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We present a method for finding, in principle, all asymptotic gravitational charges. The basic idea is that
one must consider all possible contributions to the action that do not affect the equations of motion for the
theory of interest; such terms include topological terms. As a result we observe that the first order
formalism is best suited to an analysis of asymptotic charges. In particular, this method can be used to
provide a Hamiltonian derivation of recently found dual charges.
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Symmetries are at the heart of our present understanding
of fundamental physics. In gravitation, coordinate invari-
ance is a symmetry. If one includes fermionic matter, one
needs to introduce, in addition to the metric, the frame
fields (or vierbeins) and then local Lorentz transformations
are also symmetries. Some symmetries can be associated
with charges as a consequence of Noether’s theorem.
A simple example of this was explored by Arnowitt,
Deser, and Misner (ADM) [1]. A time translation diffeo-
morphism was shown to be associated to the total mass, the
ADM mass, as measured at spatial infinity in an asymp-
totically flat spacetime. One might therefore expect that
similar reasoning would produce charges associated with
any of the generators of Poincaré transformations. What is
perhaps surprising, is that at null infinity, as was discovered
by Bondi, van der Burg, Metzner, and Sachs (BMS) [2,3],
there are an infinite number of these asymptotic sym-
metries, BMS symmetries, that lead to an infinite number of
physically meaningful charges, BMS charges. Since BMS
charges are defined at null infinity, they are not exactly
conserved like the ADM mass but satisfy a continuity
equation. In other words they measure, and are sensitive to,
the flux that is radiated away. For example, one important
BMS charge is the Bondi mass, which is the quantity
measured in gravitational wave observations.
Recent work has highlighted the importance of BMS

charges in the computation of scattering amplitudes in

processes that involve massless particles [4], the physics of
gravitational waves and their detection [5] and in the black
hole information paradox [6]. The purpose of this letter is to
systematically explore what these charges are for gravita-
tion. Recently, it has been shown that, besides BMS
charges, there are other asymptotic charges, dual charges,
that encode the topology of spacetime [7,8]. The origin of
these charges has been hitherto not clear. We argue that
these asymptotic charges, in addition to the BMS charges,
arise from different terms in the action that do not
contribute to the equations of motion. For example, if
we are interested in vacuum Einstein theory, by simply
considering the Einstein-Hilbert action we miss out on dual
charges. Therefore, we must consider all possible actions
that give rise to the same equations of motion. In applying
this idea, in addition to finding the well-known BMS
charges [9,10], we give a Hamiltonian derivation of the
recently found dual charges [7,8], and by corollary a
Hamiltonian derivation of Newman-Penrose charges
[11], and show how other charges can be found from other
topological contributions to the action—the physical sig-
nificance of these will be explored in other work.
The idea that topological terms can give rise to charges

can be easily seen in electromagnetism. It is well known
that applying Noether’s theorem to the Maxwell theory
coupled to matter gives the electric charge. However, one
can also add the θ term,Z

F ∧ F ¼ −
1

4

Z
εεμνρσFμνFρσ;

to the theory and notice that its inclusion will lead to the
magnetic charges. In this Letter, we advocate an analogous
approach in gravity.
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We use the covariant phase space method and apply it to
the BMS symmetries appropriate to asymptotically flat
spacetimes, but we emphasize that this can be done
generally for any two surface embedded in a three-dimen-
sional space (see [12–14] for related considerations in the
first-order formalism motivated mainly by the first law of
black hole mechanics and [15] for the study of topological
actions in relation to charges).
The theory.—We will use the first-order formalism of

general relativity coupled to a Dirac field to illustrate the
construction of the gravitational charges. The first-order
formalism results in simpler expressions than the usual
Einstein-Hilbert formalism. Furthermore, because we are
including the Dirac field, we find that torsion plays a
significant role [16]. There are three components to the
total action. The first is the Palatini term

IP ¼ 1

16π

Z
M

1

2
εabcdRabðωÞ ∧ ec ∧ ed; ð1Þ

where RabðωÞ is the curvature two form made from the
connection one form ωab by Rab ¼ dωab þ ωac ∧ ωc

b.
Lorentz indices ða; b;…Þ are lowered and raised using
the flat tangent space metric ηab and its inverse ηab.
Similarly, spacetime indices ðμ; ν;…Þ are lowered and
raised using the spacetime metric gμν and its inverse gμν.
ea is a pseudo-orthonormal basis of one forms such that the
spacetime line element ds2 ¼ gμνdxμdxν ¼ ηabeaeb, thus
ea ¼ eaμdxμ where eaμ are the components of the vierbeins
and d is the exterior derivative operator. The metric con-
nectionωab ¼ ω½ab� and the torsion two form Ta are defined
by dea þ ωa

b ∧ eb ¼ Ta. In the first-order formalism, one
regards ea and ωab as independent variables. If IP were the
only contribution to the action, then the equations of motion
would lead to the vacuum Einstein equation Rab ¼ 0 and
vanishing of the torsion Ta ¼ 0. A second contribution to
the action comes from anticommuting Dirac fermions ψ .
The Dirac action is

ID ¼
Z
M

ε

�
1

2
ψ̄γa∇aψ −

1

2
∇aψ̄γ

aψ −mψ̄ψ

�
; ð2Þ

where the volume form ε ¼ ð1=24Þεabcdea ∧ eb ∧ ec ∧ ed.
We define the Dirac conjugate to be ψ̄ ¼ iψ†γ0 and our
gamma matrix conventions are fγa; γbg ¼ 2ηab with the
signature being ð−þþþÞ. ∇aψ is the covariant derivative
given explicitly∇aψ¼∂aψþ1

4
ωa

bcγbcψ withωab¼ωc
abec.

The last contribution to the action is topological in nature and
as a consequence makes no contribution to the equations of
motion. It is in some sense a gravitational analog of the
Pontryagin index:

INY ¼ iλ
16π

Z
M
ðRabðωÞ ∧ ea ∧ eb − Ta ∧ TaÞ: ð3Þ

The integrand is known as the Nieh-Yan tensor and is
exact, being given by −dðea ∧ TaÞ. The factor of i arises
because in a space of Euclidean signature, one would expect
this term to be real. However, in continuing to a Lorentzian
signatured spacetime, a factor of i arises just as it does for the
Pontryagin term in Yang-Mills theory. Equations of motion
come from varying ea;ωab, and ψ in the total action
IT¼IPþIDþINY. Varying ψ gives the Dirac equation
ðγa∇a −mÞψ ¼ 0. Varyingωab determines the torsionTa ¼
−2πψ̄γabcψeb ∧ ec. Thus only the totally antisymmetric
part of the torsion is nonzero and is proportional to the axial
current of the fermion.Varying ea gives theEinstein equation

Rab −
1

2
ηabR ¼ −4πðψ̄γa∇bψ −∇bψ̄γaψÞ: ð4Þ

It should be noted that the Einstein equation is not
symmetric under the interchange of a and b when torsion
is present. One could write the symmetric part as the
conventional Einstein equation coupled to the conventional
symmetric energy-momentum tensor of the Dirac field. The
antisymmetric part is then a trivial consequence of the
torsion equation of motion and the Bianchi identity.
Presymplectic potential andNoether charge.—The system

IT admits two kinds of local invariance. The first is diffeo-
morphism invariance, which is a property of all gravitational
theories. The second is local Lorentz invariance. The latter is
necessitated because we have included fermions in our
description of basic physics. The first step is the application
of Noether’s theorem to find a set of conserved currents or
their dual three forms. Once one has found the currents, if the
background field equations are satisfied, the currents are
conserved. Then one can find an antisymmetric two-indexed
tensor or its dual two form, which can be integrated over a
closed two surface to give the Noether charge on that surface.
Typically, that surface will be a sphere at infinity and the
symmetry generator does not die off at infinity. This con-
struction gives rise to a charge for each of the asymptotic
symmetries. The value of the coefficient of the topological
term λ has no effect on the dynamics of the theory.
Consequently, one can consider the symmetries coming from
INY to be independent of those derived from IP þ ID. The
charges coming from INY we will refer to as magnetic and
those from IP þ ID as electric. Any (smooth) vector field ξμ

can be used to generate an infinitesimal diffeomorphism and
the actions on ea;ωab, and ψ are given by

δξea ¼ Lξea; δξωab ¼ Lξωab; δξψ ¼ ξμ∂μψ ;

whereLξ is theLie derivativewith respect to thevector field ξ.
Infinitesimal Lorentz transformations are given by an anti-
symmetric two-indexed field Λab and its action is

δΛea ¼ Λa
beb; δΛωab ¼ −dΛab þ ½Λ;ω�ab;

δΛψ ¼ 1

4
Λabγ

abψ :
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We derive these charges and their properties using covariant
phase space methods. The presymplectic potential three form
θ is the boundary term foundwhen the Lagrangian four form,
L, is varied,

δL ¼ Eδϕþ dθ;

where E ¼ 0 is the equation of motion and ϕ represents the
fields.
The electric contribution to θ is

θE ¼ 1

32π
εabcdδω

ab ∧ ec ∧ ed

−
i
12

ðψ̄γabcγ5δψ − δψ̄γabcγ5ψÞea ∧ eb ∧ ec: ð5Þ

The magnetic contribution to θ is

θM ¼ i
16π

ðδωab ∧ ea ∧ eb − 2δea ∧ TaÞ: ð6Þ

The Noether currents are then given by

Jξ;Λ ¼ θðδξ;ΛϕÞ − ιξL; ð7Þ

i.e., θ is evaluated with the variation relevant to the
coordinate transformations generated by vector field ξ
and Lorentz transformations parametrized byΛ in question.
Electric Noether charges: When the equations of motion

are satisfied, J becomes the derivative of a two form

QE ¼ 1

32π
εabcdðιξωab − ΛabÞec ∧ ed: ð8Þ

Magnetic Noether charges: The magnetic charges are in
many ways similar:

QM ¼ i
16π

ðιξωab − ΛabÞea ∧ eb −
1

8π
ðιξeaÞTa: ð9Þ

Variation of the charges.—Each of the Noether charges
is defined for a specific gauge transformation and back-
ground. A problem is that the charge defined this way has
no absolute physical meaning as one could always add an
arbitrary constant to the charge. What does have physical
meaning is to consider the change in charge conjugate to
some specific transformation as one varies the background.
Let ϕ be the collection of fields ea;ωab, and ψ . Then we
need to find the difference in a specific charge between ϕ
and its variation ϕþ δϕ. The variation of a charge is
constructed from the symplectic form Ω, which is defined
to be

Ω ¼
Z
Σ
fδθðϕ; δ0ϕÞ − δ0θðϕ; δϕÞg; ð10Þ

where Σ is a spacelike surface with boundary ∂Σ. If δ0 is
chosen to be a gauge transformation, δϕ obeys the
linearized equations of motion and ϕ obeys the equations
of motion, then Ω reduces to an integral over ∂Σ and is the
variation of the physical charge =δQ. For any combination of
diffeomorphisms and Lorentz transformations,

=δQ ¼
Z
∂Σ

½δQ − ιξθðϕ; δϕÞ�: ð11Þ

We have written the variation as =δQ to indicate that the
variation may not be exact. The variation is supposed to
measure what happens as one carries out the variation in a
fixed region of spacetime. The result should then be the
change in the physical charge and reflects the nature of
the region in question. However, when carrying out the
variation, some of the charge may have escaped through ∂Σ
and it is this that leads to =δQ not being exact. To find the
exact piece, remove from =δQ the piece that is not exact.
Unfortunately, this prescription has some ambiguity as has
been discussed in detail and partially resolved by Wald
and Zoupas [17] (see also [18]). It is usually possible to
understand the physics of this process by finding a flux
formula for the charge through ∂Σ.
Asymptotic evaluation.—One area that has been exten-

sively explored is the evaluation of these charges at future
null infinity. Null infinity is a large sphere parametrized by
the retarded time. The metric on null infinity is degenerate.
The approach to null infinity is carried out by taking the
limit as a radial coordinate r tends to infinity. This is often
done in the Bondi gauge where the spacetime line element
is of the form

−Fe2βdu2 − 2e2βdudrþ r2hIJðdxI − CIduÞðdxJ − CJduÞ:

Here u is the retarded time coordinate, r is the radial
luminosity coordinate and xI with ðI; J;…Þ ¼ 1, 2 are the
coordinates on the celestial sphere. F, β, and CI are
functions of u, r, and xI . hIJ ¼ γIJ þ CIJ=rþ oðr−1Þ
where γIJ is the metric on the round sphere, and CIJ
describes gravitational radiation escaping to null infinity
from the interior of the spacetime. CIJ is a function of u and
xI and γIJCIJ ¼ 0. It thus has two degrees of freedom
corresponding to the two possible polarization states of
gravitational waves. The Bondi news tensor isNIJ ¼ ∂uCIJ
and is a measure of gravitational radiation, the energy flux
being ð1=32πÞNIJNIJ. Finally, F ¼ 1 − ð2M=rÞ þ oðr−1Þ
where M is the Bondi mass aspect. The integral of M over
the two sphere at null infinity is the Bondi mass.
In choosing Bondi coordinates, four degrees of freedom

of the metric have been eliminated by setting grr ¼ gri ¼ 0
and detðhIJÞ ¼ detðγIJÞ. The residual diffeomorphisms that
generate asymptotic symmetries are supertranslations and
superrotations and their descendants,
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ξu ¼ f; ξr ¼ r
2
ðCI∂If −DIξ

IÞ;

ξI ¼ YI −
Z

∞

r
dr0

e2β

r02
hIJ∂Jf;

where f ¼ sþ ðu=2ÞDIYI with s any spherical harmonic
andD is the covariant derivative on the unit two sphere with
metric γIJ. While these BMS generators are well known, in
our first order approach, they are accompanied by Lorentz
transformations that preserve the Lorentz gauge which
requires six choices. We choose our basis one forms to be
e0 ¼ 1

2
Fduþ dr, e1 ¼ e2βdu and ei ¼ rEi

IðdxI − CIduÞ.
Ei is the zweibein for themetric hIJ. The asymptotic Lorentz
translations are parametrized by

Λ01 ¼ −∂rξ
r; Λ1i ¼

1

2r
EI
iðF∂If þ 2∂Iξ

rÞ;

Λ0i ¼
e2β

r
EI
i∂If; Λij ¼ γIJÊ

I
½iLYÊ

J
j� þ oðr0Þ;

where Êi is the zweibein for themetric on the unit two sphere
with metric γIJ.
Asymptotic charges.—We are now in a position to

evaluate the asymptotic charges (11) for the Palatini and
the Nieh-Yan actions. Assuming the fermion mass is not
zero so that the fermion energy momentum is exponentially
suppressed at null infinity, hence ignoring fermions, the
electric charges from the Palatini action are

=δQ ¼ 1

16πG
εabcd

Z
∂Σ

ιξecδωab ∧ ed: ð12Þ

At leading order, they correspond to BMS charges [19]
(cf. results in [20])

=δQ ¼ 1

16π

Z
∂Σ

dΩ
�
4fδM þ 1

2
fNIJδCIJ

�
; ð13Þ

where dΩ is the volume element on the unit S2. The first
term is integrable and is just the variation of the moments of
the Bondi mass aspectM. The second term is not integrable
as it is not of the form f times the variation of something.
We can identify the nonintegrable term with gravitational
radiation leaving the system and causing the mass thereby
to change [17]. Such a contribution should not be counted
as part of the charge on the surface as it does not describe
the state of the system but rather the change of state of the
system. We conclude that the correct expression for the
change in physical charge is just the integrable piece

Q ¼ 1

4π

Z
∂Σ

dΩfM: ð14Þ

If we ask how does this change as one goes along null
infinity, we see there are two contributions [2,3,21],

∂uM ¼ −
1

8
NIJNIJ þ 1

4
DIDJNIJ: ð15Þ

The first term on the rhs is the gravitational flux, the
hard component of the charge and the second is a soft
component. The latter term contains contributions from soft
gravitons and has physical content; for example it can be
used to derive the Weinberg soft graviton theorem [22].
If we prescribe boundary conditions for lower orders in a

1=r expansion of the metric components, then we will also
have subleading charges. In such a case the subleading
charges obtained from (12) correspond to the subleading
BMS charges found in [23].
Repeating this calculation for theNieh-Yan action,we find

that the two-form charge from this action is equivalent to

=δQ̃ ¼ −
1

8π

Z
∂Σ

δea ∧ Lξea: ð16Þ

Full and further details of these chargeswill be presented in a
forthcoming publication.
The asymptotic charges that are obtained from the Nieh-

Yan action correspond to dual charges [7,8], which at
leading order are given by an integral of the NUT aspect
and encodes higher moments of the topological properties
of the spacetime, for example the NUT charge. This gives
a Hamiltonian derivation of dual charges: they are the
asymptotic charges that arise by considering the Nieh-Yan
action. This is analogous to getting magnetic charges from
the θ-term in electromagnetism. However, in gravity, we
see that this is only possible in a first-order formalism and
cannot be achieved in the metric formulation.
Other possible terms.—As topological terms, we should

also consider the Pontryagin action 1
2

R
Rab ∧ Rab and the

Gauss-Bonnet action 1
2
εabcd

R
Rab ∧ Rcd, which, while

higher derivative, do not modify the Einstein equation.
The equations of motion from these actions are the differ-
ential Bianchi identity and its Hodge dual. The pre-
symplectic forms are

θP ¼ δωab ∧ Rab; θGB ¼ εabcdδω
ab ∧ Rcd; ð17Þ

for the Pontryagin and Gauss-Bonnet terms, respectively.
Furthermore, the Noether charges are

QP ¼ ðιξωab − ΛabÞRab; ð18Þ

QGB ¼ εabcdðιξωab − ΛabÞRcd: ð19Þ

However, as we already discussed the physical object is
the asymptotic charge, coming from a Hamiltonian flow,
given by Eq. (11). We can show that for the Pontryagin and
Gauss-Bonnet actions, respectively,

=δQP ¼ δωab ∧ Kξ;Λωab; ð20Þ
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=δQGB ¼ εabcdδω
ab ∧ Kξ;Λω

cd; ð21Þ

where Kξ;Λω
ab is

Kξ;Λω
ab ¼ Lξω

ab − dΛab þ ½Λ;ω�ab: ð22Þ

From the asymptotic boundary conditions, we find that
there is no leading order nor Oð1=rÞ asymptotic charge
corresponding to the Pontryagin and Gauss-Bonnet
actions. However, there are nontrivial charges at subleading
Oð1=r2Þ. What these charges at subleading orders are
depends on how much analyticity we allow at lower orders
in the boundary conditions. Full and further details of these
charges will be presented in a forthcoming publication.
In this Letter, we have argued that a full understanding

of asymptotic charges in gravity requires the inclusion of all
possible actions that give rise to the Einstein equation. We
have shown that, for example, the Nieh-Yan term gives rise
to dual charges that encode topological information about
the spacetime.

We would like to thanks Gary Gibbons and Chris Pope
for discussions. We would like to thank the Mitchell
Family Foundation for hospitality at the 2019 Cook’s
Branch workshop and for continuing support. M. G. and
M. J. P. would like to thank the Max-Planck-Institut für
Gravitationsphysik (Albert-Einstein-Institut), Potsdam
and H. G. would like to thank Queen Mary University
of London for hospitality during the course of this work.
H. G. is supported by the ERC Advanced Grant
“Exceptional Quantum Gravity” (Grant No. 740209).
M. G. is supported by a Royal Society University
Research Fellowship. M. J. P. is supported by an STFC
consolidated Grant No. ST/L000415/1, String Theory,
Gauge Theory, and Duality.

*hadi.godazgar@aei.mpg.de
†m.godazgar@qmul.ac.uk
‡malcolm@damtp.cam.ac.uk
§Also at Centre for Mathematical Sciences, Wilberforce
Road, Cambridge CB3 0WA, UK; and Trinity College,
Cambridge CB2 1TQ, UK.

[1] R. L. Arnowitt, S. Deser, and C.W. Misner, Coordinate
invariance and energy expressions in general relativity,
Phys. Rev. 122, 997 (1961).

[2] H. Bondi, M. G. J. van der Burg, and A.W. K. Metzner,
Gravitational waves in general relativity: 7. Waves from
axisymmetric isolated systems, Proc. R. Soc. A 269, 21
(1962).

[3] R. K. Sachs, Gravitational waves in general relativity: 8.
Waves in asymptotically flat space-times, Proc. R. Soc. A
270, 103 (1962).

[4] A. Strominger, On BMS invariance of gravitational scatter-
ing, J. High Energy Phys. 07 (2014) 152.

[5] A. Strominger and A. Zhiboedov, Gravitational memory,
BMS supertranslations and soft theorems, J. High Energy
Phys. 01 (2016) 086.

[6] S. W. Hawking, M. J. Perry, and A. Strominger, Soft Hair on
Black Holes, Phys. Rev. Lett. 116, 231301 (2016).

[7] H. Godazgar, M. Godazgar, and C. N. Pope, New dual
gravitational charges, Phys. Rev. D 99, 024013 (2019).

[8] H. Godazgar, M. Godazgar, and C. N. Pope, Tower of
subleading dual BMS charges, J. High Energy Phys. 03
(2019) 057.

[9] T. Dray and M. Streubel, Angular momentum at null
infinity, Classical Quantum Gravity 1, 15 (1984).

[10] V. Iyer and R. M. Wald, Some properties of Noether charge
and a proposal for dynamical black hole entropy, Phys. Rev.
D 50, 846 (1994).

[11] E. T. Newman and R. Penrose, New conservation laws for
zero rest-mass fields in asymptotically flat space-time,
Proc. R. Soc. A 305, 175 (1968).

[12] T. Jacobson and A. Mohd, Black hole entropy and Lorentz-
diffeomorphism Noether charge, Phys. Rev. D 92, 124010
(2015).

[13] E. Frodden and D. Hidalgo, Surface charges for gravity and
electromagnetism in the first order formalism, Classical
Quantum Gravity 35, 035002 (2018).

[14] R. Oliveri and S. Speziale, Boundary effects in general
relativity with tetrad variables, arXiv:1912.01016.

[15] R. Aros, M. Contreras, R. Olea, R. Troncoso, and J. Zanelli,
Conserved Charges for Gravity with Locally AdS Asymp-
totics, Phys. Rev. Lett. 84, 1647 (2000).

[16] T. Kibble, Lorentz invariance and the gravitational field,
J. Math. Phys. (N.Y.) 2, 212 (1961).

[17] R. M. Wald and A. Zoupas, A general definition of ‘con-
served quantities’ in general relativity and other theories of
gravity, Phys. Rev. D 61, 084027 (2000).

[18] G. Compère, Advanced Lectures on General Relativity
(Springer, New York, 2019).

[19] For brevity, we have suppressed the rotation terms involving
the Y generators.

[20] G. Barnich and C. Troessaert, BMS charge algebra, J. High
Energy Phys. 12 (2011) 105.

[21] A. Strominger, Lectures on the infrared structure of gravity
and gauge theory, arXiv:1703.05448.

[22] T. He, V. Lysov, P. Mitra, and A. Strominger, BMS super-
translations and Weinberg’s soft graviton theorem, J. High
Energy Phys. 05 (2015) 151.

[23] H. Godazgar, M. Godazgar, and C. N. Pope, Subleading
BMS charges and fake news near null infinity, J. High
Energy Phys. 01 (2019) 143.

PHYSICAL REVIEW LETTERS 125, 101301 (2020)

101301-5

https://doi.org/10.1103/PhysRev.122.997
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0161
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1007/JHEP07(2014)152
https://doi.org/10.1007/JHEP01(2016)086
https://doi.org/10.1007/JHEP01(2016)086
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevD.99.024013
https://doi.org/10.1007/JHEP03(2019)057
https://doi.org/10.1007/JHEP03(2019)057
https://doi.org/10.1088/0264-9381/1/1/005
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1098/rspa.1968.0112
https://doi.org/10.1103/PhysRevD.92.124010
https://doi.org/10.1103/PhysRevD.92.124010
https://doi.org/10.1088/1361-6382/aa9ba5
https://doi.org/10.1088/1361-6382/aa9ba5
https://arXiv.org/abs/1912.01016
https://doi.org/10.1103/PhysRevLett.84.1647
https://doi.org/10.1063/1.1703702
https://doi.org/10.1103/PhysRevD.61.084027
https://doi.org/10.1007/JHEP12(2011)105
https://doi.org/10.1007/JHEP12(2011)105
https://arXiv.org/abs/1703.05448
https://doi.org/10.1007/JHEP05(2015)151
https://doi.org/10.1007/JHEP05(2015)151
https://doi.org/10.1007/JHEP01(2019)143
https://doi.org/10.1007/JHEP01(2019)143

