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Abstract 8 

This paper considers a novel, alternative application of fibre-reinforced epoxy-based intumescent 9 

coatings as potential materials for strengthening concrete columns. An experimental programme is 10 

presented examining the compressive behaviour of unreinforced concrete cylinders at ambient 11 

temperature that are confined with fibre-reinforced intumescent wraps. It is demonstrated that these 12 

advanced composite coatings can provide effective passive confinement to concrete, achieving 13 

ultimate axial strength and strain enhancements that are comparable to those of conventional FRP 14 

wraps. The enhancements are also shown to be reasonably predicted by existing confinement models 15 

for FRP-confined concrete. The results demonstrate the strong potential of these fire protection 16 

materials as alternative strengthening systems for reinforced concrete columns, potentially eliminating 17 

the need for additional passive fire protection that is common with conventional fire-rated FRP 18 

wrapping systems. 19 

Keywords: Fibre-reinforced intumescent coatings, FRIC, fibre-reinforced polymers, concrete column 20 
strengthening, FRP wrapping, confinement, fire resistance, fire protection, insulation.  21 
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1 Introduction 1 

1.1 Background 2 

An important and credible concern associated with the use of externally bonded fibre-3 

reinforced polymer (FRP) materials in structural strengthening applications is their comparatively poor 4 

mechanical performance at the elevated temperatures that would be rapidly experienced in a fire. 5 

Their tensile and bond strength decrease considerably at moderately elevated temperatures near the 6 

glass transition temperature of their polymer matrix (typically 50-120oC for ambient-cured resins), 7 

whereas thermal decomposition of these polymers generally occurs at temperatures higher than 300-8 

400oC [1]. Current design guidelines for FRP-strengthened reinforced concrete (RC) structural 9 

elements suggest that the strengthening effects of an externally bonded FRP material should be 10 

neglected in fire, unless it can be shown that the FRP system remains effective during fire exposure 11 

[2, 3]. To ensure that strengthened structural elements achieve the fire resistance ratings prescribed 12 

in codes, supplemental passive fire protection (PFP) systems are often installed to the exterior of the 13 

bonded FRP systems in the form of spray-applied coatings or insulation boards [3]. 14 

However, various research studies involving standard fire (furnace) testing [4-7] showed that 15 

even if fire protection is provided, it is very difficult in practice to maintain an epoxy-based 16 

strengthening system below its glass transition temperature for the typical minimum standard fire 17 

resistance durations of 30 to 60 minutes required by building design regulations or guidelines (e.g. 18 

[8]). These findings have also been corroborated by observations in real compartment fire tests [9]. 19 

Despite this fact, experimental and numerical research [5-7, 10, 11] demonstrated that FRP-20 

strengthened RC elements can withstand prolonged standard fire exposures (greater than four hours) 21 

when insulated with supplemental PFP systems, even if the glass transition temperature of the FRP is 22 

exceeded relatively early during fire exposure. Whilst the effectiveness of the FRP is lost early during 23 

fire exposure in such installations, the PFP coating insulates the substrate concrete and reinforcing 24 

steel and delays the degradation of their mechanical properties, thus maintaining the overall load 25 

carrying capacity at a level sufficient to carry the imposed fire limit state loads [5, 10]. 26 

The above implies that, in most situations, FRP strengthening is needed at ambient 27 

temperature (to provide the ultimate limit state design capacity) but is not necessarily essential during 28 

fire, because the existing unstrengthened (but fire-protected) member can typically achieve the 29 

required fire resistance rating even if the FRP is rendered ineffective. This design reality is a result of 30 

the reduced actions that are considered in the fire limit state, with load ratios being less than 0.5 in 31 
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most practical design cases [12]. On the contrary, supplemental fire protection is needed during fire 1 

(unless the existing member has been significantly overdesigned originally with respect to fire 2 

resistance) but not at ambient conditions. This holistic structural fire engineering design philosophy – 3 

i.e. considering the fire resistance of FRP-strengthened structural elements rather than the FRP 4 

strengthening systems alone – was first described by Kodur et al. [13], and is now widely 5 

recommended in design guidelines for FRP-strengthened RC structures [2, 3]. 6 

1.2 Fibre-Reinforced Epoxy Intumescent Coatings for Concrete Confinement 7 

The requirement for additional passive fire protection to improve the fire resistance of 8 

strengthened structural elements leads, however, to substantially increased on-site disruption and 9 

installation costs, particularly since PFP systems are often proprietary (and hence expensive). The 10 

attractiveness of externally bonded FRP materials as easy and cost-effective strengthening solutions 11 

is therefore sometimes compromised, due to the increased downtimes from the follow-on installation 12 

of fire protection and the need for additional wet trades on site. This paper introduces a novel 13 

application of fibre-reinforced intumescent coatings (FRICs) as an alternative wrapping material for 14 

strengthening or retrofitting concrete columns by confinement. Such a system can strengthen a 15 

column at ambient temperature but also inherently provide it with on-demand protection in the event 16 

of a fire, thus eliminating the need for supplemental PFP that is typical for fire-safe (fire-rated) 17 

conventional FRP wrapping systems, with clear benefits as regards the cost and speed of installation 18 

of the strengthening scheme. 19 

Intumescent coatings are reactive PFP materials that protect the (typically metallic) substrates 20 

on which they are applied by expanding upon heating into a thick, porous char layer with low thermal 21 

conductivity. Epoxy-based thick-film intumescent coatings are primarily applied where protection from 22 

severe hydrocarbon fires and durability to harsh environments is required [14], such as in oil & gas, 23 

petrochemical and other industrial applications. During installation, the wet intumescent epoxy is 24 

typically reinforced with carbon and/or glass fibre meshes to improve the performance of the 25 

comparatively weak protective char layer upon expansion in the severe design fire exposures that are 26 

considered for such environments [15], thus ensuring char integrity for prolonged fire durations. 27 

Despite the fact that the embedded fibre mesh reinforcement is considered only as a means 28 

of retaining and stabilising the expanded insulating char in current fire protection systems, in their 29 

unreacted state (i.e. under normal service conditions) FRICs are essentially lightly reinforced FRP 30 
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materials. Previous experimental studies undertaken by the authors have shown that the tensile 1 

properties of unreacted epoxy intumescent coatings can be enhanced substantially by embedding 2 

carbon fibre reinforcement aligned in the principal loading direction [16]. Thus, except for their current 3 

function as thermal protection systems during a potential fire, FRICs with suitable mesh architecture 4 

(i.e. suitable fibre contents and orientations) could also offer the significant advantage of providing 5 

confinement to concrete columns at ambient temperature, within a single strengthening and fire 6 

protecting system. While recognizing that the confining effectiveness is likely to be lost relatively 7 

quickly in the event of a fire, due to softening of the epoxy matrix (as in the case of a conventional 8 

FRP wrap), the intumescence and charring of the reactive coating will insulate the concrete substrate 9 

and steel reinforcement. In this case, the same fibre mesh that provides the high strength and 10 

stiffness to the epoxy intumescent matrix for confining the concrete plays a dual role in retaining the 11 

expanding char of the coating when exposed to fire (as is the current practice for intumescent fire 12 

protection of steel structures subjected to hydrocarbon and jet fires). As a result of this hybrid 13 

functionality, the fire endurance of the column under the increased fire limit state loads in the 14 

strengthened case could be prolonged by delaying the degradation of the mechanical properties of 15 

concrete and steel. This is in line with the fire resistance design philosophy for FRP-strengthened RC 16 

elements described above [13], since in most cases it is neither possible (for realistic fire durations 17 

and reasonable PFP thicknesses) nor necessary to maintain the strengthening system below its glass 18 

transition temperature using external insulation; it is only necessary instead to insulate the pre-19 

existing member sufficiently, and to ensure that the amount of strength enhancement from the 20 

externally applied strengthening system is limited to reasonable levels [2, 3]. 21 

Fibre-reinforced intumescent coatings are well established as highly effective fire protection 22 

materials (albeit typically targeted to steel structural elements and processing equipment) due to the 23 

continuous development in the past four decades driven by the fire hazard mitigation needs in the 24 

energy and processing industries. Although there is no reported scientific research on applications of 25 

intumescent coatings for fire protecting concrete (most likely due to the historically good fire 26 

performance of RC structures, which do not typically require additional PFP), FRICs are expected to 27 

perform (at least) satisfactorily in a fire for the case of protected concrete. The fire performance of the 28 

coatings is therefore not treated in this paper; the current paper’s aim is to investigate the confining 29 

effectiveness of FRICs at ambient temperature, in order to provide a proof-of-concept for their use as 30 
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hybrid structural strengthening and fire protection materials for concrete columns. This paper presents 1 

the results of an experimental programme aimed at studying the axial compressive behaviour of 2 

unreinforced concrete cylinders at ambient temperature that are laterally confined with FRIC wraps 3 

incorporating different reinforcing fibre meshes. The strengthening efficiency of carbon FRIC wraps is 4 

assessed and compared with that of conventional non-intumescent CFRP wraps, and with predictions 5 

from existing confinement models that are widely used for designing FRP-wrapped concrete columns, 6 

to assess their validity for design and analysis of column strengthening schemes with the proposed 7 

novel FRIC system. 8 

2 Experimental Programme 9 

2.1 Test Matrix and Specimen Details 10 

The experimental programme consisted of concentric uniaxial compression tests on two sets 11 

of plain concrete cylinders conducted at ambient temperature. The first set of tests (Series 1) involved 12 

15 small-scale concrete cylinders with heights of 200 mm and diameters of 100 mm. Twelve of these 13 

were confined with an epoxy intumescent coating reinforced with four different candidate fibre 14 

reinforcement meshes/fabrics of differing fibre weights and stiffness to investigate their respective 15 

impacts on the effectiveness of the confinement. For each type of specimen tests were performed in 16 

triplicate to verify the repeatability of the results. These tests were exploratory as regards the potential 17 

fibre reinforcing materials that could be considered. The objectives were to determine a suitable 18 

carbon fibre weight in the circumferential direction that could exert adequate confining stresses on the 19 

concrete, to verify the ability of the comparatively thick intumescent epoxy to transfer stresses and 20 

anchor the fibres in the hoop direction, and to observe the failure modes for the FRIC systems. 21 

For the second set of tests (Series 2), a purpose-made heavyweight carbon fibre mesh was 22 

developed, sourced, and implemented. Nine concrete cylinders with a height of 450 mm and diameter 23 

of 150 mm were tested; the cylinder dimensions in this series were chosen so that (i) the effects of 24 

frictional lateral restraint from the loading platens are minimised due to the 3:1 aspect ratio of the 25 

cylinder and (ii) the applied thickness of the wet intumescent matrix can be better controlled 26 

compared to the exploratory small cylinders of Series 1 (both points are discussed in greater detail in 27 

the following sections). Three specimens were confined with the FRIC system, three with a 28 

conventional FRP wrap (i.e. with standard non-intumescent epoxy resin), and three were left 29 

unwrapped as control specimens. Both types of wrap comprised precisely the same heavyweight 30 
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carbon fibre mesh reinforcement, to make direct comparisons between the confining capability of the 1 

new FRIC system against an FRP wrap with equivalent hoop strength and stiffness. 2 

2.2 Confining Materials 3 

The intumescent matrix used in the FRIC wraps is a proprietary two-part epoxy coating that is 4 

suitable for hydrocarbon fire protection in the industrial oil and gas sector. For all FRIC-wrapped 5 

specimens, a nominal ‘dry film’ thickness of 10 mm was chosen. Since no data are currently available 6 

on the fire performance of intumescent-coated concrete columns, it was considered reasonable for 7 

the purposes of this study to adopt a mid-range thickness value, which is representative of the current 8 

application practices of this type of intumescent coatings used for fire protection of structural steel 9 

elements in industrial applications. For the conventional FRP wrap, a commercial two-part epoxy resin 10 

was used for impregnating and bonding the carbon fibre mesh to the concrete substrate. 11 

Four different configurations of fibre reinforcement were used in the confining wraps; these 12 

are shown during the installation stages in Figure 1 below. For the lowest fibre contents a lightweight, 13 

industry-standard, biaxial hybrid fibre mesh (denoted as Mesh 1 herein) was used in single and three-14 

layer configurations, consisting of alternating carbon tows and glass yarns with balanced weights in 15 

each orthogonal direction. To achieve higher carbon fibre volume fractions in this exploratory work 16 

(and due to the commercial unavailability of carbon fibre meshes at the time of testing), a modified 17 

unidirectional (UD) carbon fabric was used (denoted as UD_Fabric). This was modified by removing 18 

alternate carbon tows from the original fabric such that it resembles the open architecture of a mesh, 19 

as is required for reinforcing a reactive intumescent coating. In addition, an alternative biaxial mesh 20 

consisting of PBO fibres was considered; this mesh is currently used in cementitious matrix 21 

composites for the rehabilitation of concrete and masonry structures and was included simply to trial 22 

an additional fibre and mesh type that has already been proven effective when embedded in a thick, 23 

comparatively brittle matrix [17]. The Young’s modulus and density of PBO fibres are comparable to 24 

those of carbon fibres (270 GPa and 1.56 g/cm3, respectively, for PBO [18], as compared to 240 GPa 25 

and 1.80 g/cm3 for high strength carbon), thus it was considered that the PBO fibre mesh was 26 

indicative of the behaviour of a biaxial carbon mesh of similar fibre weight. Finally, a bespoke, 27 

heavyweight, biaxial carbon fibre mesh (denoted as Mesh 2) was developed in collaboration with the 28 

intumescent coating’s manufacturer and was used for the FRIC and FRP wraps of test Series 2. It 29 

must be noted that in all of the respective meshes/fabrics described above, high strength carbon 30 
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fibres were used with moduli and ultimate tensile strains ranging between 230-240 GPa and 1.5%-1 

1.7%, respectively, according to the manufacturers’ datasheets. In the following discussions, the 2 

specimens of Series 1 are denoted with the name of their respective reinforcing mesh, whereas the 3 

specimens of Series 2 (that were both reinforced with Mesh 2) are simply denoted FRIC and FRP, 4 

respectively, to distinguish between the intumescent and conventional matrices. 5 

The details of the wrapping materials used in the test programme and their key tensile 6 

properties determined from coupon testing are summarised in Table 1. These are expressed in terms 7 

of the tensile strength and modulus per unit width of the material, so that direct comparisons can be 8 

made between the thick FRIC and thin FRP composites. The measured failure stress and elastic 9 

modulus values obtained from coupon tests are comparatively low with respect to those of 10 

conventional FRP laminates, but it is important to note that this is an artefact of the unusually large 11 

thickness of the epoxy matrix of the specimens; this is clearly dictated by the fire protection 12 

requirements that the intumescent coatings will have to meet rather than mechanical considerations. 13 

An extensive discussion on the tensile behaviour of the composite intumescent epoxy when 14 

reinforced with these meshes/fabrics is avoided herein; specific details regarding the mechanical 15 

characterisation programme and the respective stress-strain responses can be found in [16, 19]. All 16 

coupons reinforced with the heavyweight Mesh 2 and UD fabric were characterised by a linear elastic 17 

stress-strain response; however, those reinforced with Mesh 1 displayed some degree of non-linearity 18 

(more pronounced for coupons with the single Mesh 1 layer), which is due to the low volume fraction 19 

of fibres in the material. For all coupons, failure was controlled by fibre rupture, since the elongation 20 

capacity of intumescent epoxy matrix is considerably greater than that of the respective fibres (a 21 

measured ultimate tensile strain of 2.44%). 22 

It must be noted that no coupon tests were performed for the PBO mesh, because of the 23 

unavailability of additional mesh material at the time of testing. However, this is not considered critical, 24 

since this particular mesh was only used indicatively for the reasons described above; the wrapped 25 

cylinder results are simply included herein to show the effectiveness of this wrap in confining 26 

concrete. However, PBO fibres cannot be recommended with certainty as alternative reinforcement to 27 

carbon fibres in this case, partly because of their considerably higher cost than carbon, and due to the 28 

lack of evidence regarding their long term durability when embedded in the intumescent matrix, as 29 

opposed to the widely used carbon and glass fibres. 30 
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(a) Mesh 1 (b) PBO Mesh (c) UD Fabric (d) Mesh 2 (e) FRIC wrap (f) FRP wrap 

Figure 1: Installation of the reinforcing meshes ((a) to (d)), and finished FRIC (e) and FRP (f) wraps. 1 

 2 

Table 1: Details of the wrapping materials used in the test programme. 3 

Specimen/wrap 
type 

Type of reinforcement 
Fibre weight in 

warp (hoop) 
direction 

No. of 
mesh 
layers 

Matrix type and 
nominal thickness 

Coupon 
tensile 

strength 
per unit 
width 
(kN/m) 

Coupon 
tensile 

modulus 
per unit 
width 
(kN/m) 

Coupon 
ultimate 
tensile 
strain 

(%) 

S
er

ie
s 

1 

Mesh1 
Biaxial carbon/glass 

fibre mesh 
12 g/m2 carbon; 
18 g/m2 glass 

1 Intumescent, 10 mm 140 13,720 1.52 

3×Mesh1 
Biaxial carbon/glass 

fibre mesh 
12 g/m2 carbon; 
18 g/m2 glass 

3 Intumescent, 10 mm 164 13,900 1.42 

PBO_Mesh Biaxial PBO fibre mesh 70 g/m2 1 Intumescent, 10 mm * * * 

UD_Fabric 
Unidirectional carbon 

fabric 
115 g/m2 1 Intumescent, 10 mm 281 18,830 1.54 

S
er

ie
s 

2 FRIC (Mesh2) 
Biaxial carbon fibre 

mesh 
290 g/m2 1 Intumescent, 10 mm 413 36,420 1.32 

FRP (Mesh2) 
Biaxial carbon fibre 

mesh 
290 g/m2 1 Standard epoxy, 2mm 482 34,440 1.43 

* Coupon test results not available for this wrap type. 4 

2.3 Specimen Preparation 5 

The cylinders of Series 1 were cast with concrete of intentionally low strength (23.8 MPa at 6 

the time of testing), which was mixed in the laboratory with a pan-type mixer. The cylinders of Series 7 

2 were cast from ready-mix concrete with similar specified mix proportions and target strength class 8 

(C20/25); however, the mean cylinder strength of the delivered concrete was measured (at the time of 9 

testing) as 34.5 MPa. The age of the concrete ranged between 30 and 40 days at the time of 10 

wrapping, and three to four months at the time of testing. The specimens were cured in a conditioned 11 

laboratory environment at ambient temperature and relative humidity. Before installing the wraps, 12 

loose particles and dust were removed from the concrete surface with a stiff brush and compressed 13 

air blasting. The FRIC systems were hand-applied by trowel on the concrete surface, in multiple 14 

layers up to the target thickness of 10 mm. For specimens reinforced with a single mesh layer, this 15 
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was placed approximately at the mid-thickness of the coating, whereas for the three layers of Mesh 1, 1 

a single continuous mesh piece was wrapped spirally around the specimen with approximately 2 mm 2 

of the intumescent matrix applied in between subsequent mesh layers. The warp direction rovings of 3 

the meshes were oriented in the hoop direction, whereas the mesh overlap was 100 mm in the case 4 

of the small cylinders of Series 1 and 120 mm for the cylinders of Series 2, with approximately 1 mm 5 

of coating applied between the overlapping mesh parts in each case. An identical orientation and 6 

overlap was used in the FRP-wrapped cylinders, for which the mesh was saturated with epoxy and 7 

applied in a wet lay-up process. 8 

2.4 Test Setup and Instrumentation 9 

The specimens were tested monotonically under concentric uniaxial compression to failure. 10 

The cylinders of Series 1 were tested using an Instron 600LX universal testing machine at a 11 

crosshead displacement rate of 0.5 mm/min. The cylinders of Series 2 were tested using a 2000 kN 12 

capacity hydraulic cylinder installed within a self-reacting structural frame, which was driven by a 13 

manually controlled Enerpac hydraulic power pack, with the load applied at a rate of approximately 14 

100-150 kN/min (5.7-8.5 MPa/min). Despite varying slightly between tests, the loading rate was 15 

constant during each individual test and is not expected to have influenced the results. The smaller 16 

cylinders were rotationally restrained at both ends during testing by the compression platens of the 17 

Instron 600LX machine, while the larger cylinders were rotationally restrained at the base and 18 

effectively pinned at the top by bearing against the spherical head of a compression load cell. 19 

Axial and hoop strains were measured optically using Digital Image Correlation (DIC) and the 20 

GeoPIV code [20]. In the case of the FRIC- and FRP-wrapped specimens of Series 2, electrical 21 

resistance foil gauges were also bonded at mid-height of the cylinders, and two linear potentiometers 22 

(LP) were attached to the top loading platen to measure the total axial displacement, and thus the 23 

global axial strain of the specimen. The DIC strain measurement setup is shown in Figure 2(a). The 24 

strain measurement field was the full face of the specimen opposite the mesh overlap in the case of 25 

the small cylinders (Series 1), while in Series 2 the camera field of view covered only the central 250 26 

mm of the cylinders’ height. The bottom and top 100 mm were omitted in this case to increase the 27 

image resolution (and hence the strain measurement accuracy) over the strain measurement region 28 

of interest, since concrete dilation is affected near the column ends by frictional lateral restraint from 29 

the steel loading platens [21-23]. The locations of the virtual and physical (foil) strain gauges are 30 
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shown in Figure 2(b). Axial strains were calculated as the average of a horizontal array of pixel patch 1 

pairs with a gauge length of 100 mm, and with patch pairs spaced 2 mm apart. The width of this array 2 

was chosen as 50 mm (i.e. equal to the hoop strain gauge length). Hoop strains were measured over 3 

the full captured height of the specimens, with pixel patch pairs spaced along the centreline (2 mm 4 

apart) with a gauge length of 50 mm. The pixel patches defined for hoop strain were also used to 5 

obtain the indicative variation of axial strain along the height of the specimens (however localised 6 

since it was measured along single lines in this case) from patch pairs with a gauge length of 30 mm. 7 

To minimise light reflection and to allow pixel tracking during DIC analysis, a black and white texture 8 

was applied on the wrapped cylinders. Optical strain was measured at a frequency of 0.2 Hz, whereas 9 

all other measurements (including load and crosshead stroke) were acquired at 10 Hz. 10 

(a) 

 
 
*Dimensions in mm. 

(b) 

 
 
 

Figure 2: (a) Camera and strain gauge arrangement; and (b) pixel patch array used in DIC analysis. 11 

3 Results and Discussion 12 

3.1 Confined Response of the Wrapped Cylinders 13 

Test data regarding the compressive strength, axial strains, and hoop strains of the wrapped 14 

specimens are given in Table 2, and the observed responses in terms of axial stress versus axial and 15 

hoop strains are shown in Figure 3. Significant enhancements were recorded with respect to the 16 

strength and ultimate axial strain for all confined cylinders, which overall displayed the typical 17 

compressive behaviour expected for passively confined (FRP-wrapped) concrete. 18 

For the small-scale cylinders of Series 1, average compressive strength enhancement ratios, 19 

fcc/fco, ranged from 1.63 for specimens reinforced with the lightest Mesh 1, up to 2.29 for those 20 

reinforced with the modified unidirectional carbon fabric. Average ultimate axial strain of the wrapped 21 

500 1000 1500 2000 2500 3000 3500

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

10 

150 

450 

150 

120 
Optical strain 
measurement 
field 

250 

Foil gauges 

50 mm 

100 mm 
Y‐
co
o
rd
in
at
e 
(p
ix
el
s)
 

X‐coordinate (pixels) 



 

11 

cylinders was up to approximately 4.5 times higher than that of unconfined concrete. The DIC-1 

measured axial strains displayed in this case large discrepancies between specimens of the same 2 

type, even at stresses lower than the unconfined strength of concrete. Ultimate values are given in 3 

Table 2; coefficient of variation (CoV) values up to 0.40 were observed for those. Axial strains 4 

deduced from the testing machine’s crosshead displacement are plotted instead of the DIC values in 5 

Figure 3(a), since they were more consistent between specimen types (CoV of ultimate values up to 6 

0.11), representing the average total strain on the cylinders, as opposed to the more localised values 7 

measured by DIC. 8 

All specimens reinforced with the PBO mesh, the UD carbon fabric, and Mesh 2 displayed 9 

axial stress-strain responses comprising an approximately linear secondary branch beyond the strain 10 

corresponding approximately to the unconfined concrete strength. In the case of the specimens with 11 

one or three layers of Mesh 1, this secondary branch was characterised by reduced confining 12 

stiffness at hoop strains higher than approximately 1.5%. This is due to the gradual rupture of the 13 

carbon and glass rovings and the non-linearity of the intumescent matrix that is governing the 14 

response in hoop tension, because of the very low fibre volume fraction. Figure 3(a) displays clearly 15 

that, as expected, the confined strength of the coated cylinders and the stiffness of the secondary 16 

branch of the stress-strain responses increased when the intumescent matrix was reinforced with 17 

meshes/fabrics of higher fibre weights. 18 

The intumescent-coated cylinders of Series 2 displayed the typical approximately bilinear 19 

compressive behaviour of passively confined concrete, which was indeed very similar to their FRP-20 

wrapped counterparts. The FRIC and the conventional FRP wraps provided equivalent strengthening 21 

effects, with the mean compressive strength enhancement being 42% and 43%, respectively. The 22 

confined ultimate axial strains were in general higher for the FRIC-wrapped cylinders compared to 23 

their FRP counterparts; ultimate strain values determined from the total axial displacement were on 24 

average 4.8 and 3.2 times higher than the unconfined concrete strain at peak stress, for the FRIC and 25 

FRP wraps respectively. 26 
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Table 2: Experimental results. 1 

Specimen Type Peak Stress 
(MPa) 

fcc/fco Axial Strain at Peak Stress (%) εcu/εco Ultimate Hoop Strain (%) Hoop Strain Efficiency 

   Stroke* DIC Strain Gauge (Stroke) DICave
† DICmax Strain Gauge DICave

† DICmax Strain Gauge 

   Ave.±SD   Ave.±SD  Ave.±SD  Ave.±SD   Ave.±SD  Ave.±SD  Ave.±SD    

S
er

ie
s 

1 

Unwrapped-1 23.4 
23.8 
±0.3 

0.98 0.37 
0.42 

±0.08 

0.50 
0.56 

±0.06 

–  0.87 0.20 
0.27 

±0.06 

0.44 
0.55 

±0.09 

– 

 

– – – 

Unwrapped-2 24.0 1.01 0.51 0.60 –  1.21 0.28 0.58 – – – – 

Unwrapped-3 24.0 1.01 0.39 0.61 –  0.92 0.31 0.62 – – – – 

Mesh1-1 38.5 
38.8 
±0.4 

1.62 2.13 
2.03 

±0.13 

1.58 
1.51 

±0.46 

–  5.04 1.91 
1.88 

±0.03 

2.33 
2.25 

±0.21 

– 

 

0.78 0.96 – 

Mesh1-2 38.6 1.62 1.87 1.93 –  4.43 1.88 2.40 – 0.77 0.99 – 

Mesh1-3 39.2 1.65 2.08 1.02 –  4.92 1.84 2.02 – 0.75 0.83 – 

3×Mesh1-1 46.2 
46.0 
±0.3 

1.94 2.34 
2.16 

±0.20 

2.46 
1.92 

±0.58 

–  5.53 1.80 
1.69 

±0.15 

2.20 
2.00 

±0.25 

– 

 

0.74 0.90 – 

3×Mesh1-2 46.1 1.94 2.20 1.99 –  5.20 1.74 2.08 – 0.71 0.85 – 

3×Mesh1-3 45.6 1.92 1.95 1.31 –  4.61 1.53 1.72 – 0.63 0.71 – 

PBO_Mesh-1 50.1 
49.8 
±1.0 

2.10 1.80 
1.90 

±0.14 

2.00 
1.53 

±0.41 

–  4.27 1.14 
1.29 

±0.13 

1.33 
1.47 

±0.12 

– 

 

‡ ‡ – 

PBO_Mesh-2 48.7 2.05 1.85 1.24 –  4.38 1.32 1.54 – ‡ ‡ – 

PBO_Mesh-3 50.7 2.13 2.06 1.34 –  4.87 1.40 1.54 – ‡ ‡ – 

UD_Fabric-1 54.6 
54.4 
±1.3 

2.30 2.27 
2.07 

±0.18 

2.42 
1.66 

±0.67 

–  5.38 1.46 
1.35 

±0.09 

1.60 
1.45 

±0.14 

– 

 

0.95 1.04 – 

UD_Fabric-2 52.9 2.22 1.98 1.17 –  4.69 1.29 1.34 – 0.84 0.87 – 

UD_Fabric-3 55.6 2.34 1.96 1.39 –  4.63 1.30 1.41 – 0.84 0.91 – 

S
er

ie
s 

2 

Unwrapped-4 35.0 
35.3 
±0.5 

0.99 0.31 
0.31 

±0.01 

0.22 
0.25 

±0.05 

– 

 

1.03 0.16 
0.13 

±0.05 

0.40 
0.39 

±0.01 

– 

 

– – – 

Unwrapped-5§ 28.7§ 0.81§ 0.37§ 0.23§ – – – – – – – – 

Unwrapped-6 35.7 1.01 0.30 0.28 – 0.97 0.09 0.38 – – – – 

FRIC-1 54.0 
50.1 
±3.4 

1.53 1.56 
1.46 

±0.09 

1.77 
1.44 

±0.32 

1.55 
1.65 

±0.13 

5.10 1.18 
1.19 

±0.05 

1.58 
1.48 

±0.11 

1.79 
1.42 

±0.32 

0.90 1.20 1.35 

FRIC-2 48.0 1.36 1.39 1.14 1.61 4.55 1.14 1.36 1.31 0.87 1.03 0.99 

FRIC-3 48.3 1.37 1.44 1.43 1.80 4.71 1.25 1.51 1.18 0.95 1.14 0.89 

FRP-1 49.8 
50.3 
±2.5 

1.41 1.00 
0.97 

±0.15 

1.00 
1.15 

±0.21 

0.61|| 
1.34 

±0.57 

3.28 0.66 
0.70 

±0.16 

1.44 
1.30 

±0.16 

0.90 
0.98 

±0.26 

0.46 1.01 0.63 

FRP-2 53.0 1.50 1.10 1.39 1.74 3.60 0.87 1.33 1.26 0.61 0.93 0.88 

FRP-3 48.2 1.37 0.81 1.08 0.94 2.66 0.57 1.13 0.76 0.40 0.79 0.53 
* Strains calculated from crosshead displacements and corrected for loading frame compliance for Series 1, and from linear potentiometer measurements for Series 2. 2 
† Average value over central 100 mm for Series 1, over central 250 mm for Series 2. 3 
‡ Coupon tests were not performed on PBO mesh. 4 
§ Specimen Unwrapped-5 failed prematurely by flexure; not considered in the calculation of average results. 5 
|| Strain gauge partially debonded before failure; not considered in the average ultimate axial strain calculation. 6 



 

13 

(a) 

 

 

(b) 

 

Figure 3: Axial stress versus axial and peak hoop strain of (a) Series 1 and (b) Series 2 specimens. 1 
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3.2 Strain Variation and Hoop Strain Efficiency 1 

3.2.1 Series 1 2 

All wrapped specimens failed by tensile rupture of the intumescent coating in the hoop 3 

direction, with a vertical crack initiating at the most highly strained point and propagating vertically 4 

towards the cylinder ends. Figure 4 shows a representative photograph of a specimen immediately 5 

after rupture, as well as the hoop and axial strain distributions over the specimens’ height immediately 6 

before failure. Hoop and axial strains have been shown in [23] to vary considerably both over the 7 

height and around the perimeter of FRP-wrapped cylinders, and they are expected to vary similarly for 8 

the FRIC-wrapped cylinders. However, the strain distributions measured at the front face of the 9 

cylinders presented herein provide a good illustration for the hoop strains developed at the ultimate 10 

condition, despite being only local to a single radial coordinate (diametrically opposed to the overlap 11 

centre). These are characterised by large variations over the height of all cylinders, with considerably 12 

lower hoop strains recorded near the specimen ends. This indicates that substantial frictional restraint 13 

exists between the cylinder and the loading platens, which results in additional confining stresses 14 

near the cylinders’ end regions [21-23]; this is discussed in greater detail in the following subsection. 15 

Despite the large variability over the cylinders’ height, peak hoop strains did reach values that were 16 

close to the ultimate tensile failure strain of the respective materials, albeit only locally, in most cases 17 

close to the cylinder’s mid-height. 18 

Table 2 gives values of the hoop strain efficiency (defined as the ratio of the hoop strain at 19 

rupture over the ultimate tensile strain determined from coupon tests) calculated for the peak and 20 

average hoop strains for all cylinders; averaged efficiency values ranged between 0.63 and 0.95, 21 

while the peak efficiency values were close to unity for most specimens. Strain efficiencies are not 22 

reported for the PBO specimens because no direct tension testing was performed on coupons 23 

reinforced with this particular mesh. It is also noteworthy that the strain efficiency calculation for all 24 

specimens reinforced with Mesh 1 takes into account the tensile failure strain of the unreinforced 25 

intumescent matrix, rather than that of the fibre-reinforced coupons. Peak hoop strains measured for 26 

those specimens were considerably higher (up to 49%) than the average failure strain recorded for 27 

the respective fibre-reinforced coupons tested in direct tension, and indeed very close to the average 28 

failure strain of the unreinforced matrix. This is because of the higher than specified final coating 29 

thickness of the small cylinders of Series 1, due to the difficulty in controlling thickness uniformity in 30 

each applied layer during installation for such a small cylinder diameter. Total thicknesses were found 31 
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to vary within the range of 11-16 mm around the specimens’ perimeter; this resulted in even lower 1 

fibre volume fractions in the wraps compared to the respective coupons, and thus the failure mode in 2 

hoop tension was characterised by matrix cracking after fibres had ruptured. Final thicknesses were 3 

considerably more consistent for the larger cylinders of Series 2 with tolerances of ±1 mm. 4 

As already discussed above, the DIC-measured local axial strains calculated from the 5 

averaged virtual gauge array over the central 100 mm of the cylinders’ faces displayed considerable 6 

variability between different specimens. In addition, the strain distributions of Figure 4(c) indicate that 7 

large variability also exists over the height of individual specimens. The shape and magnitude of the 8 

axial strain distributions appear to be essentially random for all confined specimens, and no clear 9 

correlations could be found between the axial strains and the respective hoop strain patterns. On the 10 

other hand, the measured hoop strains exhibit general agreement between specimens of the same 11 

type regarding both their distribution shape and the peak strain values at ultimate (Figure 4(a)). 12 

 

 

 

 

 

 
(a) (b) (c) 

Figure 4: (a) Hoop strain variation over the cylinder height at failure, (b) typical failure mode, and (c) 13 
axial strain variation at failure, for Series 1 specimens. 14 

  15 

0

20

40

60

80

100

120

140

160

180

200

-0.03 -0.02 -0.01 0

G
au

g
e 

h
ei

g
h

t (
m

m
)

Hoop strain

Unwrapped

Mesh 1

3x Mesh 1

PBO Mesh

UD_Fabric

εult,coupon

0

20

40

60

80

100

120

140

160

180

200

0 0.01 0.02 0.03

G
au

g
e 

h
ei

g
h

t (
m

m
)

Axial strain



 

16 

Strain localisation, Boundary Restraint, and Specimen Size Effects on Measured Strength 1 

The large variability that exists in the strain distribution of the wrapped cylinders is thought to 2 

be largely a consequence of frictional confinement at the specimen boundaries and strain 3 

localisations within the concrete [23, 24]. In uniaxial compression testing, shear stresses develop 4 

between the concrete specimen’s ends and the loading platens because of the different lateral 5 

expansion of the two materials in contact, and as a result the end zones of the specimen are laterally 6 

confined by the frictional restraint at the boundary [21, 22]. Since early studies on compressive testing 7 

of concrete (e.g. [25]) it is well-appreciated that the boundary restraint and the resulting triaxially 8 

stressed zones influence the apparent compressive strength (i.e. the specimen strength, not the 9 

strength of the material) of short unconfined specimens when loaded with hardened steel rigid 10 

platens. Unless friction reducing measures are taken (e.g. by using intermediate Teflon sheets), the 11 

apparent strength increases with decreasing specimen aspect ratios, whereas these slenderness 12 

effects disappear for ratios greater than 2.0-2.5 [26]. Beyond the peak stress of unwrapped concrete 13 

specimens, localised fracture planes are known to develop within the concrete due to the confined 14 

end zones, whereas the measured deformations during the softening stage are due to the relative 15 

sliding of concrete wedges along the fracture planes [22, 27]. Strain localisation always occurs in the 16 

post-peak softening stage [22], although the way it develops as well as the slope of the descending 17 

branch of the axial stress-strain response of unconfined concrete are greatly influenced by the 18 

amount of boundary restraint, depending on the type of platens or friction-reducing measures used 19 

[21, 22]. When high friction boundary conditions exist (as in the case of conventional rigid steel 20 

platens that were used for the tests herein), cracking develops in the unconfined zones of the 21 

specimen resulting in the typical hour-glass shape failure mode, whereas the axial stress-strain 22 

response displays a relatively shallow softening branch compared to low friction boundary conditions 23 

[21, 22, 26]. 24 

Similarly to unconfined concrete, strain localisations occur in FRP-wrapped cylinders because 25 

of the formation of failure planes and the sliding of solid concrete wedges that take place in the 26 

secondary (typically) ascending branch of the confined axial stress-strain response, as shown in a 27 

numerical study by Tabbara and Karam [24]. Furthermore, Bisby and Take [23] experimentally 28 

quantified the strain variation over the surface of the FRP-wrapped cylinders using DIC, and 29 

corroborated the idea that the hoop strain variation is largely due to this strain localisation 30 
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mechanism. In [23], the authors found that the variation of hoop strains can be as high as 50% of the 1 

failure strain obtained from coupon testing, even far away from the frictionally restrained column ends, 2 

but in most cases the coupon failure strain is achieved somewhere locally on an FRP-wrapped 3 

cylinder’s surface. 4 

The variations observed for the FRIC-wrapped cylinders of Series 1 in Figure 4 are in good 5 

agreement with the findings of [23]. The high lateral restraint that is apparent from the hoop strain 6 

distribution near the ends of the small cylinders suggests that their measured compressive strength 7 

could have been affected by frictional confinement, resulting in improved load capacities for these 8 

specimens as compared to longer wrapped cylinders. The large thickness of the FRIC wraps in this 9 

case resulted in approximately 60% larger (on average) cross-sectional area of the coated cylinders 10 

compared to the unwrapped cylinders, reducing the height-to-total-diameter ratio to approximately 11 

1.6:1 from the original 2:1 of the plain cylinder. The higher restraint from the larger area in contact 12 

with the steel platens could have partly constrained the localisation of shear failure planes, extending 13 

the influenced zones by frictional confinement, similarly to plain concrete specimens of aspect ratios 14 

lower than 2:1 as noted above. In the numerical study presented in [24], a comparison between FRP-15 

wrapped cylinders with aspect ratios of 1:1 and 2:1 showed that shear failure planes are constrained 16 

by the proximity of the column ends in the former case, resulting in higher load capacities. The failure 17 

planes that develop from the ends towards the cylinder’s centre meet before reaching it, leaving an 18 

intact core that requires further energy to mobilise the initiation of new fracture planes until ultimate 19 

failure [24]. Thus, the apparent confined strength and the stiffness of the secondary branch in the 20 

axial stress-strain response are in this case greater than for specimens of higher aspect ratios. 21 

The effect of boundary restraint in relation to the specimen geometry is possibly one of the 22 

factors corrupting the obtained confined strength values for the FRIC-wrapped cylinders, and this may 23 

result in substantial overestimation of the strength enhancement ratios fcc/fco. Another important factor 24 

for this is the contribution of the thick coating in carrying a proportion of the applied axial load at 25 

higher axial strains, particularly due to the larger applied thickness than specified as discussed above. 26 

In practice the coating is under a triaxial stress state during loading instead of being stressed only in 27 

the hoop direction as idealised for conventional FRP wraps [28]. However it is not possible (and also 28 

not strictly necessary for the purposes of this particular test series) to estimate the extent of each 29 

factor’s influence on the confined strength overestimation, due to (i) the high uncertainty regarding the 30 
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compressive behaviour and cross-sectional characteristics of the coating in each cylinder, and (ii) the 1 

very complex, non-uniform stress state related to frictional restraint that exists within the concrete 2 

core. 3 

Despite the fact that the measured strength enhancement ratios of Series 1 are influenced by 4 

the structural behaviour of the specimen under the specific test conditions and are (very likely) not 5 

representative of the true confined strength of the material under uniaxial compression with the 6 

respective wraps, the obtained results from these exploratory test series showed clearly that the novel 7 

FRIC systems can indeed provide effective passive confinement to a concrete core. The composite 8 

intumescent coatings were effective in resisting high lateral expansion due to strain localisation 9 

(whatever the concrete failure mode may have been beneath the wrap), they failed by tensile rupture 10 

of the wrap reaching hoop strains very close to the measured coupon failure strain without any 11 

premature fibre pull-outs or overlap failures, and they significantly enhanced the axial deformation 12 

capacity of the wrapped concrete. 13 

Finally, it is should be noted that the effects of boundary restraint and specimen size were 14 

realised after examining the obtained stress-strain responses and results from Series 1. The selection 15 

of the standard cylinder dimensional proportions for this exploratory series was based on the 16 

experimental practice reported in the literature, since the majority of FRP-confined concrete 17 

characterisation tests have been performed on standard cylinders of 150 mm in diameter and 300 mm 18 

in height. The smaller size adopted herein was simply due to load capacity and test space 19 

considerations regarding the specific universal testing machine that was used. Several experimental 20 

studies are available in the literature on standard concrete cylinders confined with thick fibre-21 

reinforced cementitious composites of similar geometric proportions with the FRIC-wrapped cylinders 22 

of Series 1 (considering the target intumescent thickness of 10 mm). These cementitious wraps 23 

generally comprise of multiple layers of mesh reinforcement (usually up to 4) embedded between 3-4 24 

mm thick layers of cement mortar. References to specific experimental studies are avoided but an 25 

extensive list can be found in a dedicated section on concrete confinement with cementitious 26 

composites in a review paper by Koutas et al. [29]. In general, the effects of specimen size (cross-27 

section enlargement) and boundary restraint do not seem to be reported (or recognised) in the 28 

literature, although these are likely to influence the specimen behaviour to some extent, since they 29 
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are relevant to any type of concrete cylinder up to a 2:1 aspect ratio that is loaded with steel platens 1 

and no friction reducing measures (e.g. Teflon sheets) [26], as discussed above. 2 

For the tests of Series 2 presented in the following section, the effects of boundary restraint 3 

and specimen size were rendered insignificant due to the larger aspect ratio that was adopted (3:1), 4 

and therefore the confined behaviour at the central part of the cylinder was not affected by frictional 5 

confinement. Moreover, the larger cylinder diameter of 150 mm and better thickness control during 6 

application (10±1 mm) ensured that the axial load bearing contribution of the wrap is negligible (based 7 

on a simple conservative analysis assuming linear elastic behaviour of the intumescent matrix). 8 

3.2.2 Series 2 9 

Figure 5 shows the hoop and axial strain distributions over the central 250 mm of the 10 

cylinders immediately prior to failure. For all cylinders failure was localised within approximately two 11 

thirds of their height; this is also evident in the observed axial and hoop strain variation, where strains 12 

appear to decrease towards one end of the specimen. This is due to an implication that arose during 13 

concrete casting, when the bottom quarter to one third of the cylinder moulds was filled with concrete 14 

of lower slump (i.e. water content) and hence slightly higher compressive strength than the rest of the 15 

specimen, thus strain localisations were more prominent at the top part. The restricted dilation of the 16 

stronger concrete zone is clearly visible in the hoop strain variation of the confined specimens within 17 

the bottom (for FRIC) or top (for FRP) 150 mm of the cylinders. The trend in the hoop strain variation 18 

of the FRP confined specimens is opposite to that of the FRIC and unconfined specimens because 19 

they had been positioned in the test frame upside-down due to strain gauge orientation and wiring 20 

arrangement issues. 21 

The indicative axial strain distributions shown in Figure 5 appear to vary randomly over the 22 

specimen height, with no obvious correlations with the respective hoop strain profiles, except for the 23 

lower strains developed near the zones of higher strength concrete. However, there is a clear 24 

difference between the more uniform pattern in the evolution of axial strain for the FRIC specimens 25 

and the frequent/successive peaks and troughs that are apparent for the FRP specimens. This is due 26 

to localised concrete crushing for the latter, which occurred between hoop rovings of the carbon fibre 27 

mesh because of its open construction. Axial foil gauge measurements are in a good agreement with 28 

strains obtained from DIC locally, however, it is clear from the large variability over the height that 29 

these values cannot be considered as representative of the overall specimen behaviour. Axial stress-30 
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strain responses (Figure 3) and ultimate axial strain enhancement ratios, εcu/εco, (Table 2) were 1 

instead determined from the total axial strains calculated from displacement measurements as 2 

discussed in Section 2.4. The measured values of the total ultimate axial strain of the FRIC-3 

strengthened specimens were on average 51% higher than for the FRP-wrapped specimens (average 4 

strain and standard deviation were 1.46% ± 0.09% and 0.97% ± 0.15%, respectively). The respective 5 

local DIC axial strains measured from the arithmetic mean of 26 virtual gauges over a length of 100 6 

mm at mid-height (Figure 2(b)) were 1.44% ± 0.32% and 1.15% ± 0.21%. 7 

The hoop strain distributions of Figure 5 are characterised by large variability over the height 8 

of all cylinders. For the FRP-wrapped cylinders in the current study, peak strains developed within the 9 

bottom half of the column and low hoop strains were recorded in the higher strength zone near their 10 

top ends. Indeed, at this location hoop strains appeared to be mildly compressive at failure (although 11 

very close to zero) for two of the FRP-wrapped cylinders; this is probably because of the localised 12 

failure developing at the bottom part of the cylinder, which could have caused flexural stresses in the 13 

undamaged top part. However, the wraps did reach local hoop strains that were very close to those 14 

determined from straight coupon tests of the same material. The measured peak values of the hoop 15 

strain efficiency were between 0.79 and 1.01 for the three specimens. The average hoop strain 16 

efficiency over the total (measured) height for all three specimens was 0.47 with a standard deviation 17 

of 0.32, which is in very good agreement with the reported mean hoop strain efficiency of 0.50 ± 0.30 18 

for CFRP-wrapped cylinders suggested in a previous study [30]. This mean strain efficiency in [30] 19 

was obtained from the statistical evaluation of a large population of hoop strains (1667 readings) from 20 

confined cylinders with aspect ratios ranging between 2:1 and 6:1, measured with the same DIC 21 

technique as used herein. 22 

On the other hand, the FRICs developed relatively more uniform and consistent hoop strains 23 

in the central region of the cylinder, despite the fact that the zone of higher strength concrete near the 24 

base influenced their distributions. Peak hoop strains occurred near mid-height, with hoop strain 25 

efficiencies exceeding unity and ranging between 1.03 and 1.20 for the three specimens. Although 26 

local strain efficiencies that are higher than 1.0 have been observed in FRP-wrapped cylinders [23, 27 

30], these usually arise from the statistical variation in the tensile properties of the test coupons. In the 28 

case of the FRIC-strengthened specimens, the coating sustained considerably greater hoop strains 29 
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than those observed for the tensile coupons over a larger area; the average strain efficiency over the 1 

total measured height for all three specimens was 0.90 ± 0.22. 2 

The reason for the significantly larger failure strains reached by the FRICs in the wrapped 3 

cylinder tests than those observed in tensile coupon tests is not clear. Potential overestimation of the 4 

actual strains due to lateral movements of the specimen towards the camera is not considered as a 5 

credible source of error, since the localised foil gauge readings at mid-height are in good agreement 6 

with local DIC strains, also yielding unexpectedly high efficiency values at the point of measurement 7 

(up to 1.35). A possible explanation may be that strains measured on the surface of the coating at 8 

fibre rupture were higher than those at the fibre level due to flexing of the thick coating. This could 9 

have been a result of potential non-uniformities in the lateral dilation of the concrete core, considering 10 

the significantly higher stiffness (both axial and flexural) of the thick wrap over a quarter of the 11 

cylinders’ perimeter, due to the mesh overlap. Furthermore, it is likely that at high axial strains the 12 

thick coating may be flexing to resist larger internal displacements of the sliding concrete wedges, 13 

therefore explaining the beneficial difference of 51% that was observed in the average total axial 14 

strain at ultimate condition for FRIC cylinders compared to their FRP counterparts. The FRP wraps on 15 

the other hand are prone to localised failure at discontinuities on the concrete surface caused by 16 

cracking and wedge sliding deformations, due to their lower flexural and shear stiffness than the thick 17 

intumescent coating. This effect is even more pronounced for the particular mesh-reinforced FRP 18 

wraps, and it is evidenced by the localised peaks and general variation of hoop strain in the 19 

distributions of Figure 5. However, these assumptions cannot be corroborated further with the 20 

experimental data obtained from the current study. 21 

Figure 6 shows representative photographs of the confined cylinders after failure. All confined 22 

specimens failed by fibre rupture in hoop tension; no overlap failures or fibre pull-outs were observed. 23 

This indicates that the 120 mm overlap provided adequate bond for the carbon fibre mesh used in this 24 

application. Rupture occurred in most specimens close to the beginning of the hoop overlapping 25 

region, possibly due to the presence of geometric discontinuities at the fibre level [31]. Although 26 

failure was relatively sudden and brittle in all cases, it was less violent in the case of the FRIC-27 

strengthened specimens. For those, fracture initiated at the most highly stressed fibre rovings and 28 

progressed vertically in the form of a straight crack, towards the top and bottom of the cylinder (Figure 29 

6(a)), with the slit coating containing the fractured concrete core due to its higher flexural stiffness. On 30 
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the other hand, the FRP wrap split more explosively, as soon as the most highly stressed rovings 1 

reached their failure strain. It is noteworthy that in specimen FRIC-3, although cracking of the coating 2 

initiated at peak stress over a small length at the beginning of the overlap, ultimate failure occurred 3 

eventually with a vertical crack at the front face of the specimen (opposite to the overlap, see Figure 4 

6(a)), following a slight drop in the applied axial load (refer to Figure 3(a)). In all cases, the failure 5 

initiation locations over the height of the specimen coincided with the regions of highest hoop strains 6 

in the distributions shown in Figure 5. 7 

 8 

Figure 5: Axial and hoop strain variation over the specimen height at failure for Series 2 cylinders. 9 
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(a) FRIC 

   

(a) FRP 

Figure 6: Representative failure modes of the confined cylinders of Series 2 (wraps shown with black 1 
and white speckle pattern applied for DIC strain measurements). 2 

4 Prediction of the Confined Compressive Behaviour 3 

The capability of existing FRP confinement models in predicting peak strength and ultimate 4 

axial strain for FRIC-wrapped circular cross-section columns is examined in this section, in order to 5 

assess their applicability/suitability for use in designing column strengthening schemes with the FRIC 6 

wraps. A large number of analytical and empirical models have been proposed in the literature and 7 

many extensive reviews of model performance are available with comparisons on their predictive 8 

abilities, e.g. [32-34]. For the purposes of this paper, only a selection of representative design-9 

oriented FRP confinement models is considered for comparison with the experimental data from the 10 

FRIC- and FRP-wrapped cylinders of Series 2. Their accuracy and precision in predicting the 11 

confining performance of the FRIC wraps is evaluated in terms of the mean error (ME) and the mean 12 

absolute error (MAE), respectively, given by: 13 
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 (2) 14 

where P is the property under consideration (fcc or εcu), and N is the number of tests. However, this 15 

assessment is only indicative due to the statistically very small sample sets, and is only performed as 16 

a preliminary evaluation of the applicability of current design-oriented confinement models for column 17 

wrapping schemes using the novel intumescent system proposed herein. 18 
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4.1 Confined Strength 1 

In the assessment of peak strength predictions, the models considered were those proposed 2 

by Lam and Teng [35], Teng et al. [36], and Rousakis et al. [37]. The expressions of these models are 3 

not included herein for brevity, although some of their merits (and thereby the reasons for their 4 

selection) are discussed below. 5 

The well-known design-oriented stress-strain model by Lam and Teng [35] has been adopted 6 

in the design guidelines published by ACI Committee 440 [2]. A refinement to this model was 7 

proposed by Teng et al. [36] with new, more accurate expressions for the prediction of compressive 8 

strength and ultimate axial strain to be used with the existing stress-strain model of Lam and Teng 9 

[35]. These refined expressions were adopted with minor modifications in the current edition of design 10 

guidelines for cylindrical FRP-confined columns published by the Concrete Society [3]. A major 11 

weakness of Lam and Teng’s expressions [35] (and indeed of most empirical confinement models) is 12 

the large uncertainty regarding the ultimate condition (i.e. hoop strain) of the FRP wraps at rupture, 13 

which on the basis of most of the available research appears to occur at strains considerably lower 14 

than the failure strain of FRP coupons in direct tension. Lam and Teng [35] considered the average 15 

hoop strain at rupture for the calculation of the confinement pressure and suggested an average hoop 16 

strain efficiency of 0.586 for CFRP-confined cylindrical columns, based on their assembled 17 

experimental data. However, the ultimate hoop strain readings reported in the literature and used for 18 

model calibration are typically measured by discrete foil gauges, the precise number and location of 19 

which is in many cases not reported [36]. 20 

Teng et al. [36] addressed the uncertainty in ultimate hoop strain that characterises the large 21 

database used by Lam and Teng [35] by correlating their refined expressions based only on test data 22 

obtained by their research group under standardised test conditions, to improve the accuracy of their 23 

model. Hoop strain measurements at rupture were taken in this case as the average value from five 24 

strain gauges outside the overlapping zone at the specimen’s mid-height, ignoring the considerably 25 

lower strains that are measured on the overlap. According to the observations of Lam and Teng [38], 26 

the lower strains at the overlap are only a result of the larger thickness of the wrap but do not result in 27 

a lower confining pressure at this location. Hence, Teng et al. [36] suggested that the reduced 28 

average hoop strain by taking these readings into account is unrepresentative of both the strain 29 

capacity of the wrap and the dilation properties of concrete. As discussed previously, however, hoop 30 

strain varies considerably both around the circumference as well as the height of FRP-wrapped 31 



 

25 

columns, thus it is extremely difficult to capture the true ultimate condition of the wrap using discrete 1 

bonded foil gauges. At rupture of the wrap, hoop strains very close to the coupon failure strain are 2 

achieved in most cases, even though only locally, as shown by [23] and [30], and confirmed by the 3 

experimental hoop strain distributions of the FRIC- and FRP-wrapped cylinders in the previous 4 

sections. Therefore, it is questionable whether the average hoop strain (measured either by foil 5 

gauges or over the total specimen surface in the case of DIC) yields an accurate confinement 6 

pressure at ultimate, since peak hoop strain values are in most cases very close to the actual tensile 7 

failure strain of the FRP material. 8 

The model proposed by Rousakis et al. [37] was selected for assessment because it has an 9 

advantage over other empirical models in that it accounts for the ultimate hoop strain indirectly, and 10 

requires knowledge of only the tensile rigidity of the FRP wrap and the unconfined strength of 11 

concrete. According to Rousakis et al. [37], the peak strength enhancement, fcc/fco, can be empirically 12 

related to the modulus of elasticity and the nominal thickness of the dry fibre fabric, which are 13 

properties that can be more confidently defined (and commonly found in manufacturer’s datasheets), 14 

thus reducing the error in the predicted peak strength enhancement. Indeed, in a relatively recent 15 

review [34] with one of the largest assembled databases of experimental results, the proposed 16 

expression by Rousakis et al. [37] is found to yield the lowest mean absolute error (MAE) amongst the 17 

available FRP confined strength models applicable to cylindrical columns (10.5%). 18 

Figure 7(a) compares the performance of the models considered for predicting the confined 19 

strength of wrapped cylinders of Series 2. In all cases, the calculated MAE with respect to the 20 

experimental results is lower than typical error values reported for model predictions previously 21 

compared with large databases (e.g. [32-34]). The most conservative predictions are those by Lam 22 

and Teng [35] under predicting peak strength by 4.5% on average for both the FRIC- and the FRP-23 

wrapped columns. Similarly, the design equation of the Concrete Society [3] yields more conservative 24 

results than the original expression that it adopts [36], because Concrete Society suggests a hoop 25 

strain efficiency of 0.6 at rupture, along with a slightly modified constant in the peak strength equation. 26 

The models of Teng et al. [36] and Rousakis et al. [37] exhibited very similar precision and accuracy 27 

(MAE of 4.7%-5.0% for the FRIC-wrapped specimens and 3.3% for the FRP-wrapped specimens; ME 28 

very close to zero in both cases). 29 
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It is noteworthy that the failure strain used in the model of Teng et al. [36] was the coupon 1 

failure strain, εult,coupon, rather than the average ultimate hoop strain that was considered in the model’s 2 

calibration. The error in the predictions of this particular model, using the peak hoop strain, εh,rup, 3 

measured from DIC, is also included in Figure 7(a) for comparison. The strength in this case was over 4 

predicted by 2.7% on average for the FRIC-wrapped specimens, due to the fact that the apparent 5 

hoop strains at rupture were considerably higher than the coupon failure strains, as discussed 6 

previously (peak hoop strain efficiencies up to 1.20 and average values up to 0.95 – refer to Table 2). 7 

On the contrary, the strength in the case of FRP-wrapped cylinders was under predicted by 4.2% 8 

using peak hoop strain, i.e. with somewhat higher mean error than predictions using the uniaxial 9 

failure strain (ME=-1.6%). 10 

Although the errors in either case could be considered very low compared to the typical mean 11 

errors reported in the literature using large statistical data sets, they suggest that the use of the 12 

coupon failure strain is more rational than the measured hoop strain (either peak or average over the 13 

column height). The higher hoop strains that were measured on the thick FRIC wraps are possibly 14 

unrepresentative of the strain at the level of the carbon fibres (which governs failure), possibly due to 15 

flexural effects on the thick epoxy, as discussed in Section 3.2.2. Furthermore, the FRP wraps may 16 

have achieved local hoop strain efficiencies even closer to 1.0 than those measured by DIC (Table 2), 17 

since rupture initiated outside the strain measurement field in most cases. 18 

(a) (b) 

Figure 7: Mean error in (a) confined strength and (b) ultimate axial strain predictions, as compared 19 
with the test data from Series 2. 20 
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4.2 Ultimate Axial Strain 1 

The examined ultimate axial strain models were the expression proposed in ACI Committee 2 

440 [2], the expression proposed by Teng et al. [36] both in its original form using the coupon failure 3 

strain and including a hoop strain efficiency of 0.6 as recommended by the Concrete Society [3], and 4 

finally the model by Rousakis et al. [39]. The latter is based on the strain model by De Lorenzis and 5 

Tepfers [32] (also included for comparison), and both of these have the benefit of bypassing the 6 

effects of hoop strain efficiency by lumping it in the parameters determined via regression analysis. 7 

These two models display the lowest MAE between those examined in published comprehensive 8 

model reviews [32-34]. 9 

The errors in the predicted ultimate axial strains (based on total strain values from LP 10 

measurements) are summarised in Figure 7(b). These were considerably higher than the errors in 11 

predicted peak strength, this being generally the case also in the available literature when the 12 

accuracy of predictive expressions for strain is compared to those for strength [32-34]. All models 13 

under predicted the ultimate strain of the specimens, except for that of Teng et al. [36] in the case of 14 

the FRP-wrapped cylinders; this was characterised by a mean error of 63%. At the same time, this 15 

model yielded the lowest error for the FRIC-wrapped cylinders with a MAE of 4.8% and ME of 1.6%. 16 

All the other models consistently under predicted the ultimate strain, with mean errors being between 17 

39%-50% for the FRIC-wrapped cylinders and between 12%-22% for the FRP-wrapped cylinders. 18 

The much larger error in the prediction of axial strain than for strength is, according to [32], 19 

due to the greater sensitivity of strain equations to the value of ultimate confining pressure, compared 20 

to those for strength prediction. In their review of the available strain models, De Lorenzis and Tepfers 21 

[32] observed that all equations over predicted ultimate strain, but the use of a reduced effective hoop 22 

strain reduced the prediction error greatly. This is reasonable since all models assume uniform strain 23 

over the height of the column [33], hence they overlook the large strain variation (both axial and hoop) 24 

that is now known to exist over the height and around the perimeter of the column. This is illustrated 25 

by the differences shown in Figure 7(b), where the Teng et al. model [36] yields very unconservative 26 

predictions for the FRP-wrapped cylinders, in contrast to the Concrete Society’s model [3] (i.e. the 27 

same equation considering a hoop strain efficiency of 0.6). These strain variations play an important 28 

role in the observed axial strain of the cylinders, as shown in Figure 5. FRIC wraps reached more 29 

uniform hoop strain efficiencies close to (and exceeding) 1.0 over a significantly larger proportion of 30 

the specimen’s height compared to the FRP wraps, and consequently achieved greater ultimate axial 31 
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strains. Current axial strain models that assume uniform (peak or average) hoop strain distributions 1 

cannot capture such differences. 2 

Furthermore, the recorded strain values are considerably influenced by the strain 3 

measurement method used, the location of measurement and gauge length, because of the axial 4 

strain variation over the surface of a test specimen. The ultimate strain data reported in the literature 5 

and used for model calibration are characterised by high scatter largely because of the different 6 

testing conditions and measurement methods employed by various researchers. Teng et al. [36] 7 

recognised the need for consistency in the data used for their model development, using only 8 

standardised measurements obtained by their own research group. However, there seems to be no 9 

consensus currently amongst researchers regarding the test and strain measurement conditions that 10 

would yield ‘reliable’ data, primarily due to the lack of understanding of the strain localisation 11 

mechanisms that cause the high variations measured on the specimens’ surface. There is 12 

nonetheless a need to rationalise the test methods and strain measurements required for the reliable 13 

calibration of empirical design-oriented models taking into account the effects of strain localisation 14 

caused by shear friction in confined concrete. Research on understanding and evaluating those is 15 

available in the literature [23, 24, 27, 40], however, there is a need for further investigations in this 16 

field to enhance understanding. 17 

5 Conclusions 18 

The tests presented in this paper have clearly demonstrated that fibre-reinforced epoxy 19 

intumescent coatings can provide effective lateral confinement to concrete cylinders at ambient 20 

temperature, when wraps are applied with fibres of suitable weight oriented in the circumferential 21 

(hoop) direction. The following conclusions can be drawn from this study: 22 

 The novel FRIC wrapping system proposed herein was effective in resisting lateral dilation and 23 

exerting confining stresses to the concrete core up until tensile rupture of the fibres, and resulted 24 

in considerable enhancements of the axial load bearing capacity and deformability of the 25 

specimens. The confining performance of the FRIC wraps reinforced with the biaxial carbon fibre 26 

mesh developed for this study was very similar to counterpart FRP wraps consisting of the same 27 

reinforcing mesh and conventional non-intumescent epoxy resin. The average peak strength and 28 

ultimate axial strain increased by 42% and 480%, respectively, for the FRIC-wrapped specimens, 29 

with only minor differences between the FRIC and FRP wraps. 30 
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 The small-scale cylinder geometry that was considered in Series 1 (100 mm in diameter, 2:1 1 

aspect ratio) may not be suitable for measuring the confined strength of short FRIC-wrapped 2 

concrete columns (or perhaps confined with thick composite wraps, in general). The measured 3 

strength appears to be influenced by the increased frictional confinement near the specimen 4 

ends, due to the large coating thickness, and the fact that the coating may carry a significant 5 

proportion of the applied axial load at higher axial strains – due to its comparatively large 6 

compressive cross-sectional area for this specific cylinder size. On the other hand, for the larger 7 

cylinders of Series 2 (150 mm diameter, 3:1 aspect ratio) the coating thickness did not appear to 8 

affect the confined strength. 9 

 The available existing design-oriented FRP confinement models that were examined herein were 10 

found to reasonably predict the peak strength and ultimate axial strain of the FRIC-confined 11 

specimens. Model predictions for the FRIC-wrapped cylinders were characterised in all cases by 12 

similar errors compared to those for FRP-wrapped cylinders. This suggests that empirical models 13 

developed for the latter could possibly be applied in designing strengthening schemes with the 14 

novel FRIC systems developed herein, subject to further testing to increase the statistical dataset 15 

and potential refinement of the empirically determined parameters. 16 

The results demonstrate that FRICs clearly have a strong potential as alternative 17 

strengthening systems for reinforced concrete columns, since they can provide confinement to resist 18 

increased loads at ambient temperature. At the same time, FRICs can thermally protect the substrate 19 

concrete and the steel reinforcement in the event of a fire, by intumescing and charring, thus 20 

potentially eliminating the need for additional passive fire protection that is common with conventional 21 

fire-rated FRP wrapping systems. However, additional research is required to study the fire protection 22 

performance of the proposed novel FRIC systems when applied to concrete substrates, and to 23 

optimise the required coating thicknesses for this application to make use of the proposed hybrid 24 

functionality with confidence. 25 

Finally, further investigations are necessary for understanding the effects of strain localisation 26 

caused by the formation of shear failure planes in FRP-wrapped (and similarly FRIC-wrapped) 27 

concrete. The evaluation of the experimental results and the predictive performance of representative 28 

existing design models highlighted the need for confinement models that rationally account for the 29 

large strain variation (both axial and hoop) that is known to exist over the surface of wrapped 30 
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columns. Although research has been published on this issue by other researchers, it appears that 1 

there is no consensus in the research community regarding the test conditions and measurement 2 

methods that would yield reliable data for model development and calibration, addressing the strain 3 

variability at the ultimate condition of the wraps. 4 

Acknowledgments 5 

The authors would like to acknowledge the support of the UK Engineering and Physical Sciences 6 

Research Council (EPSRC) and the School of Engineering of the University of Edinburgh. 7 

Notation 8 

List of symbols used in this paper: 9 

fcc  Compressive strength of confined concrete 10 
fco  Compressive strength of unconfined concrete 11 
εco  Axial strain at peak stress of unconfined concrete 12 
εcu  Ultimate axial strain of confined concrete 13 
εh,rup  Hoop strain at rupture of FRP wrap 14 
εult,coupon  Tensile failure strain of coupon 15 

References 16 

[1] J.P. Firmo, J.R. Correia, L.A. Bisby, Fire behaviour of FRP-strengthened reinforced concrete structural 17 
elements: A state-of-the-art review, Composites Part B: Engineering 80 (2015) 198-216. DOI: 18 
http://dx.doi.org/10.1016/j.compositesb.2015.05.045. 19 

[2] ACI Committee 440, ACI 440.2R-17 Guide for the Design and Construction of Externally Bonded FRP 20 
Systems for Strengthening Concrete Structures, American Concrete Institute, Farmington Hills, MI, USA, 2017. 21 

[3] The Concrete Society, Technical Report No. 55: Design guidance for strengthening concrete structures using 22 
fibre composite materials, Camberley, United Kingdom, 2012. 23 

[4] H. Blontrock, L. Taerwe, P. Vandevelde, Fire Testing of Concrete Slabs Strengthened with Fibre Composite 24 
Laminates, FRPRCS-5: Proceedings of the fifth international conference on fibre-reinforced plastics for 25 
reinforced concrete structures, 16-18 July 2001 Cambridge, UK. 2001, pp. 547-556. 26 

[5] L.A. Bisby, V.K.R. Kodur, M.F. Green, Fire Endurance of Fiber-Reinforced Polymer-Confined Concrete 27 
Columns, ACI Structural Journal 102(6) (2005) 883-891. DOI: 10.14359/14797. 28 

[6] B. Williams, L. Bisby, V. Kodur, M. Green, E. Chowdhury, Fire insulation schemes for FRP-strengthened 29 
concrete slabs, Composites Part A: Applied Science and Manufacturing 37(8) (2006) 1151-1160. DOI: 30 
http://dx.doi.org/10.1016/j.compositesa.2005.05.028. 31 

[7] D. Cree, E.U. Chowdhury, M.F. Green, L.A. Bisby, N. Bénichou, Performance in fire of FRP-strengthened 32 
and insulated reinforced concrete columns, Fire Safety Journal 54 (2012) 86-95. DOI: 33 
http://dx.doi.org/10.1016/j.firesaf.2012.08.006. 34 



 

31 

[8] HM Government, Approved Document B: Fire Safety (Volumes 1 and 2), The Building Regulations 2010, 1 
NBS (part of RIBA Enterprises Ltd), Newcastle Upon Tyne, United Kingdom, 2011. 2 

[9] T.J. Stratford, M. Gillie, J.F. Chen, A.S. Usmani, Bonded Fibre Reinforced Polymer Strengthening in a Real 3 
Fire, Advances in Structural Engineering 12(6) (2009) 867-878. DOI: 10.1260/136943309790327743. 4 

[10] L.A. Bisby, M.F. Green, V.K.R. Kodur, Modeling the Behavior of Fiber Reinforced Polymer-Confined 5 
Concrete Columns Exposed to Fire, Journal of Composites for Construction 9(1) (2005) 15-24. DOI: 6 
10.1061/(asce)1090-0268(2005)9:1(15). 7 

[11] B. Williams, V. Kodur, M.F. Green, L. Bisby, Fire Endurance of Fiber-Reinforced Polymer Strengthened 8 
Concrete T-Beams, ACI Structural Journal 105(1) (2008) 60-67. DOI: 10.14359/19069. 9 

[12] A.H. Buchanan, A.K. Abu, Structural Design for Fire Safety, 2nd ed., John Wiley & Sons Ltd, Chichester, 10 
UK, 2017. 11 

[13] V.K.R. Kodur, L.A. Bisby, M.F. Green, FRP Retrofitted Concrete Under Fire Conditions, Concrete 12 
International 28(12) (2006). DOI:  13 

[14] T.A. Roberts, L.C. Shirvill, K. Waterton, I. Buckland, Fire resistance of passive fire protection coatings 14 
after long-term weathering, Process Safety and Environmental Protection 88(1) (2010) 1-19. DOI: 15 
http://dx.doi.org/10.1016/j.psep.2009.09.003. 16 

[15] G.P.J. Boyd, G.K. Castle, Reinforcement System for Mastic Intumescent Fire Protection Coatings 17 
Comprising a Hybrid Mesh Fabric, US patent application 5,433,991, 1995. 18 

[16] Z. Triantafyllidis, L. Bisby, Fibre-Reinforced Epoxy Intumescent Coatings for Strengthening and Fire 19 
Protecting Steel Beams, 7th International Conference on FRP Composites in Civil Engineering - CICE 2014, 20 
20-22 August 2014 Vancouver, Canada. 2014. 21 

[17] A. Nanni, A New Tool for Concrete and Masonry Repair: Strengthening with fiber-reinforced cementitious 22 
matrix composites, Concrete International 34(4) (2012). DOI:  23 

[18] Toyobo, PBO Fiber Zylon® - Technical Information (Revised 2005.6), Toyobo Co., Ltd., Osaka, Japan, 24 
2005. 25 

[19] Z. Triantafyllidis, Structural Enhancements with Fibre-Reinforced Epoxy Intumescent Coatings, PhD 26 
Thesis, The University of Edinburgh, Edinburgh, Scotland, United Kingdom, 2017. 27 

[20] D.J. White, W.A. Take, M.D. Bolton, Soil deformation measurement using particle image velocimetry 28 
(PIV) and photogrammetry, Géotechnique 53(7) (2003) 619-631. DOI: 29 
https://doi.org/10.1680/geot.2003.53.7.619. 30 

[21] M.D. Kotsovos, Effect of testing techniques on the post-ultimate behaviour of concrete in compression, 31 
Matériaux et Construction 16(1) (1983) 3-12. DOI: 10.1007/bf02474861. 32 

[22] M.R.A. van Vliet, J.G.M. van Mier, Experimental investigation of concrete fracture under uniaxial 33 
compression, Mechanics of Cohesive-frictional Materials 1(1) (1996) 115-127. DOI: 34 
https://doi.org/10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U. 35 

[23] L.A. Bisby, W.A. Take, Strain localisations in FRP-confined concrete: new insights, Proceedings of the 36 
ICE - Structures and Buildings 162(5) (2009) 301-309. DOI: https://doi.org/10.1680/stbu.2009.162.5.301. 37 

[24] M. Tabbara, G. Karam, Numerical Investigation of Failure Localization and Stress Concentrations in FRP 38 
Wrapped Concrete Cylinders, Proceedings of the Advanced Composite Materials in Bridges and Structures, 39 
Winnipeg, Manitoba, Canada, 22-24 September, 2008; Winnipeg, Manitoba, Canada. 40 

[25] K. Newman, L. Lachance, The Testing of Brittle Materials under Uniform Uniaxial Compressive Tests, 41 
Proceedings of the American Society for Testing and Materials 64 (1964) 1044 - 1067. DOI:  42 



 

32 

[26] J.G.M. van Mier, S.P. Shah, M. Arnaud, J.P. Balayssac, A. Bascoul, S. Choi, D. Dasenbrock, G. Ferrara, C. 1 
French, M.E. Gobbi, B.L. Karihaloo, G. König, M.D. Kotsovos, J. Labuz, D. Lange-Kornbak, G. Markeset, 2 
M.N. Pavlovic, G. Simsch, K.-C. Thienel, A. Turatsinze, M. Ulmer, H.J.G.M. van Geel, M.R.A. van Vliet, D. 3 
Zissopoulos, Strain-softening of concrete in uniaxial compression, Materials and Structures 30(4) (1997) 195-4 
209. DOI: 10.1007/bf02486177. 5 

[27] P. Visintin, Y. Chen, D.J. Oehlers, Size Dependent Axial and Lateral Stress Strain Relationships for 6 
Actively Confined Concrete, Advances in Structural Engineering 18(1) (2015) 1-20. DOI: 10.1260/1369-7 
4332.18.1.1. 8 

[28] J.F. Chen, S.Q. Li, L.A. Bisby, Factors Affecting the Ultimate Condition of FRP-Wrapped Concrete 9 
Columns, Journal of Composites for Construction 17(1) (2013) 67-78. DOI: 10.1061/(ASCE)CC.1943-10 
5614.0000314. 11 

[29] L.N. Koutas, Z. Tetta, D.A. Bournas, T.C. Triantafillou, Strengthening of Concrete Structures with Textile 12 
Reinforced Mortars: State-of-the-Art Review, Journal of Composites for Construction 23(1) (2019) 03118001. 13 
DOI: doi:10.1061/(ASCE)CC.1943-5614.0000882. 14 

[30] L.A. Bisby, T.J. Stratford, The Ultimate Condition of FRP Confined Concrete Columns: New Experimental 15 
Observations and Insights, Advances in FRP Composites in Civil Engineering: Proceedings of the 5th 16 
International Conference on FRP Composites in Civil Engineering (CICE 2010), Sep 27–29, 2010 Beijing, 17 
China. 2010, pp. 599-602. 18 

[31] J. Chen, J. Ai, T. Stratford, Effect of Geometric Discontinuities on Strains in FRP-Wrapped Columns, 19 
Journal of Composites for Construction 14(2) (2010) 136-145. DOI: 10.1061/(asce)cc.1943-5614.0000053. 20 

[32] L. De Lorenzis, R. Tepfers, Comparative Study of Models on Confinement of Concrete Cylinders with 21 
Fiber-Reinforced Polymer Composites, Journal of Composites for Construction 7(3) (2003) 219-237. DOI: 22 
10.1061/(asce)1090-0268(2003)7:3(219). 23 

[33] L.A. Bisby, A.J.S. Dent, M.F. Green, Comparison of Confinement Models for Fiber-Reinforced Polymer-24 
Wrapped Concrete, ACI Structural Journal 102(1) (2005) 62-72. DOI: 10.14359/13531. 25 

[34] N. Nisticò, F. Pallini, T. Rousakis, Y.-F. Wu, A. Karabinis, Peak strength and ultimate strain prediction for 26 
FRP confined square and circular concrete sections, Composites Part B: Engineering 67 (2014) 543-554. DOI: 27 
http://dx.doi.org/10.1016/j.compositesb.2014.07.026. 28 

[35] L. Lam, J.G. Teng, Design-oriented stress–strain model for FRP-confined concrete, Construction and 29 
Building Materials 17(6–7) (2003) 471-489. DOI: http://dx.doi.org/10.1016/S0950-0618(03)00045-X. 30 

[36] J. Teng, T. Jiang, L. Lam, Y. Luo, Refinement of a Design-Oriented Stress–Strain Model for FRP-Confined 31 
Concrete, Journal of Composites for Construction 13(4) (2009) 269-278. DOI: 10.1061/(asce)cc.1943-32 
5614.0000012. 33 

[37] T. Rousakis, T. Rakitzis, A. Karabinis, Design-Oriented Strength Model for FRP-Confined Concrete 34 
Members, Journal of Composites for Construction 16(6) (2012) 615-625. DOI: 10.1061/(asce)cc.1943-35 
5614.0000295. 36 

[38] L. Lam, J.G. Teng, Ultimate Condition of Fiber Reinforced Polymer-Confined Concrete, Journal of 37 
Composites for Construction 8(6) (2004) 539-548. DOI: 10.1061/(asce)1090-0268(2004)8:6(539). 38 

[39] T. Rousakis, T. Rakitzis, A. Karabinis, Empirical modelling of failure strains of uniformly FRP confined 39 
concrete columns, Proceedings of the 6th International Conference on FRP Composites in Civil Engineering – 40 
CICE 2012, 13-15 June 2012 Rome, Italy. 2012. 41 

[40] M. Haskett, D.J. Oehlers, M.S. Mohamed Ali, S.K. Sharma, Evaluating the shear-friction resistance across 42 
sliding planes in concrete, Engineering Structures 33(4) (2011) 1357-1364. DOI: 43 
https://doi.org/10.1016/j.engstruct.2011.01.013. 44 
 45 


