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Abstract 

X-ray and neutron diffraction have been utilized to analyze the crystalline and 

electronic structure of lanthanum orthoniobate substituted by antimony. Using  X-ray 

absorption spectroscopy and photoelectron spectroscopy, changes in the electronic 

structure of the material upon substitution have been analyzed.  The structural 

transition temperature between fergusonite and scheelite phases for 30 mol% 

antimony substitution was found to be 15 °C.  Based on the neutron data, the oxygen 

nonstoichiometry was found to be relatively low. Moreover, no influence on the 

position of the valence band maximum was observed. The influence of the protonation 

on the electronic structure of constituent oxides has been studied. Absorption data 

show that the incorporation of protonic defects into the lanthanum orthoniobate 

structure leads to changes in lanthanum electronic structure and to a decrease in the 

density of unoccupied electronic states.  
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1. Introduction 

Systems based on lanthanum orthoniobate have been widely investigated for 

more than a decade as promising proton conducting materials for electrochemical 

devices. Since protons are not native to the lattice of lanthanum orthoniobates, proton 

conduction in these materials requires the incorporation of protons as positively 

charged hydroxide defects (protonic defects), which occur primarily via the hydration 

reaction (1). 

H2O + 𝑉O
•• + OO

× → 2OHO
•                                             (1) 

The amount of protons incorporated into the structure and the protonic defect 

mobility are the two crucial features that influence the electrochemical performance 

of materials in working devices.  

In recent years, considerable effort has been put into suppressing the 

structural phase transition between monoclinic and tetragonal structures observed in 

these oxides at temperatures above room temperature. For example, in LaNbO4-δ the 

phase transition occurs at around 500 °C 1–3. The main strategy for shifting the phase 

transition temperature is the substitution of niobium by other penta- or tri-valent 

elements like antimony 4–7, vanadium 7–9, arsenic 10, or tantalum 7, 11–13. Differences in 

ionic radius and electronegativity compared to niobium result in either elevating (for 

Ta) or decreasing (for Sb, V, and As)  the transition temperature 10.  
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 The change in phase transition temperature, due to niobium site substitution,  

is accompanied by changes in properties like the thermal expansion coefficient 14, 15, 

and activation energy of conductivity 16.  It has been shown that both vanadium and 

antimony substitutions influence phonon properties 6, 9, 17. In our recent study, we 

reported that both A-site (with calcium) and B-site (with antimony) substitutions in 

lanthanum orthoniobate increase its water uptake 18. Moreover, the introduction of 

dopants elevated not only the water uptake, but also the protonic conductivity of 

these compounds 5. It is expected that such modifications change not only the crystal 

structure, as has been previously reported 7, but also the electronic structure. 

In this work, the results of X-ray and neutron diffraction and X-ray absorption 

and photoelectron spectroscopic studies of lanthanum orthoniobate  substituted with 

antimony are presented and analyzed. The aim of these analyses is to provide 

information on how isovalent substitution on the Nb site affects local ordering and 

selected features of the electronic structure of the system. Here,  we analyze the effect 

of protonic defect formation on the electronic structure in these materials, which 

represents one of the first studies of this type on a ceramic proton conductor. Through 

variable temperature X-ray diffraction measurements, the phase fergusonite  

scheelite transition, in 30% mol % Sb substituted lanthanum orhoniobate is shown to 

occur at ca. 15 C, leaving the scheelite phase stable at room temperature. This phase 

has more desirable properties in terms of protonic conductivity and thermal 

expansion coefficient.   
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2. Experimental 

LaNb1-xSbxO4 with x = 0.0, 0.1, 0.2, 0.25 and 0.3 were synthesized using a two-step 

solid-state reaction. La2O3 (99.99 %, Aldrich, preheated at 900 °C for 4 h), Sb2O3 

(99.99 %, Aldrich), and Nb2O5 (99.99 %, Alfa Aesar) were used as starting materials. 

The precursors were hand milled in an agate mortar in isopropanol and then dried. 

The obtained powders were uniaxially pressed at 400 MPa into 12 mm diameter 

pellets. The green bodies were calcined at 1200 °C for 12 h and after cooling were 

ground into powders. Samples were then re-pelletized and sintered at 1200 °C for a 

further 12 h. Prior to subsequent analysis, the sintered samples were crushed and ball 

milled in isopropanol. The samples for spectroscopic studies were also submitted to a 

hydration process, reflecting the water uptake studies described in our previous work 

18, where a small quantity of powder was protonated by heating in a water-rich 

atmosphere followed by cooling to room temperature. Two batches of samples were 

prepared: one dried in dry air (80 N2/20 O2) for 3 h, and one protonated at 300 °C in 

wet air (80 N2/20 O2)  (pH2O = 0.023 atm) for 3 h.   

The phase composition of the synthesized samples was checked with powder 

X-ray diffraction (PXRD) using Cu-Kα radiation. Room temperature measurements 

were performed on a Phillips X'Pert Pro MPD diffractometer in the 2θ range of 20–

90°. Low temperature analysis was performed using a PANAlytical Empyrean 

diffractometer, equipped with an Oxford Cryostat PheniX camera, upon cooling from 

20 to -150 °C with a 50 °C step and then upon heating.  The obtained XRD patterns 
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were analyzed by Rietveld refinement, as implemented in the FullProf software suite 

19. Starting models were based on the monoclinic fergusonite (I2/c)  20 and tetragonal 

scheelite (I41/a) 21 structures of LaNbO4. Rietveld refinement was performed with a 

Pseudo-Voigt and axial divergence asymmetry function. The calculations of 

spontaneous strain and Landau order parameter were performed on the theoretical 

basis described in our previous research on doped lanthanum orthoniobates 4, 14. 

Powder neutron diffraction data were collected on the Polaris diffractometer at 

the ISIS Facility, Rutherford Appleton Laboratory. Data collected on back-scattering 

(average angle 146.72°) and 90° (average angle 92.5°) detector banks were used in 

subsequent refinements. Room temperature data were collected with the sample 

contained in a cylindrical 11 mm diameter thin walled vanadium can, located in front 

of the back-scattering detectors. Data collections of 1000 A h were made at room 

temperature. Structure refinement was carried out by conventional Rietveld analysis 

using the GSAS software package 22. The models of David 21 and Tsunekawa et al. 20 for 

LaNbO4 were used as starting models for the tetragonal and monoclinic phases, 

respectively.  

X-ray absorption spectroscopy (XAS) was performed at the Elettra 

Sinchrotrone XAFS beamline (Trieste, Italy). High quality XAFS spectra of the La and 

Sb L3-edges (5483 eV and 4132 eV, respectively) and at the Nb K-edge (18986 eV) 

were collected. Measurements were performed at room temperature using 

transmission geometry. Because of the low antimony content, Sb L3 spectra collection 
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required longer acquisition time (than in the case of other edges) and each scan was 

repeated at least twice. Obtained XANES spectra were normalized by subtracting the 

pre-edge background (fitted linearly) from all points and dividing the difference by 

the absorption jump.  

Powders of antimony doped lanthanum orthoniobate were characterized using 

X-ray photoelectron spectroscopy (XPS). The spectra were recorded on a Thermo 

Scientific K-Alpha+ X-ray photoelectron spectrometer system operating at a base 

pressure of 2  10-9 mbar. The system incorporates a monochromatic, microfocused Al 

Kα X-ray source (hν = 1486.6 eV) and a 180° double focusing hemispherical analyzer 

with a 2D detector. The X-ray source was operated at 6 mA emission current and 12 

kV anode bias and an X-ray spot size of 400 µm was used. Data were collected at pass 

energies of 200 eV for survey scans and 20 eV for core level spectra. A flood gun was 

used to minimize sample charging. Spectra were aligned assuming the C 1s core line to 

be at the binding energy of 284.8 eV. All data were analyzed using the Avantage 

software package. 

 

3. Results and discussion 

3.1 X-ray diffraction 

The results of X-ray diffraction experiments, performed at room temperature, confirm 

that all of the specimens can be indexed as lanthanum orthoniobate (either 
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monoclinic I2/c and/or tetragonal I41/a). LaNb0.9Sb0.1O4-δ and LaNb0.75Sb0.25O4-δ 

exhibit the monoclinic fergusonite structure, whereas in the case of LaNb0.7Sb0.3O4-δ 

the tetragonal scheelite constitutes the majority phase.  Figure 1 shows the thermal 

evolution of the X-ray diffraction pattern of LaNb0.7Sb0.3O4-δ on cooling and heating. 

The structural phase transition between the low-temperature fergusonite (I2/c) and 

the high-temperature scheelite (I41/a) structure takes place at temperatures between 

10 °C and 20 °C.  The  temperature evolution of unit cell parameters determined from 

Rietveld refinement, depicted in Figure 2a, is typical of the system and was previously 

observed in other orthoniobates 4, 7, 10, 14, 23. A decrease of monoclinic angle with 

increasing temperature is characteristic of the approaching phase transition. In 

LaNb0.7Sb0.3O4 the monoclinic angle achieves 90 between 10 °C and 20 °C. This is 

consistent with the trend of decreasing phase transition temperature obtained from 

results of dilatometry measurements for LaNb1-xSbxO4 for x between 0.05 and 0.25 in 

our previous study 7, which indicated that the transition temperature of  

LaNb0.7Sb0.3O4  should be close to room temperature. Figures 1 and 2 show that the 

monoclinic fergusonite and tetragonal scheelite phases co-exist in LaNb0.7Sb0.3O4  over 

a wide temperature range. The co-existence of two phases in lanthanum 

orthoniobates has been previously reported by us for antimony and magnesium 

substitution 7, 14 and by other groups for calcium substitution.   

Figure 2 b presents the dependence of scalar spontaneous strain on 

temperature as well as on Landau’s order parameter defined as √
𝑇0−𝑇

𝑇0
, where T0 is the 
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transition temperature. The transition temperature was assumed to be 15±5  °C. The 

values of scalar spontaneous strain were calculated on the basis of the unit cell 

parameters 14.  The relation between the scalar spontaneous strain, temperature and 

Landau’s order parameter shows that the 30 mol% substituted material behaves 

similarly to LaNb0.75Sb0.25O4-δ and LaNb0.9Sb0.1O4-δ reported previously, however the 

strain values in LaNb0.7Sb0.3O4-δ are lower  4 . This result also supports those from 

previous studies showing that in the case of the lanthanum orthoniobate system the 

phase transition is second order (linear relation of Landau’s order parameter and 

spontaneous strain) 6, 14.  

The structural phase transition that occurs in the lanthanum orthoniobate 

system is one of the main features that limited application of these materials. This 

transition is accompanied by a rapid change in thermal expansion coefficient (from 12 

to 8  10-6 K-1) which can result in delamination and device failure 14. The suppression 

of this transition, to temperatures below 20 °C, through isovalent substitution makes 

application of these materials more feasible.  

3.2 Neutron diffraction 

Neutron diffraction studies were undertaken for samples with 10, 25 and 30 mol% of 

antimony. The data for LaNb0.75Sb0.25O4-δ and LaNb0.7Sb0.3O4-δ showed significant hkl 

dependent broadening.  This is probably related to the vicinity of the structural phase 

transition. The peak broadening may also be caused by the structural strain caused by 

the ionic radii difference between Sb5+ and Nb5+ (the ionic radii of Sb5+ and Nb5+ for 
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six-fold coordination are 0.6 Å and 0.64 Å, respectively 24). The unit cell and 

refinement parameters from the room temperature refinements are summarised in 

Table 1 with refined structural parameters and selected contact distances given in the 

supporting information (Supplementary information Tables S1 to S3) along with the 

fitted diffraction profiles (Figures S1-S3).  The data for the sample substituted by 10 

mol% of antimony were fitted solely with the monoclinic structure (I2/c), while those 

for the 30 mol% sample were fitted with the tetragonal (I41/a) phase only. In the case 

of 25 mol% substitution, the profile was fitted with a multiphase model containing 

both monoclinic and tetragonal phases and revealed a phase content ratio of 

approximately 0.87/0.13 w/w (see Table 1). The unit cell parameters are consistent 

with those obtained previously on the basis of  XRD analysis 4. The refined oxygen 

occupancy for all investigated compositions shows extremely low oxygen vacancy 

concentrations at room temperature (δ ≈ 0). This is in agreement with previous high 

temperature ND studies undertaken by Malavasi et al. on the acceptor doped system 

La0.99Ca0.01NbO4 23. 

The Nb/Sb-O bond lengths of the majority phase decreased with increasing 

antimony content, reflecting the smaller ionic radius of Sb5+ in relation to Nb5+. 

However, the total change in the volume of the tetrahedra is small (~0.04 Å3 between 

25 and 30 mol% of antimony). On the other hand, the average length of the La-O 

bonds tends to increase with increasing antimony content. 
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3.3 X-ray absorption spectroscopy (XAS) 

Figures 3 - 5 present the results of X-ray absorption studies for the Sb L3-edge, Nb K-

edge, and La L3-edge spectra, respectively.  Samples were analyzed both before and 

after protonation. Figure 3 depicts the antimony L3 normalized XANES data together 

with the L3 XANES of Sb2O3. One can note that in the spectra of LaNb1-xSbxO4-δ neither 

the pre-peak nor white line (WL) characteristic of the Sb3+ species are visible (Fig. 3). 

The positions of both pre-peak (4135.5 eV) and L3-edge (4145 eV) are independent of 

Sb content and are attributed solely to Sb5+ species, which according to Kilias et al. in 

the spectra of Fe3+Sb5+O4 are located  at ~4135 eV and ~4144 eV, respectively  25. This 

confirms our previous conclusions, based on electrical and thermal studies, that 

antimony in the lanthanum orthoniobate structure maintains an oxidation state of 5+ 

4, 5. In this study we confirm that higher oxidation state of antimony in lanthanum 

orthoniobate is maintained in the bulk material not just at the surface.   

In Figure 4, X-ray absorption near-edge spectroscopy results (normalized 

XANES)  in the range of  the Nb K-edge are shown for all compositions and compared 

with the standards for Nb4+  (NbO2) and Nb5+  (Nb2O5). Comparison with the standards 

reveals that niobium is in the 5+ oxidation state. This is consistent with the XPS 

niobium 3d core level spectra (Figure S4) and the neutron diffraction results that 

indicate no oxygen vacancies. The resonance in the pre-edge region of Nb K-edge 

spectra, at around 18990 eV, can be assigned to the transition of the 1s electron to the 

4d state, which is forbidden in compounds with inversion symmetry due to the dipole 
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selection rule. The non-centrosymmetric positions of the Nb and La atoms in the 

oxygen tetrahedra lead to hybridization of the Nb 4d with the O 2p atomic orbitals, 

introducing p character to the d type molecular orbitals, a phenomenon previously 

reported for LiNbO3 26, 27. Moreover, increasing pre-peak intensity with increasing Sb 

content implies a decrease in local structure disorder viewed rather as a higher 

ordering in O-Nb-O angular distribution than in Nb-O length distribution 28. An 

additional visible effect is the white line splitting at the Nb  K-edge,  which is probably 

due to splitting of the 5p state 27. This behavior is visible for all investigated samples. 

Figures 4a and 4b show that the splitting becomes smaller for larger Sb content and 

the protonation does not affect this phenomenon.  

In Figure 5, the X-ray absorption spectra measured around the La L3-edge are 

shown. Lanthanum L3 normalized XANES spectra for all studied LaNb1-xSbxO4-δ 

ceramics and reference samples are presented. It can be noted that edge position is 

independent of Sb content, indicating the same formal charge for La in all studied 

samples. The white line (WL) deconvolution shows a well distinguished single peak at 

approximately 5490 eV (see inset in Fig. 5). Asakura et al. calculated the relations 

between WL intensities, their full width at half maximum (FHWM), and average 

coordination numbers for multiple lanthanum oxides 29. Figure 5c presents the WL 

FWHM as a function of the substituent content. The value for lanthanum oxide has 

been added to the figure for comparison. The results could suggest the change in 

coordination of lanthanum cations within the structure changing from 7 for 

unsubstituted to 8-9 for substituted samples. However, the neutron diffraction results 
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show 8-fold coordination of lanthanum for all investigated samples. Therefore, one 

can assume that the subtle changes observed in lanthanum WL shape can be 

attributed in this case not to varying coordination, but to small changes in bond 

lengths and angles between lanthanum and coordinated oxygens. Figure 5d shows the 

changes in the WL normalized intensity of the La L3-edge with antimony content. One 

can see, that with increasing antimony content the WL intensity rises with  a decrease 

of the line width (d-state broadening), indicating that the charge distribution around 

La3+ ions becomes more localized. This points to local structure changes, in particular 

in bond lengths, and can be supported by use of a bond-valence model. The bond-

valence model predicts the ideal atomic bond length Rij between atoms in inorganic 

solids through the relation with average valence states as described in (eq. 2). 

𝑠𝑖𝑗 = exp (
𝑅0−𝑅𝑖𝑗

𝐵
)    (2) 

 where the subscripts, i and j, refer to different atoms, ∑ 𝑠𝑖𝑗𝑗 = 𝑉𝑖 , and Vi is the atomic 

valence of atom i, R0 and B are empirical parameters that must be fitted. Brown and 

Altermatt have reported values of R0 for many common bonds, and have shown that B 

for most bonds can be set equal to 0.37 Å 30, 31. One can note that the ideal bond 

lengths calculated in this model depend only on average atomic valences of given 

atoms and therefore on their coordination. If one assumes seven-fold coordination of 

lanthanum in the lanthanum orthoniobate unit cell, the ideal bond length is calculated 

as 2.48 Å, while for eight-fold coordination it is 2.53 Å. The structural data obtained by 

neutron diffraction (Table S1-S3) show that the average length of the La-O bond in the 
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majority phase increases from 2.502 ± 0.001Å in LaNb0.9Sb0.1O4-  to only 2.507 ±

0.001Å in LaNb0.7Sb0.3O4-. This suggests that in fact for lanthanum orthoniobate, the 

relation of WL intensity does not follow the trend of changing coordination, but the 

changes are an indication of subtle structural modification in bond lengths and angle 

distribution.   

  The  comparison of the XANES Sb L3-edge, Nb K-edge and La L3-edge spectra 

obtained in the samples before and after protonation, displayed in Figures 3-5, shows 

that the influence of the presence of protonic defects in the materials on their 

electronic structure is subtle. Figure 3b presents a comparison of antimony L3-edge 

for samples before and after protonation. One can see that both pre-peaks and WL 

shape and intensity are almost in every case independent of protonation. The 

influence of protonic defects on niobium XANES spectra is even weaker, there are no 

detectable differences in both niobium pre-peak and edge features for hydrated and 

non-hydrated specimens. This is observed for all compositions and is independent of 

the content of antimony (Fig. 4b).  However, a visible influence of protonation on the 

La L3 WL intensity and FWHM may be seen in the case of samples with Sb content 

higher than 25 mol% (Fig. 5c and 5d). When changing Sb content from 25 mol% to 30 

mol%, an increase in WL FWHM for the protonated samples is accompanied by a 

decrease in the normalized intensity, suggesting that with increasing protonic defect 

concentration, the distortion of  coordination environment of lanthanum decreases as 

does the density of unoccupied electronic states.  
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Summing up, the influence of protonic defects is limited to the electronic 

structure of the La3+ cations in samples with higher antimony content.  This may be 

caused by low proton concentration in the samples with smaller antimony content, as 

shown by thermogravimetry in our previous study 18.  The influence of protonic 

defects on niobium and antimony is quite negligible with respect to the changes 

observed for lanthanum.  This is an interesting feature taking into consideration that, 

according to Fjeld et al.  16, the most stable proton site in tetragonal lanthanum 

orthoniobate is the one between two neighbouring NbO4 tetrahedra and not the one 

between neighbouring lanthanum atoms, since the energy difference between these 

sites is 0.13 eV.  A similar relationship was found for monoclinic LaNbO4 16.   

Summing up, The obtained results indicate that the formal charges of all 

analyzed elements in the studied compounds are stable and Sb content is independent 

(at least in the considered range of substitution). However, the antimony substitution 

as well as protonation changed the density of unoccupied electron states around 

lanthanum.  

3.4 X-ray photoelectron spectroscopy (XPS) 

Valence band X-ray photoelectron spectroscopy was used to determine the position of 

the valence band maximum EVBM relative to the Fermi energy EF at the sample surface. 

Figure 6 presents XPS data for the valence band (VB) region of three different 

compositions of LaNb1-xSbxO4-δ, where x = 0.1, 0.2, 0.3. The EVBM positions relative to EF 

were determined using linear fitting of the valence band maximum (VBM) and the 
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background. Within the errors of the measurements no difference could be detected 

and a value of 2.4±0.1 eV was extracted for all three samples. Thus, EVBM does not 

change relative to EF with increasing antimony content.   

The ionization potential (IP) can be obtained from the difference between the 

vacuum potential (Vvac) and the energy of the highest occupied Kohn-Sham orbital 

defined, as simulations suggest, as the valence band maximum (𝐼𝑃 = 𝑉𝑣𝑎𝑐 − 𝐸𝑉𝐵𝑀) 32.  

From the point of view of charge equilibrium, proton addition and electron removal 

from the structure are equivalent processes, and it is known from other studies, that 

the IP values may correlate with proton affinity 33. For example,  in multiple oxygen-

containing molecules a linear relation between these two parameters was found 34. A 

constant EVBM value maybe be surprising, considering the higher protonation of 

samples with higher dopant content reported previously 18.  However, this suggests 

that the rise in conductivity observable for compositions with higher Sb content is 

solely related to charge mobility, not to affinity to water incorporation within the 

structure 18, 35. 

4. Conclusions 

Lanthanum orthoniobates substituted by antimony have been analyzed by means of 

X-ray and neutron diffraction, and X-ray absorption and X-ray photoelectron 

spectroscopy. The structure evolution upon heating and cooling for the sample with 

30 mol% of antimony was analyzed in the temperature range from -150 to 50 °C by X-

ray diffraction.  The structural transition temperature between fergusonite and 
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scheelite phases was found to be 15 °C. It was shown that the addition of antimony 

decreases the spontaneous strain in the monoclinic phase.  

Neutron diffraction studies show that niobium substitution by antimony 

influences the environment and properties of lanthanum-oxygen polyhedra to a small 

extent. The average length of La-O bonds slightly increases. Oxygen non-stoichiometry 

was found to be very low. This significantly lowers the degree of hydration possible in 

these systems.  

Protonic defects were found to influence the electronic structure of La3+ 

cations in samples with high antimony content, but not Sb5+ or Nb5+ cations. The 

presence of protonic defects was found to decrease the density of unoccupied 

electronic states. No influence of antimony on the position of the valence band 

maximum was observed.   

LaNb0.7Sb0.3O4 shows a pure scheelite phase at room temperature. Despite its 

low hydration level, this composition exhibits high protonic conductivity, as well as a 

better matched thermal expansion coefficient making it well suited for application in 

protonic ceramic electrochemical cells.     
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Table 1. Crystal and refinement parameters for LaNb1-xSbxO4- at 20 C. Estimated 
standard deviations are given in parentheses 

  
Sample x = 0.10 x = 0.25 x = 0.30 
Temperature 20 C 20 C 20 C 
Chemical formula LaNb0.9Sb0.1O4- LaNb0.75Sb0.25O4- LaNb0.7Sb0.30O4- 
Formula weight 298.694 g mol-1 303.02 g mol-1 304.46 g mol-1 
Crystal system Monoclinic Phase 1 = Monoclinic 

Phase 2 = Tetragonal 
Tetragonal 

Space group I2/c   Phase 1 = I2/c   
Phase 2 = I41/a  

I41/a   

Lattice parameters a = 5.55142(9) Å 
b = 11.5553(1) Å 
c = 5.2234(3) Å 
 = 93.553(1) 

Phase 1: 
a = 5.4785(2) Å 
b = 11.6189(2) Å 
c = 5.3056(5) Å 
 = 91.710(1) 
Phase 2: 
a = 5.3938(6) Å 
c = 11.609(2) Å 

a = 5.3994 (3) Å 
c = 11.636(1) Å 
 

Volume 334.43(2) Å3 Phase 1 = 337.58(4) Å3 

Phase 2 = 337.73(8) Å3 
339.23(6) Å3 

Z 4 Phase 1 = 4 
Phase 2 = 4 

4 

Density (calc) 5.927 Mg m-3 Phase 1 = 5.962 Mg m-3 

Phase 2 = 5.959 Mg m-3 

5.958 Mg m-3 

Weight fraction 100 Phase 1 = 0.869(6) 
Phase 2 = 0.131(6) 

100 

R-factorsa (a) Neut. 
backscatter. 
Rwp = 0.0130 
Rp = 0.0266 
Rex = 0.0030 

= 0.0516 

(b) Neut. 90 
Rwp = 0.0155 
Rp = 0.0318  
Rex = 0.0026 

 = 0.0455 

(a) Neut.  
backscatter. 
Rwp = 0.0201 
Rp = 0.0420 
Rex = 0.0033 

= 0.0229  

(b) Neut. 90 
Rwp = 0.0180 
Rp = 0.0319 
Rex = 0.0028 

 = 0.0206 

(a) Neut. 
backscatter. 
Rwp = 0.0244 
Rp = 0.0437 
Rex = 0.0032 

= 0.0914 

(b) Neut. 90 
Rwp = 0.0252 
Rp = 0.0314  
Rex = 0.0027 

 = 0.0362 

No. of variables 129 146 111 
No of profile points used 3408 (neut. 

backscatter.) 
2591 (neut. 90) 

2910 (neut.  
backscatter.) 
2409 (neut. 90) 

3368 (neut. 
backscatter.) 
2439 (neut. 90) 

aFor definition of R-factors see reference 23 
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Figure captions 

Figure 1. X-ray diffraction patterns for LaNb0.7Sb0.3O4-δ collected upon (a) cooling and 

(b) heating. 

Figure 2. (a) Temperature dependence of the phase content and unit cell parameters 

of fergusonite (m) and scheelite (t) phases of LaNb0.7Sb0.3O4-δ, based on refinement of 

the data collected upon cooling.  (b) Scalar spontaneous strain plotted as a function of 

temperature and Landau’s order parameter for LaNb0.7Sb0.3O4-δ. 

Figure 3. Sb L3-edge normalized XANES spectra obtained for (a) the LaNb1-xSbxO4-δ 

ceramics and reference sample and (b) samples before and after protonation. In the 

insets, the first derivatives of the edge range are presented. 

Figure 4. Nb K-edge normalized XANES spectra obtained for (a) all studied LaNb1-

xSbxO4-δ ceramics and reference samples and (b) studied ceramics before and after 

protonation. In the insets the first derivatives of the edge range are presented. 

Figure 5. La L3-edge  normalized  XANES spectra obtained for (a) the LaNb1-xSbxO4-δ 

ceramics and reference samples, (in the inset example WL decomposition is shown); 

(b) the samples before and after protonation; (c) FWHM of lanthanum L3-edge white 

line versus antimony content for measured samples (the value for La2O3 is presented 

for comparison  and the dashed line is a guide to the eye, coordination numbers were 

attributed according to Asakura et al. 29 and (d) lanthanum L3-edge white line 

intensity versus x for the samples before and after protonation. 
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Figure 6. XPS valence band spectra for LaNb1-xSbxO4-δ. Red lines indicate linear fits to 

the valence band maximum (VBM) and background to determine the VBM position. 

Supplementary figures captions 

Figure S1 Fitted neutron diffraction profiles for LaNb0.9Sb0.1O4- showing data from 

(a) neutron back scattering and (b) 90 detector banks. Observed (+ symbols), 

calculated (line) and difference (lower) profiles are shown with reflection positions 

indicated by markers. 

Figure S2 Fitted neutron diffraction profiles for LaNb0.75Sb0.25O4- showing data from 

(a) neutron back scattering and (b) 90 detector banks. Observed (+ symbols), 

calculated (line) and difference (lower) profiles are shown with reflection positions 

indicated by markers (lower: phase 1 and upper: phase 2). 

Figure S3 Fitted neutron diffraction profiles for LaNb0.7Sb0.3O4- showing data from 

(a) neutron back scattering and (b) 90 detector banks. Observed (+ symbols), 

calculated (line) and difference (lower) profiles are shown with reflection positions 

indicated by markers. 

Figure S4 X-ray photoelectron spectra of investigates samples lanthanum, niobium 

and antimony core-shell.  

  



29 
 

Supporting Information 

Diffraction and spectroscopic studies of antimony substituted lanthanum 

orthoniobate 
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Figure S1. Fitted X-Ray diffraction profiles for LaNb0.7Sb0.3O4- showing data for 

temperatures (a) 40C, (b) 30C, (c) 10C, (d) 0C, (e) -50C, (f) -100C and (g) -150C  

. Observed (• symbols), calculated (line) and  difference (lower) profiles are shown 

with reflection positions indicated by markers. 

Table S1. Crystal and refinement parameters calculated for LaNb0.7Sb0.3O4- at 40C, 

30C and 10C calculated on the basis of  X-Ray diffractograms. Estimated standard 

deviations are given in parentheses. 

Temperature 40C 30C 10C 
Crystal system Monoclinic Monoclinic Phase 1 = Monoclinic 

Phase 2 = Tetragonal 
Space group I2/c   I2/c   Phase 1 = I2/c   

Phase 2 = I41/a 
Lattice parameters a = 5.3961 (1) Å 

c = 11.6339 (2) Å 
 

a =  5.3960 (1) Å 
c = 11.6331 (2) Å 
 

Phase 1: 
a = 5.4272 (1) Å 
b = 11.6234 (3) Å 
c = 5.3652 (1) Å 
 = 91.710(1) 
Phase 2: 
a = 5.3939 (1) Å 
c = 11.6266 (2) Å  

Volume 338.75 (2) Å3 338.72 (3) Å3 Phase 1 = 338.43 (4) Å3 

Phase 2 = 338.28 (2) Å3 
Density (calc) 5.970 Mg m-3 5.970 Mg m-3 Phase 1 = 5.978 Mg m-3 

Phase 2 = 5.978 Mg m-3 

Weight fraction 100 100 Phase 1 = 0.393(9) 
Phase 2 = 0.607(7) 

R-factors Rwp = 17.8 
Rp = 24.8 
Rex = 8.53 

Rwp = 18.3 
Rp = 25.8 
Rex = 8.71 

Rwp = 16.6 
Rp = 24.2 
Rex = 3.61 
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Table S2. Crystal and refinement parameters calculated for LaNb0.7Sb0.3O4- at 0C,  

-50C and -100C calculated on the basis of  X-Ray diffractograms. Estimated standard 

deviations are given in parentheses. 

Temperature 0C -50C -100C 

Crystal system Phase 1 = Monoclinic 
Phase 2 = Tetragonal 

Phase 1 = Monoclinic 
Phase 2 = Tetragonal 

Phase 1 = Monoclinic 
Phase 2 = Tetragonal 

Space group Phase 1 = I2/c   
Phase 2 = I41/a 

Phase 1 = I2/c   
Phase 2 = I41/a 

Phase 1 = I2/c   
Phase 2 = I41/a 

Lattice 
parameters 

Phase 1: 
a = 5.4227 (1) Å 
b = 11.6195 (3) Å 
c = 5.3681 (1) Å 
 = 90.521 (1) 
Phase 2: 
a = 5.3928 (1) Å 
c =  11.6201 (2) Å  

Phase 1: 
a = 5.4473 (1) Å 
b = 11.5995 (3) Å 
c = 5.3303 (1) Å 
 = 91.116 (2) 
Phase 2: 
a = 5.3911 (1) Å 
c = 11.6148 (2) Å  

Phase 1: 
a = 5.4711 (2) Å 
b = 11.6076 (4) Å 
c = 5.31187 (2) Å 
 = 91.564 (2) 
Phase 2: 
a = 5.3926 (2) Å 
c = 11.6191 (4) Å  

Volume Phase 1 = 338.22 (1) Å3 

Phase 2 = 337.94 (2) Å3 
Phase 1 = 336.74 (1) Å3 

Phase 2 = 337.56 (1) Å3 
Phase 1 = 337.21 (2) Å3 

Phase 2 = 337.89 (2) Å3 

Density (calc) Phase 1 = 5.979 Mg m-3 

Phase 2 = 5.984 Mg m-3 

Phase 1 = 6.005 Mg m-3 

Phase 2 = 5.988 Mg m-3 

Phase 1 = 6.003 Mg m-3 

Phase 2 = 5.973 Mg m-3 

Weight 
fraction 

Phase 1 = 0. 760 (8) 
Phase 2 = 0.240 (5) 

Phase 1 = 0.840 (2) 
Phase 2 = 0.160 (3) 

Phase 1 = 0.85 (12) 
Phase 2 = 0.14 (7) 

R-factors Rwp = 14.7 
Rp = 21.8 
Rex = 8.70 

Rwp = 16.7 
Rp = 21.5 
Rex = 8.91 

Rwp = 16.4 
Rp = 20.7 
Rex = 8.97 
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Table S3. Crystal and refinement parameters calculated for LaNb0.7Sb0.3O4- at -150C  

calculated on the basis of  X-Ray diffractograms. Estimated standard deviations are 

given in parentheses. 

Temperature -150C 
Crystal system Phase 1 = Monoclinic 

Phase 2 = Tetragonal 
Space group Phase 1 = I2/c   

Phase 2 = I41/a 
Lattice 
parameters 

Phase 1: 
a = 5.4827 (1) Å 
b = 11.5872 (2) Å 
c = 5.2969 (1) Å 
 = 91.870 (1) 
Phase 2: 
a = 5.3902 (3) Å 
c =  11.5949 (3) Å  

Volume Phase 1 = 336.33 (1) Å3 

Phase 2 = 336.88 (3) Å3 
Density (calc) Phase 1 = 6.013 Mg m-3 

Phase 2 = 6.004 Mg m-3 

Weight 
fraction 

Phase 1 = 0.896 (8) 
Phase 2 = 0.103 (1) 

R-factors Rwp = 17.4 
Rp = 21.7 
Rex = 8.80 

 

 

Table S4. Refined atomic coordinates, thermal parameters, and significant contact 

distances for LaNb0.9Sb0.1O4- at 20 C. Estimated standard deviations are given in 

parentheses. 

 

(a) Atomic parameters 

Atom site x y z Occ. Ueqv (Å2) 
La 4e 0.00 0.62900(5) 0.25 1.0 0.0050(4) 
Nb/Sb 4e 0.00 0.10639(5) 0.25 0.9/0.1 0.0049(4) 
O1 8f 0.23897(8) 0.03370(4) 0.05867(9) 1.0 0.0099(4) 
O2 8f 0.14976(10) 0.20529(4) 0.48992(9) 0.992(2) 0.0086(4) 
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(b) Anisotropic thermal parameters 

Atom U11 (Å2) U22 (Å2) U33 (Å2) U12 (Å2) U13 (Å2) U23 (Å2) 
La 0.0045(2) 0.0042(2) 0.0062(2) 0.0 0.0008(1) 0.0 
Nb/Sb 0.0051(2) 0.0071(3) 0.0025(2) 0.0 0.0016(2) 0.0 
O1 0.0093(2) 0.0090(2) 0.0114(2) 0.0029(2) 0.0041(2) 0.0026(2) 
O2 0.0081(2) 0.0085(2) 0.0094(2) 0.0014(2) -

0.0025(2) 
-
0.0015(2) 

 

(c) Significant contact distances (Å) 

La-O1 2.4903(5)  2  Nb/Sb-O1 1.9049(5)  2 

La-O1 2.5403(6)  2  Nb/Sb-O2 1.8543(6)  2 
La-O2 2.5187(6)  2    

La-O2 2.4649(6)  2    
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Table S5. Refined atomic coordinates, thermal parameters and significant contact 

distances for LaNb0.75Sb0.25O4- at 20 C. Estimated standard deviations are given in 

parentheses 

(a) Phase 1 Atomic parameters 

Atom site x y z Occ. Ueqv (Å2) 
La 4e 0.00 0.62730(8) 0.25 1.0 0.0044(5) 
Nb/Sb 4e 0.00 0.11588(10) 0.25 0.75/0.25 0.0062(8) 
O1 8f 0.2433(1) 0.03607(8) 0.0759(2) 1.0 0.0107(7) 
O2 8f 0.1529(2) 0.20760(7) 0.4932(1) 1.0 0.0078(6) 
 

(b) Phase 1 Anisotropic thermal parameters 

Atom U11 (Å2) U22 (Å2) U33 (Å2) U12 (Å2) U13 (Å2) U23 (Å2) 
La 0.0048(3) 0.0053(3) 0.0030(3) 0.0 -

0.0001(1) 
0.0 

Nb/Sb 0.0038(4) 0.0085(5) 0.0052(5) 0.0 0.0012(3) 0.0 
O1 0.0112(4) 0.0099(4) 0.0110(4) 0.0043(3) 0.0053(3) 0.0041(3) 
O2 0.0071(3) 0.0079(3) 0.0084(3) 0.0028(3) -

0.0011(3) 
0.0005(3) 

 

(c) Phase 1 Significant contact distances (Å) 

La-O1 2.4973(9)  2  Nb/Sb-O1 1.8877(10)  2 

La-O1 2.5210(11)  2  Nb/Sb-O2 1.8541(11)  2 
La-O2 2.5114(10)  2    

La-O2 2.4876(9)  2    

 

(d) Phase 2 Atomic parameters 

Atom site x y z Occ. Uiso (Å2) 
La 4b 0.00 0.25 0.625 1.0 0.0081(11) 
Nb/Sb 4a 0.00 0.25 0.125 0.75/0.25 0.034(3) 
O1 16f 0.2431(13) 0.0885(13) 0.0374(7) 1.0 0.036(2) 
 

(e) Phase 2 Significant contact distances (Å) 

La-O1 2.507(7)  4  Nb/Sb-O1 1.874(7)  4 
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La-O1 2.497(8)  4    

 

Table S6. Refined atomic coordinates, thermal parameters and significant contact 

distances for LaNb0.7Sb0.3O4- at 20 C. Estimated standard deviations are given in 

parentheses 

(a) Atomic parameters 

Atom site x y z Occ. Ueqv (Å2) 
La 4b 0.00 0.25 0.625 1.0 0.0055(4) 
Nb/Sb 4a 0.00 0.25 0.125 0.7/0.3 0.0074(6) 
O1 16f 0.2438(1) 0.0881(1) 0.03932(5) 1.0 0.0111(4) 
 

(b) Anisotropic thermal parameters 

Atom U11 (Å2) U22 (Å2) U33 (Å2) U12 (Å2) U13 (Å2) U23 (Å2) 
La 0.0055(2) 0.0055(2) 0.0055(3) 0.0 0.0 0.0 
Nb/Sb 0.0051(3) 0.0051(3) 0.0121(4) 0.0 0.0 0.0 
O1 0.0112(3) 0.0132(3) 0.0089(2) 0.0066(3) 0.0041(2) 0.0032(2) 
 

(c) Significant contact distances (Å) 

La-O1 2.4980(6)  4  Nb/Sb-O1 1.8684(6)  4 

La-O1 2.5168(6)  4    
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(a) 

 

(b) 

 

Figure S2. Fitted neutron diffraction profiles for LaNb0.9Sb0.1O4- showing data from 

(a) neutron back scattering and (b) 90 detector banks. Observed (+ symbols), 
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calculated (line) and difference (lower) profiles are shown with reflection positions 

indicated by markers. 

 

(a) 
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(b) 

 

Figure S3. Fitted neutron diffraction profiles for LaNb0.75Sb0.25O4- showing data from 

(a) neutron back scattering and (b) 90 detector banks. Observed (+ symbols), 

calculated (line) and difference (lower) profiles are shown with reflection positions 

indicated by markers (lower: phase 1 and upper: phase 2). 
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(a) 

 

(b) 

 

Figure S4. Fitted neutron diffraction profiles for LaNb0.7Sb0.3O4- showing data from 

(a) neutron back scattering and (b) 90 detector banks. Observed (+ symbols), 
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calculated (line) and difference (lower) profiles are shown with reflection positions 

indicated by markers. 

 

 

 

 

 

 
 
Figure S5. Nb 3d core level X-ray photoelectron spectra for LaNb1-xSbxO4-δ ceramics 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

 

Figure S5. Fitted X-Ray diffraction profiles for LaNb0.7Sb0.3O4- showing data for 

temperatures (a) 40C, (b) 30C, (c) 10C, (d) 0C, (e) -50C, (f) -100C and (g) -150C  

. Observed (• symbols), calculated (line) and  difference (lower) profiles are shown 

with reflection positions indicated by markers. 
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Table S4. Crystal and refinement parameters calculated for LaNb0.7Sb0.3O4- at 40C, 

30C and 10C calculated on the basis of  X-Ray diffractograms. Estimated standard 

deviations are given in parentheses. 

Temperature 40C 30C 10C 
Crystal system Monoclinic Monoclinic Phase 1 = Monoclinic 

Phase 2 = Tetragonal 
Space group I2/c   I2/c   Phase 1 = I2/c   

Phase 2 = I41/a 
Lattice parameters a = 5.3961 (1) Å 

c = 11.6339 (2) Å 
 

a =  5.3960 (1) Å 
c = 11.6331 (2) Å 
 

Phase 1: 
a = 5.4272 (1) Å 
b = 11.6234 (3) Å 
c = 5.3652 (1) Å 
 = 91.710(1) 
Phase 2: 
a = 5.3939 (1) Å 
c = 11.6266 (2) Å  

Volume 338.75 (2) Å3 338.72 (3) Å3 Phase 1 = 338.43 (4) Å3 

Phase 2 = 338.28 (2) Å3 
Density (calc) 5.970 Mg m-3 5.970 Mg m-3 Phase 1 = 5.978 Mg m-3 

Phase 2 = 5.978 Mg m-3 

Weight fraction 100 100 Phase 1 = 0.393(9) 
Phase 2 = 0.607(7) 

R-factors Rwp = 17.8 
Rp = 24.8 
Rex = 8.53 

Rwp = 18.3 
Rp = 25.8 
Rex = 8.71 

Rwp = 16.6 
Rp = 24.2 
Rex = 3.61 
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Table S5. Crystal and refinement parameters calculated for LaNb0.7Sb0.3O4- at 0C,  

-50C and -100C calculated on the basis of  X-Ray diffractograms. Estimated standard 

deviations are given in parentheses. 

Temperature 0C -50C -100C 

Crystal system Phase 1 = Monoclinic 
Phase 2 = Tetragonal 

Phase 1 = Monoclinic 
Phase 2 = Tetragonal 

Phase 1 = Monoclinic 
Phase 2 = Tetragonal 

Space group Phase 1 = I2/c   
Phase 2 = I41/a 

Phase 1 = I2/c   
Phase 2 = I41/a 

Phase 1 = I2/c   
Phase 2 = I41/a 

Lattice 
parameters 

Phase 1: 
a = 5.4227 (1) Å 
b = 11.6195 (3) Å 
c = 5.3681 (1) Å 
 = 90.521 (1) 
Phase 2: 
a = 5.3928 (1) Å 
c =  11.6201 (2) Å  

Phase 1: 
a = 5.4473 (1) Å 
b = 11.5995 (3) Å 
c = 5.3303 (1) Å 
 = 91.116 (2) 
Phase 2: 
a = 5.3911 (1) Å 
c = 11.6148 (2) Å  

Phase 1: 
a = 5.4711 (2) Å 
b = 11.6076 (4) Å 
c = 5.31187 (2) Å 
 = 91.564 (2) 
Phase 2: 
a = 5.3926 (2) Å 
c = 11.6191 (4) Å  

Volume Phase 1 = 338.22 (1) Å3 

Phase 2 = 337.94 (2) Å3 
Phase 1 = 336.74 (1) Å3 

Phase 2 = 337.56 (1) Å3 
Phase 1 = 337.21 (2) Å3 

Phase 2 = 337.89 (2) Å3 

Density (calc) Phase 1 = 5.979 Mg m-3 

Phase 2 = 5.984 Mg m-3 

Phase 1 = 6.005 Mg m-3 

Phase 2 = 5.988 Mg m-3 

Phase 1 = 6.003 Mg m-3 

Phase 2 = 5.973 Mg m-3 

Weight 
fraction 

Phase 1 = 0. 760 (8) 
Phase 2 = 0.240 (5) 

Phase 1 = 0.840 (2) 
Phase 2 = 0.160 (3) 

Phase 1 = 0.85 (12) 
Phase 2 = 0.14 (7) 

R-factors Rwp = 14.7 
Rp = 21.8 
Rex = 8.70 

Rwp = 16.7 
Rp = 21.5 
Rex = 8.91 

Rwp = 16.4 
Rp = 20.7 
Rex = 8.97 
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Table S6. Crystal and refinement parameters calculated for LaNb0.7Sb0.3O4- at -150C  

calculated on the basis of  X-Ray diffractograms. Estimated standard deviations are 

given in parentheses. 

Temperature -150C 
Crystal system Phase 1 = Monoclinic 

Phase 2 = Tetragonal 
Space group Phase 1 = I2/c   

Phase 2 = I41/a 
Lattice 
parameters 

Phase 1: 
a = 5.4827 (1) Å 
b = 11.5872 (2) Å 
c = 5.2969 (1) Å 
 = 91.870 (1) 
Phase 2: 
a = 5.3902 (3) Å 
c =  11.5949 (3) Å  

Volume Phase 1 = 336.33 (1) Å3 

Phase 2 = 336.88 (3) Å3 
Density (calc) Phase 1 = 6.013 Mg m-3 

Phase 2 = 6.004 Mg m-3 

Weight 
fraction 

Phase 1 = 0.896 (8) 
Phase 2 = 0.103 (1) 

R-factors Rwp = 17.4 
Rp = 21.7 
Rex = 8.80 

 

 


