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Abstract 66 

Background: Conduction velocity (CV) heterogeneity and myocardial fibrosis both promote re-67 

entry, but the relationship between fibrosis as determined by left atrial (LA) late-gadolinium 68 

enhanced cardiac magnetic resonance imaging (LGE-CMRI) and CV remains uncertain.  69 

Objective: Although average CV has been shown to correlate with regional LGE-CMRI in 70 

patients with persistent AF, we test the hypothesis that a localized relationship exists to 71 

underpin LGE-CMRI as a minimally invasive tool to map myocardial conduction properties for 72 

risk stratification and treatment guidance. 73 

Method: 3D LA electroanatomic maps during LA pacing were acquired from eight patients with 74 

persistent AF following electrical cardioversion. Local CVs were computed using triads of 75 

concurrently acquired electrograms and were co-registered to allow correlation with LA wall 76 

intensities obtained from LGE-CMRI, quantified using normalised intensity (NI) and image 77 

intensity ratio (IIR). Association was evaluated using multilevel linear regression. 78 

Results: An association between CV and LGE-CMRI intensity was observed at scales comparable 79 

to the size of a mapping electrode:-0.11m/s per unit increase in NI (P<0.001) and -0.96m/s per 80 

unit increase in IIR (P<0.001). The magnitude of this change decreased with larger measurement 81 

area. Reproducibility of the association was observed with NI, but not with IIR. 82 

Conclusion: At clinically relevant spatial scales, comparable to area of a mapping catheter 83 

electrode, LGE-CMRI correlates with CV. Measurement scale is important in accurately 84 

quantifying the association of CV and LGE-CMRI intensity. Importantly, NI, but not IIR, accounts 85 



for changes in the dynamic range of CMRI and enables quantitative reproducibility of the 86 

association. 87 

  88 

  89 

  90 

  91 

Abbreviations: 92 

CL: Cycle length 93 

CV: Conduction velocity 94 

EAM: Electro anatomical mapping 95 

IIR: Image Intensity Ratio 96 

LGE-CMRI: Late gadolinium enhanced cardiac MRI 97 

NI: Normalized Intensity 98 

  99 

  100 

 101 

 102 

 103 

 104 



Introduction 105 

Success rates of catheter ablation for persistent AF is hindered by our poor understanding of the 106 

underlying mechanisms of AF persistence. Central to improving this understanding is the 107 

relationship between local myocardial conduction properties and the underlying tissue 108 

architecture, determined clinically by estimating myocardial fibrotic burden using late-gadolinium 109 

enhanced cardiac magnetic resonance imaging (LGE-CMRI).  The challenges to determining this 110 

relationship are in part due to limitations and inconsistencies in the acquisition, interpretation and 111 

the registration of high-resolution imaging and electroanatomic mapping (EAM) data to allow 112 

correlative analyses. 113 

It has previously been established that an electro-architectural relationship exists between 114 

myocardial fibrosis and CV on a regional and whole-heart level 1, 2. However, if such a relationship 115 

exists on a localized level, LGE-CMRI may fulfil its potential as a non-invasive tool to map 116 

myocardial conduction properties for risk stratification and treatment guidance.    117 

Current 3D EAM systems with high-density multi-electrode contact mapping catheters can provide 118 

detailed spatio-temporal information on the functional behaviour of the endocardium. Local CV 119 

can give a clear interpretation of underlying tissue health and identify the presence of non-120 

conducting fibrotic tissue through the analysis of wave-front propagation patterns3, 4. The accurate 121 

evaluation of local CV requires invasive contact mapping with subsequent laborious post-122 

processing of acquired electrograms. 123 

LGE-CMRI is a well-established non-invasive technique to visualise myocardial fibrosis and has 124 

been corroborated with histomorphometric validation5. Fibrotic atrial imaging has had mixed 125 

success due to the current limits of MRI resolution, the patchy nature of atrial fibrosis and 126 

difficulties in inter-patient scar-thresholding. As a consequence, several post-processing 127 

algorithms and intensity normalisation approaches have been developed to improve the 128 



robustness of LA fibrosis-mapping from LGE-CMRI 6. Although the extent of enhancement has 129 

been associated with conventional markers of atrial structural remodelling such as LA dimension7, 130 

and clinical outcomes following catheter ablation 8, there is continued uncertainty surrounding the 131 

exact nature and pathological state of the atrial myocardium delineated by high-intensity regions. 132 

We sought to test the hypothesis that a systematic and objective approach to the acquisition and 133 

spatial correlation of CV and LGE-CMRI data can define a reproducible electro-architectural 134 

relationship at clinically relevant scales. 135 

Methods 136 

A diagram showing the key steps of the data collection and analysis methodology used in the 137 

study is shown in Figure 1 138 

Study Population 139 

Patients with symptomatic persistent AF (based on the classification of AF by published guidelines 140 

from the AHA/ACC/HRS/ESC) presenting for their first ablation to Imperial College Healthcare 141 

NHS Trust were prospectively enrolled. The study was approved by the Local Research and 142 

Ethics Committee for Imperial College Healthcare NHS Trust and written informed consent was 143 

obtained from each patient. Patients with contraindications to undergoing LGE-CMRI were 144 

excluded from the study. 145 

Data acquisition 146 

Each patient underwent LGE-CMRI prior to the ablation procedure. MRI acquisition was 147 

performed using a 1.5T Philips Achieva MR system, and a 5- or 32-element phased-array cardiac 148 

coil. LGE-CMRI was performed in the axial orientation 12-20 minutes following the 20ml bolus of 149 

gadobenate dimeglumine contrast agent, using an ECG triggered, free-breathing navigator-gated 150 

whole heart 3D spoiled gradient echo acquisition sequence. Resolution was at 1.5 x 1.5 x 4mm 151 



and reconstructed to 1.25 x 1.25 x 2 mm. Complete LA coverage was obtained with 40-50 slices. 152 

Data were acquired within a window of 100-150ms within each R-R interval depending on heart 153 

rates, with a low-high k-space ordering and spectral pre-saturation with inversion recovery (SPIR) 154 

for fat suppression. The inversion recovery delay was determined from a Look-Locker sequence, 155 

with an inversion time chosen to null myocardial signal. MRI scans were performed in patients in 156 

rate-controlled AF. To assess the robustness and reproducibility of the methodology, two patients 157 

(denoted throughout as patients G and H) underwent two pre-ablation LGE-CMRI scans, two 158 

weeks apart. 159 

Catheter ablation was performed within two weeks from the LGE-CMRI scan. All anti-arrhythmic 160 

drugs were discontinued for at least 5 half-lives, and amiodarone was discontinued at least 60 161 

days prior to the ablation procedure. All procedures were performed in the post-absorptive state 162 

under general anaesthesia. Transoesophageal echocardiography was performed in all patients 163 

once anaesthetised to exclude LA appendage clot, and to subsequently guide transseptal 164 

puncture. A deflectable decapolar catheter (InquiryTM, St Jude Medical, St. Paul, MN, USA) was 165 

positioned in the coronary sinus to record electrograms, pace the atrium, and serve as a temporal 166 

reference. Single trans-septal punctures were performed using a Brokenbrough needle through 167 

a fixed curve long-sheath (SL0, St Jude Medical, MN, USA). Unfractionated heparin was 168 

administered to achieve an activated clotting time of 300-350s throughout the procedure. 169 

An impedance-based EAM system (NavX EnsiteTM Velocity, St Jude Medical, MN, USA) was 170 

used. The LA geometry and all subsequent data were acquired using a 20-pole (1mm electrodes) 171 

double-loop catheter (InquiryTM AFocusIITM, St Jude Medical, MN, USA) with 4mm electrode 172 

spacing. Before each acquisition, the AFocusII catheter was held tangentially to the endocardial 173 

surface, enabling stable tissue contact. Patients presenting in AF underwent external DCCV 174 

before any mapping was conducted. Following the acquisition of the LA geometry, high-density 175 

LA activation mapping was performed. The left atrium was paced from one of more sites (i.e. the 176 



coronary sinus, roof of left atrium and left atrial appendage) at pacing rates of 250ms, 300ms, 177 

350ms and 600ms. The pacing protocol included a drive train of 8 beats to ensure that left atrial 178 

capture and activation was consistent (avoiding latency and decrementation), and also to facilitate 179 

the stability of AFocusII catheter at the particular site of the left atrium that was being 180 

interrogated/mapped.  181 

 182 

The LA was paced using a drive train protocol of 8 beats from the coronary sinus, roof and/or left 183 

atrial appendage. Unipolar electrograms were recorded and displayed at filter settings of 0.5-184 

100Hz during the procedure, where the 20 recordings together form a kernel as shown in Figure 185 

2A. The electrode positions were projected to the geometry by the EAM system (Figure 2E and 186 

2F).  Electrodes more than 5mm away from the surface were disregarded.  187 

Data were acquired at multiple locations on the LA, focused mainly on the posterior endocardial 188 

wall where the highest propensity of fibrosis was expected to be found 9. Local activation times 189 

(LATs) were calculated by the EAM system relative to a reference electrode and assigned as the 190 

time of the maximum negative gradient of the unipolar electrogram. Electrograms were assessed 191 

post-procedurally by an experienced Cardiac Electrophysiologist and those indicative of poor 192 

contact or high noise were rejected. Following mapping, pulmonary vein isolation was achieved. 193 

All patients were observed for a further 24hrs prior to discharge. No complications were observed 194 

in this cohort of patients. 195 

MRI/EAM Segmentation and Registration 196 

The LA epicardial surface on LGE-CMRI images was manually segmented by an experienced 197 

Cardiac Radiologist, as shown in Figure 2B, and the epicardial surface was extracted. The EAM 198 

surface was co-registered to the MRI surface 10-13. The accuracy of the registration process was 199 

estimated by target registration error 14. Projected EAM surface electrode positions were mapped 200 



under the computed surface transformation to the MRI surface. The operators performing the 201 

ablation procedure were blinded to the generated LA scar-maps derived from the LGE-CMRI.   202 

Local and regional conduction velocity estimation 203 

Conduction velocity was estimated both locally and regionally. Regional CV was estimated by 204 

fitting a model of an ideal circular propagating wavefront to the positions and LATs of the 20 205 

electrodes of a given kernel. Additionally, the wavefront radius, r, and residual error, η, of the fit 206 

were calculated 15. High η indicate that the wavefront is not sufficiently smooth within the kernel. 207 

Kernels with η < 5 s/mm were rejected as the wavefront violated the planarity assumptions 208 

required by the local CV analysis below. 209 

The local CV is calculated using the principle of triangulation which uses the differences in LATs 210 

across unique groups of 3 mapping electrodes (triads) and their interelectrode distance  16. This 211 

approach provides accurate estimates of velocities in areas of just a few mm2, but assumes planar 212 

propagating wavefronts 17. Triads were only chosen between concurrent recordings within the 213 

same kernel to avoid any inter-beat variability of wavefront propagation. The minimum 214 

interelectrode distance between any pair of electrodes in a triad was constrained to be greater 215 

than the registration error. 216 

Detection and evaluation of left atrial wall intensities from LGE-CMRI 217 

Raw absolute LA wall image intensities were extracted from the LGE-CMRI image as the 218 

maximum voxel intensity along a 3mm inward-facing normal from the segmented epicardial 219 

surface. 220 

LA wall LGE-CMRI intensities are acquired in arbitrary units and their average brightness and 221 

dynamic range varies between images, even between multiple scans of the same subject. Local 222 

gadolinium uptake was quantitatively evaluated through two intensity normalisation techniques: 223 

1) Normalised intensity (NI) is calculated from the raw intensity by subtracting the mean intensity 224 



of the LA blood pool and dividing by the standard deviation (SD) of the blood pool voxels 18; 2) 225 

Image Intensity Ratio (IIR) is calculated as the ratio of raw intensity values and the mean intensity 226 

of the LA blood pool19. Both these metrics convert the raw intensities to quantities which can be 227 

compared, and are routinely utilised in LA scar-mapping with LGE-CMRI 1, 8, 19. The mean and SD 228 

of the blood pool were calculated by shrinking the segmented epicardial surface by 5 voxels 229 

(3mm). The average NI or IIR value on the area enclosed by each triad of transformed electrode 230 

positions was then calculated 20. A representative map of NI on the segmented surface is shown 231 

in Figure 2C. 232 

Reproducibility 233 

A sub-group of two patients had two pre-ablation LGE-CMRI scans, separated by two weeks. 234 

Segmentation, registration and construction of the LA scar map were performed independently 235 

on each image. A single EAM dataset was used per patient for determining association. The data 236 

from each scan were included in the statistical analysis as separate datasets. If the image 237 

processing and registration methodology is reproducible, the estimated association should not be 238 

significantly different between the two scans of the same patient. 239 

Statistical Analysis 240 

Continuous variables are given as mean±SD; categorical variables are given as percentages. A 241 

linear mixed-effects model was used to characterise the relationship between LA wall intensity, 242 

using either NI or IIR, and conduction velocity. Likelihood-ratio tests were used to compare if 243 

models, fit by maximum likelihood, were significantly different. The inclusion of CL did not 244 

significantly improve the model fit and was excluded from the final model.  245 

A multilevel model was used to characterise the relationship between left atrial wall intensity and 246 

conduction velocity. Multilevel models provide a mechanism to account for, and quantify, variation 247 



in model intercepts and slopes across patients and cycle lengths. The association between 248 

normalised intensity, 𝐼, and conduction velocity, V was modelled as 249 

𝑉𝑖𝑗𝑘 = (𝛽0 + 𝑢𝑗 + 𝑣𝑘) + (𝛽1 + 𝛽2𝑗)𝐼𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘 250 

where 𝛽0 is the overall intercept, and 𝑢𝑗and 𝑣𝑘 are random effects associated with patients and 251 

cycle lengths. 𝛽1captures the effect due to intensity and is the primary parameter of interest in this 252 

study, representing the overall association between conduction velocity and intensity across all 253 

patients and cycle lengths. The 𝛽2𝑗 values represent per-patient random slopes; that is, the 254 

patient-specific deviation from 𝛽1. Likelihood-ratio tests were used to compare if models, fit by 255 

maximum likelihood, were significantly different. The model reported here was statistically 256 

significant (p < 0.001) compared to all other simpler models without random intercepts or slopes. 257 

The inclusion of a random slope for cycle length did not significantly improve the model fit. 258 

Two-sided p-values with p<0.05 were considered to indicate statistical significance. Statistical 259 

analyses were performed using R version 3.4.3 (The R Foundation for Statistical Computing). 260 

Results 261 

Study Population 262 

Due to the large number of data points collected per patient at multiple paced CL, a total of 8 263 

patients provided sufficient data for the purposes of this study. A summary of the clinical 264 

characteristics is given in Table 1. Patients are denoted as A-H. 265 

Data quality 266 

All EAM surfaces were registered to their corresponding MRI surfaces for co-localisation of image 267 

intensity with CV. Average target registration errors were 3.08mm (range 1.94-5.71mm). 268 



A total of 267 kernels were acquired across all patients, comprising a total of 5340 mapping points. 269 

In total 171 kernels were rejected due to non-planarity of the underlying wavefront (η< 5 s/mm). 270 

A total of 96 complete or partial kernels (mean 12 kernels/patient, range 2-13) remained. An 271 

average of 435 triads were formed per kernel (range 1-1140 triads/kernel). 272 

Distribution of conduction velocities and left atrial wall intensities 273 

An overview of the data used in this study is shown in Figure 3 and summary statistics for CV and 274 

NI for each patient are given in Table S1. The CV sampled across all patients is given in Figure 275 

3A. The mean CV was 0.85 m/s. A representative example of the distribution of calculated CV is 276 

shown in Figure 3B for a kernel from Patient H, paced at a cycle-length of 600ms, with the 277 

corresponding regional CV estimate indicated by the red line. Good coherence between the local 278 

and regional algorithms was observed across all kernels in the study. 279 

An example of the distribution of gadolinium enhancements using NI (Patient H, second scan) is 280 

shown in Figure 3C. The distributions of NI across the entire segmented atrial surface for the first 281 

and second scans are shown by the red and blue lines, respectively. 282 

Influence of triad area 283 

Triads were only formed within individual kernels from those electrodes in good contact with the 284 

myocardium. Triad areas ranged from 0.12mm2 to 590mm2. The change in CV per unit increase 285 

in LGE-CMRI intensity, denoted  𝛽1, was measured across all patients and CL. The effect of 286 

measurement area on this slope was studied by binning triads by their area and fitting the model 287 

to those triads within each bin separately. Bins were chosen as 10mm2 wide non-overlapping 288 

intervals in the range 0-160mm2. Beyond this range there were insufficient data to generate 289 

reliable statistical models. Figure 4 shows the change in the slope with increasing triad area. The 290 

magnitude of the slope was found to decrease with increasing area. To address the hypothesis 291 



that CV is associated with LGE-CMRI enhancement, specifically at small scales, only those triads 292 

with area < 80mm2 were considered for the remainder of the study. 293 

Association of localised LGE intensity with CV 294 

Conduction velocity correlated with LGE-CMRI intensity (slope = -0.104m/s change in CV per unit 295 

increase of NI, p < 0.001). The CV at 0 S.D. (model intercept,) was 1.00 m/s, which is within the 296 

expected physiological range of healthy myocardium 21, 22. Per-patient slopes and intercepts are 297 

shown in Figure 5A. Six of the per-patient slopes are significantly different from the overall slope 298 

(p-values < 0.05). Figure S1 shows corresponding CV and NI at each triad for all kernels from 299 

Patient G, scan 2. The overall association and patient-specific association from the statistical 300 

model are also highlighted. 301 

No random effect relating CL with NI was included in the model (based on the outcome of 302 

likelihood-ratio tests). Only one CL (350ms) had an intercept significantly different from the overall 303 

intercept. Variations in the intercepts with CL were two orders of magnitude smaller than the 304 

overall intercept, suggesting there is negligible change in the relationship with respect to CL. 305 

Reproducibility of LGE-CV evaluation 306 

For Patients G and H, who underwent two LGE-CMRI scans, the images were independently 307 

segmented, registered with the clinical data and fused to examine reproducibility. These are 308 

shown as G1, G2, H1 and H2 in Figure 5A. For both patients, the slope and intercept for the first 309 

and second scans did not differ with statistical significance when using NI. 310 

Comparison of left atrial wall normalisation (NI vs IIR) 311 

LA wall intensity was assessed using NI and IIR. The statistical model was modified to also 312 

examine the relationship between IIR with CV. This identified a change in CV of -0.942 m/s per 313 

unit increase in IIR (p<0.001). The CV was estimated as 1.00m/s at an IIR value of 1.0, which 314 



corresponds to an NI value of 0 S.D. Per-patient slopes and intercepts for the association of CV 315 

with IIR are shown in Figure 5B. As for NI, six of the patients have slopes which are significantly 316 

different from the overall slope. However, the confidence intervals are larger and reproducibility 317 

is poor, as evidenced by a significant difference in the random slopes of H1 and H2. 318 

Discussion 319 

Main Findings 320 

We have demonstrated a localized relationship between local myocardial CV and LA wall LGE in 321 

patients with persistent AF on clinically relevant scales comparable to a mapping catheter 322 

electrode or ablation lesion. Higher normalised LA intensities represent increased structural 323 

fibrotic remodelling and this corresponds to slower CV. The overall estimate for the change in CV 324 

with each unit increase in LA intensity was found to be substantially larger in magnitude than 325 

previously reported over larger spatial scales. Triad size was found to quantitatively affect the 326 

slope, with larger area measurements reducing the magnitude of the corresponding relationship. 327 

NI was identified to be a more effective intra- and inter-patient measure of LA intensity 328 

normalisation compared to IIR, leading to increased confidence in the estimate of and improved 329 

intra-patient reproducibility. There were no significant differences in the relationship across 330 

multiple scans of the same patient. 331 

Conduction velocity and LGE-CMRI defined fibrosis 332 

Lower local CV were observed in LA regions with increased fibrotic change as defined by the 333 

higher extent of gadolinium enhancement. The conduction delay can be explained by several 334 

underlying pathophysiological mechanisms including gap junctional remodelling, Na+ channel 335 

abnormalities and heterogeneous cell-coupling between myocytes and fibroblasts 23-25. 336 

Measurement scale 337 



The area subtended by the triads used in the analysis had a clear influence on the resulting beta 338 

estimate. In this study, the association is determined using triads of area < 80mm2, allowing for a 339 

more direct translation and relevance to catheter ablation in clinical practice. At the upper end of 340 

this range (70-80mm2), the average maximal edge length of each triad was 15.4mm (range 5.9-341 

20.0mm). For comparison, the typical contact area of the ablation electrode is approximately 342 

10mm2 (3.5mm diameter). Intuitively, averaging over larger areas diffuses the effect of small-scale 343 

variations in the quantities of interest and potentially masks the true localised association between 344 

them. In the atrium this is crucial, due to the patchy and non-uniform nature of atrial fibrosis 26. As 345 

shown in Figure 2, gadolinium uptake varies on scales as small as 5mm such as in narrow 346 

isthmuses which can promote slow conduction and re-entry 27. Fukumoto et al evaluated 347 

intensities for each of 20 sectors of the atrial wall in each axial slice. The length of each sector is 348 

approximately 20mm, which is at the upper end of maximal triad edge length used in the present 349 

study and correspondingly the larger values of area in Figure 4. Consequently, at larger areas, 350 

localized variations in conduction velocity would be averaged out leading to a reduction in the 351 

magnitude of the association between conduction velocity and intensity. This factor may explain 352 

the apparent discrepancy between the association (beta estimate) of the present study (𝛽1: -353 

0.942m/s/IIR), at smaller spatial scales of areas < 80mm2, and that of Fukumoto et al (𝛽1: -354 

0.34m/s/IIR). To explain this, Figure 4 also shows the same area dependency plot expressed in 355 

terms of IIR where the red and blue dotted lines mark the beta estimates from our study and that 356 

of Fukumoto et al respectively. The IIR beta estimate of -0.34, found in Fukumoto et al for 357 

persistent AF patients, is of smaller magnitude than the IIR beta estimate of -0.94 reported here, 358 

but is consistent with our findings, if measurement area is taken into consideration. This further 359 

emphasizes the importance of resolution when quantitatively comparing quantities. 360 

Reproducibility 361 



While both scans for each patient in the reproducibility sub-study were compared with the same 362 

EAM data, our experience suggests that the segmentation and co-registration steps are most 363 

prone to the introduction of errors. Importantly, the relationship between CV and NI within each 364 

pair of datasets were statistically indistinguishable, confirming the accuracy and reproducibility of 365 

our approach. 366 

Intensity normalisation 367 

One significant contribution of our study is a comparison between the IIR and NI metrics for the 368 

qualitative assessment of independently acquired MR images. 369 

By its definition, IIR accounts for underlying shifts in the intensity spectrum, while NI includes the 370 

standard deviation of the blood pool to account for inter- and intra-patient differences and 371 

accordingly for differences in the dynamic range of the images. Consequently, NI led to a more 372 

robust statistical model for elucidating the relationship between CV and intensity, compared with 373 

IIR, as well as improved reproducibility of the patient-specific association. In particular, the 95% 374 

confidence intervals on the intercept and slope estimates for IIR, shown in Figure 5B, were 375 

generally larger than the corresponding confidence intervals for NI in Figure 5A. Reproducibility 376 

of patient-specific slopes was observed for NI, but not for IIR. 377 

Conduction velocity restitution 378 

No statistically significant effects due to CL were observed, indicating no identifiable CV 379 

restitution. 380 

Limitations 381 

In order to obtain high fidelity electrograms, electroanatomical data were limited to the posterior 382 

LA, which was anatomically consistent, conducive to placement of the AFocusII mapping 383 

catheter tangential to the endocardial surface, and contained a predilection of fibrosis. Sampling 384 



from the posterior wall may have potentially introduced sampling bias.  Future studies should 385 

incorporate contact sensing catheters to increase robustness of the data collection protocol. 386 

This study investigated a persistent AF cohort which has been shown to have more extensive 387 

structural and electrical remodelling compared to paroxysmal AF patients.  Future studies 388 

should include a more heterogeneous group of patients.  389 

 390 

The image MR images used in this study were manually segmented to delineate the epicardial 391 

wall of the left atrium. As such, errors may have been introduced during the segmentation process. 392 

  393 

IIR is defined as the ratio of the wall intensity of the sector to the blood pool mean 19. However, in 394 

this study, IIR was evaluated point-wise as the ratio of the epicardial wall intensity and the mean 395 

blood intensity. 396 

Conclusions 397 

Higher LA intensities correspond to lower local myocardial conduction velocities. The scale of 398 

measurement of CV and LA wall intensity is crucial in accurately quantifying this relationship, 399 

which is found to be of a higher magnitude than previously reported 1. Importantly, NI, but not IIR, 400 

accounts for changes in the dynamic range of LGE-CMRI and improves the quantitative 401 

reproducibility of the relationship. Evaluation of the LA substrate with the use of normalised 402 

intensity from LGE-CMRI can be potentially used as a minimally invasive tool to predict atrial 403 

myocardial conduction properties. 404 

  405 
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Patient Characteristics (n=8)   

Age (y) 62±11 

Male 5 (62.5) 

Mean LA size on TTE (mm) 41±6 

MeanCHADS2 score 2.4 (0-5) 

Mean left ventricular EF (%) 62±8 

Hypertension 3 (37.5) 

Diabetes Mellitus 1 (12.5) 

Cerebrovascular disease 1 (12.5) 

Coronary artery disease 2 (25) 

History of heart failure 0 (0) 

Duration of persistent AF (months) 19±10.7 

Anti-arrhythmic drug therapy (beta-blocker, 

flecainide and amiodarone) 6 (75) 

 502 

Table 1: Clinical demographics of patients. 503 



504 

Figure 1: Diagram of the analysis methodology. All patients undergo LGE-CMRI prior to the 505 

ablation procedure (patients G and H had 2 pre-procedural LGE-CMRI to assess reproducibility 506 

of LA fibrosis-mapping). Prior to any ablation, LA EAM during pacing is performed. Localised CV 507 

is estimated from EAM data and LGE-CMRI images are segmented to estimate fibrosis density. 508 

Data is co-registered and fused, after which statistical modelling is undertaken. 509 



                 510 

                511 

Figure 2: A: EnsiteTM Velocity mapping system used for collecting endocardial electrograms. 512 

The LA was paced over a range of CLs and the acquired unipolar electrograms are shown in 513 

the right panel. B: LGE-CMRI axial slice with manual segmentation delineated in yellow C: 514 

Illustrative patient-specific map NI. D: Illustrative patient-specific map of IIR for same patient as 515 

C. E and F: Distribution of electrograms on the posterior and anterior walls of the LA 516 

respectively. 517 



 518 

 519 

Figure 3: A: Distribution of CV measurements in the study. B: Comparison of local CV 520 

measurement distribution with regional CV estimate (red dashed line). C: Distribution of 521 

sampled NI for patient H second scan and the density of NI across entire atrial surface for both 522 



scans.523 

 524 

 Figure 4: Influence of measurement area on the overall β1 estimate for association of CV with 525 

NI. Solid area denotes 95% confidence intervals. Larger measurement areas lead to lower 526 

magnitude β1  estimate. The dotted red line indicates final β1 estimate from present model for 527 

localised measurements with areas < 80mm2. The dotted blue line indicates beta estimate from 528 

Fukumoto et al1. 529 



 530 

 531 

 Figure 5: Per-patient model intercepts (left) and slopes (right) for NI (A) and IIR (B). Values 532 

indicate the per-patient difference from the model’s overall intercept () and slope ( NI:  1.00 m/s, 533 

= -0.104; IIR: =1.94 m/s, = -0.942. G1, G2 and H1, H2 correspond to repeat analyses of patients 534 

G and H for assessing reproducibility. 535 

 536 
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