlas is a 443 
collaborative effort to exactly achieve this aim (https://www.humancellatlas.org/) not only for the 444 
brain, but for the entire human body. 445 

So far, most of these technologies are used individually by different groups but in the future, 446 
complimentary but different technologies will be used in the same experimental setup, and their outputs 447 
integrated, as recently shown from the Allen Brain Institute (Bakken et al., 2020). Maybe in ten years 448 
from now it will be possible to look at the transcriptome, the epigenome, the proteome and the 449 
metabolome on a single cell level from the same tissue source at once, as suggested in Fig. 3. Attempts 450 
to achieve this have already been made in recent preprint manuscripts where the authors were able to 451 
simultaneously study either proteins and mRNA (Vistain et al., 2020) or chromatin accessibility and 452 
gene expression (Ma et al., 2020) in single cells. This will allow us to look at the same data from many 453 
different perspectives to gain a deeper understanding of individual cells in health and disease and 454 
further explore pathological mechanism. The options here seem endless with money as the only limit! 455 
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4 Concluding remarks 456 

Analysis and understanding of human WM pathologies has come a long way from being purely 457 
descriptive histological analysis to gaining cell type-specific information at a single-cell resolution 458 
(Fig. 4). This development goes hand in hand with the development of novel technologies, although 459 
their use in human tissue is inevitably more challenging than in animal models. We can now sequence 460 
the RNA of a cell, examine the state of the chromatin and it is likely that current proteomic tools will 461 
become more sensitive as well, which will allow us to explore the proteome of individual cells. 462 
Although all of these technologies have developed separately, we will need to link them together in 463 
order to see the full picture in the future. This will allow us to gain a deeper insight into human 464 
pathologies and will become important tools not only for basic science, but will also revolutionize 465 
diagnostics and may pave the way for developing new therapies. However, even though these 466 
technologies are developing at an exciting and rapid speed, it is important to retain a clear focus on the 467 
research question to be answered, to avoid distraction by an ocean of data and high costs, and to ensure 468 
that we advance biology. 469 
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 828 

10  Figure legends 829 

Figure 1: Schematic overview of the workflow of common bulk approaches to address human 830 
pathology. (A) Standard workflow of bulk RNA-sequencing: the entirety of mRNA/RNA is isolated 831 
from a tissue/cell type of interest and prepared for next generation sequencing, which is followed by 832 
bioinformatics data analysis. (B) Standard workflow of bulk proteomics: the entirety of proteins is 833 
isolated from a tissue/cell type of interest and prepared for mass spectrometry, which is followed by 834 
bioinformatics data analysis. (C) Standard workflow of bulk metabolomics: the entirety of metabolites 835 
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is isolated from a tissue/cell type of interest and prepared for mass spectrometry, which is followed by 836 
bioinformatics data analysis. In all approaches (A-C) the information about the cell of origin and the 837 
spatial distribution are lost. 838 

Figure 2: Schematic overview of the workflow of common single cell/nuclei (sc/sn) approaches to 839 
address human pathology. (A) Standard workflow of droplet-based sc/sn RNA-sequencing: tissue is 840 
dissociated into a single cell/nuclei suspension and the mRNA of each cell is captured and barcoded 841 
individually and prepared for next generation sequencing, which is followed by bioinformatics data 842 
analysis. This can be done for up to ten thousands of cells. (B) Standard workflow of well-based sc/sn 843 
RNA-sequencing: tissue is dissociated into a single cell/nuclei suspension and the cells are captured in 844 
individual wells where each cell is prepared for next generation sequencing, which is followed by 845 
bioinformatics data analysis. This is usually done for less than 1000 cells. (C) Standard workflow of 846 
droplet-based ATAC-seq: tissue is dissociated into a single cell/nuclei suspension and the open 847 
chromatin regions of each cell are cut and barcoded individually and prepared for next generation 848 
sequencing, which is followed by bioinformatics data analysis. This can be done for up to ten thousands 849 
of cells. In all approaches (A-C) the information about the cell of origin is maintained, but the spatial 850 
distribution is lost. 851 

Figure 3: Schematic overview of an imaginative holistic workflow of common single cell/nuclei 852 
(sc/sn) and validation approaches to address human pathology. Tissue is dissociated into a single 853 
cell/nuclei suspension and sc/snRNA-seq, sc/snATAC-seq, scCyTOF, scProteomics and 854 
scMetabolimics are performed in parallel on the same tissue source with their respective workflows. 855 
After individual and comparative/integrated bioinformatics data analysis, the results are validated, 856 
ideally on a different tissue source by standard immunohistochemistry (IHC), in-situ hybridization 857 
(ISH) and other high throughput multiplexed techniques (100-1000 genes/proteins of interest) where 858 
IHC and ISH can be combined. With such a possible workflow, first the information about the cell of 859 
origin is maintained, and with the validation techniques, the spatial resolution can be analyzed as well. 860 
This holistic approach would allow to thoroughly exploring human pathology from different angles to 861 
gain deeper information. 862 

Figure 4: Summary of the biological findings in Multiple Sclerosis (MS) that were gained through 863 
advances in technology. Classical histology has helped to classify MS lesions based on their 864 
immunological status. The development of bulk transcriptomic approaches has helped to unravel many 865 
transcriptional pathways that are changed in MS, with the most important common theme being 866 
inflammation. More recent studies using sc/snRNA-seq has started to unravel cellular heterogeneity 867 
and changes in the representation of these cells in disease. Combining different sc/sn approaches and 868 
using spatial technologies in the future will help to deepen our understanding of the functionality of 869 
the heterogeneous clusters and the underlying pathological mechanisms. 870 
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