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ABSTRACT

Gl 758 B is a late-T dwarf orbiting a metal-rich Sun-like star at a projected separation of ρ ≈ 1.′′6 (25 AU). We

present four epochs of astrometry of this system with NIRC2 at Keck Observatory spanning 2010 to 2017 together

with 630 radial velocities (RVs) of the host star acquired over the past two decades from McDonald Observatory, Keck

Observatory, and the Automated Planet Finder at Lick Observatory. The RVs reveal that Gl 758 is accelerating with

an evolving rate that varies between 2–5 m s−1 yr−1, consistent with the expected influence of the imaged companion

Gl 758 B. A joint fit of the RVs and astrometry yields a dynamical mass of 42+19
−7 MJup for the companion with a

robust lower limit of 30.5 MJup at the 4-σ level. Gl 758 B is on an eccentric orbit (e = 0.26–0.67 at 95% confidence)

with a semimajor axis of a = 21.1+2.7
−1.3 AU and an orbital period of P = 96+21

−9 yr, which takes it within ≈9 AU from

its host star at periastron passage. Substellar evolutionary models generally underpredict the mass of Gl 758 B for

nominal ages of 1–6 Gyr that have previously been adopted for the host star. This discrepancy can be reconciled

if the system is older—which is consistent with activity indicators and recent isochrone fitting of the host star—or

alternatively if the models are systematically overluminous by ≈0.1–0.2 dex. Gl 758 B is currently the lowest-mass

directly imaged companion inducing a measured acceleration on its host star. In the future, bridging RVs and high-

contrast imaging with the next generation of extremely large telescopes and space-based facilities will open the door

to the first dynamical mass measurements of imaged exoplanets.
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1. INTRODUCTION

Brown dwarfs and giant planets radiatively cool over

time and follow mass-luminosity-age relationships. Two

quantities—usually luminosity and age—are needed to

infer the third using substellar evolutionary models,

which is how the masses of all directly imaged exo-

planets and the vast majority of brown dwarfs are es-

timated. Fundamental tests of these cooling models

require measurements of all three parameters, making

model-independent dynamical masses especially valu-

able for the subset of brown dwarfs with well-constrained

ages. These rare benchmarks with measured luminosi-

ties, ages, and dynamical masses have shown that widely

used hot-start evolutionary models systematically over-

predict masses by up to 25%, a discrepancy that may

originate from diverse accretion histories or incomplete

modeling of cloud evolution from L to T spectral classes

(Dupuy et al. 2009; Crepp et al. 2012; Dupuy et al.

2014), although the exact source of this deviation re-

mains unclear. Expanding these tests to even lower

brown dwarf masses—and ultimately into the planetary

regime—will enable precision tests of giant planet evo-

lutionary, atmospheric, and formation models.

An especially useful class of benchmark brown dwarfs

are those orbiting at wide enough separations to be iden-

tified and characterized with direct imaging, but close

enough that their influence on their host stars can be

readily measured with radial velocities (RVs). One of

the legacy products of long-baseline precision RV planet

searches operating over the past twenty years is the iden-

tification of systems exhibiting shallow accelerations.

These “dynamical beacons” point to distant stellar, sub-

stellar, or planetary companions and are excellent tar-

gets for follow-up high-contrast imaging to determine

the nature of the perturbing body (e.g., Bowler 2016).

Four high-mass brown dwarfs have been recovered

with high-contrast imaging based on long-term RV

trends from their host stars: HR 7672 B (Liu et al. 2002),

HD 19467 B (Crepp et al. 2014), HD 4747 B (Crepp et al.

2016), and HD 4113 C (Cheetham et al. 2017). These

benchmark brown dwarfs have mid-L to late-T spectral

types, dynamical masses between 50–70 MJup, and ages

between 1–7 Gyr. HD 4113 C is especially peculiar; the

inferred mass of this late-T dwarf companion is about

a factor of two lower than its dynamical mass, suggest-

ing that it may be an unresolved binary T dwarf. In

addition, over two dozen brown dwarfs in close binaries

have had their masses measured through patient orbit

monitoring campaigns (e.g., Liu et al. 2008; Konopacky

et al. 2010; Dupuy & Liu 2017). However, their ages are

usually difficult to independently constrain, even with

component-resolved spectroscopy, unless these binaries

also happen to be gravitationally bound to a host star

(McCaughrean et al. 2004; Potter et al. 2002; Ireland

et al. 2008; Dupuy et al. 2009).

In this work, we present a dynamical mass measure-

ment of the late-T dwarf Gl 758 B based on new high-

contrast imaging observations from Keck/NIRC2 to-

gether with 630 RVs of the host star from McDonald Ob-

servatory, Keck Observatory, and the Automated Planet

Finder gathered over the past 20 years. Orbital motion

is evident in all datasets; Gl 758 B displays changes

in position angle (P.A.) and separation in our imag-

ing data, and our precision RVs show clear signs of a

shallow acceleration with slight curvature. With a dy-

namical mass of 42+19
−7 MJup, Gl 758 B is likely to be the

lowest-mass imaged companion inducing a measured ac-

celeration on its host star and serves as a valuable test

for substellar evolutionary models.

Section 2 provides an overview of the Gl 758 system

and summarizes the physical properties of the late-T

dwarf companion. Section 3 describes the precision RV

observations of the host star. Our Keck observations,

PSF subtraction, and astrometric measurements are re-

ported in Section 4. The joint Keplerian fit to the RV

and astrometric data can be found in Section 5. Finally,

we compare the results to predictions from evolutionary

models in Section 6 and conclude in Section 7.

2. OVERVIEW OF THE GL 758 SYSTEM

Gl 758 (=HD182488, HR 7368) is a bright (V=6.3 mag)

G8 star located at 15.66 ± 0.09 pc (Gaia Collaboration

et al. 2016). Activity, lithium, and kinematics of this

star all point to an age of 3+3
−2 Gyr, implying a mass

of about 0.97 M�, and enhanced metallicity of [Fe/H]

≈ +0.2 dex (see Vigan et al. 2016 for a thorough sum-

mary).

The brown dwarf companion Gl 758 B was first discov-

ered by Thalmann et al. (2009) as part of the SEEDS

high-contrast imaging survey (Tamura 2016). Further

photometric and spectroscopic characterization by Cur-

rie et al. (2010), Janson et al. (2011), Vigan et al. (2016),

and Nilsson et al. (2017) established it as a late-T dwarf

(T7–T8) with a model-based mass between 10–40 MJup

and an effective temperature of 600–750 K. Vigan et al.

(2016) find that no empirical or model template accu-

rately reproduces the ensemble of photometry for this

object, possibly due to an enhanced metallicity. Al-

though Gl 758 B has only completed a small fraction of

its orbit, the most likely orbital solutions relying solely

on astrometry suggest it is eccentric with a semimajor

axis between about 20–60 AU. Nilsson et al. (2017) pro-

pose that the acceleration induced by Gl 758 B should

be measurable on the host star, but no evidence of a



Orbit and Dynamical Mass of Gl 758 B 3

trend was observed by Vigan et al. (2016) using RVs

from the ELODIE spectrograph and Lick Observatory,

most likely due to the relatively large uncertainties of

these datasets.

3. RADIAL VELOCITY OBSERVATIONS

3.1. Harlan J. Smith Telescope/Tull Spectrograph

Gl 758 was included in the target sample of the long-

duration RV planet search at McDonald Observatory

(e.g., Cochran et al. 1997, Endl et al. 2016). The Tull

Coudé spectrograph (Tull et al. 1995) was used at the

Harlan J. Smith 2.7 m telescope in combination with an

I2 cell in the light path to obtain precise differential RVs.

We commenced observations of Gl 758 on 1998 Novem-

ber 4th, and have accumulated 118 precise RV measure-

ments over the past 19 years. Beginning in 2009 an ex-

posure meter was used to provide the optimal exposure

level and compute precise barycentric corrections. We

measure precise RVs from these spectra using our Aus-

tral I2 cell data code (Endl et al. 2000). The exposure

times of the GJ 758 spectra range from 365 seconds to

1200 seconds, primarily controlled by atmospheric see-

ing conditions to reach the desired SNR of ∼300 per

pixel in the I2 bandpass (500 to 650 nm). The RV data

have a total rms of 13 m s−1 and a median uncertainty of

4.6 m s−1. Our measurements are listed in Table 1 and

displayed in Figure 1.

Table 1. Relative Radial Velocities

Date RV σRV Obs.

(BJDTDB) (m s−1) (m s−1)

McDonald Observatory

2451121.66132 29.88 4.63 McD

2451152.55410 20.29 4.57 McD

2451328.93255 18.48 3.78 McD

2451360.93134 17.64 4.02 McD

2451417.85387 13.14 4.49 McD

2451452.68967 12.89 4.15 McD

2451503.57734 21.52 4.73 McD

2451530.54249 13.60 4.10 McD

2451686.95063 5.80 3.57 McD

2451751.77696 13.70 3.98 McD

· · ·

Keck Observatory

2453927.88034 19.41 0.99 Keck

2453927.88136 18.40 1.03 Keck

2453927.88237 17.27 1.13 Keck

Table 1 continued

Table 1 (continued)

Date RV σRV Obs.

(BJDTDB) (m s−1) (m s−1)

2453982.88766 17.25 0.90 Keck

2453982.88864 14.97 0.96 Keck

2453982.88965 15.15 0.95 Keck

2454338.96476 14.86 1.14 Keck

2454642.00375 11.02 1.22 Keck

2454689.89631 10.76 1.15 Keck

2454717.84714 5.36 1.22 Keck

· · ·

APF

2456505.87953 6.17 0.89 APF

2456506.79254 5.16 0.93 APF

2456515.81319 7.68 1.00 APF

2456516.85698 9.41 0.87 APF

2456517.75297 10.05 0.93 APF

2456518.77451 9.55 0.89 APF

2456525.74145 8.28 1.04 APF

2456526.74485 9.92 0.87 APF

2456530.79148 8.83 1.05 APF

2456534.75735 12.16 0.92 APF

· · ·
Note—Table 2 is published in its entirety in the

machine-readable format. A portion is shown here
for guidance regarding its form and content.

3.2. Keck/HIRES

Gl 758 has been continuously monitored with the High

Resolution Echelle Spectrometer (HIRES; Vogt et al.

1994) at the Keck I telescope since 2006. This star was

initially targeted as an RV standard for FGK stars in

the Kepler field due to its proximity on the sky to the

Kepler footprint and its stable RVs, but after several

years of coverage it became apparent that Gl 758 was

undergoing a shallow radial acceleration (G. Marcy, pri-

vate communication). Altogether 262 spectra were gath-

ered following the standard setup, observing strategy,

and procedure for measuring relative RVs implemented

by the California Planet Search program (Howard et al.

2010). An iodine cell is mounted in the optical path

before the slit entrance to provide a set of stable refer-

ence lines (Marcy & Butler 1992), an exposure meter is

used to consistently achieve a SNR of about 225 per re-

duced pixel near 550 nm, and relative RVs are extracted

by forward modeling the stellar and iodine spectra con-

volved with the instrument line spread function (Valenti

et al. 1995). The median uncertainty from these mea-

surements is 1.2 m s−1. A secular trend of –2.82 ± 0.03

m s−1 yr−1 is apparent in our Keck RVs (Figure 1). This
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Figure 1. Relative RVs of Gl 758 from the Tull Spectro-
graph at McDonald Observatory’s Harlan J. Smith Telescope
(top), HIRES at Keck Observatory (middle), and the Levy
Spectrograph at APF (bottom). A linear fit to each dataset
shows an evolving and steepening slope at later epochs—
listed in the bottom-left corner of each panel— implying re-
cent changes in the radial acceleration of Gl 758.

slope is slightly steeper than the trend from McDonald

Observatory, suggesting a recent change in the acceler-

ation. This is readily apparent by considering only the

latest HIRES data, which exhibits a slope of –3.08 m

s−1 yr−1 since 2010, and –4.15 m s−1 yr−1 since 2013.5.

Our HIRES RVs and uncertainties are listed in Table 1.

3.3. Automated Planet Finder Telescope/Levy

Spectrograph

Observations of Gl 758 have been carried out au-

tonomously at the 2.4-m Automated Planet Finder

(APF) telescope at Lick Observatory since 2013. 250

echelle spectra were gathered as part of APF’s auto-

mated Doppler search for rocky planets (Fulton et al.

2015) with the Levy Spectrograph, which employs an

iodine cell to measure precise relative RVs (Vogt et al.

2014). Each spectrum spans 3740–9700 Å at a resolving

power of ≈100,000 with the 1′′ decker. RVs are mea-

sured by forward-modeling 848 spectral regions, and

the resulting variance is adopted as the RV uncertainty.

The median instrumental precision of these measure-

ments for Gl 758 is 1.4 m s−1. The APF RVs reveal an

acceleration that is significantly steeper than the Mc-

Donald and Keck RVs (Figure 1). The linear trend from

APF is –4.24 ± 0.07 m s−1 yr−1, indicating a substantial

evolution in recent years. Fortunately, these evolving

slopes provide curvature that can better constrain the

orbit and dynamical mass of the companion. Our APF

RVs and uncertainties are listed in Table 1.

4. ASTROMETRIC OBSERVATIONS

4.1. Keck/NIRC2 Adaptive Optics Imaging

We observed Gl 758 with the NIRC2 camera in its nar-

row mode (10.′′2×10.′′2 field of view) using natural guide

star adaptive optics (Wizinowich 2013) at the Keck II

telescope on four occasions: UT 2010 May 02, UT 2013

July 03, UT 2016 June 27, and UT 2017 October 10. All

observations were taken in the pupil-tracking mode to

employ the angular differential imaging (ADI) method

(Marois et al. 2006). The star was placed behind the

partly-transparent 600 mas coronagraph, which has an

attenuation of 7.51 ± 0.14 mag at 1.6 µm (Bowler et al.

2015a) and enables precise image registration. The to-

tal on-source integration time of our observations was

49 min, 14 min, 35 min, and 30 min for our 2010, 2013,

2016, and 2017 epochs, respectively, and the total sky

rotation of these sequences was 65◦, 13◦, 59◦, and 48◦.

Images were corrected for cosmic rays and bad pixels,

then dark subtracted and flat fielded. Details about the

observations are summarized in Table 2. Further pro-

cessing of the images is described in Section 4.2.

4.2. PSF Subtraction and Astrometry

PSF subtraction for the NIRC2 imaging data is carried

out with the Locally-Optimized Combination of Images

algorithm (LOCI; Lafrenière et al. 2007) using the ADI

processing pipeline described in Bowler et al. (2015a).

Images were individually corrected for geometric distor-

tions by bilinearly interpolating pixel values to the rec-

tified locations based on the solution from Yelda et al.

(2010) for observations taken prior to April 2015 when

the Keck II AO system was re-aligned, and the solu-

tion from Service et al. (2016) was used for observations

taken after pupil realignment. Each frame was then reg-

istered by fitting a 2D elliptical Gaussian to the host

star located behind the partly-transparent coronagraph

spot. Two reductions were carried out using aggressive

and conservative implementations of LOCI by varying

the angular tolerance parameter used to select PSF tem-
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Table 2. Keck/NIRC2 Adaptive Optics Imaging of Gl 758

UT Date Epoch N×Coadds×texp Filtera Sep. P.A. Detection PSF

(UT) (s) (′′) (◦) SNR Ref.

Gl 758 B

2010 May 02 2010.333 98 × 6 × 5 CH4s+cor600 1.8480 ± 0.0018 200.6 ± 0.3 24.5 1

2013 Jul 03 2013.502 28 × 30 × 1 KS+cor600 1.743 ± 0.002 205.7 ± 0.2 10.5 2

2016 Jun 27 2016.489 70 × 6 × 5 H+cor600 1.6256 ± 0.0019 210.3 ± 0.4 20.9 1

2017 Oct 10 2017.773 60 × 6 × 5 H+cor600 1.588 ± 0.002 213.5 ± 0.3 38.5 3

bkg1

2010 May 02 2010.333 98 × 6 × 5 CH4s+cor600 1.390 ± 0.002 222.6 ± 0.3 8.4 1

2013 Jul 03 2013.502 28 × 30 × 1 KS+cor600 1.931 ± 0.002 216.1 ± 0.2 11.5 2

2016 Jun 27 2016.489 70 × 6 × 5 H+cor600 2.485 ± 0.002 213.5 ± 0.4 51.1 1

2017 Oct 10 2017.773 60 × 6 × 5 H+cor600 2.642 ± 0.002 212.7 ± 0.3 49.1 3

bkg2

2016 Jun 27 2016.489 70 × 6 × 5 H+cor600 1.4585 ± 0.0017 177.7 ± 0.4 10.6 1

2017 Oct 10 2017.773 60 × 6 × 5 H+cor600 1.6246 ± 0.0018 179.9 ± 0.3 31.5 3

a“cor600” refers to the 600 mas-diameter focal plane coronagraph.

Note—NIRC2 astrometric PSF reference stars make use of the following datasets: (1) H band imag-
ing of PYC11519+0731 from 2012 May 22 UT (Bowler et al. 2015b); (2) KS band imaging of
2M22362452+4751425 from 2015 August 27 UT (Bowler et al. 2017); (3) H band imaging of HD 109461
from 2017 October 10 UT.

plates (Nδ). Two point sources are recovered with high

significance in the 2010 and 2013 epochs (Gl 758 B and

bkg1; Figure 2), and three point sources are recovered

in the 2016 and 2017 epochs (Gl 758 B, bkg1, and bkg2;

Figure 3) in both of the reductions. We adopt the “ag-

gressive” implementation for all datasets with LOCI ge-

ometric parameters of W = 5, NA = 300, g = 1, Nδ =

0.5, and dr = 2 following the definitions in Lafrenière

et al. (2007).

The SNR for each point source is calculated using

aperture photometry with a 5-pix aperture radius. The

sky background is subtracted from the summed flux cen-

tered on the source using the mean of 100 sky measure-

ments at the same angular radius but spanning a range

of azimuthal angles surrounding (but not overlapping)

the object of interest. The standard deviation of these

sky values represents the background noise level, and

the ratio of these two is used to determine the signal

to noise of the detection. Gl 758 B and the two nearby

background stars are detected with SNRs between 10

and 51; full details can be found in Table 2.

PSF subtraction biases astrometry of point sources in

processed images as a result of both over-subtraction

and self-subtraction. To mitigate these effects, we fol-

low the strategy outlined by Marois et al. (2010) of

injecting a negative PSF template into the raw data

and iteratively identifying the true position and flux

of the sources. Three parameters were optimized using

the downhill simplex AMOEBA algorithm (Nelder & Mead

1965)— the separation, position angle, and amplitude

of the PSF template— to minimize the resulting rms

in a 20-pix aperture radius at the location of the point

source in the processed image. Although the host star

is visible behind the coronagraph in the science frames,

the mask transmission has historically been difficult to

characterize in detail and may be non-uniform across the

face of the occulting spot. To avoid using a potentially

distorted PSF of host star, we instead utilize unsatu-

rated PSF templates of other stars taken in the same

filter (see Table 2).

Results of the negative injection are shown in Fig-

ure 4. This procedure successfully removes most of

the flux and over-subtracted azimuthal “wings,” leaving

only slight residual structure that likely originates from

an imperfect PSF template, changing atmospheric con-

ditions and Strehl ratios throughout the sequence (which
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Figure 2. Final PSF-subtracted images of Gl 758 taken with Keck/NIRC2 in 2010 and 2013 (upper and lower panels, respec-
tively). Images on the left are the processed frames in units of flux (DN s−1), and images on the right are the corresponding
signal-to-noise maps. The color bar on the far right corresponds to intensities in the SNR map. All images are oriented so
that North is up and East is to the left. Most of the proper motion of Gl 758 is in the positive declination direction, so the
background source “bkg1” move downward over time relative to Gl 758.

is not taken into account in the modeling) and/or slight

blurring of the PSF if substantial rotation occurs dur-

ing individual exposures— something that preferentially

affects sources at wider separations.

4.3. Astrometric Error Budget

The astrometric error budget is dominated by mea-

surement errors in the positions of point sources; uncer-

tainty in the residual optical distortion correction; errors

in the plate scale and north orientation of the detector;

and azimuthal shear caused by sky rotation within indi-

vidual frames.

Our strategy for estimating point source measurement

uncertainties is inspired by the method described in Ra-

jan et al. (2017) and is intended to mimic the inverted

PSF template procedure we carried out in Section 4.2.

For Gl 758 B, bkg1, and bkg2, we inject a positive PSF

template into the raw images at the same separation

and amplitude as the objects of interest but a differ-

ent position angle. We then iteratively inject an in-

verted PSF template of a different star into the raw data

and perform local PSF subtraction with LOCI, then use

AMOEBA to identify the optimal position and amplitude

that minimizes the local noise. Each injection/recovery

provides an estimate of the systematic difference in the

separation, P.A., and amplitude of the injected (pos-

itive) object compared with what was recovered with

the inverted (negative) PSF. This process is repeated
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Figure 3. PSF-subtracted images of Gl 758 taken with Keck/NIRC2 in 2016 and 2017 (upper and lower panels, respectively;
see Figure 2 for details). All images are oriented so that North is up and East is to the left. The background sources “bkg1”
and “bkg2” are marked and move downward over time with respect to Gl 758, while the bound companion Gl 758 B orbits in
a counter-clockwise direction.

ten times at equally-spaced position angles for each ob-

ject, and the average positional differences (σρ̄,meas and

σθ̄,meas), are adopted as estimates of the positional mea-

surement errors.

After correcting images for optical distortion effects,

there remain small residual systematic positional uncer-

tainties, σd, of about 1 mas which limits the achievable

astrometric accuracy across the detector (Yelda et al.

2010; Service et al. 2016). Here we adopt one σd term

associated with the host star and one for the companion.

In addition, the NIRC2 plate scale, s, and its associated

uncertainty, σs, are taken into account and vary slightly

between pre- and post- pupil realignment (9.952 ± 0.002

mas pix−1 from Yelda et al. 2010; 9.971 ± 0.004 mas

pix−1 from Service et al. 2016).

The final separation measurement in mas is

ρ = sρ̄meas ± sρ̄meas

((σs
s

)2

+

(
σρ̄,tot
ρ̄meas

)2
)1/2

, (1)

where σρ̄,tot is the combined uncertainty from our

injection-recovery exercise and from the imperfect dis-

tortion correction:

σ2
ρ̄,tot = σ2

ρ̄,meas + 2σ2
d. (2)
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Figure 4. Example of our negative PSF injection imple-
mented in our 2016 data set to measure unbiased astrom-
etry of point sources. On the left is our H-band PSF
template, in this case created using unsaturated frames of
PYC J11519+0731 taken in May 2012 from Bowler et al.
(2015b). A negative version of this model is injected into
raw frames, fully processed with LOCI, then iteratively ad-
justed in position and amplitude to minimize the noise in the
final PSF-subtracted image in a 20-pix aperture. Residuals
for Gl 758 B, bkg1, and bk2 are shown in the bottom three
panels.

The P.A. is determined as follows:

θ = θ̄meas − θNorth + θshear/2, (3)

where θNorth is the rotational offset required to align the

NIRC2 detector columns with North on the sky: 0.252

± 0.009◦ for the Yelda et al. (2010) distortion solution,

and 0.262± 0.002◦ for the Service et al. (2016) distortion

solution.1 θshear is the shear (blurring) per individual

frame. To account for this, each frame is de-rotated to

the midpoint P.A. of the exposure after PSF subtraction,
and prior to coaddition of the sequence.

The error in the P.A., σθ, includes the injection-

recovery measurement uncertainty (σθ,meas), uncer-

tainty in the north alignment (σθ,North), residual posi-

tional errors after applying the distortion solution (σθ,d),

and the systematic error from shearing of point sources

from sky rotation within each frame (σθ,shear):

σθ =
(
σ2
θ,meas + σ2

θ,North + σ2
θ,d + σ2

θ,shear

)1/2
. (4)

1 The position angle of celestial North with respect to the +y
axis for NIRC2 images taken in vertical angle (pupil tracking)
mode with the narrow camera can be found using FITS header
keywords: PARANG + ROTPOSN – INSTANGL – θNorth. Note that
θNorth is subtracted from the other terms (J. Lu, M. Service,
private communication, 2017).

2008 2010 2012 2014 2016 2018 2020
Date

1.5

1.6

1.7

1.8

1.9

2.0

S
e
p
a
ra

ti
o
n
 (

")

T09 (HiCIAO)

J11 (HiCIAO, NIRI)

C10 (Clio)

V16 (SPHERE)

N17 (P1640)

This work (NIRC2)

2008 2010 2012 2014 2016 2018 2020
Date

190

195

200

205

210

215

220

P
o
s
it
io

n
 A

n
g
le

 (
d
e
g
)

Figure 5. Relative astrometry of Gl 758 B. The companion
is approaching Gl 758 at a rate of ≈34 mas yr−1 (top panel)
and orbiting in a counterclockwise direction on the sky by
1.◦86 yr−1 (bottom panel). Astrometry are from Thalmann
et al. (2009, T09), Janson et al. (2011, J11), Currie et al.
(2010, C10), Vigan et al. (2016, V16), and Nilsson et al.
(2017, N10). Diamonds indicate our new epochs taken with
Keck/NIRC2.

The residual positional distortion errors are about

1 mas, so here we approximate σθ,d as ≈1 mas/ρ. The

dominant term in the P.A. error budget is the shear

per frame, which varies among individual frames and

across observation epochs. For this work we conserva-

tively adopt half the average shear for each epoch: 0.◦30,

0.◦21, 0.◦38, and 0.◦32 for our 2010, 2013, 2016, and 2017

epochs. Our final astrometry of Gl 758 B and the two

background sources are listed in Table 2. Note that the

resulting astrometry does not appear to be significantly

sensitive to changes in the LOCI parameters used for

PSF subtraction based on the same astrometric analysis

with Nδ set to 1.5.

4.4. Comparison to Published Astrometry

Gl 758 B has been observed by many other telescopes

and instruments over the past decade (Figure 5). The

companion displays clear orbital motion; its separation

has contracted from 1.′′88 in 2009 to 1.′′59 with our latest
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epoch from NIRC2 in 2017, and has moved by ≈16◦ in

P.A. during that time. Our astrometry of Gl 758 B is

broadly consistent with published values, although the

separations from Nilsson et al. (2017) are significantly

smaller than our measurements and those of Vigan et al.

(2016) taken over the same time period. For example,

our NIRC2 observations from 2013 were taken within

three weeks of the 21 July 2013 dataset obtained by

Nilsson et al., but these two separation measurements

are discrepant at the 4.3-σ level. However, the P.A.

measurements from Nilsson et al. are in much better

agreement.

5. ORBIT AND DYNAMICAL MASS OF GL 758 B

5.1. Is the Acceleration Caused by Gl 758 B?

Before carrying out a detailed joint orbit fit of the

RVs and astrometry, we first demonstrate here that the

observed acceleration of Gl 758 is consistent with and

likely to be caused by the companion Gl 758 B. The

minimum mass of an imaged companion needed to pro-

duce an observed instantaneous acceleration v̇r is

M ≈ 0.0145

(
d

pc

ρ
′′

)2 ∣∣∣ v̇r
m s−1 yr−1

∣∣∣MJup, (5)

where d is the distance to the system in pc and ρ is

the projected separation in arcseconds (Torres 1999; Liu

et al. 2002). Note that the generalized form of this equa-

tion includes information about the orbital elements of

the system in the form of a multiplicative constant, the

minimum value of which (≈2.6) is included here in the

prefactor. The measured range of accelerations and an-

gular separations of Gl 758 B imply a corresponding

mass range of≈20–50MJup. Are these reasonable values

for Gl 758 B? Evolutionary models from Saumon & Mar-

ley (2008) suggest that a brown dwarf with those masses
should have effective temperatures between about 430–

1400 K for ages of 1–6 Gyr; this is in good agreement

with the inferred effective temperatures of 600–750 K

for Gl 758 B from multi-band imaging and spectroscopy

(Vigan et al. 2016; Nilsson et al. 2017). Based on this

consistency and the fact that the companion’s orbital

period must be much longer than the time baseline of

the RV observations (�20 yr), we conclude that Gl 758

B is likely the culprit of the acceleration.

5.2. Joint RV and Astrometric Orbit Analysis

We performed a joint orbit analysis of the three RV

data sets and astrometry via a Markov Chain Monte

Carlo (MCMC) algorithm. For this analysis we only

use our NIRC2 astrometry to avoid systematic errors

that may be present in previously published astrome-

try caused by multiple instruments and PSF subtrac-

tion strategies. We used the parallel-tempering (PT)

ensemble sampler in emcee v2.1.0 (Foreman-Mackey

et al. 2013) that is based on the algorithm described by

Earl & Deem (2005). 30 temperatures were adopted,

of which only the coldest chain describes the posterior,

together with 100 walkers to sample our 15-parameter

model. Six of those parameters describe the orbit: semi-

major axis (a), inclination (i), P.A. of the ascending

node (Ω), mean longitude (λref) at a reference epoch

(tref) of 2455197.5 JD, and finally eccentricity (e) and

the argument of periastron (ω, for the host star) pa-

rameterized as
√
e sinω and

√
e cosω, which avoids the

Lucy-Sweeney bias toward non-zero eccentricities and

imposes a uniform prior on eccentricity. We assumed

a log-flat prior on a, randomly distributed viewing an-

gles for i (i.e., a prior of sin i), and uniform priors for the

other orbit parameters. The next three parameters used

in the fit were the parallax (π) and mass of the host star

(Mhost) and the mass of the companion (Mcomp). We

assumed priors of 63.45± 0.35 mas on the parallax (van

Leeuwen 2007), 0.97 ± 0.02M� for Mhost (Vigan et al.

2016), and a log-flat prior for Mcomp, which is motivated

by the broad range of potential masses for the compan-

ion spanning ≈10 MJup (if the system is younger than

expected) to over 100 MJup (if the companion is an un-

resolved binary). The remaining six parameters are the

zero points (∆zero,McD, ∆zero,Keck, ∆zero,APF) and jit-

ters (σjit,Keck, σjit,APF, σjit,McD) for the three RV data

sets. The zero points are simply the offsets needed to

bring the sets of relative RVs into accord with the orbit

model, and the jitter terms account for small random

and systematic RV epoch-to-epoch measurement errors

from the star and the instrument not captured in the

quoted relative RV uncertainties. We assumed uniform

priors for the zero points and log-flat priors for the jit-

ters. These are summarized in Table 3, and our complete

likelihood function is as follows:

ln(L) = −0.5

(
Nast∑
k=1

(
ρk − ρ(tk)

σρ,k

)2

+

Nast∑
k=1

(
θk − θ(tk)

σθ,k

)2

+

Ninst∑
j=1

NRV∑
k=1

(RVrel,k + ∆zero,j − RV(tk))
2

σ2
RV,k + σ2

jit,j


+ ln(sin(i))− ln(a)− ln(Msec)− 0.5

(
π − 63.45 mas

0.35 mas

)2

(6)

We are able to fit for the RV jitter because of the nu-

merous independent data points that sample its orbit in

each data set. In other words, there are many degrees of

freedom in the RV model of the host star. In contrast,



10 Bowler et al.

0.2

0.4

0.6

0.8

e
0.2

0.4

0.6

0.8

e

50

100

150

P
 (

y
r)

50

100

150

P
 (

y
r)

150

180

210

ω
 (

o
)

150

180

210

ω
 (

o
)

0 40 80 120
Mcomp (MJup)

0

20

40

60

i 
(o

)

0 40 80 120
Mcomp (MJup)

0

20

40

60

i 
(o

)

0.2 0.4 0.6 0.8
e

0.2 0.4 0.6 0.8
e

50 100 150
P (yr)

50 100 150
P (yr)

150 180 210
ω (o)

150 180 210
ω (o)

0 40 80 120
Mcomp (MJup)

0.0

0.2

0.4

0.6

0.8

1.0

N

0 40 80 120
Mcomp (MJup)

0.0

0.2

0.4

0.6

0.8

1.0

N

Gl 758B

Figure 6. Posterior distributions of orbital parameters from our MCMC analysis. Grayscale images show the relation between
the companion mass (Mcomp) and the several of the most correlated parameters: inclination, eccentricity, period, and the
argument of periastron. Contours indicate the regions containing 68.3% (black dashed lines) and 95.4% (gray dash-dotted
lines). The histogram (top right) shows the marginalized posterior of Mcomp with the mode (solid line), best-fit (dotted line),
and 68.3% (1σ) interval (dashed lines) indicated.

with only four epochs of companion astrometry we do

not have the same ability to fit for additional astromet-

ric errors. Therefore, we performed an initial orbit fit

using the nominal astrometric errors and examined the

residuals. The rms of the separation measurements was

4.3 mas about this initial best-fit orbit and χ2 = 14.6,

while for the P.A.s the rms was 0.34◦ with χ2 = 3.0. As

a point comparison, when we simply fit a line to sepa-

ration and P.A. as a function of time, we found similar

rms values of of 4.7 mas (χ2 = 17.5) and 0.45◦ (χ2=4.9).

Given that the RVs constrain some of the same orbit pa-

rameters that are relevant to the astrometric fit, it is not

obvious what number of degrees of freedom is correct

to assume here. If we assume two degrees of freedom

in each, then p(χ2) = 0.0007 for the separations and

p(χ2) = 0.22 for the P.A.s. Ultimately we add 4.3 mas in

quadrature to our separation measurements, resulting in

effective errors of ≈5 mas at every epoch. We do not add

any additional error to our P.A. uncertainties as these

are already substantially larger (≈0.◦3, or ≈10 mas) and

the χ2 value is not unreasonable. The source of the

4–5 mas epoch-to-epoch uncertainties in our separation

measurements is not known, so it may represent a funda-

mental floor to astrometry derived from ADI sequences

with the NIRC2 coronagraph.

The initial state of the PT-MCMC sampler was deter-

mined using a Monte Carlo rejection sampling analysis

similar to the method used in Dupuy et al. (2016). First,

2 × 106 randomly distributed orbital periods (104 d <

P < 107 d), eccentricities, and times of periastron pas-

sage (T0) were drawn. Using the formalism of Lucy

(2014), we computed the corresponding set of a, i, ω,

and Ω that best fit the astrometry for each of these tri-

als. For each trial, we computed the χ2
ast of the trial

orbit’s predicted astrometry and our measured astrom-

etry. To incorporate the RVs, we assumed at this stage

that each data set could be represented as a simple

linear trend with time. For each orbit trial, we com-
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Figure 7. Marginalized posteriors of fitted parameters from our MCMC analysis. Vertical solid lines show the modes, dotted
lines show the best-fit values, and dashed lines show the 68.3% (1σ) intervals.

puted the instantaneous slope of the host-star RV at

the mean epoch for each RV data set. (In our actual

PT-MCMC runs, we fit all the individual relative RV

measurements directly.) Because each trial has a and

P independent of assumptions about mass, each trial

also effectively samples an associated total mass through

Mtot ∝ a3/P 2. We computed the mass ratio that would

best bring each orbit’s RV slopes into agreement with

the measured slopes and then computed the RV zero

points needed to bring the measured relative RVs into

agreement. Because there are multiple RV slopes to re-

produce, the agreement is not perfect for a given orbit

trial, and we computed the χ2
RV of the trial orbit’s pre-

dicted RV slopes and our measured RV slopes. Finally,

we computed the χ2
mass of the trial orbit’s predicted

host-star mass with the estimated mass of 0.97 M�
from Vigan et al. (2016), with an inflated uncertainty

of ±0.20M� to allow us to perform orbit fits with no

mass prior as well. We combined these constraints into

χ2
tot = χ2

ast +χ2
RV +χ2

mass, computed rejection probabil-

ities of prej = 1− exp(−(χ2
tot −min(χ2

tot))/2), and then

drew random samples to pass on based on prej > U(0, 1),

where U(0, 1) was a uniformly distributed, randomly

drawn number ranging from 0 to 1.

In our PT-MCMC analysis, we experimented with dif-

ferent chain lengths and found that after ∼105 steps our

100-walker chains had clearly stabilized in the mean and

rms of the posterior for each of the parameters. We

saved every 20th step of our chains and discarded the

first 50% of the chain as the burn-in portion, leaving

2.5 × 105 PT-MCMC samples in the cold chain. Ta-

ble 3 lists information on the posterior distributions of
our fitted parameters, as well as parameters that are di-

rectly computed from them. To compute the modes of

our distributions we binned the posterior and found the

bin with the most elements. The 1- and 2-σ confidence

intervals are computed as the minimum range in that

parameter that contains 68.3% and 95.4% of the values,

respectively. The quoted best-fit solution is the one with

the maximum likelihood, which includes the prior.

Figure 6 displays the companion mass posterior and

the most relevant parameter correlations, and Fig-

ure 7 shows several of the other marginalized posterior

distributions from our fit. As expected, the inclina-

tion is highly correlated with companion mass (i.e.,

Mcomp sin(i) is well constrained from the RV orbit).

The companion mass posterior extends to high masses

(>80MJup) that are likely unphysical assuming that

Gl 758 B is a single object. This high mass tail corre-
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Table 3. MCMC Posteriors for the Orbit of Gl 758B

Property Mode ±1σ Best fit 95.4% c.i. Prior

Fitted parameters

Companion mass Mcomp (MJup) 42+19
−7 55 33, 106 1/M (log-flat)

Host-star mass Mhost (M�) 0.967+0.022
−0.018 0.969 0.929, 1.009 0.970± 0.020M� (Gaussian)

Parallax (mas) 63.39+0.37
−0.32 63.51 62.73, 64.13 63.45± 0.35 mas (Gaussian)

Semimajor axis α (mas) 1340+170
−80 1350 1210, 1820 1/α (log-flat)

Inclination i (◦) 28+12
−10 27 10, 49 sin(i), 0◦ < i < 180◦

√
e sinω −0.05+0.11

−0.09 −0.06 −0.26, 0.24 uniform
√
e cosω −0.76+0.08

−0.03 −0.75 −0.82, −0.47 uniform

Mean longitude at tref = 2455197.5 JD, λref (◦) 72± 8 72 52, 89 uniform

PA of the ascending node Ω (◦) 175± 5 174 163, 183 uniform

McDonald RV zero point (m s−1) 61± 19 59 27, 108 uniform

Keck RV zero point (m s−1) 50+20
−19 50 17, 98 uniform

APF RV zero point (m s−1) 44+18
−21 42 9, 90 uniform

McDonald RV jitter σMcD (m s−1) 3.1+0.8
−0.6 3.0 1.6, 4.6 1/σ (log-flat)

Keck RV jitter σKeck (m s−1) 2.33+0.17
−0.18 2.32 2.00, 2.70 1/σ (log-flat)

APF RV jitter σAPF (m s−1) 2.46+0.18
−0.17 2.44 2.13, 2.84 1/σ (log-flat)

Computed properties

Orbital period P (yr) 96+21
−9 97 79, 153 · · ·

Semimajor axis a (AU) 21.1+2.7
−1.3 21.3 18.9, 28.7 · · ·

Eccentricity e 0.58+0.07
−0.11 0.57 0.26, 0.67 · · ·

Argument of periastron ω (◦) 184+8
−9 184 153, 201 · · ·

Time of periastron T0 = tref − P λ−ω
360
◦ (JD) 2465800+2000

−800 2466300 2464800, 2470500 · · ·
Mass ratio q = Mcomp/Mhost 0.042+0.018

−0.008 0.054 0.032, 0.105 · · ·

sponds to low inclinations (i . 20◦) that our astrometry

cannot rule out, high eccentricities (e &0.6), and short
periods (P .100 yr). The companion mass posterior

has a sharp lower limit of 30.5 MJup at the 4-σ level.2

Figures 8 and 9 show our orbit solutions relative to our

RV and astrometric data. The sky-projected and de-

projected solution for Gl 758 is displayed in Figure 10,

where orbits are drawn from the MCMC posteriors and

are color-coded according to the corresponding compan-

ion mass from low mass (pink) to high mass (green).

6. RESULTS AND DISCUSSION

2 Note that this lower limit on the companion mass is relatively
insensitive to changes in priors. We also ran our joint fit after
removing the prior on the host star mass; the resulting mode of
the companion mass distribution is 43 MJup with a 95% credible
interval of 33–131 MJup and a lower limit of 31.7 MJup(at the 4-σ
level).

6.1. Nature of bkg2

Vigan et al. (2016) identified a new point source near

Gl 758 at a separation of ≈1.′′1 based on observations

taken with SPHERE in 2014. They found that the pho-

tometry of this new object is broadly consistent with the

colors of L dwarfs, raising the possibility that this could

be a second companion in this system. This object is

easily recovered in our 2016 and 2017 datasets at wider

separations of 1.′′46 and 1.′′62. Together with the single-

epoch detection from Vigan et al. taken in 2014, this

object closely follows the expected motion for a back-

ground star (Figure 11) and appears to be unassociated

with Gl 758.

6.2. Bolometric Luminosity of Gl 758 B

Despite extensive efforts to characterize this system

with follow-up photometry and spectroscopy, only a

single bolometric luminosity estimate by Currie et al.
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Figure 8. Relative RV measurements of Gl 758 from McDonald (top left), Keck (top right), and APF (bottom left). Randomly
drawn orbit solutions from our MCMC posterior are displayed as thin colored lines, coded by the companion mass from low
(pink) to high (green). Each RV data set has its own RV zero point associated with each orbit solution, allowing the absolute,
barycentric RVs predicted from the orbit to be plotted as relative RVs here. The best-fit orbit solution is shown as a thick
black line, and the error bar in the lower left of each plot shows the best-fit jitter (i.e., the additional RV error that is added
in quadrature to the displayed measurements during our MCMC analysis). The best-fit orbit solution (black line) for the
barycentric velocity of the primary over time. Each RV data set is shown with its best-fit zero point added to bring the relative
RVs into the barycentric frame. Jitter has not been added to the plotted error bars. The RV measurements jointly show a
nonlinear trend, indicating that the acceleration of the host star is changing with time. The bottom-right panel shows the RVs
relative to the best-fit orbit spanning a complete orbital cycle (97 yr).

(2010) exists in the literature: log(L/L�) = –6.1+0.3
−0.2

dex. To improve on this value we use use existing near-

infrared measurements to constrain the 1–3 µm SED

together with atmospheric models for a bolometric cor-

rection. We first anchor the 1.0–1.75 µm spectrum of

Gl 758 B from Nilsson et al. (2017) by flux calibrating

the P1640 observations to the H-band apparent magni-

tude from Thalmann et al. (2009). To this we add the

photometry from Vigan et al. (2016) and Janson et al.

(2011) to directly account for the comparably high K-

band flux from this object. A solar-metallicity BT-Settl

“CIFIST2011” atmospheric model with Teff=650 K and

log g=5.0 dex is used for the long-wavelength bolometric

correction (2.5–500 µm) by flux-calibrating the model

to the L′-band photometry from Janson et al. (2011).

This approach also agrees with the MS-band upper limit

from Janson et al. (2011). The same model is used for

the short-wavelength correction (0.1–1.0 µm) by scaling
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that region to the blue end of the P1640 spectrum. Un-

certainties in the spectral measurements, photometry,

and flux calibration scale factors for the model and spec-

trum are all accounted for in a Monte Carlo fashion by

integrating under new realizations of the complete 0.1–

500 µm spectrum. This procedure yields a bolometric

luminosity of log(L/L�) = –6.07 ± 0.03 dex for Gl 758

B. To assess possible systematic errors, we experimented

with alternative atmospheric models from the same grid

with effective temperatures of 600 K and 700 K. The re-

sults following the same procedure are within 0.02 dex

of the value we obtained with the 650 K model, which is

smaller than the impact of random measurement errors.

6.3. Comparison with Evolutionary Models

With a measured luminosity, age, and dynamical

mass, Gl 758 B offers a rare opportunity to test sub-
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Figure 11. Astrometry of “bkg2” relative to Gl 758. This
object closely follows the expected trajectory of a back-
ground star (black track with 1- and 2-σ uncertainties shown
in gray) based upon the proper motion and parallax of Gl
758 in separation (top), P.A. (bottom), and relative position
on the sky (right). Open symbols represent the expected
position of a background object at the time of our observa-
tions; filled symbols are our measured values. Uncertainties
are generally smaller than the symbol sizes. The 2014 epoch
is from Vigan et al. (2016), and our new NIRC2 astrometry
of bkg2 were taken in 2016 and 2017.

stellar evolutionary models. For this analysis we begin

with the assumption that the age range spans 1–6 Gyr

following Vigan et al. (2016), but ultimately re-evaluate

this constraint based on recent results from isochrone

fitting. We select a variety of publicly available models

from the literature for this exercise: the Cond models

from Baraffe et al. (2003); three versions of evolutionary

models from Saumon & Marley (2008) with no clouds

(“SM-NC”), a hybrid prescription for the evolution of

clouds at the L/T transition (“SM-Hybrid”), and the

retention of thick clouds at all temperatures (“SM-f2”);

and the grid from Burrows et al. (1997). All have so-

lar compositions. These models mainly differ in their

treatment of atmospheric clouds and molecular opaci-

ties, which act as boundary conditions that control the

evolution of brown dwarfs and giant planets as these ob-

jects radiatively cool over time (see, e.g., Burrows et al.

2001 and Marley & Robinson 2015 for detailed reviews).

Our approach for comparing the models to the obser-

vations utilizes a one-tailed hypothesis test. We adopt a

null hypothesis in which the posterior probability den-

sity function for the dynamical mass of Gl 758 B is sta-

tistically consistent with the inferred mass distribution

from evolutionary models at some threshold probabil-

ity; we choose 0.3% (within 3 σ) for this study. In other

words, we calculate the probability that random draws
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Figure 12. Luminosity and age of Gl 758 B with respect to
evolutionary models from Burrows et al. (1997). The inset
shows iso-mass tracks spanning the nominal age range of 1–
6 Gyr for the host star. The hydrogen-burning limit (HBL)
and deuterium-burning limit (DBL) are labeled.

from the dynamical mass distribution differ from the in-

ferred model-based mass distribution. If these two val-

ues disagree by at least 0.997, then the null hypothesis

is rejected and the two distributions are considered to

be inconsistent with each other.

For each set of evolutionary models, we randomly

draw ages from a uniform distribution (τ = U(1, 6)

Gyr) and luminosities from a log-normal distribution

(log(L/L�) = N (µ=−6.07, σ=0.03) dex); a visual refer-

ence is shown in Figure 12 for the Burrows models. For

each {τ ,L} pair we find the corresponding mass by finely

interpolating the model grid. This Monte Carlo process

is repeated of order 106 times to create a distribution of

expected masses for each model. The predicted and dy-

namical mass distributions are then quantitatively com-

pared for consistency.

Results from this analysis are listed in Table 4 and

illustrated in Figure 13. Based on the input age and

luminosity distributions together with our threshold cri-

terion for agreement, only the Burrows models are for-

mally consistent with the dynamical mass distribution—

which peaks at 42 MJup and has a robust (4 σ) lower

limit of 30.5 MJup. However, even the formal agree-

ment with the Burrows models is marginal and a slightly

lower threshold for consistency would have rejected the

null hypothesis; random draws from the dynamical mass

distribution result in higher masses 99% of the time. All

other models fail our hypothesis test. The SM-f2 mod-

els disagree the most with the dynamical mass of Gl 758

B. By retaining clouds to temperatures well below the

rainout limit for various grains, this prescription is the

most unrealistic for T dwarfs like Gl 758 B (which is

expected to be cloud-free) so this result is unsurprising.
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Table 4. Predictions from Evolutionary Models

Constraint Model

Age Luminosity Mass

(Gyr) (log(L/L�)) (MJup) Cond SM-NC SM-Hybrid SM-f2 Burrows

Predicted Mass (95.4% Credible Interval)

U(1,6) N (−6.07, 0.03) · · · 14–33 MJup 13–33 MJup 13–32 MJup 11–27 MJup 15–38 MJup

Minimum Compatible Age (99.7% Lower Limit)

· · · N (−6.07, 0.03) PDF(Mcomp) >6.2 Gyr >6.1 Gyr >6.4 Gyr >9.2 Gyr >4.4 Gyr

Minimum Compatible Luminosity (99.7% Lower Limit)

U(1,6) · · · PDF(Mcomp) >–5.96 dex >–5.95 dex >–5.92 dex >–5.76 dex >–6.13 dex

Note—Predictions from evolutionary models for various permutations of input age, luminosity, and mass
distributions. Here U(a,b) refers to a linearly-uniform distribution from a to b, N (µ,σ) is a normal
distribution with a mean µ and standard deviation σ, and PDF(Mcomp) is our measured probability
density function for the dynamical mass of Gl 758 B.

The general tension between the models and our dy-

namical mass measurement may point to physics not yet

incorporated into current substellar models, which could

originate from several sources: interior physics and ther-

mal structure; sources of atmospheric opacity and their

evolution with temperature; initial entropy and accre-

tion history of Gl 758 B; or ill-matched metallicities of

the models and the companion. On the other hand, it

is also possible that the discrepancy originates from the

observational side, most likely with the age of the sys-

tem. For our default analysis we adopted the 1–6 Gyr

estimate by Vigan et al. (2016) based on isochrone fit-

ting of the host star (which resulted in younger ages

of ≈1–4 Gyr) and activity indicators (which resulted in

older ages of ≈3–8 Gyr). Older ages result in higher

predicted masses for the same luminosity, so this could
also be a natural explanation for the disagreement.

To explore the possibility of an older age or a sys-

tematic offset in the luminosities of the models, we per-

form a series of tests to identify the minimum compati-

ble ages and the minimum compatible luminosities that

render the inferred and dynamical mass distributions

into agreement. For the former, we begin by randomly

drawing masses from interpolated evolutionary model

grids following a normal distribution in log-luminosity

(N (−6.07, 0.03) dex) and fixing the starting age at 1.0

Gyr. Using the same threshold requirement of 0.3%, we

compare the inferred and dynamical mass distributions

for consistency. This process is then repeated by increas-

ing the age in 0.1 Gyr steps until the mass distributions

agree at the threshold level. Results are summarized in

Table 4; the Cond, SM-NC, and SM-Hybrid models all

imply similar ages of &6 Gyr. The SM-f2 grid is only

consistent with the dynamical mass for extremely old

ages of &9 Gyr, and the Burrows models agree for ages

beyond 4.4 Gyr.

A similar process is carried out to identify the mini-

mum luminosity consistent with the measured mass. We

randomly draw masses based on a uniform distribution

of ages (U(1, 6) Gyr) and a fixed starting luminosity of

–6.50 dex, then test the inferred and dynamical mass dis-

tributions for consistency. The luminosity is increased

in increments of 0.01 dex until agreement is reached. If

the 1–6 Gyr age estimate is correct, that would imply

that the Cond, SM-NC, SM-Hybrid, and SM-f2 evolu-

tionary models are overluminous by 0.11 dex, 0.12 dex,

0.15 dex, and 0.31 dex, respectively (Table 4). This po-

tential discrepancy is in the opposite sense from results

by Dupuy et al. (2014) and Dupuy et al. (2009), who

found that substellar cooling models under-predict the

luminosities of brown dwarfs with dynamical masses by

≈0.2–0.4 dex, at least at relatively young age of ≈0.5–

1 Gyr.

Altogether, the most likely culprit for the disagree-

ment in mass probably resides in the age of Gl 758.

Older ages of 6–9 Gyr would readily put the predicted

and dynamical distributions in excellent agreement and

are indeed suggested from the low activity level, lack

of X-ray emission, enhanced metallicity, and slow pro-

jected rotational velocity of Gl 758 (Mamajek & Hillen-

brand 2008; Thalmann et al. 2009; Vigan et al. 2016).

Although there are a wide range of age estimates for the

host star from isochrone fitting in the literature, more

recent analyses are converging on an older value that

agrees better with activity indicators. For example, a

recent study by Luck (2017) found an average age of 7.5
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of Gl 758 B from five grids of evolutionary models compared
to the dynamical mass from our orbit fit (top distribution).
The inferred mass distributions are calculated from the lu-
minosity of Gl 758 B and the nominal age range of 1–6 Gyr
for the host star (thick lines). Only the Burrows models for-
mally agree with the dynamical mass at this age. Somewhat
older ages for the host star render the models in much better
agreement with the observations (thin lines).

Gyr (with a range of 5.3 Gyr about that value) using

four sets of isochrones, and Brewer et al. (2016) find an

isochronal age of 7.5 Gyr with a range of 4.6–10.4 Gyr

using the Yonsei-Yale models.

6.4. Limits on Planetary Companions

We searched the residual RVs for closer-in planet

candidates using a Lomb-Scargle periodogram after re-

moving the best-fit orbital solution of Gl 758 B. The

strongest power from 1–104 days is at a period of 245.5

days, but that potential signal has a false alarm prob-

ability of 0.4% and its corresponding velocity semi-

Figure 14. Sensitivity map for close-in planets orbiting Gl
758 based on residual RVs after removing the best-fit orbit
for Gl 758 B. Blue dots represent injected companions that
were recovered following the procedure described in Howard
& Fulton (2016). Red dots represent injected planets that
were not recovered, and contours delineate the fraction of
injected planets that were recovered.

amplitude is at the level of the noise in the data, so it

is unlikely to be real. No frequencies have powers that

exceed our threshold false alarm probability of 0.1% for

planet detection. We conclude that there is no convinc-

ing evidence of any close-in planet candidates in our

data.

Detection limits are quantified using injection-

recovery tests as described in Howard & Fulton (2016).

Synthetic planets on circular orbits are sequentially in-

jected into the RV residuals by randomly drawing pairs

of minimum mass and period surrounding the detection

threshold. A periodogram is used to search for plan-

ets within each artificial dataset with a 1% false alarm

probability threshold for recovery and the requirement

of a similar period and phase as the injected planet.

Results are shown in Figure 14. Gl 758 is devoid of

close-in giant planets (&100 M⊕) within 10 AU, sub-

Saturns (≈10–100 M⊕) within 3 AU, and super-Earths

(≈2–10 M⊕) interior to 0.1 AU.

Given its periastron passage of 8.9+3.7
−2.0 AU, it is likely

that Gl 758 B has impacted the formation efficiency and

dynamical stability of closer-in planets in this system. If

Gl 758 B formed relatively quickly (.1 Myr), perhaps

from turbulent fragmentation (e.g., Bate 2009) with sub-

sequent migration to its current orbit, this implies that

the circumprimary protoplanetary disk would have been

truncated between ∼0.2–0.35a, or about 4–7 AU (Arty-

mowicz & Lubow 1994). The lack of planets outside of

this region is not unexpected, but planet formation in-
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terior to this region may still have been possible (e.g.,

Kepler-444; Campante et al. 2015; Dupuy et al. 2016).

However, the lack of planets at small orbital dis-

tances from Gl 758 is not particularly unusual com-

pared to the statistical properties of planets orbiting

GK dwarfs in general. For example, Cumming et al.

(2008) find that about 10% of Sun-like stars host gi-

ant planets with minimum masses between 0.3–10 MJup

within ≈3 AU. This value increases to about 14% by ex-

trapolating the planet period distribution out to 10 AU.

Wittenmyer et al. (2016) infer the frequency of Jupiter

analogs between 3–7 AU around solar-type stars to be

6.2+2.8
−1.6% (see also Wittenmyer et al. 2011 and Zechmeis-

ter et al. 2013). Petigura & Howard (2013) measure a

completeness-corrected frequency of about 55% for all

planets orbiting GK stars between 1–12 R⊕ and orbital

periods from 5-100 days (0.05–0.4 AU), with lower-mass

planets outnumbering gas giants by a factor of ≈50:1

(see also Howard et al. 2012; Fressin et al. 2013; Youdin

2011). While it is possible that the absence of close-in

planets could be related to the presence of Gl 758 B,

this apparent desert is also broadly consistent with the

overall statistical properties of single FGK stars.

Figure 15 shows the mass and separation regimes over

which our imaging data and the residuals from our RVs

are sensitive. Together this rules out giant planet and

brown dwarf companions at close separations as well as

massive companions at wide orbital distances. However,

there exists a large region beyond about 10 AU and at

masses less than about 30 MJup where additional com-

panions could evade detection, assuming an older age of

about 6–9 Gyr. If a giant planet or another brown dwarf

resides in this system—which remains possible both be-

low our detection limits or simply at unfavorable viewing

geometries—the acceleration we observe would be the

superposition from one or more additional companions

besides Gl 758 B. This could potentially influence the

amplitude and shape of the evolving acceleration and

may even reconcile the dynamical mass measurement

and the younger age. At this point there are no signs of

another companion, but continued RV monitoring and

deeper high-contrast imaging would be beneficial to fur-

ther map the architecture of this system.

7. SUMMARY AND CONCLUSION

We have used 630 RV observations of the G8 star

Gl 758 taken over the past two decades together with

seven years of astrometry with NIRC2 to measure the

dynamical mass of the T7–T8 brown dwarf companion

Gl 758 B. A joint fit of the RVs and our new astrometry

with a 15-parameter Keplerian model yields a mass of

42+19
−7 MJup for the companion, assuming a host star
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Figure 15. Overview of constraints on the Gl 758 system.
The shaded blue and green regions illustrate the masses and
separations over which we are sensitive to companions at the
10% level based on our imaging observations and RV residu-
als after subtracting out the secular acceleration. The hashed
area denotes the 95% interval of minimum masses and sepa-
rations consistent with the measured long-baseline accelera-
tion of 2–5 m s yr−1. The cutoff at 7.5 AU corresponds to the
minimum period of the perturbing companion, limited by the
baseline of our McDonald RVs. Our joint constraint on the
dynamical mass and semimajor axis for Gl 758 B is shown in
gray, which assumes the acceleration originates entirely from
this object. Note that the imaging “exclusion zone” assumes
hot-start evolutionary models from Baraffe et al. (2003), an
age of 7.5 ± 1.5 Gyr for the system, and circular orbits. The
corresponding contrast curve is flux calibrated using the host
star and coronagraph throughput attenuation from Bowler
et al. (2015a). For comparison, the dotted blue line corre-
sponds to the 10% sensitivity contour for a younger age of 1
Gyr.

prior of 0.97 ±0.02 M�, with a strict lower limit of

30.5 MJup and a long tail to higher masses. Gl 758 B

orbits its host about once a century with a modest ec-

centricity between about 0.26–0.67 and a semimajor axis

of 21 AU. Based on our best-fit orbit solution, we expect

the host star’s acceleration to continue to steepen over

the next several years and then reverse sign in a few

decades. Despite the excellent RV precision and long

observational baseline, no close-in planets are detected

in the RV residuals. Based on a revised bolometric lu-

minosity for Gl 758 B, most evolutionary models are

inconsistent with the companion’s dynamical mass for

ages less than 6 Gyr.

Continued ground-based RV and astrometric orbit

monitoring will progressively improve the orbit and mass

constraint of Gl 758 B. In addition, the astrometric per-

turbation of Gl 758 B on its host star should be readily
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detected by Gaia during its nominal 5-year mission life-

time. This will dramatically refine the inclination and

dynamical mass of Gl 758 B. Similarly, more precise age

determinations for the host star will enable more robust

tests of evolutionary models approaching the planetary-

mass regime.

Gl 758 B is the lowest-mass companion inducing a

measured acceleration on its host star, demonstrating

the continued value and productivity of long-baseline

RV planet searches. In the future, the combination

of RVs and direct imaging will regularly yield dynam-

ical masses for exoplanets using the next generation

of ground-based 30-m class telescopes and space-based

missions like JWST and WFIRST.
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