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Abstract

We consider the multiple knapsack problem, that calls for the optimal assignment of a set of
items, each having a profit and a weight, to a set of knapsacks, each having a maximum capacity.
The problem has relevant managerial implications and is known to be very difficult to solve in
practice for instances of realistic size. We review the main results from the literature, including
a classical mathematical model and a number of improvement techniques. We then present
two new pseudo-polynomial formulations, together with specifically tailored decomposition al-
gorithms to tackle the practical difficulty of the problem. Extensive computational experiments
show the effectiveness of the proposed approaches.

Keywords: Combinatorial optimization, Multiple knapsack problem, Exact algorithms, Pseudo-
polynomial formulations, Decomposition methods.

1 Introduction

Given a set of m containers (knapsacks) with capacity ci (i = 1, . . . ,m) and a set of n objects
(items) with profit pj and weight wj (j = 1, . . . , n), we consider the Multiple Knapsack Problem

(MKP): select m disjoint subsets of items (one per knapsack) such that the total weight of the
items in the knapsack does not exceed its capacity, and the overall profit of the selected items is a
maximum.

The MKP has a number of important special cases in the Cutting and Packing area. The most
famous one, arising whenm = 1, is the (single) Knapsack Problem, for which a huge literature exists
(see, e.g., the specific chapters in Martello and Toth [42] and in Kellerer, Pferschy, and Pisinger
[33]). When pj = wj for j = 1, . . . , n, we have the Multiple Subset-Sum Problem (MSSP), that has
been studied both in its natural version and in the special case where all capacities are equal (see
Caprara, Kellerer, and Pferschy [5, 6]). When, in addition, there is a unique knapsack, the MSSP is
known as the (single) Subset-Sum Problem (see again the specific chapters in [42] and [33]). Finally,
an MKP in which all items have the same profit and all knapsacks have the same capacity is known
as the Maximum Cardinality Bin Packing Problem (see, e.g., Labbé, Laporte, and Martello [36]).

A relevant generalization of the MKP, the Generalized Assignment Problem, arises when the
profit of each item depends on the knapsack it is assigned to, i.e., the profits are pij (i = 1, . . . ,m; j =
1, . . . , n).

The mentioned single-container problems (knapsack and subset-sum) can be shown to be weakly
NP-hard by transformation from the partition problem (see Karp [31]), while all the others are
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known to be strongly NP-hard by transformation from the 3-partition problem (see Garey and
Johnson [26]).

According to the classification scheme proposed by Dyckhoff [17], the MKP can be indicated
as 1/B/D/- (or as 1/B/I/-, when all knapsacks have the same capacity). The problem is called
the 1-dimensional Multiple Heterogeneous Knapsack Problem (MHKP) in the typology proposed
by Wäscher, Haußner, and Schumann [50].

The MKP has important real world managerial applications. In their seminal paper [18], Eilon
and Christofides mentioned applications in vehicle and container loading. Ferreira, Martins, and
Weismantel [20] described real world problems in the design of processors for mainframe computers,
in the layout of electronic circuits, and in sugar cane alcohol production in Brazil that could
be solved through a generalization of the MKP. Kalagnanam, Davenport, and Lee [30] used the
MKP within a complex approach for clearing continuous call double-sided auctions in the case of
indivisible demands. Recently, Simon, Apte, and Regnier [48] modeled, through MKPs, problems
of maintaining operational capability without external support (typically arising in humanitarian
assistance and disaster relief as well as in military operations). Other applications are mentioned
in [33].

In the next section we review the main results from the MKP literature. Section 3 contains a
basic mathematical model and the description of a number of improvement techniques. In Section
4 we present pseudo-polynomial formulations for the MKP, while decomposition approaches are
introduced in Section 5. Our best exact method, a hybrid combination of several techniques, is
given in Section 6. The results of extensive computational experiments on the various approaches
are reported and commented in Section 7.

2 Literature review

In this section we briefly describe the main contributions to the solution of the MKP. The reader
is referred to the book chapters below for more exhaustive presentations.

Book chapters

As mentioned in the previous section, two chapters in the books by Martello and Toth [42] and
Kellerer, Pferschy, and Pisinger [33] deal with the MKP. They review the existing literature at the
time of publication, and the main solution approaches: upper bounds, exact methods, heuristics,
approximation algorithms, and polynomial-time approximation schemes.

Heuristics

Fisk and Hung [21] were probably the first to present a heuristic algorithm for the MKP. It consists
of a non-polynomial method that: (i) exactly solves the surrogate relaxation obtained by replacing
the m knapsacks with a single knapsack with capacity equal to the sum of the knapsack capacities;
(ii) obtains a feasible solution by trying to insert the selected items into the knapsacks through
greedy insertions and local exchanges.

Martello and Toth [41] proposed various polynomial-time heuristics based on greedy algorithms
and local search procedures helped by the rearrangement of the greedy solutions. The resulting
overall algorithm is known as MTHM, and the corresponding Fortran computer code is available at
http://www.or.deis.unibo.it/knapsack.html. The algorithms were tested on instances with
up to 1000 items and 100 knapsacks, and later on, in [42], on larger instances with up to 10 000
items and 40 knapsacks.
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Lalami, Elkihel, El Baz, and Boyer [37] proposed a heuristic that recursively solves the so-called
core (see Balas and Zemel [1]) of different single knapsack problems through dynamic programming.
They compared it with MTHM on randomly generated instances with up to 100 000 items and 100
knapsacks, obtaining better gaps and smaller CPU times. Worth is noting that the reported gaps
are always below 0.2% (and usually below 0.01%), both for MTHM and the proposed algorithm.

Fukunaga [22] and Fukunaga and Tazoe [25] presented various genetic approaches and tested
them on instances with up to 300 items and 100 knapsacks. They obtained consistent improvement
in terms of solution quality with respect to MTHM, although at the expenses of much larger
execution times.

Laalaoui [34] experimented two swap heuristics to improve on the solutions produced by MTHM.
The approach was later extended by Laalaoui and M’Hallah [35], who proposed a variable neigh-
borhood search that makes use of a linked list data structure and a dynamic threshold acceptance
criterion. They computationally tested their algorithm on instances with up to 4800 items and 2400
knapsacks, obtaining state of the art results improving both on MTHM and the genetic algorithms
by Fukunaga [22].

It is known (see [42], Section 1.3) that the MKP cannot have a fully polynomial-time approxi-

mation scheme. Polynomial-time approximation schemes were developed by Chekuri and Khanna
[8] for the MKP and by Caprara, Kellerer, and Pferschy [6] for the MSSP. For the special MSSP
case in which all knapsacks have the same capacity, Caprara, Kellerer, and Pferschy [7] proposed a
polynomial-time 3

4 -approximation algorithm.

Enumerative algorithms

The first branch-and-bound algorithms for the MKP were proposed by Ingargiola and Korsh [29],
Hung and Fisk [28], and Martello and Toth [39]. Later on, Martello and Toth [40] proposed a spe-
cial enumerative algorithm (bound and bound method), whose Fortran implementation (known as
MTM, and available at http://www.or.deis.unibo.it/knapsack.html) turned out to be com-
putationally much faster than the previous approaches. These algorithms include upper bound
computations, obtained through surrogate and Lagrangian relaxations of the capacity constraints,
that were studied in [40] and [42], respectively.

Later on, Pisinger [44] derived from MTM a more efficient exact procedure, MULKNAP,
capable of solving to optimality large-size instances with up to 100 000 items and 10 knapsacks.
More recently, Fukunaga and Korf [23, 24] improved the performance of theMULKNAP bound and
bound algorithm by integrating techniques from constraint programming and artificial intelligence
in a solver that appears to be particularly effective on instances characterized by high n

m ratios (but
has more difficulties for instances with smaller ratios). Computational tests with a heterogeneous
aggregation for Dantzig-Wolfe reformulation were reported by Bergner and Dahms [2].

3 Mathematical model and preprocessing techniques

A classical, intuitive, model for the MKP can be defined by introducing binary variables

xij =

{

1 if item j is packed into knapsack i;
0 otherwise,

as follows (see [42]):

max z =

m
∑

i=1

n
∑

j=1

pj xij (1)
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s.t.
n
∑

j=1

wj xij ≤ ci i = 1, . . . ,m, (2)

m
∑

i=1

xij ≤ 1 j = 1, . . . , n, (3)

xij ∈ {0, 1} i = 1, . . . ,m j = 1, . . . , n. (4)

Objective function (1) maximizes the profit of the packed items. Constraints (2) impose that the
capacity of each knapsack is respected, while constraints (3) ensure that each item is packed in
at most one knapsack. Without loss of generality we assume that each knapsack can contain at
least one item and that each item can be contained in at least one knapsack (i.e., that minj{wj} ≤
mini{ci} and maxj{wj} ≤ maxi{ci}). An equivalent model can be obtained by: (i) defining binary
variables tj (j = 1, . . . , n) taking the value 1 if item j is selected and the value 0 otherwise; (ii)
adding constraints tj =

∑m
i=1 xij (j = 1, . . . , n), and (iii) replacing variables x with variables t in

the objective function. The new model may exhibit a different behavior with respect to the basic
one, as will be discussed in Section 7.

The computational performance of algorithms based on model (1)-(4), as well as on other
models discussed in the following, can be increased through a number of improvement techniques.
We briefly describe in the following the main techniques from the literature that were adopted or
adapted to the proposed algorithms.

Instance reduction

It is quite common in cutting and packing problems to preliminarily use special techniques in order
to decide the optimal value of a subset of variables and hence reducing the instance size. We
describe here an intuitive adaptation of instance reduction to the MKP, that has been recently
used by Martello and Monaci [38].

Let I be any subset of knapsacks and let J be the set of all items that can be packed in a
knapsack of I, i.e., J := {j : wj ≤ maxi∈I{ci}, 1 ≤ j ≤ n}: if there exists a feasible packing of the
items of J into the knapsacks of I, then such packing can be fixed and sets I and J can be removed
from the instance.

In order to efficiently implement this property, it is convenient to sort the knapsacks by non-
decreasing capacity, start with I = {1}, and iteratively add the next (smaller) knapsack to I. At
each iteration, we include the appropriate additional items into J , and check if

∑

j∈J wj ≤
∑

i∈I ci.
If the answer is yes, we invoke a Constraint Programming (CP) approach that is based on the bin

packing constraint introduced by Shaw [47]. Such constraint is formally written as P(l, b, w), where:
(i) l is a vector of m constrained variables representing the load of each bin; (ii) b is a vector of n
constrained variables indicating, for each item, the index of the bin in which it will be placed; and
(iii) w is a vector of n non-negative integers (w1, w2, . . . , wn) representing the weight of each item to
be packed. In our tests, we used the implementation provided by Cplex in the IloPack constraint.
This CP method will also be used in Section 5.1 to implement a decomposition algorithm.

Capacity lifting

Lifting techniques are also widely used in the cutting and packing area. We adopt the capacity
lifting method proposed by Pisinger [44]. For each knapsack i, we determine, through dynamic
programming, the maximum total weight c′i that can be obtained by packing any subset of items
into i: if c′i < ci then the capacity of the knapsack is set to c′i.
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Item dominance

A simple item dominance criterion was included by Ingargiola and Korsh [29] in their branch-and-
bound algorithm for the MKP. In a knapsack problem, given two items j and k, if wj ≤ wk and
pj ≥ pk, then we say that j dominates k (for any feasible solution that includes k but excludes j,
there is a better solution that excludes k and includes j). Hence, when a branch decision excludes
an item from the solution, all items dominated by it can also be excluded. We implemented this
idea by preliminarily sorting the items according to non-increasing weight, breaking ties by non-
decreasing profit. For each item k, items j := k + 1, . . . , n are scanned and, if pj ≥ pk then the
pair (j, k) is added to a dominance list D. Model (1)-(4) can then be enforced by adding the set of
constraints

m
∑

i=1

xij ≥
m
∑

i=1

xik for each (j, k) ∈ D. (5)

The three improvement procedures described above were included in all algorithmic implemen-
tations introduced in the next sections, and used in all our tests. We mention however that, for
very large knapsack capacities, it could be advisable to avoid using capacity lifting, as it could be
time-consuming with little effect.

4 Pseudo-polynomial formulations

Model (1)-(4) has a polynomial number of variables, nm. In this section, we present two pseudo-
polynomial models, whose number of variables also depends on the largest knapsack capacity c =
maxi=1,...,m{ci}.

The use of pseudo-polynomial models to solve cutting and packing problems dates back at
least to the 1970s, when Rao [46] and, independently, Wolsey [51] used them to solve the classical
Cutting Stock Problem (CSP). Since then, a number of effective pseudo-polynomial models has
been produced, to solve not only the CSP but also other relevant variants. Among these, we cite
methods One-cut by Dyckhoff [16] and Rao [46], Arc-flow by Valério de Carvalho [49], DP-flow by
Cambazard and O’Sullivan [4], VPsolver by Brandão and Pedroso [3], Meet-in-the-Middle by Côté
and Iori [12], and Reflect by Delorme and Iori [13]. We refer the interested reader to Delorme, Iori
and Martello [14] for a recent survey on exact algorithms and mathematical models for the CSP.
Very recently, Martinovic et al. [43] and Delorme and Iori [13] independently proved that One-cut,
Arc-flow and the pattern-based model by Gilmore and Gomory [27] are equivalent one another,
closing an open question in the field of cutting and packing.

In the following, we present two new formulations that can effectively tackle the MKP and are
based, respectively, on Arc-flow and Reflect.

4.1 Arc-flow model

The general idea of Arc-flow is to consider the filling of a knapsack as a path in a graph where
nodes are partial knapsack fillings and arcs are items. The aim is to find a set of paths, one for each
knapsack, that contains a subset of items having maximum profit. Formally, let c = maxi=1,...,m ci
and G = (N ,A) be a multi-graph having node set N = {0, 1, . . . , c, c+1}. To correctly represent a
knapsack packing, each path must start at the source node s = 0 and terminate at the sink node
t = c+ 1. Arcs in A are of the form (d, e, j, i), where d and e are two nodes representing (partial)
knapsack fillings, j either is an item index or takes the value 0, and i either is a knapsack index or
takes the value 0. We consider three subsets of arcs, partitioning A into As ∪ Ak ∪ Al as follows:
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Algorithm 1 Create arcflow multigraph MKP

1: Input: m: number of knapsacks; ci: knapsack capacities; n: number of items; wj: item weights
2: N ← ∅; As ← ∅; Ak ← ∅; Al ← ∅; s← 0; c← maxi=1,...,m{ci}; t← c+ 1
3: T [l]← 0 for l = 1, . . . , c ⊲ an array that keeps track of the possible tails
4: T [s]← 1; N ← N ∪ {s} ⊲ node s is the first tail
5: for j = 1 to n do ⊲ item arcs
6: for l = c− wj down to 0 do

7: if T [l] = 1 then ⊲ if l is a possible tail
8: As ← As ∪ {(l, l + wj , j, 0)}
9: T [l + wj ]← 1; N ← N ∪ {(l + wj)}

10: end if

11: end for

12: end for

13: for i = 1 to m do ⊲ knapsack arcs
14: Ak ← Ak ∪ {(ci, t, 0, i)}
15: N ← N ∪ {ci}
16: end for

17: for l ∈ N do Al ← Al ∪ {(l, l
′, 0, 0): l′ = min(e ∈ N : c ≥ e > l)} ⊲ loss arcs

18: A← As ∪ Ak ∪ Al

19: return N ,A

• As = {(d, d + wj, j, 0) with j ∈ {1, . . . , n}} is the set of item arcs that are used to represent
the assignment of item j to a knapsack having current filling d ∈ {0, . . . , c− wj};

• Ak = {(ci, t, 0, i) with i ∈ {1, . . . ,m}} is the set of knapsack arcs that model the use of
knapsack i;

• Al = {(d, e, 0, 0)} is the set of loss arcs that represent unused space from d to e, with d < e.

We provide in Algorithm 1 the procedure used to construct sets A and N . The procedure is
an adaptation to the MKP of the classical arc generation algorithm used for the CSP (see, e.g.,
[12], [13], and [49]). To keep the resulting number of arcs low, it is computationally convenient to
preliminarily sort the items by non-increasing weight. For each item j the algorithm generates an
item arc only if it starts from an ‘active’ node . A node d is active if it represents a complete filling
of d units, that could be obtained with the items preceding j (see, e.g., Valério de Carvalho [49] for
details). Algorithm 1 uses an array T to keep track of the possible arc tails. Initially, T contains a
single possible tail s (Step 4). Then (Step 5) for each item j the algorithm scans all possible tails
l that could lead to a valid arc (Step 6) and creates an item arc from l to l + wj (Step 8). Node
l+wj is then added to the possible tails and to the set of nodes (Step 9). Once all items arcs have
been built, the algorithm creates the knapsack arcs (Step 14), adds nodes ci to N (Step 15), and
terminates by adding loss arcs connecting all pairs of consecutive nodes in N (Step 17).

Figure 1-(a) depicts the graph created by Algorithm 1 for a small instance composed by 2
knapsacks of capacity 12 and 10 and 4 items of weights 8, 5, 4, and 3. The purpose of the example
is to help understanding how the Arc-flow graph is created, so, to keep it as simple as possible, we
disregard the item profits and consider a case in which all items are inserted into the knapsacks.
Algorithm 1 starts by creating item arcs (0, 8, 1, 0) and (0, 5, 2, 0) for the two first items, item
arcs (0, 4, 3, 0), (5, 9, 3, 0), and (8, 12, 3, 0) for the third item, and item arcs (0, 3, 4, 0), (4, 7,
4, 0), (5, 8, 4, 0), (8, 11, 4, 0), and (9, 12, 4, 0) for the fourth item. It then creates knapsack arcs
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(12, t, 0, 1) for knapsack 1 and (10, t, 0, 2) for knapsack 2 (depicted in thick lines). It terminates
by creating loss arcs (depicted as horizontal dotted lines) between any pair of consecutive nodes.
Figure 1-(b) depicts an optimal solution in which items 2, 3, and 4 are packed together in the
knapsack of capacity 12 and item 1 in the knapsack of capacity 10.

s 3 4 5 7 8 9 10 11 12 t

wj=3

wj=4 wj=5

wj=8

wj=3 wj=3wj=3 wj=3

wj=4
wj=4

(a) Arc-flow graph

s 3 4 5 7 8 9 10 11 12 t
i=2

i=2

wj=5, i = 1

wj=8, i=2

wj=3, i=1

wj=4, i=1

i=1

i=2

(b) Arc-flow solution

Figure 1: Arc-flow graph and optimal solution for an instance with 2 knapsacks and 4 items. Item
arcs are depicted in solid lines, knapsack arcs in thick lines, and loss arcs in dotted lines.

To formally describe our model, let δ+(e) (respectively, δ−(e)) be the subset of arcs emanating
from (respectively, entering) node e. By introducing an integer variable xdeji, giving the number
of times arc (d, e, j, i) is chosen, and a binary variable tj, taking the value 1 iff item j is selected,
the MKP can be modeled as:

max

n
∑

j=1

pjtj (6)

s.t.
∑

(e,f,j,i)∈δ+(e)

xefji −
∑

(d,e,j,i)∈δ−(e)

xdeji =







m if e = s
−m if e = t
0 otherwise

e ∈ N , (7)

∑

(d,d+wj ,j,0)∈As

xd,d+wj ,j,0 ≥ tj j = 1, . . . , n, (8)

xdeji ∈ N (d, e, j, i) ∈ Al, (9)

xdeji ∈ {0, 1} (d, e, j, i) ∈ As ∪Ak, (10)

tj ∈ {0, 1} j = 1, . . . , n. (11)

Objective function (6) maximizes the profit of the packed items. Constraints (7) ensure the
flow conservation. Constraints (8) impose that if an item is selected in the solution, then an arc
corresponding to such item is also selected. Constraints (10) limit to 1 the use of each knapsack.
Note that variables tj are not strictly necessary, as tj could be replaced by

∑

(d,d+wj ,j,0)∈As
xd,d+wj ,j,0

in (6), and (8) could be replaced by
∑

(d,d+wj ,j,0)∈As
xd,d+wj ,j,0 ≤ 1. However, their use makes the
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model easier to read and also computationally more efficient, as, according to our tests, they help
MIP solvers in obtaining a faster convergence (as also observed in [13] for the CSP). In addition,
we mention that the model is also valid if equality is required in (8), but preliminary computational
experiments showed that more instances are solved when we use inequalities.

The main drawback of the Arc-flow model (6)-(11) is the huge amount of variables and con-
straints that it requires when large capacities are involved. A number of recent studies (see, e.g.,
Brandão and Pedroso [3], Clautiaux, Hanafi, Macedo, Voge, and Alves [9], Côté and Iori [12], and
Delorme and Iori [13]) proposed techniques to overcome this difficulty. We decided to follow the
footsteps of the approach proposed in [13] for bin packing and cutting stock problems.

4.2 Reflect model

The basic idea is to start from the Arc-flow model but to represent a knapsack using half of its
capacity twice. More specifically, each arc whose head would lie in the second half of a knapsack
is reflected into the first half. This is obtained by having, for each knapsack i, standard item arcs

(arcs of the Arc-flow model terminating up to node ci/2)) and reflected item arcs (mirrored at ci/2
so that they terminate at a node in {0, . . . , ci/2}). The latter represent the occupation of the first
half of knapsack i plus the remaining available space in the second half of the knapsack. To clarify
this concept let us use again the example of the previous section (Figure 1). The way in which we
deal with odd bin sizes and knapsack arcs is clarified after the example. Consider item 1 and its
associated arc (0,8,1,0). For knapsack 1 we have c1/2 = 6 < e, so this arc would terminate in the

s 2 3 4 5 6

wj=3

wj=4 wj=5

wj=8, i=1

wj=8, i=2

wj=3, i=1
(a) Reflect graph

s 2 3 4 5 6i=2

wj=4, i=1

wj=5, i=1

wj=8, i=2

wj=3, i=1
(b) Reflect solution

Figure 2: Reflect graph and optimal solution for the instance of Figure 1
.
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second half of the knapsack. The two units of the item occupying the second part of the knapsack
are instead “mirrored” in the first part, producing an arc that starts at 0, “bounces” at 6, and
terminates at 4, as shown in Figure 2-(a). For knapsack 2 we have c2/2 = 5, so the reflected arc
starts at 0 and terminates at 2.

Since we only model one half of the knapsack, a feasible solution in which some items fill a
knapsack for more than half of its capacity must be represented by two paths starting from 0 and
terminating in the same node, say e, with e ≤ ci/2. Exactly one among the two paths includes
a reflected arc. Consider, e.g., the packing of items 1 and 3 into knapsack 1. This solution is
represented, in Figure 2-(a), by the standard path going from 0 to 4 (indeed a single arc, with label
‘wj = 4’, in the figure), together with a second path consisting of the reflected arc going from 0
to 4 (dashed line with label ‘wj = 8, i=1’, in the figure). If we pack items 1 and 4 into knapsack
1 we represent the solution with two paths, one made by the same reflected arc from 0 to 4, and
one made by the standard arc from 0 to 3, plus the loss arc from 3 to 4. The optimal solution, in
which items 2, 3, and 4 are packed together again in the knapsack of capacity 12 and item 1 in the
knapsack of capacity 10 is depicted in Figure 2-(b).

Formally, our Reflect model is built upon a multigraph G′ = (N ′,A′). Suppose for the sake of
simplicity that all ci values are even, let c be the maximum ci value, and let N ′ = {s ≡ 0, 1, . . . , c/2}
denote the node set. Similarly to Arc-flow, we use (d, e, j, i) to denote a generic arc belonging to A′,
going from node d to node e, possibly involving item j and knapsack i. This time we distinguish
among four subsets of arcs, partitioning A′ into A′

s ∪ A
′
r ∪ A

′
c ∪ A

′
l as follows:

• A′
s = {(d, d + wj , j, 0) with j ∈ {1, . . . , n}} is the set of standard item arcs of the Arc-flow

model;

• A′
r = {((d, ci − (d + wj), j, i) with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}} is the set of reflected

item arcs (satisfying d+ wj > ci/2 and d ≤ ci − wj);

• A′
c = {(ci/2, ci/2, 0, i) with i ∈ {1, . . . ,m}} is the set of reflected connection arcs;

• A′
l = {(d, e, 0, 0)withd < e} is the set of loss arcs as in the original Arc-flow model.

Both standard and reflected item arcs are used to represent the packing of an item j at a certain
knapsack filling d. Reflected connection arcs are used to merge two sub-paths, both ending at ci/2,
into a unique path, whereas loss arcs model an empty space between d and e. (For the sake of
clarity reflected connection arcs are not shown in Figure 2.)

It has been proved in [13] that the number of arcs in the Reflect model can be reduced through
two properties:

(a) given a knapsack i, the mirroring can be restricted to arcs with d < ci/2, avoiding the
generation of all arcs having the tail in the second half of the knapsack;

(b) given a knapsack i and an item j, the mirroring can be restricted to Arc-flow arcs with
ci − (d+ wj) < d, i.e., the generation of reflected arcs with tail, d, greater than head, e, can
be avoided.

The rationale of the two properties is that a solution involving the suppressed arcs can always be
represented by the maintained arcs.

The procedure used to construct sets N ′ and A′ is provided in Algorithm 2. Preliminarily
sorting the items by non-increasing weight is computationally convenient for this algorithm too.
The usual array T keeps track of the possible arc tails. For each item j (Step 5), it scans all
possible tails l that could lead to a valid arc (Step 6). First, it checks if a standard arc can be
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created (i.e., l+wj ≤ c/2) (Steps 8-11). Then, it tries to create a reflected arc for each knapsack i
(Steps 12-17). An arc can be reflected in ci/2 if its head ends after ci/2 and it satisfies the above
reduction properties. The algorithm terminates by adding knapsack and loss arcs (Steps 22 and
23).

Algorithm 2 Create reflect multigraph MKP

1: Input: m: number of knapsacks; ci: knapsack capacities; n: number of items; wj: item weights
2: N ′ ← ∅; A′

s ← ∅; A
′
r ← ∅; A

′
c ← ∅; A

′
l ← ∅; A

′ ← ∅; s← 0; c← maxi=1,...,m{ci}
3: T [l]← 0 for l = 1, . . . , c2 ⊲ an array that keeps track of the possible tails
4: T [s]← 1; N ′ ← N ′ ∪ {s} ⊲ node s is the first tail
5: for j = 1 to n do ⊲ item arcs
6: for l = c

2 − 1 down to 0 do

7: if T [l] = 1 then ⊲ if l is a possible tail
8: if l + wj ≤

c
2 then ⊲ standard item arcs

9: A′
s ← A

′
s ∪ {(l, l + wj, j, 0)}

10: T [l + wj]← 1; N ′ ← N ′ ∪ {(l + wj)} ⊲ also added to the possible tails
11: end if

12: for i = 1 to m do ⊲ reflected item arcs
13: if l + wj >

ci
2 and l ≤ ci − (l +wj) then ⊲ reflection in ci

2
14: A′

r ← A
′
r ∪ {(l, ci − (l + wj), j, i)}

15: N ′ ← N ′ ∪ {(ci − (l +wi))} ⊲ not added to the possible tails
16: end if

17: end for

18: end if

19: end for

20: end for

21: for i = 1 to m do N ′ ← N ′ ∪ { ci2 }
22: for i = 1 to m do A′

c ← A
′
c ∪ {(

ci
2 ,

ci
2 , 0, i)} ⊲ reflected connection arcs

23: for l ∈ N ′ do A′
l ← A

′
l ∪ {(l, l

′, 0, 0): l′ = min(e ∈ N ′ : e > l)} ⊲ loss arcs
24: A′ ← A′

s ∪ A
′
r ∪A

′
c ∪ A

′
l

25: return N ′,A′

The graph created by Algorithm 2 for the instance of Figure 1 is given in Figure 2-(a).
Let again δ+(e) and δ−(e) denote the subsets of arcs emanating from and entering node e. Let

ξdeji be an integer variable giving the number of times arc (d, e, j, i) is chosen, and let tj be a binary
variable taking the value 1 iff item j is selected. By using r instead of i when we refer to a reflected
arc, the MKP can be modeled as:

max

n
∑

j=1

pjtj (12)

s.t.
∑

(d,e,j,0)∈δ−(e)∩A′
s

ξdej0 =
∑

(d,e,j,r)∈δ−(e)∩A′
r

r>0

ξdejr +
∑

(e,f,j,i)∈δ+(e)

ξefji e ∈ N ′ \ {0}, (13)

∑

(0,e,j,i)∈δ+(0)

ξ0eji +
∑

(0,0,j,r)∈δ−(0)
r>0

ξ00jr = 2m, (14)

10



∑

(d,e,j,i)∈A′
s∪A′

r

ξdeji ≥ tj j = 1, . . . , n, (15)

∑

(d,e,j,i)∈A′
c

ξdeji ≤ 1 i = 1, . . . ,m, (16)

ξdeji ∈ N (d, e, j, i) ∈ A′
l, (17)

ξdeji ∈ {0, 1} (d, e, j, i) ∈ A′
s ∪ A

′
r,∪A

′
c (18)

tj ∈ {0, 1} j = 1, . . . , n. (19)

Objective function (12) maximizes the total profit. Constraints (13) ensure that the flow on
standard arcs entering a node e is equal to the flow (on both standard and reflected arcs) emanating
from e, plus the flow on reflected arcs entering e. Constraint (14) forces the amount of flow
emanating from 0 to be twice the number of knapsacks used, and additionally takes into account
the fact that a reflected arc can also directly enter node 0 (in case there are an item j and a knapsack
i such that wj = ci). Constraints (15) link together variables tj and ξdeij, while constraints (16)
impose that at most one reflected arc per knapsack is selected, i.e., that each knapsack is used at
most once.

We conclude with two observations. We supposed so far that all ci values are even, so as to
maintain integer indices for the ci/2 nodes. Odd values can be handled by multiplying weights and
capacities by 2, thus leaving the number of variables and constraints unchanged.

The second observation is that model (12)-(19) can be strengthened by adding the constraint

n
∑

j=1

tj ≤ nmax, (20)

where nmax is the maximum number of items that can be inserted into the knapsacks. Determining
the exact value of nmax is an NP-hard problem, as it requires solving a variable-sized extension of
the maximum cardinality bin packing problem (see Section 1). In practice, nmax can be obtained
by preliminarily setting all item profits to 1 and solving (12)-(19) with a given time limit. If an
optimal solution is not reached, an upper bound on nmax can be still obtained by rounding-down
the upper bound provided by the MIP solver when the time limit is reached. Note that such simple
improvement can also be adopted for the classical model (1)-(4) and for the Arc-flow model (6)-(11).

5 Decomposition methods

Despite the fact that Reflect produces a sharp decrease in the number of variables and constraints
with respect to Arc-flow, this number can still be too big for large-size instances. In this section,
we present two decomposition techniques that can further reduce it.

5.1 Knapsack-based decomposition

A classical MKP decomposition consists in: (i) solving the surrogate dual relaxation of the prob-
lem, that is given (see [39]) by a single knapsack problem having a unique knapsack of capacity
C =

∑m
i=1 ci, and then (ii) checking if it is possible to partition the selected items among the m

knapsacks. The second phase either provides a feasible (and hence optimal) solution or a cut that
can be added to the surrogate problem. The Master Problem (MP) of this decomposition is

max z =

n
∑

j=1

pj tj (21)
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s.t.
n
∑

j=1

wj tj ≤ C, (22)

tj ∈ {0, 1} j = 1, . . . , n. (23)

Let t̄j be the solution of (21)–(23). The second stage Slave Problem (SP) is to look for a feasible
partition of the items in J̄ = {j ∈ 1, . . . , n : t̄j = 1}. We first invoke the constraint programming
(CP) algorithm introduced in Section 1. If this fails in either finding a feasible solution, or in
proving that none exists, we attempt to solve the SP with a reduced version of the Reflect model
(12)–(19) obtained by restricting the item set to J̄ , and by disregarding the objective function (in
practice, constraints (13)-(17) with (15) replaced by

∑

(d,e,j,i)∈A′ ξdeji ≥ 1, j ∈ J̄). If we obtain a
feasible solution, this is optimal for the MP. Otherwise, we add the no-good cut

∑

j∈J̄

tj ≤ |J̄ | − 1, (24)

to the MP and we iterate.
We propose two methods for improving this decomposition. As constraints (24) are known to

be weak in practice, the first method improves them by finding the minimal subset J ′ ⊆ J̄ such
that the SP remains infeasible. We start with J ′ = J̄ , iteratively remove the smallest item in J ′,
and stop as soon as the SP becomes feasible. The last J ′ that produced infeasibility is then used
to create the resulting combinatorial Benders’ cut (see, e.g., Codato and Fischetti [10])

∑

j∈J ′

tj ≤ |J
′| − 1, (25)

which is used to replace (24). Worth is mentioning that the use of cuts of type (25) has led to
good results in a number of cutting and packing problems (see, e.g., Côté et al. [11] and Delorme
et al. [15]). A similar idea, although not expressed in terms of combinatorial Benders’ cuts but
still based on the search for a smallest infeasible subset, was used by Pisinger and Sigurd [45] for
the two-dimensional bin packing problem.

The second improvement is based on the consideration that the proposed decomposition has
to find MP integer solutions before being able to generate the necessary cuts that will possibly
lead to a proven optimal solution. We start by generating standard Benders’ infeasibility cuts. We
solve the Linear Programming (LP) relaxation of the MP (21)-(23), obtaining a solution t̄j and a
set J̄ = {j ∈ 1, . . . , n : t̄j > 0} of items that are entirely or partially selected. We then check the
feasibility of the LP relaxation of a reduced version of the Reflect model made by (13)-(17) with
(15) replaced by

∑

(d,e,j,i)∈A′ ξdeji ≥ t̄j, j ∈ J̄ .
Consider now the dual variables α (associated with constraint (14)), βj (associated with con-

straints (15)), and γi (associated with constraints (16)). If the LP relaxation is proved to be
infeasible, then the following Benders’ feasibility cut is added to the MP

2mα+
∑

j∈J̄

βjtj +
m
∑

i=1

γi ≥ 0, (26)

and the process is iterated. If instead a feasible solution is found for both LP relaxations (of the
MP and the SP), then we invoke again the original decomposition with the integrality constraints.
The advantage of this approach lies in the generation of good initial cutting planes by means of
(26).
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5.2 Reflect-based decomposition

As the MP (21)–(23) does not incorporate any information about the different knapsack capacities,
the decomposition algorithm of Section 5.1 may iterate many times before obtaining a proven
optimal solution. We thus developed a second decomposition that works as the one of Section 5.1
but makes use of a more complex MP.

We use model (12)-(17) in which integrality constraints (17) are relaxed but constraints (19)
are kept. Let again t̄j (j = 1, . . . , n) denote the item variables in the solution of the relaxed model
and let J̄ = {j ∈ 1, . . . , n : t̄j = 1} be the set of selected items. The solution can be unfeasible for
the original problem because the arcs may have fractional values, implying that a selected item has
different item fractions assigned to different knapsacks. The SP is the same used in the knapsack-
based decomposition. Note that in this case we may use the Reflect model twice: the first time to
select the items and the second time to check if they can be feasibly packed into the m knapsacks.

We still improve the decomposition through cuts (25), but we disregard the use of (26) as an
LP solution for this MP is always feasible for the LP relaxation of the corresponding SP.

6 Overall algorithm

On the basis of preliminary computational experiments, we developed an effective hybrid algorithm
that invokes in sequence the main components presented in the previous sections. The overall
procedure, called Hybrid MKP (Hy-MKP), is presented in Algorithm 3, and, as shown in the next
section, is a powerful exact method that achieves proven optimal solutions for many benchmark
instances.

We initially apply, at Step 1, the preprocessing techniques of Section 3. This phase is followed
by the execution (Step 2) of the MULKNAP branch-and-bound algorithm by Pisinger [44] (see
Section 2) for a short amount, τ , of CPU seconds: this can allow a quick solution of easy instances
and of instances with a high n/m ratio. If an optimal solution is not obtained, Step 3 constructs the
reflect multigraph through the method presented in Section 4.2. At Steps 4-8 we then perform, for
at most ν times, the knapsack-based decomposition of Section 5.1 with only the no-good cut (24),
i.e., without (25) and (26): indeed, combinatorial Benders’ cuts and Benders’ feasibility cuts tend
to slow down the overall process, and our strategy is to use this decomposition to solve instances
that require few cuts. The remaining instances are solved at Step 9, where we fully execute the
Reflect-based decomposition of Section 5.2 of the current MP (i.e., including all cuts obtained at
Step 7).

Algorithm 3 Hy-MKP

1: perform Instance reduction, Capacity lifting, and Item dominance;
2: call MULKNAP for τ seconds; if the solution is optimal then return;
3: call Create reflect multigraph MKP;
4: for i := 1 to ν do

5: execute the knapsack-based decomposition;
6: if an optimal solution has been obtained then return

7: else add the resulting no-good-cut
8: end for;
9: if the instance is not solved then execute the Reflect-based decomposition;

10: return.
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7 Computational experiments

We report in this section the outcome of extensive computational experiments aimed at testing the
effectiveness of the proposed approaches.

Benchmarks

Each algorithm was run on 5 benchmark sets:

• SMALL: a set of 180 instances (with m ∈ {10, 20} and n ∈ {20, 40, 60}) proposed by Kataoka
and Yamada [32] for a variant of the MKP in which the items are partitioned into subsets and
an additional constraint imposes that a knapsack can only contain items of the same class. We
adapted the instances to the MKP by simply disregarding the additional constraint. All the
SMALL instances that we used have been kindly provided by the authors. Other instances
proposed in [32], with m ∈ {200, 400, 800} and n ∈ {4000, 8000}, are too large to be solved
when adapted to the MKP. We thus obtained larger instances as follows.

• FK1, FK2, FK3, and FK4: four sets of 480 larger instances each, that reproduce those that
Fukunaga [23] derived from the classical benchmarks in Chapter 6 of [42] with the aim of
identifying critical ratios n/m producing difficult instances. The instances were obtained
through Pisinger’s instance generator (available online at http://www.diku.dk/~pisinger/
codes.html) .

All test sets are available at http://or.dei.unibo.it/library. In Table 1, we better detail
their characteristics. Set SMALL contains 18 (2×3×3) subsets of 10 instances each, obtained with
all the combinations of m, n and ‘class of correlation’ (to be defined below). Each set FK contains
24 (6 × 4) subsets of 20 instances each, created with the objective of studying the impact of six
different ratios n/m (2, 3, 4, 5, 6, and 10) on the correlation classes. The table reports, for each
instance set, the values of m and n and the classes of correlation, defined by Kataoka and Yamada
[32] as follows. The weights wj are always uniformly distributed in [α, 1000], with α = 1 for the
SMALL instances and α = 10 for the FK instances. The four correlation classes are:

• uncorrelated: profits pj are uniformly distributed in [α, 1000];

• weakly correlated: For SMALL, pj = 0.6wj + ϑj , with ϑj uniformly random in [1, 400]. For
FK, the pj values are uniformly distributed in [wj − 100, wj + 100], such that pj ≥ 1;

• strongly correlated: For SMALL, pj = wj + 200, for FK, pj = wj + 10;

• subset-sum: pj = wj .

For the SMALL instances, the knapsack capacities were generated as ci = ⌊σλi
∑n

j=1wj⌋, with λi

uniformly distributed in [0, 1] such that
∑m

i=1 λi = 1, and σ ∈ {0.25, 0.50, 0.75}. For the FK in-
stances, we generated so called similar capacities (see [42]): ci uniformly random in [0.4

∑n
j=1wj/m,

0.6
∑n

j=1wj/m] for i = 1, . . . ,m−1, and cm = 0.5
∑n

j=1wj−
∑m−1

i=1 ci. Instances with minj{wj} >
mini{ci}, maxj{wj} > maxi{ci}, or

∑n
j=1wj ≤ maxi{ci}, were discarded and generated again.

Implementation details

For the instance reduction procedure of Section 1, the CP optimizer was invoked at each iteration
(if required) with a time limit of one second, terminating the reduction procedure as soon as it
could find no solution.
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Table 1: Characteristics of the 5 sets of instances

set n/m item weights correlation between profits and weights

SMALL {20/10, 40/10, 60/10, 20/20, 40/20, 60/20} [1–1000] {uncorrelated, weekly, strongly}
FK1 {60/30, 45/15, 48/12, 75/15, 60/10, 100/10} [10–1000] {uncorrelated, weekly, strongly, subset-sum}
FK2 {120/60, 90/30, 96/24, 150/30, 120/20, 200/20} [10–1000] {uncorrelated, weekly, strongly, subset-sum}
FK3 {180/90, 135/45, 144/36, 225/45, 180/30, 300/30} [10–1000] {uncorrelated, weekly, strongly, subset-sum}
FK4 {300/150, 225/75, 240/60, 375/75, 300/50, 500/50} [10–1000] {uncorrelated, weekly, strongly, subset-sum}

The upper bound nmax on the number of items that can be inserted into the knapsacks (see
Section 4.2) was obtained by solving the corresponding model (i.e., (1)-(4) for the Classical model,
(6)-(11) for the Arcflow model, and (12)-(19) for the other approaches) with all profits set to 1. If
the exact value was not found after 120 seconds, the execution was terminated and the rounded
down value of the upper bound returned by the MIP solver was used.

The decomposition approaches of Section 5 were implemented by executing the Gurobi MIP
solver on the master problem, and using the incumbent callback functions to invoke it for the slave
problems. The callback is activated by the solver as soon as it finds a feasible integer solution,
and the slave problem is solved on such solution: the resulting cut is added to the master, and the
control is resumed by the solver.

For the knapsack-based decomposition called at Step 5 of Hy-MKP (see Section 6), as at most ν
cuts are allowed, we solved to optimality the master problem, before trying to solve a slave problem.

The slave problems were normally attacked by first trying the CP approach for one second
and then, if it fails, switching to the Reflect model. However, for instances where Reflect was
very unlikely to solve the problem because of the large amount of variables involved by the model
(threshold set at ci > 107), only the CP approach was executed, without any local time limit.

The two parameters of Hy-MKP were established as τ = 2 and ν = 10. These values were
determined by some preliminary experiments and aimed at getting the best compromise between
the amount of time spent in each component and the number of optimal solutions they found.

Results

All algorithms were coded in C++. The experiments were performed on an Intel Xeon E5530, 2.4
GHz with 24 GB of memory, running under Linux Ubuntu 14.04 LTS 64-bit, using a single core.
We used Gurobi 6.5.1 to solve the MIP models and Cplex 12.6.2 to solve the CP subproblems (as
Gurobi does not have a CP solver).

Table 2 compares the proposed methods with the best exact approaches from the literature on
benchmarks SMALL and FK. The C implementation of the branch-and-bound code MULKNAP

by Pisinger [44] is available at http://www.diku.dk/~pisinger/codes.html. We contacted the
author of [23] to ask for his FK1 instances, but unfortunately these are not available anymore. For
the sake of comparison we report the results given in [23], obtained on an Intel Xeon E5440, 2.83
GHz, with a time limit of one hour. (The instances tested in [23] were generated exactly as our
FK1 instances, although, of course, they cannot be considered identical to ours.)

Column “method” describes the approach, with some attribute describing the specific imple-
mentation. The “Classical model” is (1)-(4), solved with the MIP solver. Attribute “tj” indicates
the reformulation obtained by adding the item selection binary variables tj described in Section 3.
Attribute “priority” means that we use the solver option to first select tj variables for branching
in the branch-and-cut process. “Arc-flow model - tj” and “Reflect model - tj” are (6)–(11) and
(12)–(19) of Section 4, without using tj variables. Attribute “+ nmax” denotes the use of constraint
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Table 2: Comparison of the proposed methods for instance sets SMALL and FK1

Method
SMALL FK1

#opt time #opt time

MULKNAP 150 229.4 353 104.4

2D/PS +B(1) – – 459 292.5

Classical 115 483.7 217 722.2
Classical + tj 131 382.5 215 715.4
Classical + tj + Priority 131 387.4 197 760.1
Classical + tj + nmax 139 329.1 220 719.0

Arcflow 120 434.1 298 499.0
Arcflow + tj 141 284.8 326 469.4
Arcflow + tj + Priority 155 222.5 358 403.0
Arcflow + tj + Priority + nmax 169 138.5 383 341.1

Reflect 141 309.3 310 460.7
Reflect + tj 149 240.7 355 383.0
Reflect + tj + Priority 164 146.6 388 295.2
Reflect + tj + Priority + nmax 179 53.6 423 223.1

Knapsack-based decomposition + (25) 166 131.1 394 277.4
Knapsack-based decomposition + (25) + (26) 173 72.3 420 215.6
Reflect-based decomposition + (25) 180 15.7 477 83.4

Hy-MKP 180 11.5 480 10.3
– Preprocessing & MULKNAP 121 0.9 271 1.0
– Knapsack-based decomp. 15 8.1 99 6.4
– Reflect-based decomp. 44 31.4 110 25.0

(1) Values from Fukunaga [23] on instances generated by the author, times on an Intel Xeon E5440 2.83 GHz

(20) to limit the sum of the tj variables. “Knapsack-based decomposition” and “Reflect-based de-
composition” are the methods of Sections 5.1 and 5.2, respectively, implemented with cuts (25).
The possible use of improved Benders’ cuts is identified by attribute “+ (26)”. “Hy-MKP” is the
overall exact decomposition algorithm of Section 6. For the latter algorithm we also report the per-
formance of each component: preprocessing & MULKNAP, Knapsack-based decomposition, and
Reflect-based decomposition.

Each algorithm was given an overall time limit of 1200 seconds. Columns “#opt” give the
number of optimal solutions found, while columns “time” report the average CPU time computed
over all runs, including the ones terminated by the time limit. For “Hy-MKP”, “#opt” gives the
number of instances closed by the corresponding component, and “time” reports the average CPU
time used by the component, if called. For Classical, Arc-flow, and Reflect models, we also provide
in Table 3 some information about the average continuous relaxation value and time in columns
“LP rel. value” and “LP rel. time”. Columns “gap” and “max gap” give, respectively, the average
and maximum percentage gap. The percentage gap is computed as 100(UBA −UB∗)/UB∗, where
UBA is the value of the continuous relaxation of model A, and UB∗ is the optimal solution value.
We also report in columns “# var.” and “# cons.” the average number of variables and constraints
required by the models, respectively. Note that priorities do not have any impact on the model
size or on the continuous relaxation. Tables 2 and 3 show a number of interesting facts:

• even if it is nearly 20 years old, MULKNAP is still competitive: It solved 150 SMALL
instances out of 180 and 353 FK1 instances out of 480;

• the branch-and-bound by Fukunaga [23], in its 2D/PS+B configuration, is quite effective
in finding proven optimal solutions (459 out of 480 instances in less than 300 seconds on
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Table 3: Model characteristics of the proposed methods for instance sets SMALL and FK1

Method
SMALL FK1

LP rel.
value

LP rel.
time

gap
max
gap

#
var.

#
cons.

LP rel.
value

LP rel.
time

gap
max
gap

#
var.

#
cons.

Classical 15994.0 0.0 1.9 17.4 561 286 18464.1 0.0 0.4 5.5 672 355
Classical + tj 15994.0 0.0 1.9 17.4 603 286 18464.1 0.0 0.4 5.5 731 355
Classical + tj + nmax 15918.2 0.0 1.5 17.4 603 287 18452.0 0.0 0.3 5.5 731 356

Arcflow 15829.0 5.9 0.3 3.6 17999 1448 18420.8 14.3 0.1 0.9 34701 1689
Arcflow + tj 15829.0 2.8 0.3 3.6 18041 1448 18420.8 6.1 0.1 0.9 34760 1689
Arcflow + tj + Priority + nmax 15790.1 2.8 0.2 2.2 18041 1449 18419.8 5.2 0.1 0.9 34760 1690

Reflect 15832.9 1.6 0.4 3.6 7167 865 18421.2 4.7 0.1 0.9 19946 1005
Reflect + tj 15832.9 0.6 0.4 3.6 7209 865 18421.2 1.9 0.1 0.9 20005 1005
Reflect + tj + Priority + nmax 15792.3 0.7 0.2 2.2 7209 866 18420.1 1.7 0.1 0.9 20005 1006

The average optimal solution for SMALL (resp. FK1) is 15765.2 (resp. 18400.8)

average);

• Arc-flow and Reflect compare favorably with the classical model, solving more instances in
smaller computing times, and with better continuous relaxation values;

• the use of variables tj improves on the performances both in terms of optimal solutions and
of computing time. It also significantly decreases the time spent in solving the LP relaxation
of Arc-flow and Reflect. A possible explanation is that only n tj variables are required in the
objective function of Arc-flow, while |As| xdeji variables are needed in the original version;

• giving priority to the tj variables in the branching process further improves on the perfor-
mance for all models but the classical one. This is probably explained by the fact that the
information obtained after branching on a tj variable are more “balanced” than those ob-
tained by branching on another variable. For example, setting xdeji to 1 in Arc-flow forces
all other item arcs associated with j to take the value 0 and incorporates the profit of j in
the objective function, while no reduction is deduced from setting xdeji to 0. Conversely,
setting tj to 0 forces all item arcs associated with j to take the value 0, while setting tj to 1
incorporates the profit of j in the objective function;

• the use of inequality (20) gives an additional advantage both in terms of average CPU time
and LP relaxation value;

• the knapsack-based decomposition is competitive with the flow-based approaches, especially
when coupled with both improved cuts;

• the Reflect-based decomposition with combinatorial Benders’ cuts is extremely fast and can
solve all SMALL instances and all but 3 FK1 instances. However, it did not dominate the
other methods as the 3 unsolved FK1 instances could be solved to proven optimality by the
knapsack-based decomposition in 129.2 seconds on average;

• the combined decomposition algorithm Hy-MKP was the best approach and solved to op-
timality all instances in 11 seconds, on average. All of its components appear to be useful:
more than half the instances are closed by MULKNAP, and the remaining instances are either
solved by the knapsack-based decomposition (that runs for a bit more than 10 seconds on
average, when called) or by the Reflect-based decomposition.
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The performance of the proposed methods on larger instances FK2, FK3, and FK4 was analyzed
for the most competitive version of each algorithm. (Results for FK1 are added for the sake of
comparison.) In this case we could not evaluate the branch-and-bound algorithm by Fukunaga
[23], since it is not available and these instances were not tested in [23]. The outcome of these
experiments is reported in Table 4, for which we can observe the following:

• MULKNAP is very resilient to size increase;

• the classical model behaves poorly for larger instances;

• the behavior of Arc-flow and Reflect (in all configurations) constantly worsen when the number
of items and knapsacks increases, and their performance for FK4 is very close to that of the
classical model;

• the combined algorithm Hy-MKP was definitely the best approach, although its performance
deteriorates when the size increases. While the MULKNAP component seems to benefit from
size increase, the opposite holds for the (pseudo-polynomial) Reflect-based decomposition
component.

To get a better understanding of the good computational performance of algorithm Hy-MKP, we
provide in Table 5 the detailed results obtained by each of the selected algorithms for instance sets
FK2. Each row corresponds to a set of 20 instances. Rows are reported in the table by increasing
value of the n/m ratio, shown in the first column. Columns “#opt” report again the number of
proven optimal solutions out of 20. Columns “time” report the average CPU time computed over
all runs, including the ones terminated by the time limit. Columns “gap” give the percentage gap,
computed as 100(LB∗ − LBA)/LB

∗, where LBA is the value of the best feasible solution value
provided by algorithm A, and LB∗ is the optimal solution value (with the exception of a single
instance, with n/m = 3 and “subset-sum” correlation, where no method produced a proven optimal
solution, so we set LB∗ to the best solution value produced by all algorithms).

MULKNAP is very efficient when either n/m ∈ {2, 10} or n/m ∈ {5, 6} and the instances
have “strongly” or “subset-sum” correlation. In the other cases its performance is generally poor,
and it is extremely bad for n/m = 3. This confirms an observation made in [23]: MKP instances
that are hard for branch-and-bound algorithms have a ratio n/m between 3 and 4. It is also worth
observing that the percentage gap of the non-optimal feasible solutions provided by MULKNAP

is generally very small, never reaching, on average, 2%.

Table 4: Comparison of the most competitive version of each method for instance sets FK

Method
FK1 FK2 FK3 FK4

#opt time #opt time #opt time #opt time

MULKNAP 353 104.4 290 461.1 311 449.3 313 441.9
Classical model +tj +nmax 220 719.0 90 984.8 80 1001.8 80 1003.8
Arc-flow model +priority +nmax 383 341.1 276 614.7 179 802.0 96 986.6
Reflect model +priority +nmax 423 223.1 282 576.0 188 650.5 97 986.2
Reflect-based decomposition +(25) 477 83.4 338 531.1 228 596.5 111 976.4
Hy-MKP 480 10.3 469 91.9 461 146.1 398 286.9

–Preprocessing & MULKNAP(1) 271 1.0 279 1.4 306 1.8 311 2.7
–Knapsack-based decomposition 99 6.4 103 43.5 96 195.5 65 365.9
–Reflect-based decomposition 110 25.0 87 318.3 59 357.5 22 541.8

(1) MULKNAP exceeded its 2 seconds time limit for instances with ratio n/m = 2
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Table 5: Detailed comparison of the most competitive methods for instance FK2

Instances MULKNAP
Classical model

+tj+nmax

Arc-flow model
+priority +nmax

Reflect model
+priority +nmax

Reflect-based
decomposition

+(25)
Hy-MKP

ratio n/m correlation #opt gap time #opt gap time #opt gap time #opt gap time #opt gap time #opt gap time

2 120/60

uncorrelated 20 0.00 3.1 20 0.00 3.0 20 0.00 3.0 20 0.00 3.0 20 0.00 3.0 20 0.00 3.0
weakly 20 0.00 3.2 20 0.00 3.2 20 0.00 3.2 20 0.00 3.2 20 0.00 3.2 20 0.00 3.2

strongly 20 0.00 6.5 20 0.00 3.0 20 0.00 3.0 20 0.00 3.0 20 0.00 3.0 20 0.00 3.2
subset-sum 20 0.00 3.6 20 0.00 3.0 20 0.00 3.0 20 0.00 3.0 20 0.00 3.0 20 0.00 3.2

3 90/30

uncorrelated 0 1.96 t.l. 0 0.16 t.l. 20 0.00 38.2 19 0.00 83.4 20 0.00 21.6 20 0.00 24.9
weakly 0 1.68 t.l. 9 0.07 857.4 20 0.00 26.7 20 0.00 35.9 20 0.00 25.1 20 0.00 27.7

strongly 0 0.92 t.l. 0 0.79 t.l. 18 0.00 479.5 20 0.00 246.6 16 0.00 631.4 16 0.00 684.8
subset-sum 0 0.37 t.l. 0 0.37 t.l. 19 0.00 156.3 18 0.00 180.3 10 0.00 880.5 13 0.00 781.7

4 96/24

uncorrelated 0 1.76 t.l. 0 0.45 t.l. 17 0.01 270.0 19 0.00 120.0 20 0.00 70.9 20 0.00 26.9
weakly 0 1.76 t.l. 0 0.48 t.l. 19 0.00 190.4 16 0.00 317.7 20 0.00 85.8 20 0.00 119.4

strongly 1 0.40 1144.5 0 0.50 t.l. 13 0.02 859.9 16 0.01 574.0 20 0.00 301.1 20 0.00 46.8
subset-sum 19 0.00 148.2 0 0.18 t.l. 19 0.00 186.5 19 0.00 117.2 20 0.00 298.8 20 0.00 115.1

5 150/30

uncorrelated 7 0.25 784.4 0 0.32 t.l. 13 0.02 672.2 14 0.02 603.5 19 0.00 496.0 20 0.00 126.2
weakly 0 0.58 t.l. 0 0.76 t.l. 6 0.08 1032.0 3 0.06 1085.1 19 0.00 581.1 20 0.00 151.1

strongly 20 0.00 0.0 0 0.37 t.l. 1 0.52 1173.9 0 0.10 t.l. 0 0.08 t.l. 20 0.00 0.0
subset-sum 20 0.00 0.0 0 0.20 t.l. 8 0.08 880.5 6 0.07 969.4 3 0.07 1152.8 20 0.00 0.0

6 120/20

uncorrelated 19 0.00 60.3 1 0.18 1152.3 14 0.07 692.0 16 0.02 458.9 20 0.00 291.9 20 0.00 6.1
weakly 4 0.12 970.1 0 0.55 t.l. 5 0.19 991.5 7 0.04 884.5 20 0.00 379.1 20 0.00 82.2

strongly 20 0.00 0.0 0 0.24 t.l. 0 0.28 t.l. 0 0.06 t.l. 7 0.03 1026.2 20 0.00 0.0
subset-sum 20 0.00 0.0 0 0.08 t.l. 4 0.17 1085.8 9 0.01 922.1 4 0.02 1151.6 20 0.00 0.0

10 200/20

uncorrelated 20 0.00 0.0 0 0.08 t.l. 0 11.11 t.l. 0 4.09 t.l. 13 0.02 717.5 20 0.00 0.0
weakly 20 0.00 0.0 0 0.19 t.l. 0 7.83 t.l. 0 2.68 t.l. 0 5.10 t.l. 20 0.00 0.0

strongly 20 0.00 0.0 0 0.08 t.l. 0 9.66 t.l. 0 5.86 t.l. 6 0.07 1022.0 20 0.00 0.0
subset-sum 20 0.00 0.0 0 0.02 t.l. 0 3.91 t.l. 0 3.03 t.l. 1 0.05 1198.0 20 0.00 0.0

The classical model is very efficient for instances with n/m = 2, but it is not able to solve any
of the other instances (but one). Its percentage gap is however always very small.

The performance of Arcflow and Reflect monotonically worsens when the ratio n/m increases.
As observed by Delorme et al. [14], pseudo-polynomial formulations of cutting and packing problems
exhibit poor performances when applied to instances with high capacities and relatively small
items. In our case the knapsack capacities are directly related to the sum of the item weights,
which increases with n/m. The feasible solutions provided when no optimal solution is found are
generally very good, but for n/m = 10 where large percentage gaps are observed.

Hy-MKP solved to proven optimality all but eleven instances, all occurring for the ratio n/m =
3. This is not very surprising, as this ratio can be a critical one for packing problems. For example,
a classical benchmark for the bin packing problem was obtained by Falkenauer [19] by generating
random instances for which the optimal solution has three items per bin. Out of these eleven
difficult instances, ten are solved to proven optimality by Arc-flow and Reflect. However, the
feasible solutions provided by Hy-MKP for such ten instances are all optimal. For the remaining
instance the gap is extremely small.

Hy-MKP takes advantage of its multiple components: when the branch-and-boundMULKNAP

is able to solve the problem within few seconds, no further attempt is needed. When instead
MULKNAP fails, the other components of Hy-MKP are able to very quickly find the optimal
solution for almost all instances. For example, when n/m = 3, all weakly correlated instances were
solved by the Reflect-based decomposition, while for n/m = 5 the weakly correlated instances were
solved in one or two iterations by the knapsack-based decomposition.

All instances with ratio n/m = 10 were very quickly solved by the MULKNAP component of
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Hy-MKP, while the other components behaved quite poorly. As observed by Pisinger [44], similar
instances with much higher ratios (up to 10 000) can be solved by MULKNAP, so the same behavior
has to be expected for Hy-MKP. For this reason, higher ratios were not tested. We also mention
that, for the ILP models, we did not observe the frequently reported paradox that larger problems
get easier, as in our case they involve more constraints and variables.

Summing up the results of our experiments, we can classify the instances as follows.

a. easy instances, with ratio n/m = 2, that are solved by almost all methods;

b. instances with ratio n/m = 3, that can be solved effectively (for reasonable size instances) by
the Reflect-based decomposition;

c. instances with ratio n/m = 4, that can be solved effectively (for reasonable size instances) by
the Reflect-based and knapsack-based decompositions;

d. instances with ratio n/m = 5, or 6, that can only be solved, in most cases, by the knapsack-
based decomposition;

e. instances with high ratio n/m, for which branch-and-bound methods are particularly suited,
while pseudo-polynomial approaches and decomposition methods are not.

To confirm these observations, we provide in Table 6 the same information as in Table 5, for
instances of set FK4. Symbol “–” in the gap columns indicates that no feasible solution was
produced by the method. The instances appear to be much more difficult, but the algorithms’
behavior does not change significantly.

Table 6: Detailed comparison of the most competitive methods for instances FK4

Instances MULKNAP
Classical model

+tj+nmax

Arc-flow model
+priority +nmax

Reflect model
+priority +nmax

Reflect-based
decomposition

+(25)
Hy-MKP

ratio n/m correlation #opt gap time #opt gap time #opt gap time #opt gap time #opt gap time #opt gap time

2 300/150

uncorrelated 20 0.00 11.9 20 0.00 12 20 0.00 12.6 20 0.00 15.6 20 0.00 13.3 20 0.00 11.7
weakly 20 0.00 11.8 20 0.00 11.9 20 0.00 13.3 20 0.00 12.6 20 0.00 12.7 20 0.00 11.7

strongly 20 0.00 12.7 20 0.00 11.3 20 0.00 12.4 20 0.00 12.1 20 0.00 11.8 20 0.00 11.9
subset-sum 20 0.00 11.4 20 0.00 11.3 20 0.00 12.0 20 0.00 11.7 20 0.00 11.6 20 0.00 11.9

3 225/75

uncorrelated 0 1.87 t.l. 0 0.76 t.l. 4 0.05 1066.1 4 0.09 1147.8 11 15.00 907.0 13 15.00 847.6
weakly 0 1.35 t.l. 0 0.84 t.l. 5 0.01 1112.3 8 0.02 909.2 5 0.03 1098.1 7 0.03 1074.6

strongly 0 0.46 t.l. 0 1.14 t.l. 1 0.39 1170.9 0 0.51 t.l. 0 0.11 t.l. 8 60.00 873.0
subset-sum 0 0.20 t.l. 0 0.93 t.l. 0 0.18 t.l. 0 0.17 t.l. 0 0.10 t.l. 0 0.03 t.l.

4 240/60

uncorrelated 0 1.05 t.l. 0 0.45 t.l. 3 0.34 1104.5 4 0.17 1113.9 10 0.04 1005.6 17 14.55 429.1
weakly 0 1.38 t.l. 0 1.07 t.l. 1 0.09 1174.1 1 0.15 1193.6 2 0.03 1166.0 8 39.48 907.0

strongly 3 0.32 t.l. 0 0.53 t.l. 0 0.73 t.l. 0 0.49 t.l. 0 0.20 1214.3 16 20.00 507.1
subset-sum 20 0.00 0.0 0 0.41 t.l. 2 0.20 1188.2 0 0.41 t.l. 3 0.20 1129.0 20 0.00 0.0

5 375/75

uncorrelated 18 0.00 t.l. 0 0.28 t.l. 0 9.25 t.l. 0 48.69 t.l. 0 30.10 t.l. 19 5.00 114.5
weakly 0 0.19 t.l. 0 0.67 t.l. 0 17.39 t.l. 0 46.61 t.l. 0 25.07 t.l. 11 39.2 663.3

strongly 20 0.00 0.0 0 0.42 t.l. 0 13.14 t.l. 0 46.42 t.l. 0 50.29 t.l. 20 0.00 0.0
subset-sum 20 0.00 0.0 0 0.26 t.l. 0 10.56 t.l. 0 55.84 t.l. 0 70.15 t.l. 20 0.00 0.0

6 300/50

uncorrelated 20 0.00 0.0 0 0.18 t.l. 0 7.51 t.l. 0 5.85 t.l. 0 0.11 t.l. 20 0.00 0.0
weakly 12 0.01 483.0 0 0.51 t.l. 0 4.52 t.l. 0 2.33 t.l. 0 5.12 t.l. 19 3.33 220.7

strongly 20 0.00 0.2 0 0.28 t.l. 0 5.50 t.l. 0 7.34 t.l. 0 15.43 t.l. 20 0.00 0.0
subset-sum 20 0.00 0.0 0 0.21 t.l. 0 5.97 t.l. 0 2.45 t.l. 0 25.35 t.l. 20 0.00 0.0

10 500/50

uncorrelated 20 0.00 0.0 0 0.05 t.l. 0 – t.l. 0 – t.l. 0 – t.l. 20 0.00 0.0
weakly 20 0.00 0.0 0 0.15 t.l. 0 – t.l. 0 – t.l. 0 – t.l. 20 0.00 0.0

strongly 20 0.00 1.1 0 0.10 t.l. 0 – t.l. 0 – t.l. 0 – t.l. 20 0.00 1.0
subset-sum 20 0.00 0.0 0 0.08 t.l. 0 – t.l. 0 – t.l. 0 – t.l. 20 0.00 0.0
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8 Conclusions

We have presented for the first time pseudo-polynomial formulations for the multiple knapsack prob-
lem, a well-known strongly NP-hard combinatorial optimization problem with relevant managerial
implications. We have embedded them into a novel exact method, that combines several techniques
(branch-and-bound, Master/Slave decompositions, Benders’cuts, constraint programming). Exten-
sive computational experiments have shown that the hybridization of different solution techniques
can be successful in attacking an NP-hard problem that is known to be very difficult to solve in
practice.
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