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Association of Magnetoencephalographically Measured
High-Frequency Oscillations in Visual Cortex With Circuit Dysfunctions
in Local and Large-scale Networks During Emerging Psychosis
Tineke Grent-‘t-Jong, PhD; Ruchika Gajwani, PhD; Joachim Gross, PhD; Andrew I. Gumley, PhD; Rajeev Krishnadas, MD, PhD;
Stephen M. Lawrie, MD; Matthias Schwannauer, PhD; Frauke Schultze-Lutter, PhD; Peter J. Uhlhaas, PhD

IMPORTANCE Psychotic disorders are characterized by impairments in neural oscillations, but
the nature of the deficit, the trajectory across illness stages, and functional relevance remain
unclear.

OBJECTIVES To examine whether changes in spectral power, phase locking, and functional
connectivity in visual cortex are present during emerging psychosis and whether these
abnormalities are associated with clinical outcomes.

DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, participants meeting
clinical high-risk criteria for psychosis, participants with first-episode psychosis, participants
with affective disorders and substance abuse, and a group of control participants were
recruited. Participants underwent measurements with magnetoencephalography and
magnetic resonance imaging. Data analysis was carried out between 2018 and 2019.

MAIN OUTCOMES AND MEASURES Magnetoencephalographical activity was examined in the 1-
to 90-Hz frequency range in combination with source reconstruction during a visual grating
task. Event-related fields, power modulation, intertrial phase consistency, and connectivity
measures in visual and frontal cortices were associated with neuropsychological scores,
psychosocial functioning, and clinical symptoms as well as persistence of subthreshold
psychotic symptoms at 12 months.

RESULTS The study participants included those meeting clinical high-risk criteria for psychosis
(n = 119; mean [SD] age, 22 [4.4] years; 32 men), 26 patients with first-episode psychosis
(mean [SD] age, 24 [4.2] years; 16 men), 38 participants with affective disorders and
substance abuse (mean [SD] age, 23 [4.7] years; 11 men), and 49 control participants (mean
age [SD], 23 [3.6] years; 16 men). Clinical high-risk participants and patients with first-episode
psychosis were characterized by reduced phase consistency of β/γ-band oscillations in visual
cortex (d = 0.63/d = 0.93). Moreover, the first-episode psychosis group was also
characterized by reduced occipital γ-band power (d = 1.14) and altered visual cortex
connectivity (d = 0.74-0.84). Impaired fronto-occipital connectivity was present in both
clinical high-risk participants (d = 0.54) and patients with first-episode psychosis (d = 0.84).
Importantly, reductions in intertrial phase coherence predicted persistence of subthreshold
psychosis in clinical high-risk participants (receiver operating characteristic area under
curve = 0.728; 95% CI, 0.612-0.841; P = .001).

CONCLUSIONS AND RELEVANCE High-frequency oscillations are impaired in the visual cortex
during emerging psychosis and may be linked to behavioral and clinical impairments.
Impaired phase consistency of γ-band oscillations was also associated with the persistence of
subthreshold psychosis, suggesting that magnetoencephalographical measured neural
oscillations could constitute a biomarker for clinical staging of emerging psychosis.
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N eural oscillations are a crucial aspect of normal brain
functioning owing to their role in facilitating commu-
nication between neuronal populations,1 a process that

is closely linked to the integrity of sensory and cognitive
processes.2,3 There is emerging evidence that psychotic dis-
orders with pronounced cognitive impairments, such as schizo-
phrenia, involve aberrant neuronal oscillations,4 but the na-
ture of the impairment, the onset of deficits, and clinical
relevance remain unclear.

β/γ-Band oscillations5-7 but also lower frequencies are im-
paired during sensory8 and cognitive tasks9 in schizophrenia.10,11

During normal brain functioning, inhibition of excitatory
pyramidal cells through different classes of aminobutyric acid
(GABA)ergic interneurons lead to the emergence of neural
oscillations.12-15 Converging evidence from genetics,16 postmor-
tem data,17,18 and brain imaging have19 highlighted that GAB-
Aergic as well as glutamatergic neurotransmission is impaired
in schizophrenia, supporting the possibility that measure-
ments with electro/magnetoencephalography (EEG/MEG) could
be important for translational research aimed at identifying cir-
cuit mechanisms in the disorder.10

Critical questions concerning the role of neural oscilla-
tions in the pathophysiology of schizophrenia are the onset of
abnormalities, the nature of the deficit, and functional rel-
evance. Early signs of psychosis as well as associated cogni-
tive deficits are already present several years prior to the full
emergence of schizophrenia,20 and thus, research efforts have
shifted the focus toward identifying circuit abnormalities and
biomarkers in participants who are at risk for the develop-
ment of psychotic disorders that could allow for early inter-
vention and clinical staging.21,22

Thereisonlylimitedevidenceavailableonalterationsofneu-
ral oscillations in individuals meeting clinical high-risk criteria
for psychosis (CHR-P).23,24 To address this fundamental ques-
tion, we applied a state-of-the-art MEG approach to examine low-
frequency and high-frequency oscillations during a visual para-
digm in CHR-P participants, patients with first-episode psychosis
(FEP), and participants with substance-related and affective dis-
orders. Magnetoencephalography is characterized by an
improved signal-to-noise ratio for measurements of high-
frequency oscillations compared with EEG25,26 and is ideally
suited for source reconstruction, allowing the identification of
anatomical layout of generators with high spatial resolution.27

Based on models of developing psychosis that have high-
lighted the central role of visual deficits during the early stages
of psychosis28,29 that predict transition to psychosis30 as well
as the importance of high-frequency oscillations for the in-
tegrity of visual perception,1,31,32 we predicted that CHR-P par-
ticipants would be characterized by a circumscribed dysfunc-
tion of β/γ-band oscillations in visual cortex that would be
linked to clinical outcomes. Specifically, we focused on the per-
sistence of attenuated psychotic symptoms (APS) because there
is evidence to suggest that persistent APS are associated with
poor outcomes33 and cognitive deficits in CHR-P populations.34

Patients with FEP, on the other hand, would involve large-
scale dysfunctions of induced oscillations and effective con-
nectivity between frontal and visual areas, consistent with a
disconnection syndrome.35,36

Methods

Participants
Four groups of participants (total n = 232) were recruited: (1)
participants meeting CHR-P criteria (n = 119) from the ongo-
ing Youth Mental Health Risk and Resilience (YouR) Study37;
(2) 38 participants who did not meet CHR-P criteria (CHR-N)
and were characterized by nonpsychotic disorders, such as
affective disorders (n = 11), anxiety disorders (n = 16), eating
disorders (n = 1), and/or substance abuse (n = 10); (3) 26 pa-
tients with FEP (13 antipsychotic-naive); and (4) 49 healthy con-
trol individuals (HC) without an axis I diagnosis or family his-
tory of psychotic disorders. Data from 10 patients with FEP and
10 HC have been published previously.38

The CHR-P status was confirmed by ultrahigh-risk crite-
ria according to the Comprehensive Assessment of At Risk Men-
tal States (CAARMS) interview39 and the Cognitive Distur-
bances and Cognitive-Perceptive Basic Symptoms criteria
according to the Schizophrenia Proneness Instrument, Adult
version (SPI-A)40 (see Uhlhaas et al37). Patients with FEP were
assessed with the Structured Clinical Interview for DSM-IV
(Table)41 and with the Positive and Negative Symptom Scale.42

For all groups except patients with FEP, neurocognition was
assessed with the Brief Assessment of Cognition in Schizo-
phrenia (BACS).43 The study was approved by the ethical
committees of University of Glasgow and the National Health
Services Research Ethical Committee Glasgow and Greater
Clyde. All participants provided written informed consent.

Clinical Follow-up
Participants meeting CHR-P and CHR-N criteria were reas-
sessed at 3-, 6-, 9-, 12-, 18-, 24-, 30-, and 36-month intervals
to examine persistence of CHR-P criteria and transition to psy-
chosis (eMethods in the Supplement).

Stimuli and Task
Participants were presented with 3 blocks of 80 trials, with each
trial consisting of a circular sinewave grating that contracted
toward central fixation.44 The task of the participants was to
detect and respond by button press to a velocity increase of

Key Points
Question Are high-frequency oscillations in visual cortex impaired
during early stages of psychosis?

Findings In this cross-sectional study, there were significant
impairments in the variability, power, and connectivity of neural
oscillations during visual processing in clinical high-risk
participants and patients with first-episode psychosis that were
associated with impaired functioning and cognitive deficits.
Moreover, the increased variability of γ-band oscillations in visual
cortex was also associated with the persistence of subthreshold
psychotic symptoms in clinical high-risk participants.

Meaning Impaired high-frequency oscillations in visual cortex are
an important aspect of circuit dysfunction, which could constitute
a biomarker for clinical staging of emerging psychosis.
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Table. Demographics, Clinical Data, and Task Performance

Demographic HC CHR-N CHR-P FEP Group effecta Pairwise comparisons
No. of participants 49 38 119 26 NA NA

Age, (SD), y 23 (3.6) 23 (4.7) 22 (4.4) 24 (4.2) NA NA

Male/female sex, No. (% male) 16/33
(32.7)

11/27
(28.9)

32/87 (26.9) 16/10 (61.5) χ 2
3 = 11.9;

P = .008
FEP to HC: P = .016
; FEP to CHR-N: P = .001;
FEP to CHR-P: P = .01

Education, mean (SD), y 17 (3.0) 16 (3.5) 15 (3.1) 15 (3.0) F3,76 = 3.5;
P = .02

CHR-P to HC: P = .03

BACS,b mean (SD)

Verbal memory 52 (8.7) 0.01 (1.1) −0.36 (1.3) NA NA NA

Digit sequencing 21 (2.1) 0.14 (1.2) −0.15 (1.5) NA NA NA

Token motor 81 (11.6) −0.66 (1.1) −0.98 (1.3) - F2,93 = 13.8;
P < .001

CHR-N to HC: P = .01;
CHR-P - HC: P < .001

Verbal fluency 59 (13.9) −0.22 (1.0) 0.05 (1.3) NA NA NA

Symbol coding 74 (11.8) 0.00 (1.3) −0.58 (1.1) NA F2,84 = 6.8;
P = .002

CHR-P - HC: P = .004;
CHR-P – CHR-N: P = .04

Tower of London 19 (1.7) 0.15 (1.3) −0.21 (1.5) NA NA NA

Composite score 304 (24.2) −0.15 (1.2) −0.63 (1.4) NA F2,93 = 5.8;
P = .004

CHR-P - HC: P = .004

CAARMS, mean (SD)

Unusual thought content NA 1 (1.2) 2 (1.9) NA NA NA

Nonbizarre ideas NA 1 (1.1) 3 (1.8) NA NA NA

Perceptual abnormalities NA 1 (1.3) 3 (1.6) NA NA NA

Disorganized speech NA 1 (0.9) 1 (1.4) NA NA NA

Total severity score NA 6 (6.1) 29 (17.8) NA NA NA

GAF, mean (SD) 88 (6.4) 70 (12.8) 57 (13.4) 41 (16.9) F3,75 = 167;
P < .001

All contrasts P < .001

GF-role, mean (SD) 8.6 (0.8) 8.1 (0.8) 7.4 (1.2) NA F2,99 = 29.6;
P < .001

CHR-N - HC: P = .037;
CHR-P to HC: P < .001;
CHR-P to CHR-N: P < .001

GF-social, mean (SD) 8.8 (0.4) 8.2 (0.8) 7.5 (1.2) NA F2,94 = 59.5,
P < .001

CHR-N - HC: P < .001;
CHR-P to HC: P < .001;
CHR-P to CHR-N: P < .001

PANSS, mean (SD)

Positive NA NA NA 18 (7.2) NA NA

Negative NA NA NA 15 (9.3) NA NA

Cognitive NA NA NA 20 (9.2) NA NA

Excitement NA NA NA 9 (4.3) NA NA

Depression NA NA NA 12 (5.9) NA NA

Total score NA NA NA 74 (28.4) NA NA

Medication, No. (%)c

None 48 27 61 6 NA NA

Antidepressants 0 11 47 13 NA NA

Mood stabilizers 0 0 5 0 NA NA

Antipsychotics 0 0 3 13 NA NA

Other (unknown) 1 (0) 2 (0) 21 (0) 5 (0) NA NA

CHR-P categories

SPI-A (COGDIS/COPER/both items) NA NA 30 (4/15/11) NA NA NA

CAARMS (APS/vulnerability criteria) NA NA 89 (87/2) NA NA NA

CAARMS plus SPI-A (COGDIS/COPER/both
items)

NA NA 55 (9/22/24) NA NA NA

MINI categories

Depressive/mood disorders NA 11 75 NA NA NA

Anxiety disorders/posttraumatic stress
disorder/obsessive-compulsive disorder

NA 16 87 NA NA NA

Drug/alcohol abuse/dependence NA 10 42 NA NA NA

Eating disorders NA 1 10 NA NA NA

DSM-IV/Structured Clinical Interview

Schizophrenia NA NA NA 9 NA NA

Schizophreniform disorder NA NA NA 3 NA NA

Schizoaffective disorder NA NA NA 1 NA NA

(continued)
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the stimulus, randomly occurring between 750 and 3000 mil-
liseconds (Figure 1).

Neuroimaging
Magnetoencephalography data were acquired using a 248-
channel 4D-BTI magnetometer system (MAGNES 3600 WH,
4-dimensional neuroimaging; Bio-Medicine), recorded with
1017.25-Hz sampling rate and DC-400 Hz online filtered. T1 ana-
tomical scans (3-dimensional magnetization-prepared rapid gra-
dient-echo sequences) were collected for patient-specific source
localization of MEG activity (eMethods in the Supplement).

Magnetoencephalography Data Analysis
Magnetoencephalography data were analyzed with MAT-
LAB using the open-source Fieldtrip Toolbox.45 Preprocess-
ing included correct trials only with nonoverlapping 3.8-
second segments (1-second baseline), time locked to the
onset of the visual grating. Line noise was attenuated with a
discrete 50-Hz Fourier transform filter, and faulty sensors
with large signal variance or flat signals were removed. Data
were denoised relative to MEG reference channels and
downsampled to 300 Hz. Artifact-free data were created by
removing trials with excessive transient muscle activity,

Table. Demographics, Clinical Data, and Task Performance (continued)

Demographic HC CHR-N CHR-P FEP Group effecta Pairwise comparisons
Psychotic disorder NOS NA NA NA 8 NA NA

Brief psychotic disorder NA NA NA 1 NA NA

Mood disorders with psychotic features NA NA NA 4 NA NA

Trial No., total included (SD) 197 (16.3) 194 (16.2) 185 (26.5) 181 (29.2) F3,80 = 5.9;
P = .001

CHR-P to HC: P = .002

Task performance

Accuracy, % correct (SD) 92.2 (6.9) 92.0 (5.6) 88.0 (9.8) 85.9 (12.8) F3,79 = 5.5,
P = .002

CHR-P to HC: P = .01;
CHR-P vs CHR-N: P = .01

Reaction time, mean (SD), ms 528 (68.4) 524 (80.1) 545 (84.9) 577 (100.1) NA NA

Response variance,d mean (SD), ms 151.7 (37.5) 154.3 (34.9) 164.3 (42.2) 179.1 (40.8) F3,79 = 3.3;
P = .02

FEP to HC: P = .03

Abbreviations: APS, attenuated psychotic symptoms; BACS, Brief Assessment
of Cognition in Schizophrenia; CAARMS, Comprehensive Assessment of At Risk
Mental States; CHR-N, clinical high risk negative; CHR-P, clinical high risk positive;
COGDIS/COPER, Cognitive Disturbances and Cognitive-Perceptive Basic
Symptoms criteria; FEP, first-episode psychosis; GAF, global assessment of
functioning; GF, global functioning; HC, healthy control individual;
MINI, Mini-International Neuropsychiatric Interview; PANSS, Positive and Negative
Symptom Scale; SPI-A, Schizophrenia Proneness Instrument, Adult version.

a All F tests are Welch based; α = .05, 2-sided, 1000 samples bootstrapping,
post hoc Games-Howell correction for type I errors.

b BACS scores for clinical groups were standardized to control group data,
controlled for sex category.

c If multiple medications were reported, they were scored separately in the
different categories listed.

d Response variance equals standard deviation of response times across trials.

Figure 1. Paradigm and Task Performance
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slow drift, or superconducting quantum interference device
jumps using visual inspection, and independent component
analysis–based removal of eye blink, eye movement, and
electrocardiographic artifacts. Data were then submitted to
time-frequency (TFR) analyses (1-90 Hz, stepsize 50 milli-
seconds, 450 milliseconds sliding-window fast-fourier
transformed [FFT]; Hanning tapered), computed for planar-
orientation transformed MEG data.46

Whole-brain source estimation of γ-band power (57-67 Hz)
between 250 and 750 milliseconds was computed using the Dy-
namic Imaging of Coherent Sources beamforming approach47

(eMethods in the Supplement). γ-Band source data were statis-
tically tested across groups to determine the location of main ef-
fects (Figure 2). These were then used to guide selection of the
mainregionsofinterest(ROIs)formorefine-grainedvirtualchan-
nel analyses (Figure 2 and Figure 3C) (eMethods in the Supple-
ment). Virtual channel time series were used for the analysis of

event-related fields (ERF), TFR, inter-trial phase coherence
(ITPC),48 baseline FFT, and Granger causality (GC).

Granger-causalityestimateswerecomputedusinganonpara-
metric approach, including spectral density matrices estimated
directly from FFT-data (250-750 milliseconds; DC-149 Hz;
Hanning tapered; 5-Hz frequency smoothing; 1-Hz resolution;
data zero-padded to 4 seconds), followed by matrix factorization
and variance decomposition. Epochs were split into 2 × 250-
millisecond segments to increase trial numbers (see Michalareas
etal32).ThemiddleoccipitalgyrusandcuneusROIswerenotused
in the GC analyses to minimize overlap between primary visual,
dorsal, and ventral stream connectivity estimates. Granger-
causality data from each pair were averaged over hemisphere to
create 4 main ROI pairs for statistical testing. To determine the
alterations in feedforward (FF) vs feedback (FB) GC activity, we
also computed the directed asymmetry index (DAI; see Micha-
lareas et al,32 Bastos et al,49 and eMethods in the Supplement).

Figure 2. Sensor and Source-Power Magnetoencephalography (MEG) Data
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Statistical Analysis
Group differences in trial numbers, γ-band peak frequency, be-
havioral performance, demographic, and clinical data were as-
sessed with 1-way Welch analysis of variance (ANOVA); 2-sided
α level of .05. Brief Assessment of Cognition in Schizophrenia

data were first z-normalized to the HC data. Bootstrapping
(n = 1000) and Games-Howell correction were used to control
type I errors in post hoc pairwise group comparisons.

Statistical testing of group differences in MEG virtual-
channel data included nonparametric Monte-Carlo–based per-

Figure 3. Virtual Channel Time Frequency Response (TFR) and Intertrial Phase Coherence (ITPC) Analyses
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mutation (n = 2000) independent F test (main group effect)
and post hoc t test statistics45 for ERFs (0-750 milliseconds);
TFRs and ITPC power (1-90 Hz, 0-750 milliseconds for TFR
power, 0-350 milliseconds for ITPC, and dB change from a 500-
millisecond baseline); baseline FFT spectra (1-90 Hz); and GC
data. Type I errors were controlled by cluster statistics across
time and/or frequency (eMethods in the Supplement). Fi-
nally, binary logistic regression and receiver operating char-
acteristic curve (ROC) analyses were used to examine the as-
sociation between MEG parameters and clinical outcomes in
CHR-P participants (eMethods in the Supplement).

Results
Demographic Data
The FEP group included significantly more men than the HC
(χ2

1 = 5.8; P = .02), CHR-N (χ2
1 = 6.7; P = .01), and CHR-P (χ2

1 = 11.6,
P = .001) groups (Table). The BACS composite score was signifi-
cantly reduced in CHR-P participants compared with HC (−0.84;
95% CI, −1.43 to −0.25; P = .004). All clinical groups differed from
HC in global assessment of functioning (GAF) scores (CHR-N, 17.7;
95% CI, 11.7 to 23.8; P < .001; CHR-P, 30.3; 95% CI, 26.3 to 34.2;
P < .001; FEP, 46.6, 95% CI, 37.2 to 56.0; P < .001). Both CHR-P
and CHR-N groups also differed from HC in global role and so-
cial functioning (CHR-N, −0.63; 95% CI, −0.28 to −0.99; P < .001;
CHR-P, −1.35; 95% CI, −1.05 to −1.66; P < .001).

Follow-up Outcomes
We examined persistence of APS up to 12 months in CHR-P par-
ticipants who met APS criteria at baseline (n = 84). For 75 CHR-P
participants, at least 1 follow-up assessment was available.
Thirty-nine CHR-P participants continued to meet APS crite-
ria (APS-persistent group) while 36 CHR-P participants were
characterized by a remission of APS-criteria (eResults in the
Supplement). Moreover, 9 of 119 CHR-P participants made a
transition to psychosis (mean follow-up period, 17.3 months).
Eight transitions occurred in the APS-persistent group.

Task Performance
The CHR-P group was characterized by reduced response ac-
curacy (−4.2%; 95% CI, −7.6 to −0.7; P = .01), while the pa-
tients with FEP were significantly more variable in reaction
times (RTs) (27 milliseconds; 95% CI, 2 to 53; P = .03) com-
pared with HC (Table).

Sensor-Level Analysis
Modulation of spectral power was characterized by early
evoked activity (<approximately 250 milliseconds), which is
phase locked and time locked to the onset of the stimulus and
sustained induced activity that represents non–phase-locked
oscillations (>250 milliseconds) (Figure 2). Task-induced γ peak
frequency across participants was approximately 62 Hz. A main
group effect (cluster F3,228 = 341.7; P < .001; 95% CI range,
−0.0004 to 0.002) for 57- to 67-Hz power was found over oc-
cipital and parietal-temporal regions (Figure 2A), with no dif-
ferences in any other frequency range. Post hoc test results
revealed significantly increased γ power for CHR-N vs HC over

superior occipital-parietal regions (cluster t85 = 48.4; P = .03;
95% CI range, 0.0147-0.0453) and significantly decreased γ
power (cluster t73 = −50.7; P = .02; 95% CI range = 0.0143-
0.0257) over inferior occipital regions for FEP compared with
HC (eFigure 1 in the Supplement).

Virtual Channel Analyses: TFR and ITPC Analyses
A cluster of sustained γ-band power decreases across all vi-
sual cortex ROIs (Figure 3A) for the FEP group compared with
HC (TFR cluster approximately 50-75 Hz; approximately 0-750
milliseconds; cluster t73 = −791.8; P = .007; 95% CI range,
0.0033-0.0107) were observed in primary visual cortex as well
as in ventral stream areas (eFigure 2A in the Supplement). The
CHR-N and CHR-P groups did not show spectral power changes
in any frequency range.

Differences in β/γ-band ITPC values were found for both
CHR-P and FEP participants compared with HC (CHR-P: TFR-
cluster approximately 21-68 Hz; approximately 125-275 milli-
seconds; cluster t166 = −509.1; P = .005; 95% CI range, 0.0022
to 0.0078; FEP: TFR-cluster approximately 11-57 Hz; approxi-
mately 75-325 milliseconds; cluster t73 = −633.1; P = .002; 95%
CI, 0.0018-0.0022) (Figure 3B) that involved primary visual
as well as ventral stream regions and that extended to dorsal
stream areas in the patients with FEP (eFigure 2B in the Supple-
ment). The CHR-N group showed intact ITPC spectral power
across all visual ROIs and frequencies.

Behavioral and Magnetoencephalographical Parameters
Associated With APS Persistence in the CHR-P Group
Intertrial phase coherence data (30-50 Hz; 125-200 millisec-
onds) from 10 occipital ROIs, accuracy, RTs, and RT variabil-
ity were entered into a regression model to predict persis-
tence of APS criteria in the CHR-P group. Only γ-band ITPC
(30-50 Hz) activity contributed significantly to the model. Spe-
cifically, ITPC data from the left/right cuneus and left middle
occipital gyrus ROIs led to a significant model (χ 2

3 = 14.4;
P = .002) that explained 22.2% of the variance (Nagelkerke
R2 = 0.222). The associated ROC curve was also significant
(Figure 4A: area under the curve, 0.728; 95% CI, 0.612-0.841;
P = .001) (eMethods and eResults in the Supplement).

Regions of Interest: Baseline Power Spectra
and ERF Responses
No group differences in baseline spectral power (1-90 Hz)
or ERF amplitudes were observed in any visual cortex ROI
(eFigures 3 and 4 in the Supplement).

GC Connectivity
A main group effect was found for 2 connections in visual cor-
tex (Figure 4B: calcarine [CAL] to superior occipital gyrus; ap-
proximately 50-77 Hz; cluster P = .004; 95% CI range, 0.0014-
0.0066; inferior occipital gyrus [IOG] to CAL: approximately
1-14 Hz; cluster P = .02; 95% CI range, 0.0163-0.0237) and a
fronto-occipital connection (medial-superior frontal [mSFG]
to IOG: approximately 24-41 Hz; cluster P = .007; 95% CI range,
0.0033 to 0.0107). Post hoc comparisons revealed decreased
connectivity in the FEP group in visual cortex (CAL to supe-
rior occipital gyrus: DAI = 0.04; t73 = −3.0; P = .006; 95% CI

Research Original Investigation Association of High-Frequency Oscillations With Circuit Dysfunctions During Emerging Psychosis

858 JAMA Psychiatry August 2020 Volume 77, Number 8 (Reprinted) jamapsychiatry.com

Downloaded From: https://jamanetwork.com/ on 10/26/2020

https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
https://jamanetwork.com/journals/jama/fullarticle/10.1001/jamapsychiatry.2020.0284?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284
http://www.jamapsychiatry.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2020.0284


range, 0.0026 to 0.0094; IOG to CAL: DAI = 0.11; t73= −3.5;
P = .004; 95% CI range, 0.0012-0.0068) but increased fronto-
occipital connectivity (mSFG-to-IOG connection: DAI = 0.11;
t73 = 4.5; P < .001; 95% CI range, −0.0004 to 0.002). Compa-
rable long-range connectivity changes were seen in the CHR-P
group (mSFG-to-IOG: DAI = 0.07; t166 = 3.19; P = .003; 95% CI
range, 0.0028-0.0032). The CHR-N group showed decreased
IOG-to-CAL connectivity (DAI = 0.11; t85 = −3.5; P = .002; 95% CI
range, 0.0002-0.0038).

Correlations
Correlations were tested using linear regression models (α <.05;
2-sided; 1000-sample bootstrapping), with occipital γ power
(57-67 Hz; 250-750 milliseconds) and occipital 30- to 50-Hz
ITPC (125-200 milliseconds) as dependent variables. Across all
groups, γ-band power changes were positively correlated with
ITPC values (unstandardized B = 0.077; 95% CI, 0.041-0.113;
standardized β coefficient = 0.274; t228 = 4.3; P < .001) and RT
variance (B = 0.003; 95% CI, 0.001-0.006; β = 0.257; t228 = 2.7;

Figure 4. Receiver Operating Characteristic (ROC) Curve Analysis and Granger Causality (GC) Functional Connectivity
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P = .008), and negatively with RTs (B = −0.002; 95% CI, −0.004
to −0.001; β = −0.349; t228 = −3.6; P < .001), together explain-
ing 13.2% of variance (R2 = 0.132). Thirty- to 50-Hz ITPC was
positively associated with accuracy (B = 0.041; 95% CI, 0.018-
0.065; β = 0.198; t228 = 3.4; P = .001) and GAF scores (B = 0.036;
95% CI, 0.024-0.047; β = 0.347; t228 = 5.9; P < .001) but nega-
tively correlated with occipital β-band (16-22 Hz) power
(B= −0.301; 95% CI, −0.562 to −0.040; β = −0.128, t228 = −2.3;
P = .02) and CAARMS severity (B = −0.025; 95% CI, −0.036 to
−0.013; β = −0.281; t204 = −4.2; P < .001) and explained 28.7%
of variance (R2 = 0.287).

Local and Long-range Oscillations in CHR-P Subgroups
We examined differences between CHR-P subgroups (CAARMS
n = 34; SPI-A n = 30; CAARMS/SPI-A n = 55) in MEG activity and
behavioral and clinical parameters (eResults, eFigure 6, and
eTables 1-3 in the Supplement). Only the combined CAARMS/
SPI-A group showed a significant ITPC-deficit relative to HC
(TF-cluster approximately 24-72 Hz; approximately 0-300 mil-
liseconds; cluster P < .001; 95% CI range, −0.0004 to 0.002).
The effect size (d = 1.20) was comparable with the FEP group
(d = 0.93). The CHR-P groups showed no difference in spec-
tral power, while CHR-P individuals with CAARMS and
CAARMS/SPI-A criteria showed a selective deficit in long-
range connectivity between frontal and occipital cortex (for
mSFG-to-IOG connection, see eResults and eFigure 7 in the
Supplement).

Discussion
This study examined neural oscillations during visual pro-
cessing with a state-of-the art MEG approach to investigate
whether emerging psychosis is associated with aberrant os-
cillatory activity in visual cortex as well as the functional rel-
evance of impaired neural oscillations. Specifically, our data
highlight a reduction of phase locking of high-frequency os-
cillations, a measure of the variability of an ongoing oscilla-
tion across trials,48 in visual cortices as well as impaired long-
range connectivity in CHR-P participants. Importantly, ITPC
deficits were also associated with persistent APS, providing im-
portant evidence for the role of high-frequency oscillations in
clinical staging of emerging psychosis.

Further evidence for the functional relevance of β/γ-
band phase locking are significant correlations with RTs, se-
verity of APS, and the combination of SPI-A/CAARMS criteria
as well as GAF-scores across participants. In addition, β/γ-
band ITPC was associated with induced γ-band power, high-
lighting the importance of the integrity of early visual pro-
cessing for large-scale cognition and functioning. These data
are consistent with previous findings that have identified as-
sociations between compromised sensory processing, im-
paired functioning, and cognitive deficits in schizophrenia.50-52

Comparisons between FEP and CHR-P groups revealed
overlapping and distinct oscillatory signatures. Induced γ-band
oscillations were prominently impaired in the FEP group in vi-
sual areas, which was not observed in CHR-P participants. Both
groups were characterized by impaired long-range connectiv-

ity between visual and frontal cortices while the FEP group also
showed reduced visual cortex connectivity. An influential model
in schizophrenia has been the disconnectivity hypothesis36 as
well as the notion of reduced cognitive control mediated by fron-
tal cortices.53 Our GC data are consistent with these hypoth-
eses, suggesting a shared feature of both FEP and at-risk par-
ticipants is the presence of impaired connectivity between
sensory regions and frontal cortices.

Impairments in high-frequency oscillations showed a con-
siderable degree of specificity. First, ITPC impairments were only
found for activity in the β/γ-band range but not for lower fre-
quencies. Together with the large reductions in induced γ-band
activity in the FEP group, these data highlight the unique con-
tribution of high-frequency oscillations toward circuit impair-
ments in emerging psychosis. Second, the CHR-N group showed
intact behavioral task parameters as well normal power and
phase of high-frequency oscillations in visual cortices and
long-range connectivity with only evidence for a circum-
scribed impairment in local connectivity in visual cortex.

Thus, EEG/MEG readouts could potentially inform clini-
cal decision-making and search for novel treatment opportu-
nities. The search for biomarkers that have prognostic utility
and could guide treatments in emerging psychosis is an im-
portant objective of research.22 This study highlights that im-
paired γ-band ITPC differentiates between CHR-P individu-
als who have a high likelihood of persistent APS and transition
to psychosis vs CHR-P individuals who show more benign
APS. On the other hand, reductions in induced γ-band power
emerged as a specific signature of FEP, suggesting that im-
paired γ-band oscillations could serve as a biomarker for es-
tablished psychosis that warrants more aggressive treat-
ments, such as antipsychotic medications.

Our observations of increased variability in the timing of
β/γ-band oscillations is consistent with formulations that have
implicated aberrant glutamatergic and GABAergic neurotrans-
mission as key mechanism for circuit dysfunctions in psy-
chotic disorders.17,54,55 Specifically, an increase in variability
of neuronal responses can be elicited by N-methyl-D-
aspartate receptor hypofunction,56 suggesting that elevated
excitability in sensory regions during the early stages of psy-
chosis may lead to favorable conditions for altered network
dynamics to emerge. Moreover, deficits in high-frequency
oscillations highlight the contribution of specific GABAergic
interneurons, such as parvalbumin or somatostatin-
expressing interneurons13,57 that are impaired in visual areas in
schizophrenia.58 In addition to the pharmacologic correction of
aberrant circuit dynamics, it is also conceivable that interven-
tions that improve the fidelity of sensory processing through cog-
nitive remediation59 or brain stimulation60 could potentially pre-
vent the progression of circuit dysfunctions from sensory areas
to more extended networks.

Limitations
This study has several limitations. Although we can predict
the persistence of subthreshold psychotic symptoms through
MEG data in our CHR-P cohort, further follow-up data are
required to test whether abnormalities in high-frequency
oscillations can predict transition to psychosis as well as the
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persistence of Cognitive Disturbances and Cognitive-Perceptive
Basic Symptoms criteria. Moreover, these data are only cross-
sectional. Accordingly, further studies are required to examine
the longitudinal course of oscillatory deficits during emerging
psychosis.

Conclusions
In summary, this advanced MEG analysis provides, to our knowl-
edge, the first comprehensive investigation into the oscilla-
tory signatures during different stages of early psychosis. Spe-
cifically, we can show that the timing of high-frequency

oscillations in visual cortices is the first impairment to emerge
in CHR-P participants in combination with abnormal long-
range connectivity. Patients with FEP were characterized by a
pronounced reduction in the power of induced γ-band oscilla-
tions in combination with reduced β/γ-band ITPC as well as lo-
cal and long-range connectivity. Importantly, impaired γ-band
IPTC-values were associated with the persistence of subthresh-
old psychotic experiences, suggesting that γ-band oscillations
could constitute a possible biomarker for clinical staging of
emerging psychosis. Future studies and preclinical research
should therefore focus on the circuit-mechanisms mediating
precise coordinated neural responses that could offer targets for
preventive approaches.
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