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Abstract: Score-based algorithms that learn Bayesian Network (BN) structures provide solutions
ranging from different levels of approximate learning to exact learning. Approximate solutions exist
because exact learning is generally not applicable to networks of moderate or higher complexity.
In general, approximate solutions tend to sacrifice accuracy for speed, where the aim is to minimise
the loss in accuracy and maximise the gain in speed. While some approximate algorithms are
optimised to handle thousands of variables, these algorithms may still be unable to learn such high
dimensional structures. Some of the most efficient score-based algorithms cast the structure learning
problem as a combinatorial optimisation of candidate parent sets. This paper explores a strategy
towards pruning the size of candidate parent sets, and which could form part of existing score-based
algorithms as an additional pruning phase aimed at high dimensionality problems. The results
illustrate how different levels of pruning affect the learning speed relative to the loss in accuracy in
terms of model fitting, and show that aggressive pruning may be required to produce approximate
solutions for high complexity problems.

Keywords: structure learning; probabilistic graphical models; pruning

1. Introduction

A Bayesian Network (BN) [1] is a probabilistic graphical model represented by a Directed
Acyclic Graph (DAG). The structure of a BN captures the relationships between nodes, whereas
the conditional parameters capture the type and magnitude of those relationships. A BN differs
from other graphical models, such as neural networks, in that it offers a transparent representation
of a problem where the relationships between variables (i.e., arcs) represent conditional or causal
relationships. Moreover, the uncertain conditional distributions in BNs can be used for both predictive
and diagnostic (i.e., inverse) inference, providing the potential for a higher level of artificial intelligence.
For example, knowledge-based BNs are often assumed to represent causal or influential networks
and enable decision makers to reason about intervention [2]. On the other hand, structure of BNs,
and especially those based on search-and-score solutions on which this paper focuses, are generally
assumed to represent networks with conditional—rather than causal—relationships, although the
class of constraint-based learning (which we cover below) is often used to discover relationships that
could, under various assumptions, be interpreted causally [3].

Formally, a BN model represents a factorisation of the joint distribution of random variables
X = (X1, X2, · · · , Xn). Each BN has two elements, structure G and parameters θ. Constructing a BN
involves both structure learning and parameter learning, and both learning approaches may involve
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combination of data with knowledge [4–7]. Given observational data D, a complete BN {G,θ} can be
learnt by maximising the likelihood:

P(G, θ|D) = P(G|D)P(θ|G, D). (1)

and the parameters of the network can be learnt by maximising

P(θ|G, D) =
n

∏
i=1

P(θi|Πi, D) (2)

where Πi denotes the parents of node Xi indicated by structure G. Depending on the prior assumption,
the parameter learning process of each node can be solved using Maximum Likelihood estimation
given data D, or Maximum A Posteriori estimation given data D and a subjective prior.

On the other hand, the BN structure learning (BNSL) problem represents a more challenging
task in that it cannot be solved by simply maximising the fitting of the local networks to the data.
The structure learning process must take into consideration the complexity of the model in order
to avoid overfitting. In fact, the problem of BNSL is NP-hard, which means that it is generally not
possible to perform exhaustive search in the search space of possible graphs, and this is because the
number of possible structures grows super-exponentially with the number of nodes n [8]:

f (n) =
n

∑
i=1

(−1)i+1 n!
(n− i)!n!

2i(n−i) f (n− 1) (3)

Algorithms that learn BN structures are typically classified into three categories: (a) score-based
learning that searches over the space of possible graphs and returns the graph that maximises a
scoring function, (b) constraint-based learning that prunes and orientates edges using conditional
independence tests, and (c) hybrid learning that combines the above two strategies. In this paper,
we focus on the problem of score-based learning.

A score-based algorithm is generally composed of two parts: (a) a search strategy that transverses
the search space, and (b) a scoring function that evaluates a given graph with respect to the
observed data. Well-known search strategies in the field of BNSL include the greedy hill-climbing
search, tabu search, simulated annealing, genetic algorithms, dynamic programming, A* algorithm,
and branch-and-bound strategies. The objective functions are typically based on either the Bayesian
score or other model selection scores. Bayesian scores evaluate the posterior probability of the candidate
structures and include variations of the Bayesian Dirichlet score, such as the Bayesian Dirichlet
with equivalence and uniform priors (BDeu) [9,10], and the Bayesian Dirichlet sparse (BDs) [11].
Well-established scores for model selection include the Akaike Information Criterion (AIC) [12] and
the Bayesian Informatic Criterion (BIC), often also referred to as the Minimum Description Length
(MDL) [13]. Other less popular model selection scores include the Mutual Information Test (MIT) [14],
the factorized Normalized Maximum Likelihood (fNML) [15], and the qutotient Normalized Maximum
Likelihood (qNML) [16].

Score-based approaches further operate in two different ways. The first approach involves scoring
a graph only when the graph is visited by the search method, which typically involves exploring
neighbouring graphs and following the search path that maximises the fitting score via arc reversals,
additions and removals. The second approach involves generating scores for local networks (i.e., a node
and its parents) in advance, and searching over combinations of local networks given the pre-generated
scores, thereby formulating a combinatorial optimisation problem. The algorithms that fall in the
former category are generally based on efficient heuristics such as hill-climbing, but tend to stuck in
local optimum solutions, thereby offering an approximate solution to the problem of BNSL. While
algorithms of the latter category are also generally approximate, they can be more easily adjusted to
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offer exact learning solutions that guarantee to return a graph with score not lower than the global
maximum score. This paper focuses on this latter subcategory of score-based learning.

Algorithms such as the Integer Linear Programming (ILP) [17,18] explore local networks in the
form of the Candidate Parent Sets (CPSs), usually up to a bounded maximum in-degree, and offer
an exact solution. Other exact learning algorithms which cast the BNSL problem as a combinatorial
optimisation problem include the Dynamic Programming (DP) [19,20], the A* algorithm [21] and
the Branch-and-Bound (B&B) [22,23]. However, exact learning is generally restricted to problems of
low complexity. Evidently, the efficiency of these algorithms is determined by the number of CPSs.
For example, the ILP algorithm is restricted to CPSs of size up to one million. However, order-based
algorithms such as OBS [24], ASOBS [25,26] and MINOBS [27] explore in the node ordering space,
in which the number of structures consistent with the orderings that consist of n nodes is [28]

f (n) =
n

∏
i=1

2n−1 = 2n(n−i)/2. (4)

Compared with Equation (3), the number of structures is substantially reduced. For example,
for 10 nodes, there are 3.5× 1013 different structures instead of 4.2× 1018 computed by Equation (3).
Therefore, order-based algorithms are able to search for approximate solutions in problems that involve
hundreds of variables.

In this paper we focus on score-based algorithms that learn BN graphs via local learning of CPSs.
Specifically, we investigate the relationship between different levels of pruning on CPSs and the loss in
accuracy in terms of the BDeu score. The remainder of this paper is organised as follows: Section 2
provides the problem statement and methodology, Section 3 provides the results, and we provide our
concluding remarks and directions for future research in Section 4.

2. Problem Statement and Methodology

Different pruning rules have been proposed to improve the scalability and the efficiency of
score-based algorithms that operate on CPSs. Pruning approaches in this context generally aim to
reduce the number of CPSs [22,29–32]. The efficacy of a pruning strategy can be significant in the
reduction of computational complexity, and this depends on the number of the variables, the level of
maximum in-degree and the number of observations in the data. For example, Table 1 presents a sample
of the CPSs of node “0” in the Audio-train data set (https://github.com/arranger1044/awesome-spn#
dataset), which consists of 100 variables and 15,000 observations. If we assume maximum-in-degree
of 1, with no pruning, this produces 100 · (C0

99 + C1
99) = 10, 000 CPSs, whereas for maximum-in-degree

of 2 increases to 100 · (C0
99 + C1

99 + C2
99) = 495, 100 CPSs, and for maximum in-degree of 3 increases to

100 · (C0
99 + C1

99 + C2
99 + C3

99) = 16, 180, 000 CPSs.

Table 1. Sample CPSs of node “0”, ordered by BDeu score with max in-degree 3. The example is based
on Audio-train dataset which incorporates 100 variables.

Child Node Local BDeu Score CPS Size CPS

0 −5149.19 3 {9, 85, 95}
0 −5150.47 3 {9, 94, 95}
0 −5174.53 3 {85,94, 95}
0 −5207.08 3 {80,85, 95}
0 −5208.28 3 {9, 80, 95}
... ... ... ...
0 −6886.30 2 {48,67}
0 −6886.74 1 {67}
0 −5174.53 1 {81}
0 −5174.53 1 {75}
0 −6889.11 0 {}

https://github.com/arranger1044/awesome-spn#dataset
https://github.com/arranger1044/awesome-spn#dataset
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Pruning rules can be used to discard CPSs that are impossible to exist in optimal structures. Based
on the observation that a parent set cannot be optimal if its subsets have higher scores [24], the CPSs
that are left after applying these pruning rules are called “legal CPSs”. Table 2 presents an example
where, in a network with four nodes {1, 2, 3, 4}, part of the CPSs (those in bold) are pruned with the
remaining CPSs representing the so-called legal CPSs. Figure 1 also illustrates all the possible CPSs of
node 1, given a maximum in-degree of 3. As shown in Table 2, the CPSs, {2, 3}, {2, 4} and {2, 3, 4} are
pruned and do not form part of the legal CPSs of node 1 because a) the score of CPS {2, 3} is lower
than its subset {3}, the score of CPS {2, 4} is lower than its subset {4}, and the score of CPS {2, 3, 4} is
lower than its subset {3, 4}. In total, six CPSs are pruned out of the 32 possible CPSs. Figure 2 presents
the optimal structure and shows that none of the pruned CPSs (or that only the legal CPSs) are part of
the optimal structure.

Table 2. An example BN with four nodes and the legal CPSs that remain after pruning the CPSs that
are impossible to exist (highlighted in bold), as determined by the BDeu score. The example assumes
four nodes, a maximum in-degree (ID) of 3, and a sample size of 5000.

Node ID = 0 ID = 1 ID = 1 ID = 1 ID = 2 ID = 2 ID = 2 ID = 3

1 {} {2} {3} {4} {2, 3}{2, 3}{2, 3} {2, 4}{2, 4}{2, 4} {3, 4} {2, 3, 4}{2, 3, 4}{2, 3, 4}
−2288.7 −2274.6 −2196.2 −2240.7 −2252.8 −2256.1 −2171.3 −2173.5

2 {} {1} {3} {4} {1, 3}{1, 3}{1, 3} {1, 4}{1, 4}{1, 4} {3, 4} {1, 3, 4}{1, 3, 4}{1, 3, 4}
−2003.7 −1989.6 −1900.7 −1915.1 −1903.8 −1918.3 −1849.2 −1851.4

3 {} {1} {2} {4} {1, 2} {1, 4} {2, 4} {1, 2, 4}
−2891.5 −2799.0 −2788.5 −2811.3 −2714.5 −2741.9 −2745.5 −2692.6

4 {} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
−1951.6 −1903.6 −1862.9 −1871.4 −1829.5 −1846.5 −1819.9 −1807.6

Figure 1. All possible CPSs of node “1” (not shown in the diagram) under the assumption the maximum
in-degree is 3.

We use the GOBNILP software (https://www.cs.york.ac.uk/aig/sw/gobnilp/) to obtain the
legal CPSs. For example, the legal CPSs for the Audio-train data set, under maximum in-degree of 3,
is 7,343,077 which represents a 45.4% of the total number of all possible CPSs. Table 3 presents the
number and rates of legal CPSs, in relation to the number of all possible CPSs, over different sample
sizes of the Audio-train data set and varied maximum in-degrees. The results show that the level
of pruning decreases with sample size and increases with maximum in-degree. This is because a
higher sample size leads to the detection of more dependencies whereas a higher maximum in-degree
produces a higher number of possible dependencies that need to be explored. Still, this level of pruning
is insufficient for high dimensionality problems. In general, the combinatorial optimisation problem of
CPSs remains unsolvable for data sets that are large in terms of the number of the variables, with higher
levels of maximum in-degree and data sample size further increasing complexity.

https://www.cs.york.ac.uk/aig/sw/gobnilp/
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Figure 2. The optimal structure learnt from the CPSs presented in Table 2.

Table 3. The number and rates of legal CPSs in relation to the all possible CPSs for subsets of Audio-train
data over varying samples sizes and maximum in-degrees.

Maximum
In-Degree

Number of
All Possible CPSs

Sample Size

3000 6000 9000 12,000 15,000

1 10,000 8398 8926 9163 9320 9394
84.0% 89.3% 91.6% 93.2% 93.9%

2 495,100 228,197 306,263 349,587 374,007 388,621
46.1% 61.9% 70.6% 75.5% 78.5%

3 16,180,000 1,200,429 3,260,399 5,130,502 6,405,394 7,343,077
7.42% 20.2% 31.7% 39.6% 45.4%

In this paper, we investigate the effect of different levels of pruning on legal CPSs. The effect is
investigated both in terms of the gain in speed and the loss in accuracy, where the loss in accuracy is
measured as a discrepancy ∆ between the fitting scores of two learnt graphs defined as

∆ = (S∗ − S)/S∗ (5)

where S denotes the BDeu score of a graph generated frompruning, and S∗ denotes the BDeu score of
the baseline graph generated without pruning. This approach is based on the B&B algorithm proposed
by Cassio de Campos [22], where the construction of the graph iterates over possible CPSs and starts
from the most likely CPS per node. Specifically, we explore the CPSs expressed in the format shown in
Table 1, where legal CPSs for each node are sorted in a descending order as determined by the local
BDeu score. Different levels of pruning are explored by pruning different percentages of legal CPSs for
each node, starting from the bottom-ranked CPSs of each node in terms of BDeu score. This means
that the search in the space of possible DAGs starts from the most promising parent sets of each node.
A valid DAG is ensured by skipping CPSs that lead to cycles. A valid DAG is achieved by ensuring that
the learnt DAG incorporates at least one root node, which is a node having no parents [33]. This means
that the exploration of CPSs must also include ‘empty’ CPSs (i.e., no parent), as shown in Table 1.

Three different levels of complexity are investigated, where the pruned result is compared to the
unpruned result. The unpruned result represents the exact result for moderate complexity problems,
although we cannot guarantee this will be the case for higher complexity problems. We define the
three different levels of complexity as follows:

(a) Moderate complexity, which assumes less than 1 million legal CPSs per network;
(b) High complexity, which assumes more than 1 million and less than 10 million legal CPSs

per network;
(c) Very high complexity, which assumes more than 10 million legal CPSs per network.
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We generate BDeu scores using the GOBNILP software and search for the optimal CPSs using
different algorithms. Experiments on networks of moderate and high complexity were carried on
an Intel Core i7-8750H CPU at 2.2 GHz with 16 GB of RAM, where each optimisation is assigned a
maximum 9.2 GB of memory. Experiments on networks of very high complexity were carried on
an Intel Core i7-8700 CPU at 3.2 GHz with 32 GB of RAM, where each optimisation is assigned a
maximum 25 GB of memory. All experiments are restricted to 24 h of structure learning runtime.

3. Results

The experiments presented in this section are based on BNs and relevant data that are available
on the GOBNILP website; link (https://www.cs.york.ac.uk/aig/sw/gobnilp/#benchmarks) for the
networks used in Section 3.1, and link (https://www.cs.york.ac.uk/aig/sw/gobnilp/ for the networks
used in Sections 3.1 and 3.3.)

3.1. Pruning Legal CPSs of Moderate Complexity

We start the investigation by focusing on BNSL problems of moderate complexity, which we
restrict to networks with up to 1 million legal CPSs. Table 4 lists the six networks with their
corresponding number of legal CPSs for each case study and sample size combination, assuming a
maximum in-degree of 3.

Table 4. Moderate complexity case studies (nodes|max in-degree in true networks), depicting the total
number of legal CPSs per network, as well as the average number of CPSs per node in that network,
for network and sample size combination. The number of legal CPSs assume a maximum in-degree
of 3.

Sample Size Asia
(8|2)

Insurance
(27|3)

Water
(32|5)

Alarm
(37|4)

Hailfinder
(56|4)

Carpo
(61|5)

CPSs (graph)
100 41 279 482 907 244 5068
1000 107 774 573 1928 761 3827

10,000 161 3652 961 6473 3768 16,391

CPSs (per node)
100 5.13 10.33 15.06 24.51 4.36 84.47
1000 13.38 28.67 17.91 52.11 13.59 63.78

10,000 20.12 135.26 30.03 174.95 67.29 273.18

Tables 5 and 6 present the loss in accuracy from different levels of CPSs pruning. The effect is
measured as a discrepancy ∆ defined in Section 2. For example, in Table 5, 90% pruning of the CPSs on
Asia with sample size 100 leads to a graph that deviates 6.7‰, or 0.67%, in terms of BDeu score from
the unpruned baseline graph. Note that 90% pruning of CPSs implies that, for each node, only the 10%
most relevant CPSs are considered in searching for the optimal graph.

Overall, the results suggest that higher sample sizes encourage more aggressive pruning. This is
reasonable because a higher sample size implies that the ordering of legal CPSs is more accurate
and hence, the pruning also becomes more accurate in terms of pruning the least relevant CPSs.
The results show that, in most cases, the loss in accuracy increases faster when pruning exceeds the
level of 30%. However, the results from the Hailfinder and Carpo networks suggest that even minor
levels of pruning can have a negative impact on the BDeu score, however small this impact may be.
All the moderate complexity experiments completed search within four minutes, except the case of
Carpo-10000 which took approximately twelve minutes to complete. From this, we can conclude that
unless the intention is to save seconds or minutes of structure learning runtime, pruning of legal CPSs
is less desirable in problems of moderate complexity.

https://www.cs.york.ac.uk/aig/sw/gobnilp/#benchmarks
https://www.cs.york.ac.uk/aig/sw/gobnilp/
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Table 5. Loss in accuracy for different levels of pruning, as a discrepancy ∆ in BDeu score from the
unpruned score, based on the three different sample sizes for case studies Asia, Insurance and Water.

Pruning Asia
(100)

Asia
(1000)

Asia
(10,000)

Insurance
(100)

Insurance
(1000)

Insurance
(10,000)

Water
(100)

Water
(1000)

Water
(10,000)

90% −6.70‰ −1.26‰ −1.33‰ −30.74‰ −62.92‰ −35.26‰ −11.84‰ −28.11‰ −15.50‰
80% −6.70‰ −1.26‰ −1.06‰ −30.74‰ −37.77‰ −7.99‰ −11.15‰ −19.37‰ −8.12‰
70% −6.70‰ −1.26‰ −1.06‰ −10.50‰ −13.80‰ −7.13‰ −8.21‰ −2.99‰ −0.68‰
60% −6.70‰ −1.26‰ −0.72‰ −8.32‰ −6.73‰ −5.32‰ −6.70‰ −2.81‰ −0.44‰
50% −6.68‰ −1.26‰ −0.72‰ −7.94‰ −4.14‰ −2.83‰ −1.24‰ −1.02‰ −0.27‰
40% −0.04‰ −1.26‰ −0.72‰ −2.33‰ −1.28‰ −2.07‰ −0.64‰ 0‰ −0.18‰
30% 0‰ −0.9‰ −0.25‰ −2.23‰ 0‰ −1.22‰ −0.32‰ 0‰ −0.02‰
20% 0‰ 0‰ 0‰ 0‰ 0‰ −0.25‰ −0.32‰ 0‰ 0‰
10% 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰
0% 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰

Table 6. Loss in accuracy for different levels of pruning, as a discrepancy ∆ in BDeu score from the
unpruned score, based on the three different sample sizes for case studies Alarm, Hailfinder and Carpo.

Pruning Alarm
(100)

Alarm
(1000)

Alarm
(10,000)

Hailfinder
(100)

Hailfinder
(1000)

Hailfinder
(10,000)

Carpo
(100)

Carpo
(1000)

Carpo
(10,000)

90% −78.39‰ −46.86‰ −23.13‰ −34.15‰ −8.21‰ −8.82‰ −7.88‰ −3.84‰ −2.90‰
80% −30.04‰ −38.71‰ −14.44‰ −25.02‰ −4.17‰ −6.05‰ −5.29‰ −3.13‰ −1.99‰
70% −18.87‰ −22.93‰ −3.88‰ −10.03‰ −4.17‰ −4.23‰ −4.33‰ −2.02‰ −1.94‰
60% −13.55‰ −14.33‰ −1.99‰ −2.23‰ −2.16‰ −1.38‰ −4.33‰ −1.78‰ −1.85‰
50% −4.27‰ −5.23‰ −1.79‰ −1.57‰ −1.60‰ −0.57‰ −3.97‰ −1.73‰ −1.10‰
40% −3.69‰ −1.82‰ −0.20‰ −1.57‰ −1.03‰ −0.57‰ −2.33‰ −1.54‰ −1.06‰
30% −1.06‰ −0.30‰ 0‰ −1.27‰ −0.20‰ −0.06‰ −1.51‰ −1.17‰ −0.93‰
20% −1.06‰ −0.30‰ 0‰ −0.07‰ −0.19‰ −0.06‰ −1.01‰ −0.25‰ −0.35‰
10% 0‰ −0.15‰ 0‰ 0‰ −0.19‰ −0.06‰ −1.01‰ −0.18‰ −0.02‰
0% 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰ 0‰

3.2. Pruning Legal CPSs of High Complexity

This subsection reports the results from pruning based on high complexity case studies that
involve problems where the number of legal CPSs ranges between 1 million and 10 million. For this
scenario, we used the real-world data sets called Audio-train which consists of 100 variables and
15,000 observations, and Kosarek-test which consists of 190 variables and 6675 observations. We used
GOBNILP to generate the BDeu scores for CPSs. This process took 90 and 1398 seconds to complete
respectively, with GOBNILP returning 7,343,077 and 5,748,931 legal CPSs, respectively.

Because GOBNILP’s ILP algorithm is restricted to CPSs of size less than 1 million, we replaced ILP
with the approximate algorithm called MINOBS (https://github.com/kkourin/mobs). The change
from exact to approximate learning was inevitable since exact solutions are only applicable to problems
of relatively low complexity. In fact, the results show that even an approximate algorithm such as
MINOBS fails to complete search within the 24-hour runtime limit in the absence of pruning. At 24 h
of runtime, we stop the search and obtain the highest scoring graph discovered up to that point.

Table 7 presents the results from this set of experiments. The results suggest that problems of high
complexity may benefit considerably from pruning compared to problems of moderate complexity.
In fact, the results show that it may be safe to perform aggressive pruning on legal CPSs without,
or with limited, loss in accuracy, in exchange for a considerable reduction in runtime. For example, 90%
pruning on the CPSs of the Audio-train data set is found to reduce runtime needed to first discover the
highest scoring graph by approximately 21 folds without, or in exchange for a trivial, reduction in the
BDeu score. Note that while the time needed to first discover the highest scoring graph is generally
expected to decrease with higher levels of pruning, Table 7 shows that this is generally, although not
always, the case.

https://github.com/kkourin/mobs
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Table 7. Loss in accuracy for different levels of pruning, as a discrepancy ∆ in BDeu score from the
unpruned score, based on the three different sample sizes for case studies Audio-train and Kosarek-test.
Time (secs) represents the time needed by the MINOBS algorithm to first discover the highest scoring
graph within the 24 h of search.

Audio-Train Kosarek-Test

Pruning CPSs
∆ Time (secs) CPSs

∆ Time (secs)Graph per Node Graph per Node

99% 73,535 735 −4.352‰ 1473 58,249 307 −7.468‰ 4260
95% 367,258 3673 −0.669‰ 682 287,641 1514 −0.271‰ 3265
90% 734,414 7344 −0.002‰ 1035 575,096 3027 0‰ 1803
80% 1,468,717 14,687 0‰ 2952 1,149,980 6053 0‰ 16,378
70% 2,203,033 22,030 0‰ 3908 1,724,881 9078 0‰ 16,010
60% 2,937,329 29,373 0‰ 5344 2,299,767 12,104 0‰ 20,637
50% 3,671,663 36,717 0‰ 4334 2,874,708 15,130 0‰ 9033
40% 4,405,948 44,059 0‰ 4587 3,449,544 18,155 0‰ 14,903
30% 5,140,257 51,403 0‰ 10,028 4,024,450 21,181 0‰ 9288
20% 5,874,560 58,746 0‰ 10,442 4,599,334 24,207 0‰ 29,603
10% 6,608,876 66,089 0‰ 11,385 5,174,238 27,233 0‰ 42,493
0% 7,343,077 73,431 0‰ 21,643 5,748,931 30,258 0‰ 82,758

The increased benefit from pruning, observed in the case of the Audio-train and Kosarek-test data
sets, relative to the data sets of moderate complexity investigated in Section 3.1, can be explained by
the higher number of CPSs in the network. This is because when working with higher numbers of
CPSs and a low bounded maximum in-degree (in this case, 3), even 90% pruning of legal CPSs makes
it likely that the top three most relevant variables (out of hundreds of variables) will not be part of
those pruned.

3.3. Pruning Legal CPSs of Very High Complexity

Lastly, we investigate the effect of pruning in case studies that incorporate more than 10 million
legal CPSs. For this purpose, we used the EachMovie-train and Reuters-52-train data sets taken
from the same repository. EachMovie-train consists of 500 variables and 4524 observations, whereas
Reuters-52-train consists of 889 variables and 6532 observations. As with the high complexity cases,
we perform the experiments using the MINOBS algorithm. The GOBNILP software generated a
total of 21,985,307 and 37,479,789 legal CPSs, in 134 and 616 seconds respectively. However, in these
experiments we had to reduce the maximum in-degree from 3 to 2. This was necessary to avoid
running out of memory.

The results in Table 8 suggest that we can derive conclusions that are similar to those derived for
the high complexity experiments in Section 3.2. Specifically, the pruning strategy appears to have a
minor impact on accuracy of very high complexity network scores, in exchange for potentially large
reductions in runtime. Note that while higher levels of pruning always reduce the time required
to find the highest scoring graphs from those explored within the 24h runtime limit in the case of
EachMovie-train, the effectiveness of pruning is not as consistent in the case of Reuters-52-train.
This suggests that the pruning effectiveness also depends on the data set and may not be solely due to
randomness as discussed in Section 3.2.
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Table 8. Loss in accuracy for different levels of pruning, as a discrepancy ∆ in BDeu score from
the unpruned score, based on the three different sample sizes for case studies EachMovie-train and
Reuters-52. Time (secs) represents the time needed by the MINOBS algorithm to first discover the
highest scoring graph within the 24 h of search.

EachMovie-Train Reuters-52-Train

Pruning CPSs
∆ Time (secs) CPSs

∆ Time (secs)Graph per Node Graph per Node

99% 220,378 441 −0.671‰ 1711 375,700 423 −1.269‰ 3368
95% 1,099,782 2200 −0.158‰ 6471 1,874,897 2109 −0.051‰ 6430
90% 2,199,065 4398 0‰ 9049 3,748,921 4217 0‰ 10,002
80% 4,397,558 8795 0‰ 15,273 7,496,843 8433 0‰ 34,537
70% 6,596,133 13,192 0‰ 23,133 11,244,877 12,649 0‰ 41,554
60% 8,795,121 17,589 0‰ 9195 14,992,798 16,865 0‰ 12,925
50% 10,993,281 21,943 0‰ 15,812 18,741,002 21,081 0‰ 27,914
40% 13,191,681 26,383 0‰ 37,244 22,488,769 25,297 0‰ 17,276
30% 15,390,238 30,780 0‰ 74,312 26,236,772 29,513 0‰ 72,208
20% 17,588,746 35,107 0‰ 24,576 29,984,724 33,729 0‰ 16,969
10% 19,787,306 39,575 0‰ 35,952 33,732,728 37,945 0‰ 69,315
0% 21,985,307 43,971 0‰ 82,758 37,479,789 42,159 0‰ 48,704

4. Conclusions

This study investigated the effectiveness of different levels of CPS pruning across problems of
varied complexity. The results suggest that it is generally not beneficial to perform pruning of legal
CPSs on problems of moderate or lower complexity. This is because the risk of pruning relevant
CPSs increases in low complexity case studies that tend to incorporate a lower number of variables,
in exchange for relatively minor improvements in speed. On the other hand, the results from problems
of higher complexity show potential for major benefit from this type of pruning. This is because these
problems tend to incorporate hundreds or thousands of variables, and such a high number of variables
makes it easier to determine and prune irrelevant parent-sets, thereby minorly impacting accuracy in
exchange for considerable gains in speed. Importantly, problems of very high complexity are often
unsolvable and could benefit enormously from any form of effective pruning. The pruning strategy
investigated in this paper applies to any type of score-based learning, including the traditional greedy
hill-climbing heuristics where pruned legal CPSs could be used to restrict the path of arc additions.

Future work can be extended in various directions. Firstly, more experiments are needed to
derive stronger conclusions about the effect of this type of pruning across different algorithms and
hyperparameter settings (e.g., over different bounded maximum in-degree). Other research directions
include investigating this type of pruning on ordered-based algorithms, where such a pruning strategy
could be used to restrict the search space of ordered-based graphs. Lastly, other studies have shown that
maximising an objective function does not necessarily imply a more accurate causal graph, especially
when the data incorporate noise [34]. This diminishes the importance of exact learning and invites
future work where the effect of pruning is judged in terms of graphical structure, in addition to its
impact on a fitting score.
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