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The evaluation of evidence for microspectrophotometry data using functional
data analysis

Abstract

Microspecrophotometry data arise in the study of many forensically applicable situations. The situations here are those
of ink and fibres. In a criminal investigation, data associated with a crime scene are compared with data associated
with a person of interest. Methods based on the likelihood ratio are often used to evaluate such evidence. A technique
known as functional data analysis for determining likelihood ratios using the full spectrum is described. It provides
support comparing a proposition of common source with a proposition of different sources for data from the crime
scene and from the person of interest. Data are available from ink, woollen and cotton fibres. The effectiveness of
the method is assessed using false positive and false negative rates and Tippett plots in the comparison of data from
known sources.

Keywords: Microspectrophotometry, Evidence evaluation, Likelihood ratio, Functional data analysis

1. Introduction

1.1. Evidence evaluation

A novel approach to the evaluation of evidence in the form of microspectrophotometry (MSP) data using functional
data analysis is described. The data take the form of functions rather than measurements or counts. There are three
data sets to which the approach is applied, one from ink, one from red woollen fibres and one from red cotton fibres.
There are training data for each set. The evidence to be evaluated is considered to be in two parts, a control part in
which the source of the data is known and a recovered part in which the source of the data is not known. Often the
control data will be a pen, source of ink, found in the possession of the person of interest, or fibres found on clothing
of the person of interest. The recovered data will then be the ink on a document of interest or fibres found at a crime
scene thought to have been transferred from clothing worn by the criminal.

The evidence is evaluated through use of the likelihood ratio (LR). In this context, the ratio is that of the probability
density function of the control and recovered data1 under each of two propositions, where the data are themselves
functions.

• Hp: the control and recovered data come from the same source, and

• Hd: the control and recovered data come from different sources.

The microspectrophotometry (MSP) data used for the analysis, Yc and Yr, for control and recovered data, re-
spectively, are absorbance (A) in the case of ink or transmittance (T ) in the case of woollen and cotton fibres versus
wavelength w, where A = − log(T ). The evidence of Yc and Yr in support of Hp or Hd is to be evaluated. Training
data W are available from ink and woollen and cotton fibres. These training data are used to develop the functional

1The ratio is known as a likelihood ratio as this is a technical phrase in statistical theory in which a probability density function for data given
parameter values may be thought of as a likelihood of the parameter values given the data. The phrase has been transferred in the forensic statistic
literature to refer to the ratio of the probability density functions given propositions. Note that as the data are continuous it is not possible to refer
to the probability of the data.

Preprint submitted to Elsevier October 1, 2019
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data model used for evaluation. In order to reduce the dimensionality of the problem, analysis is conducted with
transformed data Z = g(Y) where the transformation g is described in the Model section

The model developed is a multivariate random effects model for Z. The within-group distribution is assumed
normal with a mean θ and fixed covariance matrix U , so Z ∼ N(θ, U). The mean θ is also assumed to have a normal
distribution with fixed mean η and a fixed covariance matrix C, so θ ∼ N(η, C). The current exposition is an initial
attempt to evaluate evidence in the form of functions. Future work could include consideration of a non-parametric
distribution for the between-group variation.

The likelihood ratio LR associated with the propositions Hp and Hd is given by:

f(z | Hp)

f(z | Hd)
=

∫
f(zc | θ, U)f(zr | θ, U)f(θ | η, C)dθ∫

f(zc | θ, U)f(θ | η, C)dθ
∫
f(zr | θ, U)f(θ | η, C)dθ

.

1.2. Functional data analysis

Functional data analysis is the analysis of data in the form of functions. The examples discussed here relate to
MSP data on inks (Section 2.1) and red woollen and cotton fibres (Section 2.2). For ink the data are absorbance vs
wavelength and for fibres the data are transmittance vs wavelength. The observed values of absorbance or transmit-
tance are the sum of an underlying function f(x) of wavelength x and an error term to account for random variation.
See Burfield et al. [8] for a description of proofs of concept for comparison, classification and database search of
forensic ink chromatograms. Ramsay and Silverman [10] provides the theoretical background for functional data
analysis.

Functions can be represented by Fourier series for cyclical data, such as those relating to seasonal data or by
B-splines for non-cyclical data such as the MSP data of the examples under discussion. Spline functions are the
most common choice of approximation system for non-periodic functional data, A spline function is a piecewise
polynomial. The spline is determined by the order o (degree o − 1) of the polynomial and a non-decreasing knot
sequence τ where adjacent polynomial pieces meet. The numberB of splines (or bases) is related linearly to the order
o of the polynomial and the number N of internal knots such that B = N + o. B-splines and equidistant knots are
assumed so a choice has to be made in the selection of B and of o.

Consider a set x = (x1, . . . , xm)T of m observed values of wavelength and corresponding function values f(x).
A system of basis functions is a set of B known functions φb, b = 1, . . . , B, that are orthogonal and have the
property that any function can be approximated arbitrarily well by a linear combination of spline functions for a
sufficiently large value for B. Thus the function values f(x) may be approximated by a finite linear combination of
basis functions

B∑
b=1

θbφb(x) = Φ(x)Θ. (1)

where B <∞,Θ = (θ1, . . . , θB)T and

Φ(x) =

 φ1(x1) . . . φB(x1)
...

...
φ1(xm) . . . φB(xm)


The data to be analysed here are hierarchical. There are several samples taken to be a random sample from some

relevant population. Within each sample there are several MSP data which are bivariate with absorbance (for ink) or
transmittance (for fibre) and wavelength recorded. Consider transmittance or absorbance Wki = (wki1, . . . , wkim)T

measured at m wavelengths {`kij ; k = 1, . . . ,K, i = 1, . . . , n, j = 1, . . . ,m} from K groups with n measurements
from each group. The m wavelengths are taken to be equally spaced with `ki1 < . . . < `kim and `kp1iq1j = `kp2iq2j

for all p1 6= p2 and q1 6= q2, j = 1, . . . ,m.

The data are expressed as

wkij = fk(j/m) + rkij , k = 1, . . . ,K, i = 1, . . . , n, j = 1, . . . ,m, (2)
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for some smooth functions fk, dependent on the group k, and measurement errors r that are independent of fk. The
space covered by fk is standardised to [0, 1] by division of j by m. The functions fk(x) are estimated by B-splines.
In general, fk(x) '

∑B
b=1 θ

k
bφb(x) = Φ(x)θk as in (1). Note that for the analysis that follows the standardised x is

only available at a sample of discrete points ( 1
m , . . . ,

m−1
m , 1).

2. Data

2.1. Ink

Forty blue inks (36 ballpoint and 4 gel) were analysed. They came either from the Polish market, or were gifts
presented to the Institute of Forensic Research in Krakow. Lines were made by drawing on white printing paper (80
gm2, A4). A fragment of the paper was then cut and fixed to a microscope base slide, and placed on the stage of the
microscope with the MSP instrument. The data are reported in Mar [4]. See also Zad [6] for further details of the
analytical procedures.

Measurements were made upon blue inks using a microspectrophotometer Zeiss Axioplan 2 with a J & M Tidas
Diode Array Detector (DAD; MCS/16 1024/100-1, Germany), which was configured for the VIS range (380–800 nm)
analyses with intervals of 1 nm. The inks were measured in reflection mode using an integration time of 2.5 seconds,
the magnification being 400×. Sample plots of absorbance versus wavelength for three of the forty inks, together with
fitted curves

ŷk = Φθ̂k where (3)

θ̂k = (ΦT Φ)−1ΦT
k∑

i=1

wki/nk

with wki = {wki1, . . . wkim} and nine bases of order three are shown in Figure 1.

The software used for spectra collection was Spectralys version 1.82 from J & M Tidas. It was also used to
provide the tristimulus values CIE-XYZ, chromaticity coordinates CIE-xyz, and CIE-Lab values for the 2 degree
standard observer. Thus, the dimensionality of data for determination of the likelihood ratio by Mar [4] was reduced
to one, two or three dimensions.

Figure 1: Plot of absorbance versus wavelength for three of the forty inks together with fitted mean curves (3) with nine bases of order 3
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2.2. Fibres

Data are available from MSP spectra for samples of red woollen fibres which can be easily told apart with a
discriminating power of 98% from visual inspection and samples of red cotton fibres which cannot be easily told apart
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with a discriminating power of 58% using visual inspection. Both datasets consist of 20 samples. Nine replicate MSP
spectra were collected for each sample, three spectra in three different regions of a single fibre and three different
fibres known to be from the same textile. Buz [3] contain more detail on these data. Plots of transmittance versus
wavelength for three of the twenty woollen fibres and three of the twenty cotton fibres together with fitted curves (3)
with eight bases of order three are shown in Figures 2 and 3, respectively.

It is not important to be able to determine that a spectrum is from a particular fibre within a set of fibres from the
same textile. Such a determination is only important in cases where fibres of similar type and colour (e.g., red wool)
are dyed with different dyes which is not the case here. It is more important to gauge intra-sample variation based on
all nine measurements.

The red wool dataset included data of spectra from 350 to 690 nm with intervals of five nanometers. The red
cotton dataset included data from 240 to 690 nm also with intervals of five nanometers. The difference in range is
because wool absorbs UV radiation and therefore the signal of the fibre prevents the detection of the signal of the dye
in the UV range between 240 and 350 nm as already noted by Wiggins and Drummond [14] and Almer et al. [7]. The
red cotton dataset does not exhibit much variation from visual inspection of the spectra while the red wool dataset
exhibits large inter-sample variation.

Figure 2: Plot of transmittance versus wavelength for three of the twenty woollen fibres together with fitted mean curves (3) with eight bases and
order 3.

350 450 550 650

20
40

60
80

Wool A

Wavelength

Tra
ns

mi
tta

nc
e

350 450 550 650

20
40

60
80

10
0

Wool B

Wavelength

Tra
ns

mi
tta

nc
e

350 450 550 650

0
20

40
60

80
10

0

Wool C

Wavelength

Tra
ns

mi
tta

nc
e

Figure 3: Plot of transmittance versus wavelength for three of the twenty cotton fibres together with fitted mean curves (3) with eight bases and
order 3.
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3. Likelihood ratio for functional data

The training data W have two levels. There are K groups and within each group there are n members. For ink,
K = 40 and n = 10. For wool and cotton, K = 20 and n = 9. Measurements of absorbance or transmittance are
taken at each ofmwavelengths, with constant intervals between wavelengths. For ink the interval is 1 nm and for wool
and cotton 5 nm. An individual measurement is thus represented by wkij ; k = 1, . . . ,K, i = 1, . . . n, j = 1, . . . ,m
which is the absorbance or transmittance at wavelength j for member i of group k. Each member of each group
wki = {wki1, . . . , wkim}, is assumed to be a randomly selected member of a function fk representing the relationship
between wavelength and absorbance or transmittance for group k. The K groups are assumed to be a randomly
selected number of groups from a relevant population. For model fitting, wavelengths are replaced by increments
j/m for j = 1, . . . ,m.

A non-parametric regression model (2) is assumed for W where fk(x) is estimated by a B-spline∑B
b=1 θ

(k)
b φb(x) = Φ(x)Θkand Φ(x) is an m by B matrix of B-spline bases of order o; x = {1/m, . . . ,m/m} and

rkij is an error term.

The data wki are m-dimensional where m can be very large, of the order of hundreds. The dimension is reduced
with the transformation

Zki = ΦTWki

so Zki is a B × 1 vector. The problem of the evaluation of evidence is then transformed to one in which the data are
a vector of B terms.

Analysis is as follows

• Zki | θk ∼ NB(θk, U), k = 1, . . . ,K, i = 1, . . . , n

• θk ∼ NB(η, C).

There are control data and recovered data forming the evidence to evaluated. Denote the control data by ycij , i =
1, . . . , nc; j = 1, . . . ,m with transformed data zci = ΦTyci with Zci ∼ N(θc, U). Denote the recovered data by
yrij , i = 1, . . . , nr; j = 1, . . . ,m with transformed data zri = ΦTyri with Zri ∼ N(θr, U). The means θc and θr

are distributed N(η, C).

3.1. Likelihood Ratio Calculation - Numerator

The numerator of the likelihood ratio is evaluated under the proposition that the data for the recovered curve and
the control curve come from the same origin, or θr = θc.

∫ nc∏
i=1

f(zci|θ, U)

nr∏
i=1

f(zri|θ, U)f(θ|η, C)dθ

which can be shown [1] to simplify to

|2πU |−(nc+nr)/2|2πC|−1/2|2π((nc + nr)U−1 + C−1)−1|1/2exp{−1

2
(H1 +H2 +H3)}
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where

H1 =

nc∑
i=1

(zci − z̄c)
TU−1(zci − z̄c) +

nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r)

= tr(
nc∑
i=1

(zci − z̄c)
TU−1(zci − z̄c)) + tr(

nr∑
i=1

(zri − z̄r)TU−1(zri − z̄r))

= tr(
nc∑
i=1

(zci − z̄c)(zci − z̄c)
TU−1) + tr(

nr∑
i=1

(zri − z̄r)(zri − z̄r)TU−1)

= tr(ScU
−1) + tr(SrU

−1)

H2 = (z∗ − η)T (
U

nc + nr
+ C)−1(z∗ − η)

H3 = (z̄c − z̄r)T (
U

nc
+
U

nr
)−1(z̄c − z̄r)

with

z∗ =
ncz̄c + nrz̄r
nc + nr

3.2. Likelihood Ratio Calculation - Denominator

The denominator of the likelihood ratio is evaluated under the proposition that the data for the recovered curve
and the control curve come from different origins, independently.∫ nc∏

i=1

f(zci|θc, U)f(θc|η, C)dθc

∫ nr∏
i=1

f(zri|θr, U)f(θr|η, C)dθr

These two parts are similar, so the calculation is showed for the general case.∫ nq∏
i=1

f(zqi|θq, U)f(θq|η, C)dθq =

|2πU |−nq/2|2πC|−1/2|2πΣ∗
q |1/2 exp{−1

2
tr(SqU

−1)− 1

2
(z̄q − η)T (

U

nq
+ C)−1(z̄q − η)}

where

Sq =

nq∑
i=1

(zqi − z̄q)(zqi − z̄q)T
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3.3. Estimate η, U and C from background

Given the transformed training data Zki ∼ NB(θk, U), k = 1, . . . ,K, i = 1, . . . , n
θk ∼ NB(η, C), k = 1, . . . ,K, the parameters η, U and C for the prior distributions have the following estimates.

η̂ =
1

K

∑
k

θ̂k

θ̂k =
1

n

n∑
i=1

zki

Û =

n∑
i=1

K∑
k=1

(zki − z̄k)(zki − z̄k)T /(Kn−K)

Ĉ =
1

K − 1

K∑
k=1

V̂ ar(θk) =
1

K − 1

K∑
k=1

(θ̂k − η̂)(θ̂k − η̂)T − Û/n.

Parameters were estimated from the full training data. Data for control and recovered evidence were chosen from
the training data. For inks, the sizes (n) of control and recovered data were chosen to be 1, 3 and 5. For fibres, the
sizes (n) of control and recovered data were chosen to be 1, 2 and 3.

4. Methods

The performances of various models were assessed by considering the rates of false positives and false negatives
and Tippett plots. A false positive is a result from a different-source comparison which has a positive log likelihood
ratio. A false negative is a result from a same-source comparison which has a negative log likelihood ratio.

Models for fitting were chosen by assessing their goodness of fit to the data using Akaike’s Information Criterion
(AIC) and R2E, the sum of ratios of the squared residuals to the modulus of the fitted values. From this assessment,
the best-fitting spline functions were of order 3. Thus, the spline functions chosen for assessment were all of order 3
or quadratic functions. Models of differing numbers of bases, varying from four to nine for the ink data and from four
to eight for the woollen and cotton data, were chosen for the assessment of performance.

For ink, pairs of sizes 1, 3 and 5, were compared. For same-source comparisons the pairs were from the same
group. For different-source comparisons the pairs were from different groups.

Ink Size 1: an item was compared with itself and all other members of its group. For ink, there were 10 members
in a group and 40 groups. This led to 55 × 40 = 2200 same-source comparisons and (10 × 10) × (40 × 39)/2=78000
between-source comparisons.

Ink Size 3. Three sets of triplets were chosen. This meant one item was not chosen. The triplets chosen were
{1, 2, 3}, {4, 5, 6} and {7, 8, 9} were formed. The arbitrary choice was made to ignore item 10. Each triplet was
compared with itself and with the two other members of its group. This led to 6× 40 = 240 same-source comparisons
and (3 × 3) × (40 × 39)/2=7020 between-source comparisons of triplets.

Ink, Size 5: Sets of size 5 {1, 2, 3, 4, 5} and {6, 7, 8, 9, 10} were formed. Each set was compared with itself and
with the other set in its group. This led to 3 × 40 = 120 same-source comparisons and (2 × 2) × (40 × 39)/2=3120
between-source comparisons of sets.

Wool and Cotton Size 1: an item was compared with itself and all other members of its group. For woollen and
cotton fibre data, there were 9 members in a group and 20 groups. This led to 45× 20 = 900 same-source comparisons
and (9 × 9) × (20 × 19)/2= 15390 between-source comparisons.

Wool and Cotton Size 2. Pairs of items {1, 2}, {3, 4}, {5, 6} and {7, 8} were formed. The arbitrary choice was
made to ignore item 9. Each pair was compared with itself and with the two other members of its group. This led to
10 × 20 = 200 same-source comparisons and (4 × 4) × (20 × 19)/2=3040 between-source comparisons of pairs.
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Wool and Cotton Size 3: Sets of size 3 {1, 2, 3}, {4, 5, 6} and {7, 8, 9} were formed. Each triplet was compared
with itself and with the other set in its group. This led to 6 × 20 = 120 same-source comparisons and (3 × 3) × (20
× 19)/2=1710 between-source comparisons of triplets.

Pairwise log-likelihood ratios (lLRij) (logs to base 10) are calculated for all pairs of curves according to the
sampling schemes described above.

lLRi1i2 = log
f(data | curves i1, i2 are from the same source )

f(data | curves i1, i2 are from different sources )
.

Let S indicate the average lLRi1i2 for all pairs of curves {Yki1 ,Yki2} where k = u and let D indicate the average
lLRi1i2 for all pairs of curves {Yki1 ,Yui2} where k 6= u. FP and FN indicate the percentage of false positive
(FP ) and false negative (FN ) results, respectively.

5. Results

Table 1: Ink: The percentage of false positives (FP) and false negatives (FN) for every possible pairwise comparison for the CIE − Lab,
CIE − xyz and CIE −XY Z systems [4]. Reproduced with permission of the Royal Society of Chemistry.

CIE − Lab CIE − xyz CIE −XY Z
FP(%) FN(%) FP(%) FN(%) FP(%) FN(%)

a 16.3 7.5 x 12.9 2.5 X 15.5 12.5
b 19.2 2.5 y 20.8 5.0 Y 17.1 15.0
L 16.2 10.0 z 18.7 2.5 Z 19.4 12.5
ab 3.5 2.5 xy 4.6 2.5 XY 6.8 10.0
aL 6.7 7.5 xz 4.6 2.5 XZ 5.4 7.5
bL 6.5 10.0 yz 4.6 2.5 Y Z 6.3 7.5

Classification results for the tristimulus valuesCIE−XY Z, chromaticity coordinatesCIE−xyz andCIE−Lab
are given in Table 1. All possible within-source comparisons (780 under the different-source proposition using all ten
replications and 40 under the same-source proposition using the first five replicates in comparison with the second five
replicates) were made for each possible CIE element and each of the nine bivariate combinations of possible pairs
of CIE elements. The pairs were ab, aL and bL from the CIE − Lab system, zy, xz and yz from the CIE − xyz
system and XY,XZ and Y Z from the CIE −XY Z system. The numbers of false positives and false negatives are
given in Table 1.

These results are to be compared with the results obtained using functional data analysis for inks. The CIE
systems reduce the information in the spectra to only three numbers. The functional data analysis approach reduces
the information to B numbers, the coefficients of the B-splines.
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Table 2: Ink: mean log to base ten likelihood ratios for same-source (S) and different-source (D) pairs with false positive (FP) and false negative
(FN) rates for various sizes (n) of the recovered and control sample and different numbers of bases (B) and order (o) for the fitted model

Bases Order S D FP(%) FN(%) n
B o

4 3 1.98 −20.95 10.9 3.8 1
5 3 2.63 −28.33 6.2 2.7 1
6 3 3.21 −42.39 5.2 1.7 1
7 3 3.86 −49.76 4.1 1.0 1
8 3 4.46 −56.25 3.5 0.9 1
9 3 4.96 −63.87 3.2 0.7 1

4 3 2.91 −66.82 4.6 3.8 3
5 3 3.83 −89.89 2.3 3.3 3
6 3 4.68 −133.31 2.0 2.1 3
7 3 5.63 −156.68 1.4 1.7 3
8 3 6.56 −177.52 1.1 1.7 3
9 3 7.38 −200.96 1.1 1.2 3

4 3 3.31 −113.28 2.5 4.2 5
5 3 4.39 −152.95 1.5 5.0 5
6 3 5.32 −225.79 1.1 4.2 5
7 3 6.33 −265.58 0.9 3.3 5
8 3 7.37 −300.68 0.9 3.3 5
9 3 8.31 −341.00 0.6 2.5 5

Table 2 illustrates, for ink, the false positive (FP ) and false negative (FN ) rates for splines with bases 4 to 9 and
order 3 with control and recovered samples of sizes 1, 3 and 5. Tables 3 and 4 illustrate for red woollen and red cotton
fibres, respectively, the FP and FN rates with splines with bases 4 to 8 and order 3 with control and recovered samples
of sizes 1, 2 and 3. These numbers of bases and the order were chosen as the ones that provided the best fit to the data,
bearing parsimony in mind. In general, it can be seen that the false positive and false negative rates decrease as the
number of bases increase. The false positive results are the ones that it is desired to keep as low as possible in order to
minimise the risk of convicting an innocent person. These rates compare favourably with those in Table 1. They are
reinforced visually with the Tippett plots in Figure 4 for ink with nine bases of order 3 and samples of size one for the
control and recovered data and for wool and cotton in Figures 5 and 6, respectively, with eight bases of order 3 and
samples of size one for the control and recovered data.

In Tippett plots, the lower of the two curves in each pair represent different source comparisons, the upper rep-
resents same-source comparisons. A curve represents the empirical probability of obtaining a log-likelihood ratio
greater than the value x in the x-axis. Thus it is desirable that the upper (same-source) plot is no less than 100% for
x < 0 and the lower (different-source) plot is no greater than zero for x > 0.

The right-hand plots are subgraphs on an expanded scale of the left-hand plots. The Tippett plots for all of ink,
wool and cotton show a good discrimination between same-source and different-source comparisons.
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Table 3: Wool: mean log to base ten likelihood ratios for same-source (S) and different-source (D) pairs with false positive (FP) and false negative
(FN) rates for various sizes (n) of the recovered sample and different numbers of bases and order for the fitted model

Bases Order S D FP(%) FN(%) n

4 3 1.39 −6.97 10.7 7.7 1
5 3 1.63 −7.96 8.4 9.2 1
6 3 1.48 −10.21 6.2 9.3 1
7 3 1.88 −13.47 5.0 8.8 1
8 3 2.11 −16.24 3.7 9.3 1

4 3 1.82 −15.40 6.6 7.5 2
5 3 2.18 −17.55 4.7 9.0 2
6 3 1.74 −22.44 3.0 9.5 2
7 3 2.36 −29.58 2.7 7.5 2
8 3 2.65 −35.64 1.6 8.5 2

4 3 1.88 −24.26 4.6 10.8 3
5 3 2.27 −27.86 3.3 14.2 3
6 3 1.28 −35.78 1.9 13.3 3
7 3 1.78 −47.03 2.0 14.2 3
8 3 1.92 −56.41 1.0 14.2 3

6. Discussion

Proof of concept for ink chromatograms is described in Burfield et al. [8]. They represent the data with principal
component scores rather than the original coefficients of the basis functions and did not determine likelihood ratios.
They then carried out classification on ink samples reporting very high discrimination results. In contrast, the model
developed here uses a technique based on B-splines for the reduction of dimensions with fixed covariance matrices
estimated from training data. This model enables the determination of likelihood ratios with few dimensions with the
associated advantage over discrimination of the provision of a value for the evidence and the ability to update the odds
in favour of the prosecution proposition in a coherent manner with other pieces of evidence.

The mean log-likelihood ratios for different-source comparisons can be very large, up to 341 in magnitude. These
values are unrealistic for reporting purposes. It is proposed that there be a cap of 9 on these values. This implies an
upper limit of 109, or one billion, for the likelihood ratios.

An interesting property of the likelihood ratio is that the likelihood ratio of the likelihood ratio is itself the likeli-
hood ratio [13]. Van Es et al. [12] and Gupta et al. [9] use this result to do what they call calibration of the likelihood
ratio. They view the likelihood ratio as a score, obtain the distribution of the scores from a training set and then report
the likelihood ratio of the scores. However, the result that the likelihood ratio of the likelihood ratio is the likelihood
ratio is a general result. In practice, interest is concentrated on one particular value of the likelihood ratio. In that
context it makes no sense to talk of the probability of the likelihood ratio. In addition, calibration destroys the updating
process of Bayes’ theorem whereby the posterior odds of one piece of evidence becomes the prior odds for the next
piece of evidence.
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Table 4: Cotton: mean log to base ten likelihood ratios for same-source (S) and different-source (D) pairs with false positive (FP) and false negative
(FN) rates for various sizes (n) of the control and recovered sample and different numbers of bases (B) and order (o) for the fitted model

Bases Order S D FP(%) FN(%) n
B o

4 3 0.48 −0.90 34.9 12.3 1
5 3 0.62 −1.19 29.5 12.7 1
6 3 0.71 −2.38 20.8 10.8 1
7 3 1.16 −3.82 18.4 9.0 1
8 3 1.41 −5.87 13.2 10.3 1

4 3 0.83 −2.22 23.6 10.0 2
5 3 1.09 −2.94 19.3 12.5 2
6 3 1.17 −5.41 12.2 10.0 2
7 3 1.87 −8.76 10.7 10.0 2
8 3 2.14 −13.23 6.8 12.5 2

4 3 1.02 −3.71 17.1 11.7 3
5 3 1.39 −4.89 13.9 13.3 3
6 3 1.55 −8.77 8.5 9.2 3
7 3 2.52 −14.06 7.1 10.8 3
8 3 2.83 −20.84 4.5 12.5 3

Error rates are low for ink. For ink, from Table 2, it can be seen that with 9 bases of order 3 and a recovered sample
with five members, the false positive rate is 0.6% and the false negative rate is 2.5%. This compares favourably with
the results from Table 1.

For woollen fibres, the false positive rate from Table 3 with 8 bases of order 3 and a recovered sample with three
members, the false positive rate is 1.0% and the false negative rate is 14.2%. Application to cotton fibres shows
a higher false positive rate than in the application to woollen fibres. For cotton fibres, the false positive rate from
Table 4, with 8 bases of order 3 and a recovered sample with three members, is 4.5% and the false negative rate is
12.5%. This is a consequence of the higher inter-sample variation for woollen fibres than for cotton fibres and the high
intra-sample variation compared with the inter-sample variation for cotton fibres. Finally, the false positive and false
negative rates arising from the use of B-splines and MSP data for inks and fibres are similar to those using similarity
measures and FTIR data for the analysis of spray paint [5],

Visual comparisons of the woollen and cotton fibres gave discriminating powers [11] of 98% for red wool and
58% for red cotton fibres. The visual comparison considered (a) the general shape of the spectrum, (b) the location
of maxima and minima values in terms of wavelength (nm) values and (c) the presence of shoulders and other flexion
points. Natural fibres exhibit variation along the same fibre and also within a set of fibres from the same textile.
Because such variation is part of the intra-source variation characteristic of the textile normalisation of the spectra
was done as this would reduce this variation. Low differentiation for red cotton using MSP is not surprising as the
primary dye for red cotton is known as C.I. Reactive Red 180 (C.I.181055) [2], a very common dye.

11

Jo
ur

na
l P

re
-p

ro
of

Downloaded for Anonymous User (n/a) at The University of Edinburgh from ClinicalKey.com by Elsevier on October 29, 2019.
For personal use only. No other uses without permission. Copyright ©2019. Elsevier Inc. All rights reserved.



Figure 4: Tippett plot for ink data for nine bases of order 3 with one recovered sample and one control sample. The right-hand plot is an expansion
of the right-hand portion of the left-hand plot.
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Figure 5: Tippett plot for wool data with eight bases of order 3 with one recovered sample and one control sample. The right-hand plot is an
expansion of the right-hand portion of the left-hand plot.
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7. Conclusion

A novel approach for the evaluation of evidence in the form of MSP data is introduced. Ideas from functional data
analysis are used to represent the spectra with linear functions comprised of piecewise quadratic characteristics with
a limited number of coefficients. This approach is in contrast to the CIE approach for ink or the visual comparisons
for woollen and cotton fibres. Performance is assessed by misclassification rates and Tippett plots and is found to be
comparable to those provided by the other methods.
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Figure 6: Tippett plot for cotton data with eight bases of order 3 with one recovered sample and one control sample. The right-hand plot is an
expansion of the right-hand portion of the left-hand plot.
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