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Abstract 19 
Apart from its global health importance, measles is a paradigm for low-dimensional mechanistic 20 
understanding of local nonlinear population interactions. A central question for spatio-temporal 21 
dynamics is the relative role of hierarchical spread from large cities to small towns and 22 
‘metapopulation’ transmission among local small population clusters in measles persistence.  23 
Quantifying this balance is critical to planning regional elimination and global eradication of 24 
measles. Yet, current gravity models do not allow a formal comparison of hierarchical versus 25 
metapopulation spread. We address this gap with a competing-risks framework, capturing the 26 
relative importance of competing sources of reintroductions of infection. We apply the method to 27 
the uniquely spatio-temporally detailed urban incidence data set for measles in England and 28 
Wales (available in the Supporting Materials), from 1944 to the infection’s vaccine-induced nadir 29 
in the 1990s. We find that despite the regional influence of a few large cities (e.g. London and 30 
Liverpool) metapopulation aggregation in neighboring towns and cities plays an important role 31 
in driving national dynamics in the prevaccination era. As vaccination levels increased in the 32 
1970s and 80s, the signature of spatially predictable spread diminished: increasingly, infection 33 
was introduced from unidentifiable random sources possibly outside regional 34 
metapopulations. The resulting erratic dynamics highlight the challenges of identifying shifting 35 
sources of infection and characterizing patterns of incidence in times of high vaccination 36 
coverage. More broadly, the underlying incidence and demographic data, accompanying this 37 
paper, will also provide a significant resource for exploring nonlinear spatiotemporal population 38 
dynamics.   39 
 40 
Introduction 41 
The widespread use of an effective vaccine since the mid 1960s has greatly reduced the global 42 
circulation of measles. However, the virus continues to be a major cause of death among young 43 
children in sub Saharan Africa 1,21. Even in many countries with previously effective control, the recent 44 
re-emergence of measles, often fueled by vaccine hesitancy, further confirms measles as a significant 45 
public health problem globally 2,3. A simple natural history of infection, and reliable and detailed case 46 
notification across an array of settings 4,5, also makes measles one of the best-documented 47 
spatiotemporal disease systems, in particular, and ecological consumer-resource model system more 48 



generally 6,7. However, significant gaps still exist in our understanding of measles spread; we address 49 
these lacunae here. 50 
 51 
Measles dynamics before and since the introduction of mass-vaccination are particularly richly 52 
documented by historical notifications in England and Wales (E&W; Figure S1 and data in Supporting 53 
Materials A and E). Before widespread vaccination, measles epidemics in E&W (and many developed 54 
countries) were characterized by highly seasonal periodic (often biennial) cycles in large cities and 55 
erratic outbreaks driven by extinction-recolonization processes in smaller places (Figure S1a) 4,8. The 56 
Critical Community Size (CCS) of about 300,000 people for measles in pre-vaccination E&W is the 57 
empirically identified threshold required for sustained local chains of infection 9. In 1960, roughly 16% 58 
of the population of England and Wales inhabited 10 big cities above the CCS. Previous studies have 59 
identified these as the pacemakers for regional dynamics 4,8. The remaining 84% of the population 60 
were subdivided among more than 1,000 smaller conurbations and rural areas, with more irregular 61 
dynamics. Since its introduction in 1968, vaccination has significantly reduced the magnitude and 62 
regularity of epidemics throughout the regional hierarchy 10 (Figure S1a). This trend is accompanied 63 
by a decline in local persistence (Figure S1(b)), which was especially marked as vaccination rates 64 
increased in the 1980s and regional dynamics became increasingly decorrelated 4,10.  65 
 66 
At the scale of the metapopulation (here, defined by cities and towns), measles persistence depends on 67 
reintroduction of infection following extinction in local small communities. Previous work has stressed 68 
the role of hierarchical ‘core-satellite’ spread from large to small conurbations in the pre-vaccination 69 
era (Figure 1a), as a particularly clear exemplar of forest-fire-like extinction-recolonization dynamics 70 
11,12. This hypothesis is supported by a wavelet phase analysis which reveals spatial waves travelling 71 
from core cities (in particular, London and the industrial north-west) to smaller, more peripheral 72 
satellite towns and villages (4). However, a deeper understanding of how and to what extent these large 73 
cities and other ‘competitor’ infective sources drive the overall disease dynamics is still lacking, 74 
particularly as regards the role of local aggregation of communities below the CCS in regional 75 
metapopulations, a mechanism hereafter referred to as local metapopulation persistence (LMP) (Figure 76 
1b).  77 
 78 
The central challenge is to model spatial coupling in a more general sense, to quantify metapopulation 79 
synchrony across variable vaccination rates. Inspired by transportation theory 13, Murray and Cliff 14 80 
first proposed that such interactions may be captured by gravity models. This formulation assumes that 81 
movement among locales decays with distance but increases in a generalized, bilinear fashion with 82 
‘donor’ and ‘recipient’ population sizes. Gravity models and their extensions have provided useful 83 
insights into the spatial interactions of many human and non-human disease systems and facilitated 84 
disease predictions and explorations of control 8,15,16. However, in the absence of independent 85 
covariates describing human movement (a particularly thorny issue for childhood infections like 86 
measles, as historical movement data on children are sparse), model inference - in particular, 87 
simultaneous inference of epidemic trajectories and spatial coupling- is notoriously difficult; 88 
researchers have thus resorted to less interpretable non-mechanistic approaches (e.g., performing 89 
approximation using Gaussian processes) 8,17,18. While they capture a partial picture of measles 90 
dynamics, these methods notably do not allow for a direct quantification of spatial coupling and 91 
systematic titration of the relative importance of different sources of reintroduction of infection. We 92 
address this gap by formulating a semi-mechanistic Absence-Presence-Absence model in a competing-93 
risks framework which focuses explicitly on modelling the reintroduction of infections that are 94 



characteristic of small populations (see Methods and Figure 1c). Our approach enables a direct 95 
quantification of spatial coupling and allows us to further titrate the relative importance of different 96 
sources (e.g. LMP versus core-satellite) of reintroduction (i.e., a competing-risks framework19). 97 
 98 
We use this model in tandem with the exhaustive data set of measles incidence across E&W to dissect 99 
and quantify the importance of competing sources of reintroductions of infection in pre-vaccination 100 
era. We further identify the changing roles of regional gravity coupling and geographically erratic 101 
dynamics in seeding epidemics as mass vaccination was rolled out from the late 1960s onwards. 102 
 103 
 104 
 105 
Results 106 
Regional dynamics pre-vaccination 107 
Pre-vaccination epidemics in cities above the CCS were largely self-sustaining and insensitive to 108 
transient imported infections due to spatial coupling 8,20; also, extinctions and reintroductions in these 109 
larger populations are by definition uncommon. To quantify spatial coupling, we therefore focus our 110 
analysis on the timings of epidemics in all populations well below the CCS (872 places; N<100,000), 111 
whose dynamics should carry a robust signal of coupling.  112 
 113 
We fit the semi-mechanistic Absence-Presence-Absence model (see Methods) to biweekly incidence 114 
data during the pre-vaccination era (1944-1964) in England and Wales (E&W), from the 872 smallest 115 
towns and cities (comprising 93% of all locations). The other 82 cities (N>100,000) inform the 116 
analysis as additional donors of infection. Using the estimated model, we forward simulate the timings 117 
of reintroductions and extinctions of each of the places. We compare observed and simulated data, 118 
based on six key aspects of measles dynamics. Figure 2 shows that our estimated model accurately 119 
captures all these key aspects of dynamics. We tested the overall inferential framework by assessing 120 
performance on simulated data from a detailed metapopulation gravity model 8 (see Supporting 121 
Materials C).  122 
 123 
 124 
 125 
 126 
 127 
Importance of Core-satellite, LMP and Random Seeding 128 
We calculate the relative risk of reintroduction between aggregate (‘predictable’) inter-population 129 
gravity-driven coupling (i.e. core-satellite plus LMP) versus unidentifiable random seeding (i.e. any 130 
sources of reintroductions that are not captured explicitly by the gravitational components of our model 131 
structure) for each location (see Figure 1a-b). Note that, since reintroductions are defined to only occur 132 
during local extinctions (Figure 1c), local dynamics may contribute insignificantly to any 133 
unidentifiable seeding in our context. Figure 3a shows the aggregate distribution across E&W for the 134 
entire pre-vaccination time-series, suggesting that about 90% of the introductions can be accounted for 135 
by gravity coupling in this era. To get a more spatially-resolved picture we use local indicators of 136 
spatial association (LISA21), capturing the relative importance of ‘predictable’ versus random spread. 137 
The LISA analysis shows that random spread is significantly more important in ‘peripheral’ areas 138 
(Cornwall, mid- and North Wales and East Anglia) compared to the rest of E&W (Figure 3b); isolated 139 
coastal areas feature especially in this group 22. Despite the relative importance of erratic dynamics in 140 



the periphery compared to the rest of E&W, gravity-driven dynamics, absolutely speaking, remain 141 
dominant in these regions in the pre-vaccination era. Norwich and its environs, which became out of 142 
phase with the overall national trend during the 1950s, exhibiting even-year major epidemics  , also 143 
appear as an outlier in terms of inferred metapopulation coupling. 144 
 145 
The estimated model allows sampling of the source of infection for each reintroduction (see Methods 146 
and Supporting Materials BII). We can therefore quantify the relative importance for each recipient 147 
community of each of the core cities, conditional on the sampled reintroductions of infections at each 148 
recipient community due to gravity coupling. Figure 3c shows the most influential donor city (among 149 
major core cities and other places) for each location (i.e. the donor city that is responsible for the 150 
largest proportion of reintroductions). The prominent influence of London on smaller towns around its 151 
periphery is broadly consistent with the hierarchical waves discussed in 4. Furthermore, Figure 3c-d 152 
show that, apart from the impact of a few core cities, LMP is an important driver in triggering 153 
reintroduction with a median distance of transmission of 10.3 kilometers. The average distance to the 154 
nearest neighboring community in the data is 7.0 km (median: 5.3km, IQR: 3.1km, 9.6km). LMP thus 155 
roughly-speaking extends out to 2nd nearest neighbors in E&W’s spatial network.  156 
 157 
Gravity-driven versus Geographically Erratic Spread over the history of vaccination 158 
To investigate the changing roles of predictable gravity coupling (i.e. core-satellite plus LMP) and 159 
unidentifiable seeding following introduction of vaccination (Figure S1 and 1), we fit our model to 5-160 
year periods spanning the pre-vaccination era and the gradual increase in vaccination coverage during 161 
the 1970s and 80s. For consistent spatial comparison through time, we use the post-1974 data 162 
aggregation (354 locations) to correct for changes in boundaries between the 1940s and 1990s (see 163 
Supporting Materials A for our method of aggregating pre-vaccination data). To more explicitly 164 
measure the effect of unidentifiable sources relative to spatially predictable spread, we allow for 165 
different unidentifiable seeding parameters during different periods (see Methods and Supporting 166 
Materials B). Figure 4a depicts the location-wise distribution of risk due to spatially predictable and 167 
unidentifiable random seeding. It shows that the strength of gravity coupling diminished gradually with 168 
increasing vaccine coverage, while unidentifiable random seeding played an increasingly and 169 
progressively dominant role. Increased vaccination drove an increase in the CCS (Figure S1) and an 170 
overall decline in gravity-driven spread (Figure 4b).  171 
 172 
The increase in spatially erratic spread is also associated with a decay in both local and regional spatial 173 
synchrony in the vaccine era 4 (Figure 4c). Prior to vaccination the regional synchrony, measured by a 174 
non-parametric spatial correlation function (ranges between 0 and 1, with 1 representing complete 175 
spatial synchrony) 24, across E&W was 0.35, with a local above-average correlation of 0.65 that 176 
extended to a distance of 125km. This collapsed to region-wide synchrony of 0.03 in the 90’s with an 177 
above-average local synchrony of 0.06 (Figure 4c). Importantly, the effective breakdown of the 178 
consumer-resource metapopulation could reinforce regional persistence through spatial transmission 179 
among asynchronous local epidemics; this could significantly hamper the likelihood of elimination, 180 
even at high vaccine uptake levels 25.  181 
 182 
 183 
Discussion 184 
Characterizing drivers of measles outbreaks has important public health implications, in terms of 185 
optimizing vaccine deployment to achieve regional, then global elimination of infection. Recurrent 186 



measles outbreaks also illuminate fundamental questions regarding nonlinear population dynamics. 187 
Our analysis of the full urban hierarchy of measles outbreaks over 50 years in E&W sheds new light on 188 
regional dynamics and the impact of vaccination on them. 189 
 190 
Inferring epidemiologically-relevant local and regional movement (mainly of children for pre-191 
vaccination measles), is a classic challenge in epidemiology. Here we extend the existing rich body of 192 
work by developing a metapopulation framework that allows us to titrate the relative importance of 193 
different sources of reintroduction of infection, in the absence of explicit movement data. Rooted in 194 
transportation theory 13, the gravity model has been modified and widely applied in epidemiological 195 
and ecological studies for understanding the spatial dynamics of populations. The gravity framework 196 
for measles developed by Xia et al. 8 provided important insights, leveraged in subsequent gravity-197 
themed models for measles 17 and other infections 14–16,18 . However, due to its over-parameterized 198 
formulation 17 (especially given the absence of explicit information on movement drivers; see 199 
Supporting Materials B), direct and accurate quantification of spatial coupling and titration of the 200 
importance of different sources of reintroduction are difficult 17. Building on previous work, we 201 
adapted the general concept of competing-risk frameworks19  and derived a patch-level Absence-202 
Presence-Absence model, which allows us to accurately capture the signal of spatial coupling and 203 
explicitly quantify the importance of different sources for reintroductions across multiple eras of 204 
transmission.  205 
 206 
Infective sparks of measles are conventionally assumed to spread from big cities like London to their 207 
nearby smaller conurbations, consistent with core-satellite dynamics. Our results give the most detailed 208 
quantification to date that local metapopulation persistence (LMP) is also important in the spatial 209 
dissemination and regional persistence of infection 26. LMP will be a critical challenge to tackle in 210 
designing control strategies for elimination. Our analysis also highlights that the vaccine-driven 211 
decorrelation of local epidemics is associated with a weakening of predictable gravity-driven spread 212 
and an increase in dominance of erratic reintroductions from unidentifiable origins (consistent with 213 
genetic evidence that international importations of infection has become more influential in the 214 
vaccination era 27,28). The transitions in spatial dynamics revealed in the unique E&W measles dataset 215 
illuminate how regional and global elimination of infection is critically influenced by the interaction 216 
between changing local nonlinear clockworks, aggregate spatial transmission rates and the resulting 217 
emergent spatiotemporal dynamics. Understanding these interactions is increasingly urgent in the face 218 
of secular declines in vaccination and re-establishment of measles endemism (seen post-1994 in the 219 
E&W29). 220 
 221 
As with any surveillance stream, our data set is subject to a number of approximations (see Supporting 222 
Materials A); however, we believe that our overall results are robust to these (see Supporting Materials 223 
A, B).  A generic problem for projecting historical dynamics to the future are secular changes in system 224 
parameters.  For measles, a particularly knotty example is behavior change: the large pre-vaccination 225 
era epidemics analyzed here did not drive any major change in behavior for disease-avoidance; in the 226 
present era, behavior change during epidemics (and hence modulation of transmission) is more 227 
likely30.  A powerful extension of historical analyses to allow for social and demographic variation in 228 
transmission would be the integration of epidemiological models with estimates of population 229 
susceptibility from periodic age-serological surveys 31. 230 
 231 



Notwithstanding these complexities, there is considerable further scope to leverage historical data sets, 232 
such as presented here, to illuminate a range of both specific public health and general nonlinear 233 
population dynamic questions 32. For example, digitization of the full E&W Registrar General and 234 
OPCS Weekly Reports back to 1855, of which the measles data presented here are a small part, would 235 
generate rich dynamical dividends on multiple important infections and questions. 236 
 237 
Methods 238 
Descriptive statistical methods. Standard methods (wavelets 4, non-parametric spatial correlation 24, 239 
LISA 21) are referenced in the text. All analyses were performed in R version 3.5.1. 240 
 241 
Competing risks framework with an Absence-Presence-Absence model.  The competing risks 242 
framework aims to quantify spatial coupling processes beyond existing methods 8,17,20. We do not 243 
model the local epidemic trajectories as considered in Xia et al. 8 (see Supporting Materials C for a 244 
simulation study with our framework). Our approach instead focuses on the local absence-presence-245 
absence (A-P-A) of infection via a Susceptible-Infected-Susceptible (SIS)-like patch-level model 33,34 246 
where a spatial infection event (i.e., transition from Absence (A) to Presence (P)) corresponds to a 247 
reintroduction and the transition from P to A corresponds to a local extinction event (Figure 1c). As 248 
reintroductions, defined to occur during local extinctions (Figure 1c), are mostly due to the effect of 249 
(external) spatial coupling instead of (internal) seedings of local dynamics, our approach enables a 250 
direct quantification of spatial coupling. The transition from P to A is governed by a waiting time 251 
distribution that depends on introduction and susceptible recruitment rates 18. Each location is 252 
classified as ‘Absent’ (and susceptible to reintroduction) in any given biweek if there were no cases of 253 
measles at the time or ‘Present’ if measles was reported (see Supporting Materials B). We embed our 254 
model within an explicit gravity network among all cities/towns. In particular, the force of 255 
reintroduction of infection exerted on a particular town/city j by a city/town k at time t is  256 ݌(݆, ݇, (ݐ = ߚ × ௞,௧ఈభܫ × ௝ܰ,௧ఈమ × 1݀௞,௝ఘ , 
 257 
where ݀௞,௝	  ௞,௧ and ௝ܰ,௧ are the distance between k and j, the number of measles cases in k and the 258ܫ ,
population in j at time t respectively. We also consider unidentifiable background (‘random’) sources 259 
of reintroduction of infection with rate ߬, capturing any sources of reintroductions that are not captured 260 
explicitly by the gravitational components of our model structure. We also formally capture the effect 261 
of local susceptibility by a parameter ߟ (see Supporting Materials B for details). Model parameters are 262 
inferred using Bayesian inference using either  noninformative or informative priors depending on data 263 
resolutions (Supporting Material B). Note that since reintroductions are defined to only occur during 264 
local extinctions (Figure 1c), local dynamics may only contribute insignificantly to any unidentifiable 265 
seeding in our context. A link to major code is included in the Supporting Material. 266 
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Figure 1: A schematic illustration of spatial dynamics and persistence of measles a) Core-satellite 363 
spread of measles. This represents a hierarchical spread of infection from a core city above the 364 
CCS to its nearby smaller towns/villages. b) Persistence of measles due to local aggregation of 365 
communities below the CCS in regional metapopulations (hereafter referred to as local 366 
metapopulation persistence, LMP). Core-satellite spread is effectively directional because back-367 
spill does not affect core dynamics while metapopulation spread is potentially bi-directional. c)  368 
Schematic illustration of the extinction-recurrent epidemic pattern typically observed in a small 369 
town/city. A reintroduction/recolonization time is the time a local epidemic is initiated and 370 
extinction time is when an epidemic ends in a local fade-out.  371 
 372 
Figure 2: Fit of the Absence-Presence-Absence model in the competing-risks framework from 373 
1944-1964. Predictive distributions of key aspects of measles dynamics: 1) the number of 374 
reintroductions, 2-3) the mean and the standard deviation of epidemic cycles (i.e. times, in the 375 
unit of biweek, between consecutive reintroductions) , 4) the number of biweeks with zero case 376 
reports, and 5-6) the mean and the standard deviation of epidemic durations (i.e. times between 377 
reintroduction and extinction, see also Figure 1c). Grey bands represent 95% credible intervals 378 
and black dots correspond to the observed data. Locations (cities or towns) are binned equally 379 
into 40 levels according to their average population size (x-axis shows the upper limit of each 380 
interval). 381 



 382 
Figure 3: Pre-vaccination regional dynamics of measles, inferred from the Absence-Presence-383 
Absence model in a competing-risks framework.  a) The crude global distribution of risk of 384 
reintroduction of infection due to spatially predictable (i.e. core-satellite plus LMP) versus 385 
unidentifiable random seeding. b) Spatial hotspot analysis using LISA (local indicators of spatial 386 
association)21,23 revealing the relative importance of unidentifiable erratic spread in peripheral 387 
areas. Filled red squares represent regions where the unidentifiable seeding is significantly 388 
important (at a nominal two-sided 5%-level) relative to the average for E&W; filled grey squares 389 
represent regions where gravity-driven patterns are significantly stronger. Geographical 390 
locations: Norwich (NOR), London (LON), Manchester (MAN), Liverpool (LIV), Swansea 391 
(SWA), Cardiff (CAR), Plymouth (PLY) and Truro (TRU). c) Relative importance of core cities. 392 
The most influential city, which has the largest proportion of reintroductions (indicated by 393 
bubble size) among all reintroductions in a recipient community due to hierarchical gravity 394 
coupling, is shown. An “other” city/town (a black dot) represents a place other than the 395 
considered core cities. d) The distribution of distance of spread from the most influential (non-396 
core) cities (black dots) in Figure 4c. The median distance of spread is 10.3 km with 95% C.I. 397 
[2.0, 72.5].  398 
 399 
 400 
Figure 4: Impact of vaccination on spatial spread of measles a) Location-wise risk distribution 401 
for small places over the course of vaccine introduction and measles control in 5-year windows.  402 
Size of a bubble indicates proportion of reintroductions due to the most impactful source of 403 
infection (Gravity or Unidentifiable Seeding). Unidentifiable seeding became more widespread 404 
(i.e. more black dots) and more prominent (i.e. larger sizes) with increasing vaccination cover. b) 405 
Crude global risk distribution among unidentifiable versus gravity-driven seedings. The red line 406 
represents average vaccination coverage. (c) Although we find high local and regional 407 
synchrony4, as calculated by a nonparametric spatial correlation function 24, of epidemics in the 408 
pre-vaccination era, asynchrony dominates during peak vaccination coverage as our model fails 409 
to identify the majority of importations.  410 
  411 	412 
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