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Abstract. We present necessary and sufficient conditions to have global hy-

poellipticity and global solvability for a class of vector fields defined on a

product of compact Lie groups. In view of Greenfield’s and Wallach’s conjec-

ture, about the non-existence of globally hypoelliptic vector fields on compact

manifolds different from tori, we also investigate different notions of regularity

weaker than global hypoellipticity and describe completely the global hypoel-

lipticity and global solvability of zero-order perturbations of our vector fields.

We also present a class of vector fields with variable coefficients whose oper-

ators can be reduced to a normal form, and we prove that the study of the

global properties of such operators is equivalent to the study of the respective

properties for their normal forms.
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1. Introduction

In this note, we study the regularity of solutions and solvability of vector fields

(and their perturbations by zero order terms) on a compact Lie group G. More

precisely, if D′(G) stands for the space of distributions on G and P : D′(G)→ D′(G)

is a first-order differential operator, we are interested in establishing conditions that

ensure that u is smooth whenever Pu is smooth. We also want to identify under

what conditions it is possible to guarantee that Pu = f ∈ D′(G) has a solution,

in the sense of distributions. These properties are known as global hypoellipticity

and global solvability, and have been widely studied in recent years, especially on

the d−dimensional torus Td. See, for example, the impressive list of authors who

have published articles addressing these subjects: [3], [4], [5], [6], [10], [17], [18],

[19], [20], [21], [22], [23], [24], [25], [26], [29], [30] and references therein.

Even in the case of Td, the investigation of these global properties for vector fields

is a challenging problem that still has open questions. Perhaps, the most famous and

seemingly far-off question of a solution is the Greenfield’s and Wallach’s conjecture,

which states the following: if a closed smooth orientable manifold admits a globally

hypoelliptic vector field, then this manifold is C∞−diffeomorphic to a torus and this

vector field is C∞−conjugated to a constant vector field whose coefficients satisfy

a Diophantine condition (see [16] and [20]). S. Greenfield and N. Wallach have

proved this conjecture for compact Lie groups in [20]. The conjecture it was also

proved for compact manifolds of dimensions 2 and 3, and in some very particular

cases, which are described by G. Forni in [16] and by L. Flaminio, G. Forni, and F.

Rodriguez Hertz in [15].
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Most of the studies that deal with the question of global hypoellipticity and

global solvability in the torus make use of the Fourier analysis as the main tool to

obtain results from conditions imposed on the symbol or on the coefficients of the

operator. For example, in [19], S. Greenfield and N. Wallach use only the Fourier se-

ries in Td to characterize the global hypoellipticity of a differential operator through

its symbol. In that paper there appears for the first time the famous application:

L = ∂x + a∂y, a ∈ R is globally hypoelliptic in T2 if, and only if, a is an irrational

non-Liouville number. Therefore a natural way of extending such studies to other

smooth manifolds would be to consider manifolds where we have a Fourier analysis.

In this direction, based on ideas [21] and [36], J. Delgado and the third author

[13] introduced on compact smooth manifolds M a notion of Fourier series for

operators that commute with a fixed elliptic operator. Using these ideas, a study

of global hypoellipticity for such operators was made in [11], [12], and [27]. The

obvious disadvantage of this technique is that for now, it works only for operators

that commute with a fixed elliptic operator.

In the particular case where the compact manifold is a Lie group G, there is a

natural way of introducing a Fourier analysis into G, see for example [7], [8], [9],

[14], [32], [33], [34], [35], [37]. In this paper we use the notation and results based on

the book by M. Ruzhansky and V. Turunen [31] to study the global hypoellipticity

and global solvability of a class of vector fields defined on Lie groups.

In the development of this project, we find natural to begin by extending the

results of [19] to a product of Lie groups G1×G2. More precisely, if L = X1 +aX2,

where Xj is a vector field on the Lie algebra gj and a ∈ C, then we characterize

completely the global hypoellipticity and global solvability of L, presenting neces-

sary and sufficient conditions on the behavior of its symbol σL. In a subsection

dedicated to examples, we recover the results obtained in [19] to the torus and

present an example on T1 × S3. This case was called “constant-coefficient vector

field”.

Given the validity of the Greenfield’s and Wallach’s conjecture on compact Lie

groups, we introduce two different notions of global regularity weaker than the

global hypoellipticity. The first one, global hypoellipticity modulo kernel, was in-

spired by the paper [1] of G. Araújo; and the second, W–global hypoellipticity,
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emerged naturally in the development of this study. In both cases, we also char-

acterize the regularity of L = X1 + aX2 by analyzing the behavior of the symbol

σL. To complement the study of the case of constant coefficients vector fields, we

consider perturbations of L by low order terms, obtaining necessary and sufficient

conditions to have global hypoellipticity and global solvability.

Finally, we introduce the class of variable coefficients vector fields of the form

L = X1 + a(x1)X2, where a ∈ C∞(G1) is a real-valued function. We show that the

vector field of this class can be reduced to a normal form, so the study of the global

properties of such operators is equivalent to the study of the respective properties

of their normal forms.

The paper is organized as follows. In Section 2 we recall some classical results

about Fourier analysis on compact Lie groups and fix the notation that will be used

throughout the text. In Section 3 we give necessary and sufficient conditions for

the global hypoellipticity and the global solvability of constant-coefficient vector

fields defined on compact Lie groups and we present a class of examples. Because

of the Greenfield-Wallach conjecture, in Section 4 we present two weaker notions

of hypoellipticity. In Section 5 we study perturbations of vector fields by low order

terms, both by constants and by functions. Finally, in Section 6 we characterize

global properties of a class of perturbed vector fields with variable coefficients. We

present the normal form and establish a connection between the global properties

of perturbed vector fields with variable and constant coefficients.

2. Fourier analysis on compact Lie groups

In this section we recall most of the notations and preliminary results necessary

for the development of this study. A very careful presentation of these concepts and

the demonstration of all the results presented here can be found in the references

[14] and [31].

Let G be a compact Lie group and let Rep(G) be the set of continuous irreducible

unitary representations of G. Since G is compact, every continuous irreducible

unitary representation φ is finite dimensional and it can be viewed as a matrix-

valued function φ : G → Cdφ×dφ , where dφ = dimφ. We say that φ ∼ ψ if there

exists an unitary matrix A ∈ Cdφ×dφ such that Aφ(x) = ψ(x)A, for all x ∈ G. We

will denote by Ĝ the quotient of Rep(G) by this equivalence relation.
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For f ∈ L1(G) the group Fourier transform of f at φ ∈ Rep(G) is

f̂(φ) =

∫
G

f(x)φ(x)∗ dx,

where dx is the normalized Haar measure on G. By the Peter-Wyel theorem, we

have that

(2.1) B :=
{√

dimφφij ; φ = (φij)
dφ
i,j=1, [φ] ∈ Ĝ

}
,

is an orthonormal basis for L2(G), where we pick only one matrix unitary repre-

sentation in each class of equivalence, and we may write

f(x) =
∑
[φ]∈Ĝ

dφTr(φ(x)f̂(φ)).

Moreover, the Plancherel formula holds:

(2.2) ‖f‖L2(G) =

∑
[φ]∈Ĝ

dφ ‖f̂(φ)‖2HS


1
2

=: ‖f̂‖`2(Ĝ),

where

‖f̂(φ)‖2HS = Tr(f̂(φ)f̂(φ)∗) =

dφ∑
i,j=1

∣∣f̂(φ)ij
∣∣2.

Let LG be the Laplace-Beltrami operator of G. For each [φ] ∈ Ĝ, its matrix

elements are eigenfunctions of LG correspondent to the same eigenvalue that we

will denote by −ν[φ], where ν[φ] ≥ 0. Thus

−LGφij(x) = ν[φ]φij(x), for all 1 ≤ i, j ≤ dφ,

and we will denote by

〈φ〉 :=
(
1 + ν[φ]

)1/2
the eigenvalues of (I−LG)1/2. We have the following estimate for the dimension of

φ (Proposition 10.3.19 of [31]): there exists C > 0 such that for all [ξ] ∈ Ĝ it holds

dφ ≤ C〈φ〉
dimG

2 .

For x ∈ G, X ∈ g and f ∈ C∞(G), define

LXf(x) :=
d

dt
f(x exp(tX))

∣∣∣∣
t=0

.
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The operator LX is left-invariant, that is, πL(y)LX = LXπL(y), for all y ∈ G.

When there is no possibility of ambiguous meaning, we will write only Xf instead

of LXf .

Let G be a compact Lie group of dimension d and {Xi}di=1 a basis of its Lie

algebra. For a multi-index α = (α1, · · · , αd) ∈ Nd0, the left-invariant differential

operator of order |α| is

(2.3) ∂α := Y1 · · ·Y|α|,

with Yj ∈ {Xi}di=1, 1 ≤ j ≤ |α| and
∑

j:Yj=Xk

1 = αk for every 1 ≤ k ≤ d. It

means that ∂α is a composition of left-invariant derivatives with respect to vector

X1, . . . , Xd such that each Xk enters ∂α exactly αk times. We do not specify in the

notation ∂α the order of vectors X1, . . . , Xd, but this will not be relevant for the

arguments that we will use in this article.

We endow C∞(G) with the usual Fréchet space topology defined by the family of

seminorms pα(f) = max
x∈G
|∂αf(x)|, α ∈ N. Thus, the convergence on C∞(G) is just

the uniform convergence of functions and all their derivatives. As usual the space

of distributions D′(G) is the space of all continuous linear functionals on C∞(G).

For u ∈ D′(G), we define the distribution ∂αu as

〈∂αu, ψ〉 := (−1)|α|〈u, ∂αψ〉,

for all ψ ∈ C∞(G), and α ∈ Nd0.

Let P : C∞(G) → C∞(G) be a continuous linear operator. The symbol of the

operator P in x ∈ G and φ ∈ Rep(G), φ = (φij)
dφ
i,j=1 is

σP (x, φ) := φ(x)∗(Pφ)(x) ∈ Cdφ×dφ ,

where (Pφ)(x)ij := (Pφij)(x), for all 1 ≤ i, j ≤ dφ, and we have

Pf(x) =
∑
[φ]∈Ĝ

dim(φ)Tr
(
φ(x)σP (x, φ)f̂(φ)

)
for every f ∈ C∞(G) and x ∈ G.

Notice that the last expression is independent of the choice of the representative.

When P : C∞(G) → C∞(G) is a continuous linear left-invariant operator, that is

PπL(y) = πL(y)P , for all y ∈ G, we have that σP is independent of x ∈ G and

P̂ f(φ) = σP (φ)f̂(φ),
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for all f ∈ C∞(G) and [φ] ∈ Ĝ.

Let X ∈ g be a vector field normalized by the norm induced by the Killing form.

It is easy to see that the operator iX is symmetric on L2(G). Hence, for all [φ] ∈ Ĝ

we can choose a representative φ such that σiX(φ) is a diagonal matrix, with entries

λm ∈ R, 1 ≤ m ≤ dφ. By the linearity of the symbol, we obtain

σX(φ)mn = iλmδmn, λj ∈ R.

Notice that {λm}
dφ
m=1 are the eigenvalues of σiX(φ) and then are independent of

the choice of the representative, since the symbol of equivalent representations are

similar matrices. Moreover, since −(LG−X2) is a positive operator and commutes

with X2,

|λm(φ)| ≤ 〈φ〉,

for all [φ] ∈ Ĝ and 1 ≤ m ≤ dφ.

Smooth functions and distributions can be characterized by their Fourier coeffi-

cients:

Proposition 2.1 (Page 759 of [7]). Let G be a compact Lie group. The following

three statements are equivalent:

1. f ∈ C∞(G);

2. for each N > 0, there exists CN > 0 such that

‖f̂(φ)‖HS ≤ CN 〈φ〉−N ,

for all [φ] ∈ Ĝ;

3. for each N > 0, there exists CN > 0 such that

|f̂(φ)ij | ≤ CN 〈φ〉−N ,

for all [φ] ∈ Ĝ and 1 ≤ i, j ≤ dφ.

Moreover, the following three statements are equivalent:

4. u ∈ D′(G);

5. there exist C, N > 0 such that

‖û(φ)‖HS ≤ C〈φ〉N ,

for all [φ] ∈ Ĝ;
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6. there exist C, N > 0 such that

|û(φ)ij | ≤ C〈φ〉N ,

for all [φ] ∈ Ĝ and 1 ≤ i, j ≤ dφ.

Let G1 and G2 be compact Lie groups and set G = G1 ×G2. Given f ∈ L1(G)

and ξ ∈ Rep(G1), the partial Fourier coefficient of f with respect to the first variable

is defined by

f̂(ξ, x2) =

∫
G1

f(x1, x2) ξ(x1)∗ dx1 ∈ Cdξ×dξ , x2 ∈ G2,

with components

f̂(ξ, x2)mn =

∫
G1

f(x1, x2) ξ(x1)nm dx1, 1 ≤ m,n ≤ dξ.

Analogously we define the partial Fourier coefficient of f with respect to the second

variable. Notice that, by definition, f̂(ξ, · )mn ∈ C∞(G2) and f̂( · , η)rs ∈ C∞(G1).

Let u ∈ D′(G), ξ ∈ Rep(G1) and 1 ≤ m,n ≤ dξ. The mn-component of

the partial Fourier coefficient of u with respect to the first variable is the linear

functional defined by

û(ξ, · )mn : C∞(G2) −→ C

ψ 7−→ 〈û(ξ, · )mn, ψ〉 :=
〈
u, ξnm × ψ

〉
G
.

In a similar way, for η ∈ Rep(G2) and 1 ≤ r, s ≤ dη, we define the rs-component

of the partial Fourier coefficient of u with respect to the second variable. It is easy

to see that û(ξ, · )mn ∈ D′(G2) and û( · , η)rs ∈ D′(G1).

Notice that ̂̂u(ξ, η)mnrs = ̂̂u(ξ, η)rsmn = û(ξ ⊗ η)ij ,

with i = dη(m− 1) + r and j = dη(n− 1) + s, whenever u ∈ C∞(G) or u ∈ D′(G).

Finally, we have the following characterization of smooth functions and distri-

butions on G = G1 ×G2:

Proposition 2.2 (Theorems 3.3 and 3.4 of [28]). Let G1 and G2 be compact Lie

groups, and set G = G1 ×G2 . The following three statements are equivalent:

1. f ∈ C∞(G);
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2. for each N > 0, there exists CN > 0 such that

‖ ̂̂f(ξ, η)‖HS ≤ CN (〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2;

3. for each N > 0, there exists CN > 0 such that∣∣∣ ̂̂f(ξ, η)mnrs

∣∣∣ ≤ CN (〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, and 1 ≤ r, s ≤ dη.

Moreover, the following statements are equivalent:

4. u ∈ D′(G);

5. there exists C, N > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ C(〈ξ〉+ 〈η〉)N ,

for all [ξ] ∈ Ĝ1 and [η] ∈ Ĝ2;

6. there exists C, N > 0 such that∣∣∣ ̂̂u(ξ, η)mnrs

∣∣∣ ≤ C(〈ξ〉+ 〈η〉)N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, and 1 ≤ r, s ≤ dη.

3. Constant coefficient vector fields

Let G1 and G2 be compact Lie groups, G := G1 × G2, and consider the linear

operator L : C∞(G)→ C∞(G) defined by

L := X1 + aX2,

where X1 ∈ g1, X2 ∈ g2 and a ∈ C. Thus, for each u ∈ C∞(G) we have

Lu(x1, x2) := X1u(x1, x2) + aX2u(x1, x2)

:=
d

dt
u(x1 exp(tX1), x2)

∣∣∣∣
t=0

+ a
d

ds
u(x1, x2 exp(sX2))

∣∣∣∣
s=0

.

The operator L extends to distributions in a natural way, that is, if u ∈ D′(G),

then

〈Lu, ϕ〉G := −〈u, Lϕ〉G, ϕ ∈ C∞(G).

In this section we present necessary and sufficient conditions for the vector field

L to be globally hypoelliptic and to be globally solvable. We also present examples

recovering known results in the torus and presenting an example in T1 × S3.
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3.1. Global hypoellipticity.

Definition 3.1. Let G be a compact Lie group. We say that an operator P :

D′(G) → D′(G) is globally hypoelliptic if the conditions u ∈ D′(G) and Pu ∈

C∞(G) imply that u ∈ C∞(G).

Consider the equation

Lu(x1, x2) = X1u(x1, x2) + aX2u(x1, x2) = f(x1, x2),

where f ∈ C∞(G). For each [ξ] ∈ Ĝ1, we can choose a representative ξ ∈ Rep(G1)

such that

σX1
(ξ)mn = iλm(ξ)δmn, 1 ≤ m,n ≤ dξ,

where λm(ξ) ∈ R for all [ξ] ∈ Ĝ1 and 1 ≤ m ≤ dξ. Similarly, for each [η] ∈ Ĝ2, we

can choose a representative η ∈ Rep(G2) such that

σX2
(η)rs = iµr(η)δrs, 1 ≤ r, s ≤ dη,

where µr(η) ∈ R for all [η] ∈ Ĝ2 and 1 ≤ r ≤ dη.

Suppose that u ∈ C∞(G). Thus, taking the partial Fourier coefficient with

respect to the first variable at x2 ∈ G2 we obtain

f̂(ξ, x2) = L̂u(ξ, x2)

=

∫
G1

Lu(x1, x2)ξ(x1)∗ dx1

=

∫
G1

X1u(x1, x2)ξ(x1)∗ dx1 + a

∫
G1

X2u(x1, x2)ξ(x1)∗ dx1

= X̂1u(ξ, x2) + aX2

∫
G1

u(x1, x2)ξ(x1)∗ dx1

= σX1(ξ)û(ξ, x2) + aX2û(ξ, x2).

Hence, for each x2 ∈ G2, f̂(ξ, x2) ∈ Cdξ×dξ and

f̂(ξ, x2)mn = iλm(ξ)û(ξ, x2)mn + aX2û(ξ, x2)mn, 1 ≤ m,n ≤ dξ.
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The details about partial Fourier series can be found in [28]. Now, taking the

Fourier coefficient of f̂(ξ, ·)mn with respect to the second variable, we obtain

̂̂f(ξ, η)mn =

∫
G2

f̂(ξ, x2)mnη(x2)∗ dx2

=

∫
G2

(iλm(ξ)û(ξ, x2)mn + aX2û(ξ, x2)mn)η(x2)∗ dx2

= iλm(ξ)

∫
G2

û(ξ, x2)mnη(x2)∗ dx2 + a

∫
G2

X2û(ξ, x2)mnη(x2)∗ dx2

= iλm(ξ) ̂̂u(ξ, η)mn + aσX2
(η) ̂̂u(ξ, η)mn.

Thus, ̂̂f(ξ, η)mn ∈ Cdη×dη and

̂̂f(ξ, η)mnrs = i(λm(ξ) + aµr(η)) ̂̂u(ξ, η)mnrs , 1 ≤ r, s ≤ dη.

From this we can conclude that

(3.1) ̂̂f(ξ, η)mnrs = 0, whenever λm(ξ) + aµr(η) = 0.

Moreover, if λm(ξ) + aµr(η) 6= 0, then

(3.2) ̂̂u(ξ, η)mnrs =
1

i(λm(ξ) + aµr(η))
̂̂f(ξ, η)mnrs .

We begin by presenting the following necessary condition for global hypoellip-

ticity of the vector field L = X1 + aX2.

Proposition 3.2. Suppose that the set

(3.3)

N = {([ξ], [η]) ∈ Ĝ1 × Ĝ2; λm(ξ) + aµr(η) = 0, for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη}

has infinitely many elements. Then there exists u ∈ D′(G) \ C∞(G) such that

Lu = 0.

In particular, L is not globally hypoelliptic.

Proof. Consider the sequence

̂̂u(ξ, η)mnrs =

 1, if λm(ξ) + aµr(η) = 0,

0, otherwise

Notice that for any [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ and 1 ≤ r, s ≤ dη we have

| ̂̂u(ξ, η)mnrs | ≤ 〈ξ〉+ 〈η〉.



12 A. KIRILOV, W. A. A. DE MORAES, AND M. RUZHANSKY

Thus by the characterization of distributions by Fourier coefficients (Theorem 2.2)

we conclude that u ∈ D′(G), where

u =
∑

[ξ]∈Ĝ1

∑
[η]∈Ĝ2

dξdη

dξ∑
m,n=1

dη∑
r,s=1

̂̂u(ξ, η)mnrsξnmηsr.

Since there exist infinitely many representations such that ̂̂u(ξ, η)mnrs = 1, it fol-

lows that u /∈ C∞(G). Furthermore, we have

̂̂Lu(ξ, η)mnrs = i(λm(ξ) + aµr(η)) ̂̂u(ξ, η)mnrs = 0,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. Then, by Plancherel formula

(2.2), we conclude that Lu = 0. �

Theorem 3.3. The operator L = X1 + aX2 is globally hypoelliptic if and only if

the following conditions are satisfied:

1. The set

N = {([ξ], [η]) ∈ Ĝ1 × Ĝ2; λm(ξ) + aµr(η) = 0, for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη}

is finite.

2. ∃C, M > 0 such that

(3.4) |λm(ξ) + aµr(η)| ≥ C(〈ξ〉+ 〈η〉)−M ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη, whenever λm(ξ) + aµr(η) 6=

0.

Proof. ( ⇐= ) Suppose that Lu = f ∈ C∞(G) for some u ∈ D′(G). Let us prove

that u ∈ C∞(G). Since the set N is finite, there exists C > 0 such that

| ̂̂u(ξ, η)mnrs | ≤ C,

for all ([ξ], [η]) ∈ N , 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη. Let N ∈ N. Then, for

([ξ], [η]) ∈ N , we have

| ̂̂u(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)N (〈ξ〉+ 〈η〉)−N

≤ C ′N (〈ξ〉+ 〈η〉)−N
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where C ′N = max
([ξ],[η])∈N

{
C(〈ξ〉+ 〈η〉)N

}
. On the other hand, if ([ξ], [η]) /∈ N , by

(3.2) and (3.4) we obtain

| ̂̂u(ξ, η)mnrs | =
1

|λm(ξ) + aµr(η)|
| ̂̂f(ξ, η)mnrs |

≤ C−1(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |

Since f ∈ C∞(G), there exists CN+M > 0 such that

| ̂̂f(ξ, η)mnrs | ≤ CN+M (〈ξ〉+ 〈η〉)−(N+M)

Thus,

| ̂̂u(ξ, η)mnrs | ≤ C−1CN+M (〈ξ〉+ 〈η〉)M (〈ξ〉+ 〈η〉)−(N+M)

= C ′′N (〈ξ〉+ 〈η〉)−N ,

where C ′′N = C−1CN+M . Hence, if ([ξ], [η]) /∈ N we conclude that

| ̂̂u(ξ, η)mnrs | ≤ C ′′N (〈ξ〉+ 〈η〉)−N .

Setting CN := max{C ′N , C ′′N}, we have

| ̂̂u(ξ, η)mnrs | ≤ CN (〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2. Therefore by Theorem 2.2 we conclude that u ∈ C∞(G).

( =⇒ ) Let us prove the result by contradiction. If the condition 1 were not

satisfied, by Proposition 3.2, there would be u ∈ D′(G)\C∞(G) such that Lu = 0,

contradicting the hypothesis of global hypoellipticity of L. So, let us assume that

Condition 2 is not satisfied, then for every M ∈ N, we choose [ξM ] ∈ Ĝ1 and

[ηM ] ∈ Ĝ2 such that

(3.5) 0 < |λm(ξM ) + aµr(ηM )| ≤ (〈ξM 〉+ 〈ηM 〉)−M ,

for some 1 ≤ m ≤ dξM and 1 ≤ r ≤ dηM .

Let A = {([ξj ], [ηj ])}j∈N. It is easy to see that A has infinitely many elements.

Define

̂̂u(ξ, η)mnrs =

 1, if ([ξ], [η]) = ([ξj ], [ηj ]) for some j ∈ N and (3.5) is satisfied,

0, otherwise.

In this way, u ∈ D′(G)\C∞(G). Let us show that Lu = f ∈ C∞(G).
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If ([ξ], [η]) /∈ A, then | ̂̂f(ξ, η)mnrs | = 0. Moreover, for every M ∈ N, we have

| ̂̂f(ξM , ηM )mnrs | = |λm(ξM ) + aµr(ηM )|| ̂̂u(ξM , ηM )mnrs |

≤ (〈ξM 〉+ 〈ηM 〉)−M

for every element of A.

Fix N > 0. If M > N , then

| ̂̂f(ξM , ηM )mnrs | ≤ (〈ξM 〉+ 〈ηM 〉)−M ≤ (〈ξM 〉+ 〈ηM 〉)−N .

For M ≤ N we have∣∣∣ ̂̂f(ξM , ηM )mnrs

∣∣∣ =
∣∣∣ ̂̂f(ξM , ηM )mnrs

∣∣∣ (〈ξM 〉+ 〈ηM 〉)N (〈ξM 〉+ 〈ηM 〉)−N

≤ C ′N (〈ξM 〉+ 〈ηM 〉)−N .

where C ′N := max
M≤N

{
| ̂̂f(ξM , ηM )mnrs |(〈ξM 〉+ 〈ηM 〉)N

}
. For CN = max{C ′N , 1} we

obtain

| ̂̂f(ξ, η)mnrs | ≤ CN (〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη. Therefore f ∈ C∞(G),

which contradicts the assumption that L is globally hypoelliptic. �

3.2. Global solvability. In the literature there are several notions of the solvabil-

ity of an operator, mainly depending on the functional environment in which one is

working and what one intends to study. So the first step here is to define precisely

what we mean by the global solvability.

Given a function (or distribution) f defined on G, assume that u ∈ D′(G) is a

solution of Lu = f . By taking the partial Fourier coefficient with respect to x1 and

x2 separately, and following the same procedure of the last subsection, we obtain

from (3.1) that

λm(ξ) + aµr(η) = 0 =⇒ ̂̂f(ξ, η)mnrs = 0.

Therefore, let us consider the following set

K := {w ∈ D′(G); ̂̂w (ξ, η)mnrs = 0, whenever λm(ξ) + aµr(η) = 0}.

If f /∈ K, then there is no u ∈ D′(G) such that Lu = f . We call the elements of K

of admissible functions (distributions) for the solvability of L.

Definition 3.4. We say that the operator L is globally solvable if L(D′(G)) = K.
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Theorem 3.5. The operator L = X1 + aX2 is globally solvable if and only if there

exist C, M > 0 such that

(3.6) |λm(ξ) + aµr(η)| ≥ C(〈ξ〉+ 〈η〉)−M ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη whenever λm(ξ) + aµr(η) 6= 0.

Proof. (⇐= ) For each f ∈ K define

(3.7)

̂̂u(ξ, η)mnrs =

 0, if λm(ξ) + aµr(η) = 0,

−i(λm(ξ) + aµr(η))−1 ̂̂f(ξ, η)mnrs , otherwise.

Let us show that { ̂̂u(ξ, η)mnrs} is the sequence of Fourier coefficient of an element

u ∈ D′(G). Since f ∈ D′(G), there exists N ∈ N and C > 0 such that

| ̂̂f(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. So

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + aµr(η)|−1| ̂̂f(ξ, η)mnrs |(3.8)

≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |

≤ C(〈ξ〉+ 〈η〉)N+M

Therefore u ∈ D′(G) and Lu = f .

( =⇒ ) Let us proceed by contradiction by constructing an element f ∈ K such

that there is no u ∈ D′(G) satisfying Lu = f .

If (3.6) is not satisfied, for each M ∈ N, there exists [ξM ] ∈ Ĝ1 and [ηM ] ∈ Ĝ2

such that

(3.9) 0 < |λm̃(ξM ) + aµr̃(ηM )| < (〈ξM 〉+ 〈ηM 〉)−M ,

for some 1 ≤ m̃ ≤ dξM and 1 ≤ r̃ ≤ dηM . We can suppose that 〈ξM 〉 + 〈ηM 〉 ≤

〈ξN 〉+ 〈ηN 〉 when M ≤ N . Let A = {([ξj ], [ηj ])}j∈N. Consider f ∈ K defined by

̂̂f(ξ, η)mnrs =

 1, if ([ξ], [η]) = ([ξj ], [ηj ]) for some j ∈ N and (3.9) is satisfied,

0, otherwise.

Suppose that there exits u ∈ D′(G) such that Lu = f . In this way, its Fourier

coefficients must satisfy

i(λm(ξ) + aµr(η)) ̂̂u(ξ, η)mnrs = ̂̂f(ξ, η)mnrs .
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So

| ̂̂u(ξM , ηM )m̃1r̃1 | = |λm̃(ξM ) + aµr̃(ηM )|−1|| ̂̂f(ξM , ηM )m̃1r̃1 |

> (〈ξM 〉+ 〈ηM 〉)M ,

where m̃ and r̃ are coefficients that satisfy (3.9). Thus

‖ ̂̂u(ξM , ηM )‖HS > (〈ξM 〉+ 〈ηM 〉)M ,

for all M > 0, which contradicts the fact that u ∈ D′(G). Therefore there does not

exist u ∈ D′(G) such that Lu = f . �

Notice that the estimate for the global solvability in the statement of the last

theorem is exactly the same as one of the conditions to obtain global hypoellipticity

announced in (3.4), thus we have the following corollary.

Corollary 3.6. If L is globally hypoelliptic, then L is globally solvable.

A more detailed analysis of the last proof shows that it is possible to obtain a

better control on the Fourier coefficients of u when f is smooth, more precisely, we

have the following result.

Proposition 3.7. If L is globally solvable and f ∈ K ∩ C∞(G), then there exists

u ∈ C∞(G) such that Lu = f .

Proof. Let f ∈ K ∩ C∞(G) and define u as in (3.7). Since L is globally solvable,

we have (3.6), and then by (3.8)

| ̂̂u(ξ, η)mnrs | = |λm(ξ) + aµr(η)|−1| ̂̂f(ξ, η)mnrs |

≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |.

In view of the smoothness of f , for every N > 0 there exists CN > 0 such that

| ̂̂f(ξ, η)mnrs | ≤ CN (〈ξ〉+ 〈η〉)−N ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. Hence

| ̂̂u(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs | ≤ CN+M (〈ξ〉+ 〈η〉)−N .

Therefore u ∈ C∞(G) and Lu = f . �
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Remark 3.8. The proposition above says that we can obtain a smooth solution

for Lu = f in the case where L is globally solvable and f is a smooth admissible

function. Notice that this does not mean that L is globally hypoelliptic.

3.3. Examples. In this section we recover some classical examples of S. Greenfield

and N. Wallach (see [19]), on the global hypoellipticity and global solvability in tori

(T2 and Td) and present a class of examples in T1 × S3.

Example 3.9. G = T2

Set G1 = G2 = T1, where T1 = R/2πZ. Since T1 is abelian, the irreducible

unitary representations of T1 are unidimensional. Moreover the dual T̂1 can be

identified to Z. For each k ∈ Z, the function ek : T1 → U(C) defined by

ek(t) := eitk

is an element of T̂1 and

T̂1 ∼= {ek}k∈Z.

The Haar measure on T1 is the normalized Lebesgue measure and

〈k〉 := 〈ek〉 =
√

1 + k2.

Let a ∈ C and consider the operator

L = ∂t + a∂x, (t, x) ∈ T1 × T1.

Notice that

σ∂t(ek) = ek(t)∗(∂tek)(t) = e−itk(ikeitk) = ik,

that is, λ(ek) = k, for all k ∈ Z. Thus, if Lu = f , then

̂̂f(k, `) = i(k + a`) ̂̂u(k, `).

In this case,

N = {(k, `) ∈ Z2; k + a` = 0}.

By Theorem 3.3, L is globally hypoelliptic if and only if N is finite and there exist

C,M > 0 such that

|k + a`| ≥ C(〈k〉+ 〈`〉)−M
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for all (k, `) ∈ Z2, whenever k + a` 6= 0. For (k, `) 6= (0, 0), we have

|k|+ |`| ≤ 〈k〉+ 〈`〉 ≤ 3(|k|+ |`|),

then the second condition of the Theorem 3.3 becomes

(3.10) |k + a`| ≥ C(|k|+ |`|)−M

for all (k, `) ∈ Z2, whenever k + a` 6= 0.

Notice that N is an infinity set if and only if a ∈ Q. Moreover, if a /∈ Q, then

N = {(0, 0)}. Suppose that Im(a) 6= 0. If ` 6= 0, then

|k + a`| ≥ |Im(a)||`| ≥ |Im(a)|(|k|+ |`|)−1.

If ` = 0, we have k 6= 0 and

|k + a`| = |k| ≥ (|k|+ |`|)−1.

Take C = min{1, |Im(a)|}. Then

|k + a`| ≥ C(|k|+ |`|)−1,

for all (k, `) ∈ Z2 \ {(0, 0)}. Therefore, if Im(a) 6= 0 then L is globally hypoelliptic.

Suppose now that Im(a) = 0. We recall that an irrational number a is called a

Liouville number if it can be approximated by rational numbers to any order. That

is, for every positive integer N there is K > 0 and infinitely many integer pairs

(k, `) so that ∣∣∣∣a− k

`

∣∣∣∣ < K

`N
.

Notice that the inequality (3.10) is satisfied if and only if a is an irrational

non-Liouville number.

We conclude that L = ∂t + a∂x is globally hypoelliptic if and only if Im(a) 6= 0

or a is an irrational non-Liouville number.

For solvability we need to analyze the condition 2 of the Theorem 3.3 when

a ∈ Q. Suppose that a = p
q , p ∈ Z and q ∈ N. We have

|k + a`| =
∣∣∣∣k +

p

q
`

∣∣∣∣ =
1

q
|qk + p`| ≥ 1

q
≥ 1

q
(|k|+ |`|)−1,

for all (k, `) ∈ Z2, whenever qk + p` 6= 0.

Therefore, L = ∂t + a∂x is globally solvable if and only if Im(a) 6= 0, or a ∈ Q,

or a is an irrational non-Liouville number.
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Example 3.10. G = Td

From the above example we can extend the analysis for operators defined on Td.

Let

L =

d∑
j=1

aj∂tj , aj ∈ C

If Lu = f , then

f̂(k1, · · · , kd) = i

 d∑
j=1

ajkj

 û(k1, · · · , kd).

The set N is

N =

k ∈ Zd;
d∑
j=1

ajkj = 0

 ,

and by Theorem 3.3, L is globally hypoelliptic if and only if N is finite and there

exists C,M > 0 such that∣∣∣∣∣∣
d∑
j=1

ajkj

∣∣∣∣∣∣ ≥ C
 d∑
j=1

|kj |

−M ,

for all k ∈ Zd whenever
d∑
j=1

ajkj 6= 0.

For instance, if some aj = 0, then the set N is infinity, which implies that L

is not globally hypoelliptic. It is easy to see that if all aj ∈ Q, then L is globally

solvable, even if some of aj = 0.

If aj = 1 for j = 1, · · · , d − 1 and Im(ad) 6= 0, than L is globally hypoelliptic.

The same is true if we consider ad being an irrational non-Liouville number.

Example 3.11. G = T1 × S3

Let Ŝ3 be the unitary dual of S3, that is, Ŝ3 consists of equivalence classes [t`] of

continuous irreducible unitary representations t` : S3 → C(2`+1)×(2`+1), ` ∈ 1
2N0, of

matrix-valued functions satisfying t`(xy) = t`(x)t`(y) and t`(x)∗ = t`(x)−1 for all

x, y ∈ S3. We will use the standard convention of enumerating the matrix elements

t`mn of t` using indices m,n ranging between −` to ` with step one, i.e. we have

−` ≤ m,n ≤ ` with `−m, `− n ∈ N0. For ` ∈ 1
2N0 we have

〈`〉 :=
〈
t`
〉

=
√

1 + `(`+ 1).

The details about the Fourier analysis on S3 can be found in Chapter 11 of [31].
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Let X be a smooth vector field on S3 and a ∈ C. Consider the following operator

defined on T1 × S3:

L = ∂t + aX.

Using rotation on S3, without loss of generality, we may assume that the vector

field X has the symbol

σX(`)mn = imδmn, ` ∈ 1
2N0, −` ≤ m,n ≤ `, `−m, `− n ∈ N0,

with δmn standing for the Kronecker’s delta (see [31], [33], and [34]). Hence, if

Lu = f , then ̂̂f(k, `)mn = i(k + am) ̂̂u(k, `)mn,

where k ∈ Z, ` ∈ 1
2N0, −` ≤ m,n ≤ ` and `−m, `− n ∈ N0. In this case,

N = {(k, `) ∈ Z× 1
2N0; k + am = 0, for some − ` ≤ m ≤ `, `−m ∈ N0}.

By Theorem 3.3, L is globally hypoelliptic if and only if N is finite and there exist

C,M > 0 such that

(3.11) |k + am| ≥ C(〈k〉+ 〈`〉)−M

for all (k, `) ∈ Z × 1
2N0, −` ≤ m ≤ `, ` − m ∈ N0 whenever k + am 6= 0. For

` ∈ 1
2N0, we have

1√
2

(1 + `) ≤ 〈t`〉 ≤ 1 + `

and we can write (3.11) as

|k + am| ≥ C(|k|+ 1 + `)−M

for all (k, `) ∈ Z× 1
2N0, −` ≤ m ≤ `, `−m ∈ N0 whenever k + am 6= 0.

Notice that (0, `) ∈ N , for all ` ∈ N0, so N has infinitely many elements and

then L is not globally hypoelliptic for any a ∈ C.

The analysis of the global solvability of L is similar to the T2 case and we have

that L is globally solvable if and only if Im(a) 6= 0, or a ∈ Q, or a is an irrational

non-Liouville number.
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4. Weaker notions of hypoellipticity

All the known examples of globally hypoelliptic vector fields are set on tori.

Actually, in 1973, S. Greenfield and N. Wallach proposed the following conjecture.

Conjecture 4.1 (Greenfield-Wallach). If a closed, connected, orientable manifold

M admits a globally hypoelliptic vector field X, then M is diffeomorphic to a torus

and X is smoothly conjugate to a constant Diophantine vector field.

In [16], G. Forni showed the equivalence between this conjecture and Katok’s

conjecture, about the existence of C∞–cohomology free smooth vector fields on

closed, connected, orientable smooth manifolds. From this equivalence we will

show that on compact connected Lie groups the set N defined in (3.3) contains

only the trivial representation. First, let us define what is a C∞–cohomology free

vector field.

Definition 4.2. Let M be a closed, connected, orientable smooth manifold. A

smooth vector field X on M is C∞–cohomology free if for all f ∈ C∞(M) there

exists a constant c(f) ∈ C and u ∈ C∞(M) such that

Xu = f − c(f).

Theorem 4.3. [G. Forni [16]] Let X be a smooth vector field on a closed con-

nected manifold M . Then X is C∞–cohomology free if and only if X is globally

hypoelliptic.

Proposition 4.4. If G is a compact connected Lie group and L is globally hypoel-

liptic, then N has only one element.

Proof. Notice that for the trivial representations 1G1 and 1G2 we have λ1(1G1) =

µ1(1G2
) = 0, so N 6= ∅. Suppose that there exists a non-trivial representation

such that

λm(ξ) + aµr(η) = 0.

for some 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. Let f = ξ1m × η1r ∈ C∞(G), so
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̂̂f(ξ, η)m1r1 =

∫
G1

∫
G2

f(x1, x2)ξ(x1)1m η(x2)1rdx2dx1

=

∫
G1

∫
G2

ξ(x1)1mη(x2)1rξ(x1)1m η(x2)1rdx2dx1

=

∫
G1

|ξ(x1)1m|2 dx1
∫
G2

|η(x2)1r|2 dx2

= (dξdη)−1.

Since L is globally hypoelliptic, by Theorem 4.3 L is C∞–cohomology free, then

there exists u ∈ C∞(G) such that

Lu = f − f0,

where f0 =
∫
G
f dµG. We have

̂̂Lu(ξ, η)m1r1 = i(λm(ξ)) + aµr(η)) ̂̂u(ξ, η)m1r1 = 0,

which implies that

̂̂f − f0(ξ, η)m1r1 = 0.

Since ξ ⊗ η is not the trivial representation, by (2.1) we have ̂̂f0(ξ, η)m1r1 = 0, so

̂̂f(ξ, η)m1r1 = 0,

which is a contradiction because ̂̂f(ξ, η)m1r1 = (dξdη)−1. Therefore N contains

only the trivial representation. �

In view of Example 3.11 and Proposition 4.4, the following question naturally

arises:

Question 4.1. Does there exist a compact Lie group G 6= Td such that there exists

X ∈ g such that σX(φ) is singular for only finitely many [φ] ∈ Ĝ, that is, the set

Z = {[φ] ∈ Ĝ; λm(φ) = 0, for some 1 ≤ m ≤ dφ}

is finite, where σX(φ)mn = iλm(φ)δmn?

The answer to this question is a way to obtain an alternative proof for the

Greenfield-Wallach conjecture on compact Lie groups

In view of the validity of the Greenfield-Wallach conjecture, the study of the

global hypoellipticity of vector fields defined on closed manifolds is restricted to
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tori. However, the study of the regularity of solutions of such vector fields is yet an

interesting subject. For this reason, in this section we will make some considerations

looking to weaken the usual concept of the global hypoellipticity and introduce what

we will call global hypoellipticity modulo kernel and global W-hypoellipticity.

4.1. Global hypoellipticity modulo kernel.

First, assuming that the set N has infinitely many elements, we will show that

to reduce the range of the operator does not help us to obtain a weaker version of

global hypoellipticity.

Proposition 4.5. Suppose that N has infinitely many elements. Then there is no

subset A ⊆ C∞(G) that satisfies the condition: u ∈ D′(G) and Lu ∈ A imply that

u ∈ C∞(G).

Proof. Assume that there exists a subset A ⊆ C∞(G) that satisfies the property

above. Let u ∈ D′(G) such that Lu ∈ A, then u ∈ C∞(G). By Proposition 3.2

there exists an element v ∈ kerL such that v ∈ D′(G)\C∞(G). Since v ∈ kerL,

we have L(u + v) = Lu ∈ A, which implies that u + v ∈ C∞(G). Therefore

v = (u+ v)− u ∈ C∞(G), a contradiction. �

In view of Proposition 4.5 we give the following definition:

Definition 4.6. We say that an operator P : D′(G)→ D′(G) is globally hypoelliptic

modulo kerP if the conditions u ∈ D′(G) and Pu ∈ C∞(G) imply that there exists

v ∈ C∞(G) such that u− v ∈ kerP .

Clearly, global hypoellipticity implies global hypoellipticity modulo kernel. Our

main result here is the equivalence of the concepts of global hypoellipticity modulo

kernel and global solvability for constant coefficient vector fields.

Proposition 4.7. The operator L = X1 +aX2 is globally hypoelliptic modulo kerL

if and only if L is globally solvable.

Proof. ( =⇒ ) Suppose that L is not globally solvable. Then by Theorem 3.5, for

every M ∈ N, choose [ξM ] ∈ Ĝ1 and [ηM ] ∈ Ĝ2 such that

0 < |λm(ξM ) + aµr(ηM )| ≤ (〈ξM 〉+ 〈ηM 〉)−M ,
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for some 1 ≤ m ≤ dξM and 1 ≤ r ≤ dηM . Using the same construction of the proof

of Theorem 3.3, we find a u ∈ D′(G) \ C∞(G) such that Lu = f ∈ C∞(G). Notice

that if u− v ∈ kerL, for some v ∈ C∞(G), then

i(λm(ξ) + aµr(η)) ̂̂u− v(ξ, η)mnrs = 0,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη, which implies that

λm(ξ) + aµr(η) 6= 0 =⇒ ̂̂u(ξ, η)mnrs = ̂̂v(ξ, η)mnrs .

Since ̂̂u(ξM , ηM )mnrs = 1, we conclude that v /∈ C∞(G), so L is not globally

hypoelliptic modulo kerL.

(⇐= ) Let u ∈ D′(G) such that Lu = f ∈ C∞(G). Notice that f ∈ K ∩ C∞(G)

and by Proposition 3.7 there exists v ∈ C∞(G) such that Lv = f . Therefore

u− v ∈ kerL and then L is globally hypoelliptic modulo kerL. �

Example 4.8. Let G = T1 × S3. In Example 3.11 we saw that the operator

L = ∂t + X is not globally hypoelliptic but it is globally solvable. By Proposition

4.7, we conclude that even not being globally hypoelliptic, the operator L is globally

hypoelliptic modulo kernel.

4.2. W–global hypoellipticity. In the light of Proposition 4.5, our next notion

of hypoellipticity is based on the reduction of the domain of the operator.

Definition 4.9. LetW be a subset of D′(G). We say that an operator P : D′(G)→

D′(G) is W-globally hypoelliptic if the conditions u ∈ W and Pu ∈ C∞(G) imply

that u ∈ C∞(G).

Observe that an operator P is always C∞(G)–globally hypoelliptic, and to say

that P is D′(G)-globally hypoelliptic means that P is globally hypoelliptic.

Example 4.10. Let L = X1 + aX2 and set

K := {u ∈ D′(G); ̂̂u(ξ, η)mnrs = 0,whenever λm(ξ) + aµr(η) = 0}.

If L is globally solvable, then L is K-globally hypoelliptic.

Indeed, by the characterization of the global solvability (Theorem 3.5), there exist

C, M > 0 such that

|λm(ξ) + aµr(η)| ≥ C(〈ξ〉+ 〈η〉)−M ,
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for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη, whenever λm(ξ) + aµr(η) 6= 0.

Let u ∈ K such that Lu = f ∈ C∞(G). We know that

̂̂f(ξ, η)mnrs = i(λm(ξ) + aµr(η)) ̂̂u(ξ, η)mnrs .

If λm(ξ) + aµr(η) = 0 then ̂̂u(ξ, η)mnrs = 0.

If λm(ξ) + aµr(η) 6= 0, we have

| ̂̂u(ξ, η)mnrs | =
1

|λm(ξ) + aµr(η)|
| ̂̂f(ξ, η)mnrs | ≤ C(〈ξ〉+ 〈η〉)M | ̂̂f(ξ, η)mnrs |.

Therefore u ∈ C∞(G).

Proposition 4.11. If W1 ⊆ W2 and L is W2–globally hypoelliptic, then L is W1–

globally hypoelliptic.

Proof. Let u ∈ W1 such that Lu ∈ C∞(G). As W1 ⊆ W2, we have u ∈ W2

and since L is W2–globally hypoelliptic, u ∈ C∞(G). Therefore L is W1–globally

hypoelliptic. �

Corollary 4.12. If L is globally solvable, then L is L(D′(G))–globally hypoelliptic,

where L(D′(G)) denotes the image of L.

Proof. If f ∈ L(D′(G)), then there exists u ∈ D′(G) such that Lu = f , which

implies that f ∈ K, so L(D′(G)) ⊂ K. Since L is K–globally hypoelliptic (Example

4.10), by Proposition 4.11 we conclude that L is L(D′(G))−hypoelliptic. �

Corollary 4.13. Suppose that L is globally solvable. If there exists k ∈ N such

that Lku ∈ C∞(G), then Lu ∈ C∞(G).

Proof. Suppose that there exists k ∈ N such that Lku ∈ C∞(G). Since v = Lk−1u ∈

L(D′(G)) and Lv ∈ C∞(G), we have, by the L(D′(G))–global hypoellipticity of

L, that v ∈ Lk−1u ∈ C∞(G). We can continue this process to conclude that

Lu ∈ C∞(G). �

If L is globally solvable, the previous corollary says that if Lu /∈ C∞(G), then

Lku /∈ C∞(G) for all k ∈ N.

Let

M := {u ∈ D′(G);∀N ∈N,∃CN > 0; ‖ ̂̂u(ξ, η)‖HS ≤ CN (〈ξ〉+ 〈η〉)−N, ([ξ], [η])∈N}.

Notice that C∞(G) (M.
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Theorem 4.14. If L is globally solvable, then L is M–globally hypoelliptic.

Proof. Let u ∈M such that Lu ∈ C∞(G). We know that

̂̂Lu(ξ, η)mnrs = i(λm(ξ) + aµr(η)) ̂̂u(ξ, η)mnrs ,

for all [ξ] ∈ Ĝ1, [η] ∈ Ĝ2, 1 ≤ m ≤ dξ, 1 ≤ r ≤ dη. If ([ξ], [η]) /∈ N , then λm(ξ) +

aµr(η) 6= 0 and

̂̂u(ξ, η)mnrs =
1

i(λm(ξ) + aµr(η))
̂̂Lu(ξ, η)mnrs .

Proceeding similarly as in the proof of Theorem 3.3, it can be proved that for every

N ∈ N, there exists C ′N > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ C ′N (〈ξ〉+ 〈η〉)−N ,

for all ([ξ], [η]) /∈ N . Since u ∈ M, we can conclude that for every N ∈ N, there

exists KN > 0 such that

‖ ̂̂u(ξ, η)‖HS ≤ KN (〈ξ〉+ 〈η〉)−N ,

for all ([ξ], [η]) ∈ Ĝ1 × Ĝ2. Therefore u ∈ C∞(G). �

5. Low order perturbations

In view of the Greenfield-Wallach conjecture, a way to obtain examples of glob-

ally hypoelliptic first order differential operators defined on compact Lie groups

other than the torus is to consider perturbations of vector fields by low order terms.

We start by considering the case where q is a constant, next we will consider

perturbations by functions q ∈ C∞(G). This approach was inspired by the reference

[2] of A. Bergamasco. In both situations, perturbations by constant and functions,

we characterize the global hypoellipticity and the global solvability.

5.1. Perturbations by constants. Let G be a compact Lie group, X ∈ g and

q ∈ C. Define the operator

Lq : C∞(G)→ C∞(G) as

Lqu := Xu+ qu, u ∈ C∞(G).

We can extend Lq to D′(G) as

(5.1) 〈Lqu, ϕ〉 := −〈u,Xϕ〉+ 〈u, qϕ〉 = −〈u, L−qϕ〉, u ∈ D′(G), ϕ ∈ C∞(G).
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If Lqu = f ∈ C∞(G), the Fourier coefficient of f can be obtained as

f̂(ξ) = L̂qu(ξ) = X̂u(ξ) + q̂u(ξ) = σX(ξ)û(ξ) + qû(ξ),

for all [ξ] ∈ Ĝ. So

f̂(ξ)mn = iλm(ξ)û(ξ)mn + qû(ξ)mn = i(λm(ξ)− iq)û(ξ)mn,

for all [ξ] ∈ Ĝ, 1 ≤ m,n ≤ dξ.

From this we conclude that

f̂(ξ)mn = 0, whenever λm(ξ)− iq = 0.

In addition, if λm(ξ)− iq 6= 0, then

û(ξ)mn =
1

i(λm(ξ)− iq)
f̂(ξ)mn.

Thus, we obtain the following characterization for the global hypoellipticity and

solvability of Lq which is similar to the vector fields case and so its proof will be

omitted.

Theorem 5.1. The operator Lq = X + q is globally hypoelliptic if and only if the

following conditions are satisfied:

1. The set

N = {[ξ] ∈ Ĝ; λm(ξ)− iq = 0 for some 1 ≤ m ≤ dξ}

is finite.

2. ∃C, M > 0 such that

(5.2) |λm(ξ)− iq| ≥ C〈ξ〉−M ,

for all [ξ] ∈ Ĝ, 1 ≤ m ≤ dξ whenever λm(ξ) + iq 6= 0.

Let Kq := {w ∈ D′(G); ŵ(ξ)mn = 0 whenever λm(ξ)− iq = 0, for all 1 ≤ m,n ≤

dξ, 1 ≤ r, s ≤ dη}.

Definition 5.2. We say that Lq is globally solvable if Lq(D′(G)) = Kq.

Theorem 5.3. The operator Lq = X + q is globally solvable if and only if the

condition (5.2) is satisfied, that is, ∃C, M > 0 such that

|λm(ξ)− iq| ≥ C〈ξ〉−M ,
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for all [ξ] ∈ Ĝ, 1 ≤ m ≤ dξ whenever λm(ξ) + iq 6= 0.

Corollary 5.4. If Lq is globally hypoelliptic, then Lq is globally solvable.

Recall the definition of global hypoellipticity modulo kernel given in Section 4.

The proof of the next result is similar to Proposition 4.7 and its proof will be

omitted.

Proposition 5.5. The operator Lq is globally hypoelliptic modulo kerLq if and

only if Lq is globally solvable.

Example 5.6. Let G = S3 and consider

Lq = X + q, q ∈ C.

As in Example 3.11 we can assume that the vector field X defined on S3 has the

symbol

σ(`)mn = imδmn, ` ∈ 1
2N0, −` ≤ m,n ≤ `, `−m, `− n ∈ N0.

In this case,

N = {` ∈ 1
2N0;m− iq = 0, for some − ` ≤ m ≤ `, `−m ∈ N0}

and the inequality (5.2) becomes

(5.3) |m− iq| ≥ C(1 + `)−M ,

for all ` ∈ 1
2N0, −` ≤ m ≤ `, `−m ∈ N0 whenever m− iq 6= 0, for some C,M > 0.

We have N = ∅ for all q /∈ i 12Z and N has infinitely many elements other-

wise. Notice that the condition (5.3) is always satisfied. Therefore Lq is globally

hypoelliptic if and only if q /∈ i 12Z and Lq is globally solvable for all q ∈ C.

For examples on the torus, we refer the reader to Proposition 4.1 of [2] where the

author presented conditions to obtain global hypoellipticity of perturbed operators

by constants and constructed some enlightening examples.
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5.2. Perturbations by functions. In this section we are concerned with the oper-

ator Lq := X+q, considering now q ∈ C∞(G). The idea is to establish a connection

between the global hypoellipticity of Lq and Lq0 = X + q0, where q0 is the average

of q in G.

Lemma 5.7. For any ϕ ∈ C∞(G) we have

Xeϕ = (Xϕ)eϕ.

Proof. Let x ∈ G, then

(Xeϕ)(x) = X

∞∑
k=0

ϕ(x)k

k!
=

∞∑
k=0

Xϕ(x)k

k!
=

∞∑
k=1

kϕ(x)k−1(Xϕ)(x)

k!

= (Xϕ)(x)

∞∑
k=1

ϕ(x)k−1

(k − 1)!
= (Xϕ)(x)eϕ(x).

�

Let Lq : C∞(G)→ C∞(G) be defined by

Lqu = Xu(x) + qu, u ∈ C∞(G).

We can extend Lq to D′(G) as in (5.1).

Proposition 5.8. Given q ∈ C∞(G), assume that there exists Q ∈ C∞(G) such

that XQ = q − q0, where q0 =
∫
G
q(x) dx. Then

1. Lq ◦ e−Q = e−Q ◦ Lq0 , in both C∞(G) and in D′(G);

2. Lq is globally hypoelliptic if and only if Lq0 is globally hypoelliptic;

3. Lq is globally hypoelliptic modulo kerLq if and only if Lq0 is globally hypoelliptic

modulo kerLq0 .

Proof. 1. Let u ∈ C∞(G). Then

(Lq ◦ e−Q)u = Lq(e
−Qu)

= X(e−Qu) + qe−Qu = (Xe−Q)u+ e−QXu+ qe−Qu

= (−XQ)e−Qu+ e−QXu+ qe−Qu

= −(q − q0)e−Qu+ e−QXu+ qe−Qu

= e−Q(Xu+ q0u)

= (e−Q ◦ Lq0)u.
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The same is true when we have u ∈ D′(G).

2. Suppose that Lq is globally hypoelliptic. If Lq0u = f ∈ C∞(G) for some

u ∈ D′(G), then e−QLq0u = e−Qf ∈ C∞(G). Since e−Q ◦ Lq0 = Lq ◦ e−Q, we

have Lq(e
−Qu) ∈ C∞(G) and, by the global hypoellipticity of Lq we have e−Qu ∈

C∞(G), which implies that u ∈ C∞(G) and then Lq0 is globally hypoelliptic.

Assume now that Lq0 is globally hypoelliptic. If Lqu = f ∈ C∞(G) for some

u ∈ D′(G), we can write Lq(e
−QeQu) = f ∈ C∞(G). By the fact that Lq ◦ e−Q =

e−Q ◦ Lq0 we obtain e−QLq0(eQu) = f , that is, Lq0(eQu) = eQf ∈ C∞(G). By the

global hypoellipticity of Lq0 we have that eQu ∈ C∞(G) and then u ∈ C∞(G).

3. The proof is analogous to the item 2. �

Now assume that Lqu = f ∈ D′(G) for some u ∈ D′(G). We may write u =

e−Q(eQu), so Lq(e
−Q(eQu)) = f . By Proposition 5.8, we have e−QLq0e

Qu = f ,

that is,

Lq0e
Qu = eQf.

This implies that eQf ∈ Kq0 .

Definition 5.9. We say that the operator Lq is globally solvable if:

1. there is Q such that XQ = q − q0, where q0 =
∫
G
q(x) dx; and

2. Lq(D′(G)) = Jq, where

Jq := {v ∈ D′(G); eQv ∈ Kq0}.

Proposition 5.10. Lq is globally solvable if and only if Lq0 is globally solvable.

Proof. Assume that Lq is globally solvable and let f ∈ Kq0 . Let us show that there

exists u ∈ D′(G) such that Lq0u = f . We can write f = eQe−Qf , so e−Qf ∈ Jq.

Since Lq is globally solvable, there exists v ∈ D′(G) such that Lqv = e−Qf . We

can write v = e−QeQv and then Lq(e
−QeQv) = e−Qf . By Proposition 5.8, we have

e−QLq0e
Qv = Lq(e

−QeQv) = e−Qf,

that is, Lq0e
Qv = f .

Suppose now that Lq0 is globally solvable and let f ∈ Jq. By the definition of Jq,

we have eQf ∈ Kq0 and by the global solvability of Lq0 , there exists u ∈ D′(G) such

that Lq0u = eQf , that is, e−QLq0u = f . By Proposition 5.8, we get Lqe
−Qu = f .

�
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Corollary 5.11. If Lq is globally hypoelliptic then Lq is globally solvable.

Proof. Suppose that Lq is globally hypoelliptic. By Proposition 5.8 the operator

Lq0 is globally hypoelliptic, so by Corollary 5.4, Lq0 is globally solvable. Finally,

by Proposition 5.10, we conclude that Lq is globally solvable. �

Corollary 5.12. Lq is globally hypoelliptic modulo kerLq if and only if Lq is glob-

ally solvable.

Example 5.13. Let G = T2 and consider

Lq = ∂t + ∂x + q(t, x),

where q(t, x) = sin(t+ x). For Q(t, x) = − 1
2 cos(t+ x) we have (∂t + ∂x)Q(t, x) =

q(t, x) − q0, where q0 = 0. Since Lq0 = ∂t + ∂x is not globally hypoelliptic, we

conclude by Proposition 5.8 that Lq is not globally hypoelliptic. On the other hand,

the operator Lq0 is globally solvable, so that Lq is globally solvable.

For q(t, x) = sin(t + x) + 1, we have q0 = 1 and by Theorem 5.1 we have that

Lq0 is globally hypoelliptic and then Lq is globally hypoelliptic, which implies that

Lq is also globally solvable.

Example 5.14. Let G = S3. We can identify S3 with SU(2), and the Euler’s angle

parametrization of SU(2) is given by

x(φ, θ, ψ) =

 cos
(
θ
2

)
ei(φ+ψ)/2 i sin

(
θ
2

)
ei(φ−ψ)/2

i sin
(
θ
2

)
e−i(φ−ψ)/2 cos

(
θ
2

)
e−i(φ+ψ)/2

 ∈ SU(2),

where 0 ≤ φ < 2π, 0 ≤ θ ≤ π and −2π ≤ ψ < 2π. Hence, the trace function on

SU(2) in Euler’s angles is given by

tr(x(φ, θ, ψ)) = 2 cos
(
θ
2

)
cos
(
φ+ψ
2

)
.

Consider the operator

Lq = X + q(x),

where X is the same vector field from Example 3.11 and q(x) = h(x) +
√

2, where

h : S3 → C is expressed in Euler’s angles by

(5.4) h(x(φ, θ, ψ)) = − cos
(
θ
2

)
sin
(
φ+ψ
2

)
.
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The operator X in Euler’s angles is the operator ∂ψ and then we have

Xtr(x) = q(x)−
√

2.

By Example 5.6, the operator Lq0 = X +
√

2 is globally hypoelliptic, then by Propo-

sition 5.8 we have that Lq is globally hypoelliptic, which implies that Lq is also

globally solvable.

For q(x) = h(x) + 3
2 i we have by Example 3.11 that the operator Lq0 = X + 3

2 i

is not globally hypoelliptic, then Lq is not globally hypoelliptic. On the other hand,

the operator Lq0 is globally solvable, which implies that Lq is globally solvable and

globally hypoelliptic modulo kernel.

6. A class of vector fields with variable coefficients

Let G1 and G2 be compact Lie groups, and set G = G1×G2. In this section we

will characterize the global hypoellipticity and the global solvability for operators

in the form

Laq = X1 + a(x1)X2 + q(x1, x2),

where X1 ∈ g1, X2 ∈ g2, a ∈ C∞(G1) is a real-valued function, and q ∈ C∞(G).

First, let us consider the case where q ≡ 0.

6.1. Normal form. Let

La = X1 + a(x1)X2,

where X1 ∈ g1, X2 ∈ g2 and a ∈ C∞(G1) is a real-valued function. If Lau = f ∈

C∞(G), taking the partial Fourier coefficients with respect to the second variable,

we obtain

L̂au(x1, η)rs = X1û(x1, η)rs + iµr(η)a(x1)û(x1, η)rs = f̂(x1, η)rs,

for all [η] ∈ Ĝ1, 1 ≤ r, s ≤ dη. The idea now is to find ϕ( · , η)rs 6= 0 such that

v(x1, η)rs = ϕ(x1, η)rsû(x1, η)rs

satisfies

X1v(x1, η)rs + iµr(η)a0v(x1, η)rs = ϕ(x1, η)rsf̂(x1, η)rs := g(x1, η)rs,
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for all [η] ∈ Ĝ1, 1 ≤ r, s ≤ dη, for some a0 ∈ R. So

ϕ(x1, η)rsf̂(x1, η)rs = X1(ϕ(x1, η)rsû(x1, η)rs) + iµr(η)a0ϕ(x1, η)rsû(x1, η)rs

= X1(ϕ(x1, η)rs)û(x1, η)rs

+ ϕ(x1, η)rs(X1û(x1, η)rs) + iµr(η)a0ϕ(x1, η)rsû(x1, η)rs

= X1(ϕ(x1, η)rs)û(x1, η)rs

+ ϕ(x1, η)rs
(
(X1û(x1, η)rs) + iµr(η)a(x1)û(x1, η)rs

)
− iµr(η)(a(x1)− a0)ϕ(x1, η)rsû(x1, η)rs

= X1(ϕ(x1, η)rs)û(x1, η)rs + ϕ(x1, η)rsf̂(x1, η)rs

− iµr(η)(a(x1)− a0)ϕ(x1, η)rsû(x1, η)rs.

Thus, if û(x1, η)rs 6= 0, we have

(6.1) X1ϕ(x1, η)rs = iµr(η)(a(x1)− a0)ϕ(x1, η)rs.

Suppose that there exists A ∈ C∞(G1) such that

(6.2) X1A(x1) = a(x1)− a0.

We can assume that A is a real-valued smooth function. Notice that∫
G1

X1A(x1) dx1 =

∫
G1

d

ds
A(x1 exp(sX1))

∣∣∣∣
s=0

dx1

=
d

ds

∫
G1

A(x1 exp(sX1)) dx1

∣∣∣∣
s=0

=
d

ds

∫
G1

A(x1) dx1

∣∣∣∣
s=0

= 0.

So

0 =

∫
G1

X1A(x1) dx1 =

∫
G1

(a(x1)− a0) dx1.

Therefore a0 =

∫
G1

a(x1) dx1 and the equation (6.1) becomes

(6.3) X1ϕ(x1, η)rs = iµr(η)(X1A)(x1)ϕ(x1, η)rs,

and by Lemma 5.7, the function

ϕ(x1, η)rs = eiµr(η)A(x1)

is a solution of (6.3).
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Remark 6.1. When G1 is the one-dimensional torus, the operator X1 = ∂t is

globally solvable and a− a0 belongs to the set of admissible functions, therefore the

assumption over the existence of such function A satisfying (6.2) is verified, for any

a ∈ C∞(G1). However, for other compact Lie groups, including higher-dimensional

torus and the sphere S3, it is not difficult to construct examples of a function a for

which there is no A satisfying (6.2).

Define the operator Ψa as

(6.4) Ψau(x1, x2) :=
∑

[η]∈Ĝ2

dη

dη∑
r,s=1

eiµr(η)A(x1)û(x1, η)rs ηsr(x2).

The next lemma is a technical result necessary to show that the operator Ψa is

well-defined.

Lemma 6.2. Let G be a compact group, f ∈ C∞(G), and z ∈ C with |z| ≥ 1. Let

{Y1, · · · , Yd} be a basis for g. Then for all β ∈ Nd0, there exists Cβ > 0 such that

(6.5) |∂βezf(x)| ≤ Cβ |z||β|eRe(zf(x)), ∀x ∈ G,

with ∂β as in (2.3).

Proof. Let us proceed by induction on |β|.

For |β| = 0, we have

|∂βezf(x)| = |ezf(x)| = eRe(zf(x)).

Suppose now that (6.5) holds for every γ ∈ Nd0 with |γ| ≤ k and let β ∈ Nd0 with

|β| = k + 1. We can write β = γ + ej , for some j = 1, · · · , d and |γ| = k. So

|∂βezf(x)| = |∂γYjezf(x)| = |∂γ(zYjf(x)ezf(x))| ≤ |z|
∑

γ′+γ′′=γ

|∂γ
′
Yjf(x)| |∂γ

′′
ezf(x)|

≤ Cβ |z||β|eRe(zf(x)).

�

Remark 6.3. We have a similar result for the case where |z| ≤ 1. In this case,

the power of |z| on the estimate (6.5) is equal to 1 for every β ∈ N0, i.e., for all

β ∈ Nd0 there exists Cβ such that

|∂βezf(x)| ≤ Cβ |z|eRe(zf(x)), ∀x ∈ G.
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Proposition 6.4. The operator Ψa defined in (6.4) is an automorphism of C∞(G)

and of D′(G).

Proof. To demonstrate this proposition we will use results about partial Fourier

series developed on [28].

First of all, notice that Ψ−a is the inverse of Ψa, therefore we only need to prove

that Ψa(C∞(G)) = C∞(G) and Ψa(D′(G)) = D′(G).

Let β ∈ N0 and u ∈ C∞(G). We will show that Ψau ∈ C∞(G). Notice that

Ψ̂au(x1, η)rs = eiµr(η)A(x1)û(x1, η)rs and µr(η)A(x1) ∈ R, for all [η] ∈ Ĝ2, 1 ≤ r ≤

dη and x1 ∈ G1. Using (6.5) we obtain

|∂βΨ̂au(x1, η)rs| = |∂β(eiµr(η)A(x1)û(x1, η)rs)|

=

∣∣∣∣∣∣
∑

β′+β′′=β

∂β
′
eiµr(η)A(x1)∂β

′′
û(x1, η)rs

∣∣∣∣∣∣
≤

∑
β′+β′′=β

∣∣∣∂β′
eiµr(η)A(x1)

∣∣∣ ∣∣∣∂β′′
û(x1, η)rs

∣∣∣
≤

∑
β′+β′′=β

Cβ′ |µr(η)||β
′|
∣∣∣∂β′′

û(x1, η)rs

∣∣∣ .
Since u ∈ C∞(G) and |µr(η)| ≤ 〈η〉, it is easy to see that given N > 0, there exists

CβN such that

|∂βΨ̂au(x1, η)rs| ≤ CβN 〈η〉−N .

Therefore Ψau ∈ C∞(G). The distribution case is analogous. �

Proposition 6.5. Let a ∈ C∞(G1), a0 :=
∫
G1
a(x1) dx1, and consider the operator

La0 = X1 + a0X2. Assume that there exists A ∈ C∞(G1) such that X1A = a− a0.

Then we have

La0 ◦Ψa = Ψa ◦ La

in both C∞(G) and in D′(G), where Ψa is given in (6.4).

Proof. Let us show that for any u ∈ C∞(G) we have

̂La0(Ψau)(x1, η)rs = ̂Ψa(Lau)(x1, η)rs,

for all x1 ∈ G1, [η] ∈ Ĝ2, 1 ≤ r, s ≤ dη.
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Indeed,

̂La0(Ψau)(x1, η)rs = X̂1Ψau(x1, η)rs + a0X̂2Ψau(x1, η)rs

= X1Ψ̂au(x1, η)rs + iµr(η)a0Ψ̂au(x1, η)rs

= X1(eiµr(η)A(x1)û(x1, η)rs) + iµr(η)a0e
iµr(η)A(x1)û(x1, η)rs

= (X1e
iµr(η)A(x1))û(x1, η)rs + eiµr(η)A(x1)(X1û(x1, η)rs)

+ iµr(η)a0e
iµr(η)A(x1)û(x1, η)rs.

By (6.3) we have

̂La0(Ψau)(x1, η)rs = iµr(η)(a(x1)− a0)eiµr(η)A(x1)û(x1, η)rs

+ eiµr(η)A(x1)(X1û(x1, η)rs)

+ iµr(η)a0e
iµr(η)A(x1)û(x1, η)rs

= eiµr(η)A(x1)(X1û(x1, η)rs + iµr(η)a(x1)û(x1, η)rs)

= eiµr(η)A(x1)L̂au(x1, η)rs

= ̂Ψa(Lau)(x1, η)rs.

The same is true when u ∈ D′(G). �

6.2. Global properties. Recall that the operator La0 is globally solvable when

La0(D′(G)) = Ka0 , where

Ka0 := {w ∈ D′(G); ̂̂w (ξ, η)mnrs = 0 whenever λm(ξ) + a0µr(η) = 0,

for all 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη}.

We will say that La is globally solvable if La(D′(G)) = Ja, where

Ja := {v ∈ D′(G); Ψ−av ∈ Ka0}.

Proposition 6.6. The operator La is globally hypoelliptic (resp. globally hypoellip-

tic modulo kerLa) if and only if La0 is globally hypoelliptic (resp. globally hypoel-

liptic modulo kerLa0). Similarly, the operator La is globally solvable if and only if

La0 is globally solvable.

Proof. The proof is analogous to the demonstration of Propositions 5.8 and 5.10.

�
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Corollary 6.7. If La is globally hypoelliptic, then La is globally solvable.

Corollary 6.8. The operator La is globally hypoelliptic modulo kerLa if and only

if La is globally solvable.

Example 6.9. Let G = T1×G2, where G2 is a compact Lie group and a ∈ C∞(T1)

a real-valued function. Let

La := ∂t + a(t)X2,

where X2 ∈ g2,

a0 =
1

2π

∫ 2π

0

a(t) dt,

and define

A(t) =

∫ t

0

a(s) ds− a0t.

Notice that ∂tA(t) = a(t)− a0, for all t ∈ T1. Taking the Fourier coefficients with

respect to the second variable, we obtain

∂tû(t, η)rs + ia(t)µr(η)û(t, η)rs = f̂(t, η)rs.

Define the operator Ψa as

Ψau(t, x2) :=
∑

[η]∈Ĝ2

dη

dη∑
r,s=1

eiµr(η)A(t)û(t, η)rs ηsr(x2).

By Proposition 6.4, the operator Ψa is an automorphism of C∞(G) and of D′(G)

and it holds

Ψa ◦ L = La0 ◦Ψa.

Thus, the operator La is globally hypoelliptic if and only if La0 is globally hypoel-

liptic. Moreover, the operator La is globally solvable if and only if La0 is globally

solvable.

For instance, for a(t) = sin(t)+
√

2, we have a0 =
√

2 and A(t) = − cos(t). Take

G2 = T1. We know by Example 3.9 that the operator

La0 = ∂t +
√

2∂x

is globally hypoelliptic, because
√

2 is an irrational non-Liouville number. Hence,

La = ∂t + (sin(t) +
√

2)∂x

is globally hypoelliptic and then globally solvable.
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Take now G2 = S3. By Example 3.11, we know that

La0 = ∂t +
√

2X

is not globally hypoelliptic but it is globally solvable. Therefore

La = ∂t + (sin(t)−
√

2)X

is not globally hypoelliptic and it is globally solvable.

Remark 6.10. We had supposed that given a function a ∈ C∞(G1) there exists

a function A ∈ C∞(G1) and a0 ∈ R such that X1A = a − a0, that is, X1 is

C∞–cohomology free on G1 (see Definition 4.2).

Conjecture 6.11 (Katok). If a closed, connected, orientable manifold M admits

a C∞–cohomology free vector field X, then M is diffeomorphic to a torus and X is

smoothly conjugate to a Diophantine vector field.

As mentioned in Section 4, G. Forni has proved in [16] that this conjecture is

equivalent to the Greenfield-Wallach conjecture 4.1 and in view of its validity on

compact Lie groups, it was necessary to add in the hypothesis the existence of such

A satisfying X1A = a− a0. Otherwise, the above results would be valid only for the

case where G1 is a torus.

6.3. Perturbations. We can now combine what was made in Section 5.1 to study

the operator

Laq = X1 + a(x1)X2 + q(x1, x2),

where X1 ∈ g1, X2 ∈ g2, a ∈ C∞(G1) is a real-valued function, and q ∈ C∞(G).

Furthermore, we will assume that there exists Q ∈ C∞(G) satisfying

(X1 + a(x1)X2)Q = q − q0.

By Proposition 5.8 we have

Laq ◦ e−Q = e−Q ◦ Laq0 ,

where Laq0 = X1 + a(x1)X2 + q0.

It follows from Proposition 6.5 that

La0q0 ◦Ψa = Ψa ◦ Laq0 ,
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where La0q0 = X1 + a0X2 + q0. Thus,

Laq ◦ e−Q ◦Ψa = e−Q ◦ Laq0 ◦Ψa = e−Q ◦Ψa ◦ La0q0 .

We say that Laq is globally solvable if Laq(D′(G)) = Jaq, where

Jaq := {v ∈ D′(G); Ψ−ae
Qv ∈ Ka0q0}

and

Ka0q0 := {w ∈ D′(G); ̂̂w (ξ, η)mnrs = 0 whenever λm(ξ) + a0µr(η)− iq0 = 0,

for all 1 ≤ m,n ≤ dξ, 1 ≤ r, s ≤ dη}.

The next results are consequences of what was done previously.

Proposition 6.12. The operator Laq is globally hypoelliptic (resp. globally hy-

poelliptic modulo kerLaq) if and only if La0q0 is globally hypoelliptic (resp. globally

hypoelliptic modulo kerLa0q0). Similarly, the operator Laq is globally solvable if and

only if La0q0 is globally solvable.

Corollary 6.13. If Laq is globally hypoelliptic, then La0q0 is globally solvable.

Corollary 6.14. The operator Laq is hypoelliptic modulo kerLaq if and only if

La0q0 is globally solvable.

Example 6.15. Let G = T1 × S3 and X ∈ s3 as in the Example 3.11. Let a(t) =

sin(t) +
√

2 and q(t, x) = cos(t) + (sin(t) +
√

2)h(x) + 1, with h as in Example 5.14.

Here, a0 =
√

2 and q0 = 1. Notice that the function Q(t, x) = sin(t)+tr(x) satisfies

(∂t + a(t)X)Q(t, x) = q(t, x). By Theorem 5.1 the operator

La0q0 = ∂t +
√

2X + 1

is globally hypoelliptic (see Example 3.11) and then the operator

Laq = ∂t + (sin(t) +
√

2)X + (cos(t) + (sin(t) +
√

2)h(x) + 1)

is globally hypoelliptic, which implies that Laq is globally solvable.

For q(t, x) = cos(t) + (sin(t) +
√

2)h(x) + i, the operator

La0q0 = ∂t +
√

2X + i
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is not globally hypoelliptic (see Example 5.6) and then the operator

Laq = ∂t + (sin(t) +
√

2)X + (cos(t) + (sin(t) +
√

2)h(x) + i)

is not globally hypoelliptic. However, since
√

2 is an irrational non-Liouville num-

ber, the operator La0q0 is globally solvable, which implies that Laq is globally solvable.
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