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Abstract 27 

Objectives: It is commonplace to consider accelerometer load and any resultant neuromuscular 28 

fatigue in training programs. With these data becoming accepted in sport alongside wellness 29 

questionnaires this study aimed to investigate if a deeper analysis of the accelerometry data can 30 

provide actionable insight into training-induced disruptions. 31 

 32 

Design: Accelerometer data from Collegiate American Football athletes (n=63) were collected 33 

during training and matches across a regular season.  34 

 35 

Methods: These data were processed to: identify instances of high speed running, extract step 36 

waveforms from those sections, and determine the variability of those waveforms via a within- 37 

and between-section co-efficient of multiple determination. Athletes completed wellness 38 

questionnaires prior to sessions that were used to flag areas of muscle soreness as well as fatigue, 39 

or disturbed sleep quality. Linear mixed models were used to assess associations between intra 40 

stride variability and flags in wellness/soreness markers. 41 

 42 

Results: An increase in acute (7d) load saw an increased stride variability in these athletes. Feeling 43 

less fatigued and/or lower muscle soreness was associated with higher stride variability.  44 

 45 

Conclusion: The assessment of variability has the potential to identify athletes who are displaying 46 

physical symptoms that would indicate the need to modify training.   47 
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Introduction 48 

Movement variability exists even in highly trained skills performed by elite athletes,1 this would 49 

suggest that gait would also reflect the theoretical principle of a ‘healthy’ amount of movement 50 

variability. Indeed, individuals with patellofemoral knee pain have been shown to exhibit reduced 51 

movement variability compared to a healthy group.2 Although subsequent studies have produced 52 

contradictory findings,3  movement variability has been shown to increase in subjects affected by 53 

patellofemoral pain when their pain is reduced through a therapeutic intervention3, suggesting 54 

there is an individual level of movement variability in gait and that variability is decreased when 55 

pain is present. Increased fatigue has been shown to lead to increased variability in knee 56 

kinematics during a cutting maneuver, which in turn will lead to a reduced ability to produce a 57 

controlled movement.4 Consequently, the use of movement variability as a clinical tool to identify 58 

when an individual has a less than optimal movement pattern, is entirely possible as long as the 59 

chosen measurement tool has sufficient resolution to identify significant changes in an individual’s 60 

movement variability.  61 

 62 

Wireless accelerometry is a popular approach to continuously assess both proximal (e.g. trunk) 63 

and distal (e.g. tibial) mechanics in human locomotion unobtrusively. This approach is common 64 

in inertial measurement units that are used with athletes and are worn on the torso – typically 65 

incorporating accelerometers, global positioning systems (GPS), magnetometers, and gyroscopes. 66 

Using this approach the magnitude of peak accelerations have been validated5 which demonstrates 67 

that filtered data collected by a MinimaxX S4 unit (Catapult Sports, Australia) provides an 68 

acceptable means of assessing peak accelerations (CV=8.9%). An alternate unit (SPI HPU, 69 

GPSports, Canberra, Australia) has been shown to accurately identify temporal stride 70 

characteristics (contact time r=0.98; flight time r=0.68) when compared to an instrumented 71 

treadmill6. Ankle movement was constrained through taping and two of the three variables 72 

examined (contact time and vertical stiffness) correctly identified side-to-side differences in stride 73 
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characteristics. These findings confirm the ability of this and similar units incorporating GPS and 74 

accelerometers, to identify small but practically important differences in stride characteristics due 75 

to physical constraints within a laboratory setting. This is particularly useful to applied 76 

practitioners given the practical and economic aspects of accelerometer technology. 77 

 78 

The coefficient of multiple determination (CMD) and related coefficient of multiple correlation 79 

(CMC) have previously been used to analyze many forms of cyclic kinematic and kinetic data that 80 

have ranged from an analysis of kinematic variability in gymnastics7 to electromyographic, 81 

kinematic and kinetic measures of ice hockey skating8. Assessing the variability of waveforms has 82 

previously been done with gait data and been shown to be valid as a measure of stride 83 

characteristics via a single tri-axial accelerometer mounted on the upper torso9. Such analysis 84 

examines the waveform in its entirety rather than at specific points such as at foot strike or toe-85 

off, and therefore accurate identification of specific points within the gait cycle will be less 86 

influential on the result of the analysis. In addition, using CMD to determine waveform variability 87 

does not require the waveforms to be from a continuous time period. This is a crucial consideration 88 

when analyzing data collected in gameplay and training rather than controlled laboratory settings. 89 

 90 

It is common place to take accelerometer and GPS-derived running loads into consideration for 91 

the management of athletes 10,11. With these data becoming commonplace in the sporting world 92 

alongside wellness questionniares12 and athletes self-reporting muscle symptoms. This study 93 

aimed to investigate if a deeper analysis of the accelerometry data can be used to explore 94 

relationships between load, wellness, soreness and stride variability to provide actionable insight 95 

into training induced disruptions. 96 

 97 

Methods 98 

Participants 99 



Step Variability & Wellness in American Football 

5 
 

Data from 63 American Football athletes (20.6±1.5 yrs; 102.4±20.1 kg; 186±7.7 cm) operating at 100 

the Division 1 level in the NCAA were collected across a regular season. Athletes provided 101 

informed consent to participate in data collection throughout the season as part of the athlete 102 

support process and the institutional ethics committee provided ethical approval for the research. 103 

 104 

Design 105 

Inertial measurement units (IMU) containing GPS and accelerometers (Optimeye S5, Catapult 106 

Sports, Australia) were worn for every field session. The data collected and used in these studies 107 

were from the tri-axial accelerometer (measured at 100 Hz). For the purposes of this observational 108 

study, with repeated measures on the participants, only data from the main training sessions 109 

(Tuesday and Wednesday) and the match (Saturday) were recorded. This means light walk-110 

through sessions on Sunday and Thursday were excluded, as were Friday sessions that were short 111 

and light in comparison to other sessions.  112 

 113 

Methodology 114 

Accelerometry 115 

The 100Hz accelerometer data were processed with a novel analysis tool developed specifically 116 

for identifying instances of high speed running and determining the variability of the remaining 117 

waveforms via a within-section and between-section CMD. The raw files were exported via the 118 

manufacturer’s software (Catapult Sports, Openfield software, version 1.11.1). A step frequency 119 

of 2.75 steps per second for at least five seconds was chosen as the lower limit for high speed 120 

running. This step frequency was chosen after pilot testing (with the aim of achieving a similar 121 

number of step waveforms available for further analysis as was achieved in previous applications 122 

of the analysis tool)9 and is in general agreement with previous research.13  123 

 124 
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Accelerometer data from those sections of high speed running were analyzed to identify steps 125 

through identifying foot strike events via peaks in the vertical accelerometer data. The step 126 

waveforms likely to have been influenced by gameplay demands were identified as steps where 127 

the mean vertical acceleration in the first 20% of the step was at least 2 standard deviations greater 128 

or less than the mean vertical acceleration for the first 20% of all steps on that day – these were 129 

eliminated from the analysis. Step waveforms were separated into left and right-side steps by 130 

examining the lateral accelerations, with steps displaying a negative to positive acceleration 131 

around foot strike being designated right side steps and vice versa. The CMD was then calculated 132 

on the set of vertical (z-axis) step waveforms to determine the variability of those waveforms as 133 

per Kadaba and colleagues14. CMD values were calculated for each session for each player. They 134 

were combined over sections of high speed running during each game and CMD values were 135 

calculated from the within and between-stride variability, and then averaged over all sections of 136 

high speed running and turned into percentage of variation to improve interpretability. The data 137 

were therefore hierarchical in nature, with strides nested within sections within games within 138 

players. However, section-level data were unavailable for analysis. 139 

 140 

Different calculations of variability were performed, one to examine the waveform variability 141 

within each section of high speed running, another to examine the variability between sections of 142 

high speed running. In all calculations, higher CMD scores indicate less waveform variability. All 143 

calculations occurred on the vertical axis as it has been shown previously that this is the most 144 

sensitive as a load indicator9.  145 

 146 

Wellness 147 

Over the course of the season the athletes completed a wellness questionnaire on training days, as 148 

used previously in the literature.12 This recorded any areas of soreness as well as noting their 149 

fatigue, sleep quality and overall muscle soreness (1=poor, 5=good). As part of the wellness 150 
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questionnaire athletes noted any specific locations of soreness and then rated these in term of 151 

severity (1-10). Any area greater than a 5 out of 10 for pain triggered a ‘flag’ to the practitioners 152 

working with the athletes. These flags are considered compromised training days in this study. 153 

 154 

Load 155 

IMU determined daily workloads (PlayerloadTM) were calculated and expressed as arbitrary units 156 

(AU) via the manufacturer’s software (Catapult Sports, Openfield software, version 1.11.1) for 157 

every session. Participants wore the same device during every training session and match. Rolling 158 

loads for acute and chronic periods were calculated before sub setting the data to the main training 159 

sessions and games. The acute period was defined as 7 days and the chronic as 21 in line with 160 

previous American Football research. 15  161 

 162 

Statistical Analysis 163 

All analyses were carried out using R v3.5 (R Core Team (2018). R: A language and environment 164 

for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL 165 

https://www.R-project.org). Since repeated measures per player were available, linear mixed 166 

models were used to account separately for within-player and between-player variability in CMD 167 

values, while investigating their association with wellness (fatigue, sleep, soreness) and load 168 

(acute (7-day average), chronic (21-day average) and acute-chronic workload ratio) on that day. 169 

A random intercept term for player was used to allow for different average CMD values between 170 

athletes, while random slope terms allowed for different changes over time in CMD between 171 

players. A random effect for side of measurement was tested but led to convergence issues, hence 172 

it was included only as a fixed effect. To account for nonlinear changes in CMD over time, 173 

quadratic and cubic time terms were included as fixed and random effects. An AR1 process was 174 

included for within-subject variability to account for auto-regressive aspect of CMD during the 175 
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period of measurement. In each model, we also controlled for the number of strides, number of 176 

sections and side of measurement (left/right leg) to account for confounding. The association 177 

between each measure of wellness and load with CMD are presented as coefficients with 95% 178 

confidence intervals and p-values. Model residuals were checked to validate the assumptions 179 

underlying the linear mixed model. In order to compare between the load and wellness markers, 180 

we took the z-score of each of these (fatigue, sleep, soreness, ACWR, acute load, chronic load) 181 

and repeated analysis, with the resulting coefficients plotted showing the effect of a 1 standard 182 

deviation change in exposure. A secondary analysis focused on compromised training. Here a 183 

generalized linear mixed model was used to model flagged injury status against unflagged status 184 

for hamstring, ankle and foot injuries separately. The key variables under examination were within 185 

and between stride CMD measured during the flagged and unflagged strides. In each model, we 186 

included day of measurement as a fixed effect and used a random effect for athlete to allow each 187 

to have their own intercept. A logit link was used to model the three (hamstring, ankle and foot) 188 

binary outcomes (injured v not injured), and odds ratios are reported alongside 95% confidence 189 

intervals and p-values. Model residuals were again checked to validate the assumptions underlying 190 

the mixed model. 191 

 192 

Results 193 

Descriptive statistics for the key variables in the study are given in Table 1. All wellness variables 194 

had a mean of ~3, while acute (7-day) load was slightly higher than chronic (21-day) load. There 195 

were 4.94±5.75 (±SD) sections of high speed running per session across players on average, with 196 

a mean of 47.65±69.68 strides within a section. Figure 1 shows the nonlinear changes in CMD 197 

over the period of measurement, with similar patterns of change for within-stride and between-198 

stride CMD. 199 

***TABLE 1 NEAR HERE*** 200 

***FIGURE 1 NEAR HERE*** 201 
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 202 

Wellness 203 

There was some evidence for an inverse relationship between fatigue and between-stride CMD. 204 

A one-point increase in fatigue score (i.e. feeling better) being related to a 0.508% decrease in 205 

between-stride CMD (increased variability; table 2; 95% CI -0.953, -0.063%, p=0.025). There 206 

was no evidence for a relationship between sleep score and either within- or between-stride CMD. 207 

Finally, there was evidence for a negative association between soreness and CMD. A one-point 208 

increase in soreness score (i.e. less sore) was related to a 0.337% decrease in mean within-stride 209 

CMD (increased variability; table 2; 95% CI -0.670, -0.005%, p=0.047) and a 0.356% decrease in 210 

mean between stride CMD (table 2; 95% CI -0.752, 0.039%, p=0.078). 211 

 212 

***TABLE 2 NEAR HERE*** 213 

 214 

ACWR had a negative effect on both within and between stride CMD, with a 1 unit increase in 215 

ACWR associated with a 6.849% decrease in mean within-stride CMD (increased variability; 95% 216 

CI -8.580, -5.117%, p<0.001) and a 7.257% decrease in mean between stride CMD (increased 217 

variability; 95% CI -9.355, -5.160%, p<0.001). Acute load (7-day average) was also associated 218 

with within- and between stride variability. A one unit increase in acute load was related to a 219 

0.012% decrease in mean within-stride CMD (increased variability; 95% CI -0.016, -0.009%, 220 

p<0.001) and a 0.013% decrease in mean between stride CMD (increased variability; 95% CI -221 

0.017, -0.010%, p<0.001). Finally, an increase in chronic load (21-day average) was also inversely 222 

related to within- and between-stride CMD. A one unit increase in chronic was associated with a 223 

0.007% decrease in mean within-stride CMD (increased variability; 95% CI -0.011, -0.002%, 224 

p=0.002) and a 0.005% decrease in mean between stride CMD (increased variability; 95% CI -225 

0.011, 0.000%, p=0.034). 226 

*** FIGURE 2 NEAR HERE*** 227 
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Comparing load and wellness 228 

In order to compare the standardized coefficients across load and wellness where each exposure 229 

variable has been z-scored with the resulting coefficients showing the effect of a 1 standard 230 

deviation change in exposure (Figure 2). In this plot, the coefficients can be better compared. From 231 

Figure 2, acute load appears to have the strongest effect on within-stride CMD (-1.400%, 95% CI 232 

-1.751, -1.048%; p<0.001), followed by ACWR (-1.055%, 95% CI -1.322, -0.788%; p<0.001) and 233 

chronic load (-0.659%, 95% CI -1.079, -0.239%; p=0.002), with wellness measures having a 234 

weaker (per-SD) effect on CMD. Similarly, for between-stride CMD, load had a stronger effect 235 

in the same order, with acute being strongest (-1.493%, 95% CI -1.914, -1.073%; p<0.001) 236 

followed by ACWR (-1.118%, 95% CI -1.441, -0.795%; p<0.001) and chronic load (-0.532%, 237 

95% CI -1.022, -0.041%; p=0.034). 238 

 239 

Compromised training 240 

Table 3 summarizes the models of compromised training and the effect of within and between 241 

stride CMD on these episodes. There were 9, 22 and 26 flagged hamstring, ankle, and foot injuries 242 

respectively. There was no strong evidence for an association between within or between stride 243 

CMD on any of the injury sites. However, given the small number of episodes, this analysis is 244 

underpowered. Within the sample, a one unit increase in between stride CMD was related to 3 245 

times the odds of compromised training (odds ratio 3.111), but the interval estimate here is 246 

extremely wide (95% CI 0.297, 32.553) due to so few (n=9) hamstring episodes. 247 

***TABLE 3 NEAR HERE*** 248 

 249 

Discussion 250 

The purpose of this study was to determine if analysis of the accelerometry data can provide 251 

actionable insight into training induced disruptions with no further testing on the athlete. This 252 

study has presented novel data showing that variability in stride detected by commonly used 253 
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accelerometers is associated with fatigue, soreness and training load. The ability to identify times 254 

when an athlete is at risk of injury or requires a training modification to maximize their 255 

performance in subsequent activities (whether that be a reduction or increase to their training load) 256 

is crucial in the preparation of athletes for competition.  257 

 258 

Load & Wellness 259 

The more fatigued athletes reported being the lower their stride variability.  Previously with 260 

fatigue it has been shown that along with increased leg stiffness, the vertical motion of the CoM 261 

significantly reduces with prolonged exhaustive running.16 However, few studies have previously 262 

used trunk accelerometry to assess running related fatigue.17–19 In contrast to the current study, 263 

one study found a decrease in regularity of vertical CoM accelerations, when sub-elite distance 264 

runners underwent a short but highly intensive track run to exhaustion.19 Similarly, another 265 

showed that treadmill running-induced fatigue results in anteroposterior trunk accelerations that 266 

are less regular from step-to-step and are less predictable.18 The final study showed that CoM 267 

movement could accurately estimate increases in metabolic work during an incremental running 268 

protocol to exhaustion.17 It may be that the increased variability seen with these American Football 269 

players may signal a re-organization of motor strategies for the purpose of preserving performance 270 

(i.e. this increased stride variability may manifest as decreased variability in the upper body).  271 

 272 

Previous research has demonstrated that fatigue alters the way player load is accumulated in 273 

Australian Rules Football matches.20 Other authors found that a one unit decrease in wellness Z-274 

score resulted in a 4.9% (standard error 3.1%) and 8.6% (standard error 3.9%) decrease in player 275 

load and player load slow (running activity < 2 m.s-1), respectively.21 Players with reduced 276 

wellness may maintain the running variables that they deem critical to performance but modify 277 

other aspects of activity profile such as change of speed, low speed running and/or body contact 278 

that were not measured in this study.22  279 
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 280 

Within American Football specifically it has been shown that a one unit increase in wellness z-281 

score and energy were associated with a trivial 2.3% and 2.6% increase in player load.12 A one 282 

unit increase in muscle soreness (players felt less sore) corresponded to a trivial 4.4% decrease in 283 

s-RPE training load. In addition, significant (p<0.05) differences in movement variables were 284 

demonstrated for individuals who responded more or less favorably on their rating of perceived 285 

wellness.23 In the current study while, there were no associations with sleep a decreased soreness 286 

resulted in an increase in variability – further investigations may look at the relationship between 287 

variability and sRPE directly. 288 

 289 

An increase in load (both acute (7d) and chronic (21d) saw an increased variability in these team 290 

sport athletes. Although the mechanism underlying this increase in variability is currently unclear, 291 

it is roughly in agreement with previous theories2,24, that suggest that a shift away from an 292 

individual’s optimal level of variability is indicative of a pathological state. A shift to an increased 293 

level of variability could be a sign of a noisy and irregular system, which has been demonstrated 294 

to be a characteristic of individuals who had undergone knee reconstructions to repair a damaged 295 

anterior cruciate ligament25 (possibly due to not being able to restore the proprioceptive pathways 296 

found in a healthy knee). 297 

 298 

There is a high practical value to these findings as while current metrics do have the ability to 299 

predict injury risk, especially when examining cumulative load measures,26 they require a full 300 

training history to identify periods of load, (be that acute or chronic in nature), whereas if there is 301 

data missing or unavailable (such as when athletes are recruited into a squad on an intermittent 302 

basis or miss days through modified training) then the methods outlined here will still be able to 303 

identify individual athletes who have an elevated period of load compared to their normal training 304 

load (provided a baseline level of healthy movement variability has already been established). 305 
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 306 

Compromised Training 307 

While there was an increased odds ratio of decreased variability in the presence of a flagged 308 

hamstring the analysis was too underpowered to draw a conclusion. Reduced variability would be 309 

expected for an acute injury. It has been observed that ACL deficient patients25 have less step-to-310 

step variability in walking gait, inferring that they are being more “careful” when they were 311 

walking, trying to eliminate extraneous movements. The authors speculate that participants may 312 

be attempting to constrain movements and reduce step-to-step variability within the current 313 

results. The hamstring conditions likely indicate a compromised system. Further study may reveal 314 

if these flags are more indicative of chronic rather than acute conditions and so athletes have 315 

developed strategies to cope in these circumstances. 316 

 317 

Limitations 318 

The current investigation was limited to a single team over a single season, but still includes a 319 

total of 127,715 strides collected across 1177 sessions and 443 matches. A wider group would 320 

allow comparisons of differing training styles and approaches. Analyzing the occurrence of self-321 

reported flags set at an arbitrary level (5/10) can be criticized as not everyone views discomfort in 322 

the same way and so potentially looking at an individual comparison may improve this metric. 323 

 324 

Also, there were limited flags compared to the number of injuries that occur in collegiate football. 325 

The typical injury rates would suggest that 20% of injuries are in the knee27 but these may be 326 

catastrophic one-off issues (i.e. ACL) rather than a degenerative issue that can be detected by 327 

flagging in a routine questionnaire. So, while early detection of issues as this study has shown 328 

possible is key, the differing positional demands and subsequent injury rates may need future 329 

studies to delineate the effects for particular positions in American Football in the context of injury 330 

history. 331 
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 332 

Practical Applications 333 

The difference in the measures outlined is that predictions can be made from physical symptoms, 334 

but these track well with at least some of the subjective markers that athletes are giving. What is 335 

not known is how many athletes are not accurately flagging symptoms of soreness and so are 336 

going undetected in this analysis. In the absence of 100% disclosure from athletes the assessment 337 

of variability therefore has the potential to identify athletes who are displaying physical symptoms 338 

that would indicate the need to modify training. Conversely, it may be able to identify athletes 339 

who do satisfy flagging criteria but are showing no physical symptoms who therefore may not 340 

need training modifications.  341 

 342 

Conclusions 343 

This study has shown that stride variability is associated with fatigue and 7-day training load. 344 

Combining both objective and subjective methods is likely to enhance the predictive ability and 345 

become a very powerful tool within elite sport environments, and while further investigations into 346 

this are warranted, the assessment of variability has the potential to identify athletes who are 347 

displaying physical symptoms that would indicate the need to modify training.   348 
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Figure Captions 430 

Figure 1: Within- and Between-stride CMD over the season for individuals, with group 431 

mean in bold 432 

Figure 2: Standardized (z-scored) effects of wellness and load on CMD 433 

Table Captions 434 

Table 1: Descriptive statistics for the 63 American Football athletes 435 

Table 2: Linear Mixed Model Outputs 436 

Table 3: Results from a generalized linear mixed model of flagged events 437 


