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Abstract

This article presents a novel control algorithm for online optimal charging of lithium-ion battery by explicitly incorporating

degradation mechanism into control, to reduce the degradation process. The health of battery directly relates to degradation

and capacity fade in cycles of charging. We mainly focus on the growth of the solid electrolyte interface (SEI) layer, which

is the primary source of degradation of batteries. This article addresses the challenge of minimising SEI layer growth during

charging by incorporating the first-order SEI layer growth rate model into a non-linear model predictive control approach.

A single particle model (SPM) is used for optimal charging using orthogonal projection-based model reformulation. Gauss

pseudo-spectral method is used for the optimisation of charging trajectories. Results of the optimal algorithm are compared

with the traditional constant current constant voltage (CCCV) approach without considering SEI layer growth. It is ensured

that overpotential caused by lithium plating remains in a healthy regime which is another feature of the proposed strategy.

Simulation results are presented to demonstrate the advantages of the proposed charging method.

Keywords: Optimal Charging, Non-linear model predictive control, lithium-ion battery, Pseudo-spectral methods

1. Introduction1

This paper proposes a non-linear model predictive control (NMPC) framework to extend the life of a lithium-ion battery2

by decreasing the growth rate of the solid electrolyte interface (SEI) layer during charging. Due to the advantages including3

high energy density, low self-discharge rate and low maintenance requirements, lithium-ion batteries have been used as energy4

storage components in many applications, such as electric vehicles (EVs). Long charging time of EVs is one of the hurdles5

for EV applications. However, fast charging at higher rates can accelerate the degradation process of batteries, reduce their6

power and capacity limits. Conventional charging methods include constant current (CC), constant voltage (CV), multi-stage7

constant current, pulse, variable current and constant current constant voltage (CCCV) charging strategies [1]. All of these8

charging strategies are simple to implement, but they cannot explicitly deal with with the ageing of batteries. In order to9

reduce the effect of capacity fade, optimal charging strategies are proposed to deal with the state of health (SOH) of batteries10

[3]. Off-line and online optimal charging strategies are proposed in which the influence of battery SOC, charging current and11

charging profile are closely related to capacity fade.12

The motivation of this article stems from the need to explicitly incorporate the degradation effects in battery charging in13

a manner that minimises charging time while ensuring safety, reliability and reducing the degradation process. Excessive14
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battery damage and ageing of battery systems can be reduced by imposing predefined limits on various states or variables such15

as current rates, state of charge (SOC) and temperature. The popular adopted CCCV charging method cannot guarantee the16

satisfaction of these limits if the charging current is too high. In contrast, it is possible to charge batteries more aggressively17

using model-based control algorithms based on electrochemical models while not causing damage and increasing degradation.18

Such algorithms rely on electrochemical models instead of equivalent circuit models because the equivalent circuit models19

cannot cope with the constraints on the internal variables. The existing model-based optimal charging algorithms include20

dynamic programming [4], genetic algorithms [6, 7] and pseudo-spectral optimisation [5, 8]. One drawback of the model-based21

controller is the heavy computational burden because of the complexities of the electrochemical models. Researchers tried22

to reduce the computational burden by introducing efficient algorithms, e.g. [9]. The primary advantage of the model-based23

controller is to directly constrain unwanted reactions, associated with degradation. Secondly, a model-based controller can24

adapt to parametric variations in the battery, and thereby quantifies the ageing of the battery and explicitly measures SOH25

[2]. These variations represent the dynamics of lithium-ion batteries with specific accuracy and computational efficiency. In26

this paper, we incorporate the SEI layer growth model to an optimal charging control algorithm so that an optimal trade-off27

between charging time and growth of SEI layer film subject to constraints can be achieved.28

This work can be seen as an extension of published work on health-conscious NMPC of lithium-ion batteries [9], where the29

effect of lithium plating into online optimal charging of battery management system (BMS). Battery charge/trajectory was30

expressed in terms of one flat output trajectory to reduce computational burden by a factor of 5 compared with pseudo-31

spectral optimisation alone. Moreover, the proposed constant current constant side reaction overpotential (CCCη) strategy32

ensured the side reaction constraint to remain in healthy regime during charging. However, in [9], authors considered only33

one side reaction with no quantification of SOH. Optimal charging trajectories are calculated in a healthy regime without34

estimation of degradation effects [10, 11]. Moreover, researchers also proposed a health-aware fast-charging methodology35

using model predictive control. For example, [12] explored moving horizon approach incorporating chemical degradation36

effects, but the SEI film resistance is not estimated. Due to ageing effects, battery SOH does not follow a specified trajectory.37

This deviation is minimised by proposing the balancing control method [13]. The effect of temperature and degradation38

effects also alter the voltage and state of energy responses [14]. All of the above research works do not contribute to the39

quantification of the ageing effect represented by the thickness of the SEI layer.40

The main contribution of this paper compared to the previously published works is that the proposed method explicitly41

minimises the effect of SEI layer growth in charging, thus reducing the capacity fade of battery. SEI layer is passively42

formed on negative electrode due to side reaction, and the main factor causing capacity fade for a battery [10, 15]. Lithium43

intercalation in a battery, during charging, increases the volume of graphite particles [22]. This volume change stretches the44

surface film on the edges, which has limited flexibility, resulting in the surface film to break. It changes the order of film45

passivity and exposes more carbon to the electrolyte. This will act as a barrier for lithium-ion intercalation, which introduces46

capacity fade effects. Therefore, incorporating SEI layer dynamics will help us to minimise the capacity degradation effect.47

The proposed online methodology controls the growth of the SEI layer during charging using a single-particle model (SPM) and48

Gauss pseudo-spectral method. SPM is an appropriate candidate because it gives a satisfactory trade-off between accuracy49

and computational efficiency compared to other electrochemical models in the literature. Dynamics of battery electrode50
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in SPM is approximated by a linear combination of Legendre polynomials and unknown time coefficients. The number of51

Legendre polynomials depends on the best fit of the electrode trajectory compared to experimental results. Even polynomials52

automatically satisfy the electrode’s condition at the centre of the particle, thus reducing the complexity of the electrochemical53

model [17]. The non-convex behaviour of the resulting model-based optimal control is computationally challenging, even for54

low order models. Dynamic programming and other optimisation algorithms can solve non-convex problems, but they have55

the drawback of high computational cost, which makes them unsuitable for online control applications. A pseudo-spectral56

method is used to optimise the charging trajectory because it has high convergence rates, which makes it computationally57

efficient. Also, it can solve non-linear and non-convex optimisation problems effectively [25]. The pseudo-spectral method58

transforms a continuous problem into a non-linear programming (NLP) problem, which can be efficiently solved using efficient59

commercial software.60

This paper’s novel and unique contribution is the development of a NMPC framework which accounts for chemical degradation61

along-with side reaction overpotential. In the proposed strategy, a dynamic model predicts the future responses of a controlled62

plant. These future predictions are computed by minimising performance cost, defined in terms of states and input sequences.63

The concept of the receding horizon is introduced to realise online optimisation. The proposed strategy ensures that physics-64

based constraint must be satisfied during the whole process of charging. The NMPC framework’s optimisation results are65

compared with the traditional CCCV approach to show the advantages of the proposed strategy.66

The remainder of this article is organised as follows: Section 2 presents the governing equations and reformulated SPM.67

Theory of SEI layer is presented in Section 3 while Gauss pseudo-spectral method is briefly discussed in Section 4. Section68

5 presents the problem formulation while Section 6 explains the mathematical formulation of NMPC strategy to find an69

optimal solution. Section 7 shows the results of battery optimal control problem and compares it to the conventional CCCV70

charging method. Section 8 concludes the article.71

2. Single particle model72

In this section, the governing equations of SPM are presented. Orthogonal projection techniques are used to convert73

partial differential equations to ordinary differential equations[16]. A physics-based SPM is used in this work to achieve a74

trade-off between accuracy and computational efficiency [17, 18]. The parameters of SPM and reference potential curves for75

both electrodes are obtained from [19]. Assumptions for modelling SPM can be found in [10].76

2.1. SPM equations77

Fick’s second law of diffusion gives information about solid-phase diffusion dynamics. The governing differential equation78

is79

∂cs(r, t)

∂r
=
Ds

r2
∂

∂r

(
r2
∂cs(r, t)

∂r

)
(1)

∂c(r, t)

∂r
|r=0 = 0 (2)

∂c(r, t)

∂r
|r=R = ± J(t)

FDsa
(3)
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where cs, Ds, a and J are the solid-state concentration, diffusion constant, interfacial surface area and molar flux of lithium-ion80

of corresponding electrode (negative or positive) respectively. F is Faraday’s constant and R is the radius of the corresponding81

electrode. Interfacial area of electrode can be defined as82

a =
3ε

R
(4)

where ε is porosity of electrode. The molar flux of lithium-ions Ji are defined as

Jn(t) = − I(t)

SLn
(Negative Electrode) (5)

Jp(t) =
I(t)

SLp
(Positive Electrode) (6)

where S and Lj are sheet area and length of electrode respectively. I(t) is applied current (positive for charging). The bulk83

state of charge (SOC) is defined as84

SOC(t) =
cs,avg(t)

cs,max
(7)

where cs,avg(t) is the average lithium-ions concentration of the electrode, i.e.85

cs,avg(t) =

∫ R

0

csdr (8)

and cs,max is the maximum concentration of lithium ions of the electrode. The surface SOC is defined as86

SOCsurf (t) =
csurfs,avg(t)

cs,max
(9)

The relationship between the molar flux of lithium-ion and the potential difference between solid and solution phases in any

electrode, can be expressed as

J(t) = i0(t)

[
exp

(
αaF

RgT
η(t)

)
− exp

(
αcF

RgT
η(t)

)]
(10)

i0(t) = ak(cs,max − csurfs )αa (csurf(t)s )αc cαae (11)

k is the reaction rate constant, and i0 is the current density of the respective electrode. αa and αc are electrode transfer87

coefficients in anode and cathode, respectively. cs,max and csurfs are maximum and surface concentrations in the corresponding88

electrode respectively. csurfs can be computed as c(R, t). Rg is gas constant, and T is the temperature which is 298 K in this89

work. The overpotential η is defined as the difference between solid and electrolyte potential and it can be expressed for a90

negative electrode as91

ηn(t) = φ1,n(t)− φ2,n(t)− Un(SOCsurfn (t)) (12)
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where φ1,n is solid-phase potential while φ2 is solution-phase potential. The potential drop in the solution phase between92

two electrodes is93

φ2,p(t)− φ2,n(t) = I(t)Rcell (13)

where the subscripts p and n refer to positive and negative electrodes, and Rcell is the resistance of cell which is a lumped94

parameter. The potential difference between positive and negative electrodes is defined as cell voltage. It can be expressed95

using (10), (12) and (13) as96

Vcell(t) = ηp − ηn + Up − Un + I(t)Rcell (14)

U is an open circuit potential of the corresponding electrode. During lithium plating, side reaction affects the negative97

electrode while charging [2]. The overpotential due to side reaction can be written as follows98

ηsr = φ1,n − φ2,n (15)

To avoid excessive lithium plating, batteries should operate satisfying ηsr ≥ 0, i.e. the desired regime.99

2.2. Model Reformulation100

Diffusion equation (1) needs to be reformulated into an ordinary differential equation. Galerkin method with Legendre101

spatial basis functions is used to discretise Fick’s law. The reformulated SPM reduces the dynamics using three state variables.102

The entire process is briefly described below, and further details can be found in [20].103

It is assumed that concentration in any electrode is only a function of time and radial periphery. The lithium-ion concentration104

c(r, t) can be approximated by a linear combination of Legendre polynomials and corresponding time variables:105

c(r, t) ≈
M∑
i=0

φi(r)βi(t) ≈ φ0(r)β0(t) + φ2(r)β2(t) + φ4(r)β4(t) + φ6(r)β6(t) (16)

where φi(r) is Legendre polynomial, and βi(t) is the unknown time coefficient of any electrode. The boundary condition106

at centre of particle (2) are automatically satisfied because of even Legendre polynomials , i = 0, 2, 4, 6. The Legendre107

polynomials can be normalised:108 ∫ R

0

φi(r)φj(r)dr =

 0 if i 6= j

1 if i = j

where R is the radius of a particle. Substituting equation (16) into (1) gives109

4∑
i=0

φi(r)β̇i = Ds

[
2

r

4∑
i=0

dφi(r)

dr
βi(t) +

4∑
i=0

d2φi(r)

dr2
βi((t)

]
(17)
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where β̇i is differentiation of βi with respect to time. The diffusion dynamics can then be expressed as follows



β.0(t)

β.2(t)

β.4(t)

β.6(t)


=
Ds,n

R2
n



0 9
√

5 20 29.4
√

13

0 0 35
√

5 16.8
√

65

0 0 0 46.2
√

13

0 0 0 0





β0(t)

β2(t)

β4(t)

β6(t)


(18)

Similarly the boundary condition at r = R can be expressed as110

3

R

√
5

R
β2 +

10

R

√
9

R
β4 +

21

R

√
13

R
β6 = ± J(t)

DsaF
(19)

where ± is used according to negative or positive electrode formulation. After applying orthogonal projection techniques,111

considering the second boundary condition; dynamics of coefficients [β0, β2, β4, β6]T can be obtained. β6 does not have112

dynamics, and thus can be discarded. The final dynamics is derived, using (18) and (19), in the form of a state-space model.113

ẋ = Ax+Bu (20)

y = Cx+Du

where the state vector is defined as x = [β0, β2, β4]T and the input u is current I(t). Outputs of the system can be computed114

algebraically.115

3. Modelling of SEI layer116

Research on side reactions in lithium-ion batteries are mainly focused on passive film formation on the negative electrode.117

During charging, increment in volume recorded due to the increase in space between the graphene planes [21]. This means118

the SEI film has significant porosity which leads to the conclusion that it grows as a result of solvent diffusion [22, 23]. The119

first principle of the SEI film growth model is taken from [15], which is caused by the effect of slow solvent diffusion/reduction120

near the surface of the negative electrode. Assumptions on parameter values and modelling fundamentals can be seen in121

[15, 24]. In contrast to the SPM model described in section II, certain changes in the negative electrode are proposed. Firstly122

equivalent molar flux at a negative electrode is equal to intercalation (Jn) plus side reaction (Js).123

Jeq,n = Jn + Js (21)

Moreover the equation of overpotential (12) is expressed by124

ηn = φ1,n − φ2,n − Un −
Jeq,n
an

Rfilm (22)
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where Rfilm is the resistance of the SEI film. Side reaction molar flux can be expressed as125

Js = −io,sane−
RgTηs

2F (23)

where io,s is the exchange current density for side reaction, and ηs is the side reaction overpotential, represented as126

ηs = φ1,n − φ2,n − Uref,s −
Jeq,n
an

Rfilm (24)

where Uref,s is open circuit potential for side reaction and is equal to 0.4 V [15]. For the first cycle, film resistance, Rfilm,127

is defined as128

Rfilm = RSEI +Rp(t) (25)

where RSEI is initial film resistance, 0.01 Ωm2 in this work, while Rp(t) is the resistance of the products formed during129

charging and is defined as130

Rp(t) =
δfilm
κp

(26)

where κp is the conductivity of the electrolyte. The mathematical expression of the rate of SEI film resistance (δfilm) is131

written as132

∂δfilm
∂t

= − JsMp

anρpF
(27)

where Mp, ρp are molecular weight and density of products formed during side reaction, respectively. From (25)-(27), time133

rate change of SEI film resistance is written as134

∂Rfilm
∂t

=
io,sMp

κpρpF
e−

RgTηs
2F (28)

The above equation represents the dynamics of SEI film resistance.135

4. Gauss Pseudo-spectral Method136

Implementation of online optimal charging strategies based on electrochemical battery models can be challenging due to137

two reasons: 1) online method can be computationally expensive, 2) problem is non-linear, particularly due to constraints.138

This section describes briefly about Gauss pseudo-spectral method (GPM) which is employed as an efficient optimization139

method to resolve the online optimization problem. The first requirement in GPM is to change the time interval from140

arbitrary bounds t ∈ [t0, tf ] to the interval τ ∈ [−1, 1] by141

t =
(tf − t0)τ + (tf + t0)

2
(29)

The Legendre-Gauss (LG) collocation points used in GPM are all interior to the interval [−1, 1] [25]. The initial point τ0 = 0142

and final point τf = 1 are also taken into account. The Lagrange interpolating polynomials at a set of collocation points are143
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building blocks for the integration approximation matrix in (33). These polynomials can be expressed as [26].144

Lk(t) =
w(t)

(t− tk) w′(tk)
, (30)

where t1, t2, .... are the roots of polynomial while w(t) is a Gauss weight and defined as145

w(t) =

N∏
i=1

(t− ti) (31)

A function can be approximated using Lagrange interpolation formula as146

f(t) ≈
N∑
k=1

f(tk) Lk(t) (32)

The dynamic constraints are discretised using an integration approximation matrix:147

X(ti) = X(t0) +
tf − t0

2

N∑
k=1

Aik f
(
X(tk), tk

)
, i = 1, ...., N (33)

where ti(s) are set of collocation points, Aik is the integral approximation matrix and X(t0) = x0 is the initial value. The148

approximation of function (32) is simplified due to a unique property of Lagrange polynomials, expressed as149

Lj(τi) =

 0 if i 6= j

1 if i = j

The elements in the integral approximation matrix for Gauss points can be approximated by using Axelsson’s algorithm [27].150

Aik =
wi
2

(
1 + ti +

n−2∑
v=1

Pv(tk)
[
Pv+1(ti)− Pv−1(ti)

]
+ PN−1(tk)

[
PN (ti)− PN−2(ti)

])
(34)

where wi is the ith Gauss weight and Pj is the jth Legendre polynomial. Finally, cost J can be approximated using pseudo-151

spectral transcription [28]:152

J = Φ(X(tf ), tf ) +
tf − t0

2

N∑
k=1

g(Xk, Uk, tk)wk (35)

where Φ relates to terminal condition and g(.) is a function of state, input and time at kth collocation point. The non-linear153

boundary constraints can be approximated as154

φ
(
X(t0), t0, X(tf ), tf

)
= 0 (36)

The final state X(tf ) is defined as155

X(tf ) = X(t0) +
tf − t0

2

N∑
k=1

wk f(Xk, Uk, τk), (37)
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The above equation is a Gauss quadrature approximation to the continuous definition of final states. The cost function can156

be discretised using the quadrature rule, written as157

∫ b

a

f(t)dt ≈
N∑
i=1

αi f(ti) (38)

where αi and ti are ith quadrature weight and point (or node) respectively. The cost (35) and non-linear boundary constraints158

(36) form the NLP which can be solved by mature optimization routines.159

5. Problem Formulation160

The main aim of this work is to minimise SEI film resistance during charging. We adopt the receding horizon control161

concept to conduct online optimization at each sampling time. The optimization problem to be resolved is expressed as162

minimize
I(t)

∫ tf

to

[(
SOCn(t)− SOCref

)2
+ q R

′

film(t)

]
dt

subject to

model Eq.(7)− (12), (16), (20),

0 ≤ I(t) ≤ Imax,

0 ≤ V (t) ≤ Vmax,

ηsr ≥ 0

(39)

where q is control parameter, R
′

film(t) is the time rate change of film resistance, SOCref is reference state of charge, ηsr is163

side reaction overpotential, and Imax, Vmax are the maximum current and voltage respectively. The goal of this problem is164

to charge the cell to the desired SOC, SOCref , and minimize the growth of SEI film resistance. Also, the battery should165

operate in the healthy regime defined by the constraints on current, voltage and overpotential. Please note that side reaction166

over-potentials ηs and ηsr are not similar. ηs is side reaction based upon diffusion of the organic solvent present in electrolyte,167

while ηsr is due to the lithium plating which should be greater than or equal to zero for the safe operation of the battery.168

State of charge in a negative electrode can be written, using equation (7), as169

SOCn(t) =
φ0(r)β0(t) + φ2(r)β2(t) + φ4(r)β4(t) + φ6(r)β6(t)

cmax,n
(40)

R
′

film(t) is a function of intercalation and side reaction over-potentials in the negative electrode (28). Equating (22) and

(24), we get

ηs = ηn + Un,ref − Uref,s (41)

(42)
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where ηn(t) can be written, using (5), (10) and (12), as170

ηn(t) =
RgasT

F
ln

(
Jn(t)

io,n(t)an

)
(43)

Overpotential is a function of surface concentration csurfn (t), which can be approximated by171

csurfn (t) = φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t) (44)

Finally R
′

film(t) can be formulated as

R
′

film(t) = X exp

{
−
(
RgasT

2F

)[(
RgasT

F

)
ln

(
−I(t)

AnLnkn
√
φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t)− cmax,n

1√
φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t)

√
ce

)
+

Un,ref

(
φ0(R)β0(t) + φ2(R)β2(t) + φ4(R)β4(t) + φ6(R)β6(t)

cmax,n

)
− 0.4

]}
(45)

where X is a constant with value of 5.4 × 10−10 [15]. Moreover, pseudo-spectral method discretise the cost function (39)172

using (35) to form a NLP problem. The proposed approach is compared against the optimal charging method without173

incorporating the SEI layer growth rate [9, 10], which aims to resolve the online optimization problem:174

minimize
I(t)

∫ tf

to

(
SOCn(t)− SOCref

)2
dt

subject to

model Eq.(7)− (12), (16), (20),

0 ≤ I(t) ≤ Imax,

0 ≤ V (t) ≤ Vmax

(46)

6. Non-linear model predictive control strategy175

In this section, we address how to formulate and implement the NMPC control algorithm based on the optimization176

problem set up in Section 5.177

6.1. Prediction178

A dynamic model predicts future responses of the controlled plant. The system can be represented as a discrete state-space179

representation form as180

x(k + 1) = A x(k) +B u(k) (47)

where x(k) and u(k) are prediction model state and input vectors at kth sampling instant respectively. A and B are system

matrices. The prediction of states is generated by solving the model over N sampling intervals (prediction horizon), generating

10



an optimal control sequence. Define the state and input sequences for N steps as

u(k) =



u(k|k)

u(k + 1|k)

u(k + 2|k)

.

.

u(k +N − 1|k)


, x(k) =



x(k + 1|k)

x(k + 2|k)

x(k + 3|k)

.

.

x(k +N |k)


(48)

where u(k+j|k) and x(k+j|k) denote input and state at time k+j, predicted at time k respectively. It means that x(k+j|k)181

evolves according to the prediction model as182

x(k + j + 1|k) = A x(k + j|k) +B u(k + j|k), j = 0, 1, 2, ...... (49)

with initial condition defined as x(k|k) = x(k). In this particular work, there are three states and one input, as discussed in

subsection 2.2. The final dynamic prediction model in the form of state space is shown below


β̇0(t)

β̇2(t)

β̇4(t)

 =


0 10.15 −20.80

0 −11.35 23.26

0 −13.96 −62.42



β0(t)

β2(t)

β4(t)

+ 10−3 ×


0.22

0.28

0.35

 I(t) (50)

whereas time coefficient β6(t) is redundant because of zero dynamics, but must be known to find the state of charge of

battery. It can be algebraically calculated using the following output equation.



β0(t)

β2(t)

β4(t)

β6(t)


=


1 0 0

0 0 1

0 −0.088 −0.39



β0(t)

β2(t)

β4(t)

+



0

0

0

0.22


I(t) (51)

Finally, from section 4 we know that, the output of the system is approximated by183

βj(τ) ≈ βj(τ) =

N∑
k=0

Lk(τ)βj(τk) (52)

where βj is the corresponding output in any electrode and Lk(τ) is the Lagrange polynomial.184

6.2. Optimisation185

The future predictions are computed by minimising predicted performance cost, defined in terms of states and inputs186

sequences. Cost function J(k) as defined in (35), is a function of u(k) and optimal input sequence for the problem denoted187

as u∗(k). It can be written as188

u∗(k) = arg minu J(k) (53)
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In this work, the cost function as defined in (39), is discretised using Legendre Gauss quadrature rule ( 38). It can be written189

as190

J =

∫ tf

to

[(
SOCn(t)− SOCref

)2
+ q R

′

film(t)

]
dt

J ≈ tf − t0
2

N∑
i=1

[
wi
(
SOCn(τi)− SOCref )2 + q R

′

film(τi)

]
(54)

where wi is Gauss weight and computed using (31). R
′

film(τi) can be solved using (45). State of charge at Legendre Gauss191

point is written as192

SOCn(τi) =
φ0(r)β0(τi) + φ2(r)β2(τi) + φ4(r)β4(τi) + φ6(r)β6(τi)

cmax,n
(55)

6.3. Receding horizon implementation193

In all of the future optimal input sequence u∗(k), only the first value is taken as a input to the plant:194

u(k) = u∗(k|k) (56)

The process of evaluating u∗(k) and implementing the first element of u∗ is then repeated at each sampling instance k =195

0, 1, 2, ..... Due to this repetition of prediction at every instance, it is known as an online optimisation. The prediction horizon196

keeps its constant length throughout the optimisation process, and therefore the approach is known as a receding horizon197

strategy. In this work, the term (tf − t0) denotes the prediction horizon as seen in the above discretised cost function (54).198

Future N states [β0(t), β2(t), β4(t)]T and N inputs I(t) are predicted at a current sampling instant. In the next sampling199

instant, tf − t0 will be the same as in last instant but initial values of the system is changed.200

6.4. Constraints201

Apart from any obvious equality constraints that satisfy the dynamics of the model, every control problem encounters202

inequality constraints on input and state variables. As noted from the problem (39), one input and two non-linear constraints203

are part of this optimisation exercise. The linear inequality constraint is of the form204

Aeq x ≤ beq (57)
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Using eq. (33), we get the following form of linear inequality constraint



IN −Tt×A(1, 2)×MN −Tt×A(1, 3)×MN −Tt×B(1, 1)×MN

0N IN − Tt×A(2, 2)×MN −Tt×A(2, 3)×MN −Tt×B(2, 1)×MN

0N −Tt×A(3, 2)×MN IN − Tt×A(3, 3)×MN −Tt×B(3, 1)×MN





β0N×1

β2N×1

β4N×1


<=



β0,i ∗ 1N×1

β2,i ∗ 1N×1

β4,i ∗ 1N×1


(58)

where IN ,0N are N ×N identity and zero matrices respectively. MN is an integration approximation matrix of order N ×N ,205

as defined in (34). A and B are system matrices, taken from (20). According to Gauss pseudo-spectral notation, xjN×1
206

means [xj(τ1), xj(τ2), xj(τ3), ., ., ., xj(τN )]T . This size of Aeq and beq matrices depends on the chosen prediction horizon. The207

two non-linear constraints are voltage Vcell and side reaction overpotential ηsr; both are function of states and input. In208

pseudo-spectral notation, it can be written as209

V (τi)) =
RgasT

F

[
ln

(
Jp(τi)

io,p(τi)ap

)
− ln

(
Jn(τi)

io,n(τi)an

)]
+ Up

(
SOCrefp (τi)

)
− Un

(
SOCrefn (τi)

)
+ I(τi)Rcell (59)

210

ηsr(τi) =
RgasT

F
ln

(
Jn(τi)

io,n(τi)an

)
+ Un

(
SOCrefn (τi)

)
(60)

Finally, the algebraic cost (54), along with linear (57) and non-linear constraints (59 , 60) make up the NLP problem. It is211

further solved by MATLAB function ”fmincon” in this work.212

7. Results and Discussion213

The initial state of charge (SOC) is set to 0.4 while two upper current limits are considered in this work, i.e. Imax = 5A214

and 7A. Reference state of charge, SOCref is taken as 0.96, and the voltage limit is set to 4.2 volts. Problem (39) is set to215

start at to = 0, using a NMPC approach. At each time step, the solver predicts future instances with a prediction horizon of216

100s using four collocation points. The initial guess of the solution at the present time step is a solution at the last sampling217

instance.218

State of charge in the negative electrode is shown in Figure 1(a) and (d) for Imax = 5A and 7A, respectively. SOC is compared219

for two charging methods: the proposed method (39) and the method (46) presented in [10]. It can be seen that the reference220

SOC is achieved in each methodology but charging time in the proposed optimal case is higher than the method (46) for221

both upper limits of current. In the case of Imax = 5A, a 9.6% increase in charging time is recorded in the proposed method222

(39) while at Imax = 7A, charging time difference is 22%. The higher difference in case of Imax = 7A is understandable223
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because the CCCV methodology charges the battery in constant current (CC) scenario for maximum time. As we increase224

the maximum current for both methodologies, the difference in charging time becomes larger. Note that longer charging time225

using the proposed SEI optimal charging method can significantly reduce the SEI layer growth as demonstrated below.226

It is a known practice that CCCV charging terminates at fairly low current i.e. 5 mA or 50 mA. In this work, the later227

current value is used. In Figure 1(a), SOC reaches the reference value at t1 while it stays at same value until t2. This is due228

to the current profile in CCCV charging. The optimal CCCV algorithm charges the battery using constant current (CC)229

approach from t = 0 to t = t1. At t1, it switches to constant voltage (CV) approach which means current needs to be lower230

down to keep the voltage constant. Reference SOC is achieved at t1 which needs to be same till t2. Current value drops from231

Imax to 50 mA in time span of t1 − t2.232

Figure 1(b) and (e) depict the results of optimal CCCV charging for Imax = 5A and 7A, respectively. CCCV charging splits

Figure 1: Comparison of State of charge (a,d), current profile (b,e) and SEI film resistance (c,f) vs charging time at current upper bounds of
Imax = 5A(a-c) and Imax = 7A(d-f); Optimal CCCV charging( ), Proposed SEI optimal charging( )

233

into two phases; CC from t = 0 to t = t1 and CV from t = t1 to t = t2. In both cases for SEI reduction optimal charging234

method, charging starts at fairly low value to reduce the rate of lithium plating. This is because, at low SOCs, the reference235

potential of the negative electrode is quite high, i.e. the possibility of ηsr to be negative. Thus to be in the healthy regime,236

the charging current needs to increase slowly, since higher current can lead to lower resistance of the SEI layer. The proposed237

SEI reduction optimal charging profile finishes, in either of the maximum current limits, at higher current value as compared238

to the optimal CCCV charging method. Termination of SEI optimal charging at higher current value has two advantages,239
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(i) it compensates for charging time which considerably increases due to low SOC regime (where ηsr can be negative), and240

(ii) It reduces the growth of SEI layer which increases at low values of current.241

The growth of SEI film resistance is shown in Figure 1(c) and (f) for Imax = 5A and 7A, respectively. It is evident from the242

figures that SEI film resistance is quite high in optimal CCCV and SEI optimal charging cases when maximum current is243

5A. The primary reason is that lower current takes more time to complete charging. SEI film resistance drops significantly244

in proposed SEI optimal charging compared to the optimal CCCV charging at given maximum current value. The overall245

optimal charging time increases but SEI film resistance decreased. This can be explained as at higher SOCs the algorithm246

uses a maximum value of current, so that molar flux is high. In case of Imax = 5A (Figure 1(e)), SEI layer resistance247

is recorded as 0.0118 Ωm2 in optimal CCCV case, reduced to 0.0112 Ωm2 in proposed SEI optimal formulation scenario.248

The percentage increase of SEI layer resistance from initial value (0.01 Ωm2) is 18% and 12% in optimal CCCV and the249

proposed SEI reduction optimal charging method, respectively, which represents a 5.2% decrease of SEI layer growth using250

the proposed charging method. Lower percentage difference is recorded (4.95%) in case of Imax = 7A (Figure 1(f)) between251

two strategies. The main difference is in the final phase of optimal CCCV charging, where it uses low current as compared252

to the proposed optimal approach. The maximum value of surface concentration and negative ηsr increase the SEI layer253

resistance to a fairly high value in optimal CCCV approach.254

The profile of SEI layer in optimal CCCV charging can be categorised on the basis of SOC regimes, i.e. low or high. At low255

SOC regime, the current is high, which acts as a source of lithium plating. At maximum current, overpotential of negative256

electrode (43) is high, which makes side reaction overpotential ηsr (60) negative. This is not desirable as only positive ηsr257

guarantees the reduction of lithium plating side effects. Termination of optimal CCCV charging usually happens at low258

current, which is 50 mA in this work. Due to low current at the end stage of charging (t1 to t2), side reaction overpotential259

for SEI layer ηs (24) is very low. The exponential term in (28) ultimately leads to spike in SEI layer profile at the final stage260

of optimal CCCV charging.261

Another added advantage of the proposed algorithm is to charge batteries in the healthy regime, which means side reaction262

overpotential of lithium plating is positive during the whole process. Note that cost function does not always guarantee263

the desired result. It can be argued that side reaction overpotential will always be positive to decrease the value of the264

exponential term in the cost function. However, this cannot be extrapolated for an entire range of possible values of current265

which indicates that limit on ηsr is necessary in this work. Figure 2 shows side reaction overpotential ηsr in optimal CCCV266

and SEI optimal charging. It is evident from the figure that in optimal CCCV charging, ηsr is negative while it is positive in267

proposed SEI optimal charging, successfully avoiding lithium plating. Hence, It means that the proposed charging algorithm268

runs in a healthy regime along with reducing SEI film resistance.269

Total charging time and maximum charging current value affect the resistance of the SEI layer growth. In optimal CCCV270

charging, higher current upper bound means fast charging and lesser growth of the SEI layer. However, the optimal algorithm271

makes sure that SEI layer resistance is as low as possible along-with successfully avoiding lithium plating during the whole272

process of charging. If the current upper bound is constant, charging time is higher in the SEI optimal charging case than273

optimal CCCV but quite low SEI film resistance. Next, we compare the two methods in two scenarios to investigate: (i) At274

what conditions, is charging time for both methodologies the same? (ii) If SEI film resistance is the same, how does charging275
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Figure 2: Relationship between charging time and side reaction overpotential(ηsr) in the proposed SEI optimal charging ( ) and optimal CCCV
charging ( ) approaches, Imax = 5A(solid) and Imax = 7A(dashed)

time relate to current upper bound?276

7.1. Scenario I: Same Charging time277

In optimal CCCV strategy, the upper bound current is inversely proportional to the charging time and SEI layer resistance.278

To get the same charging time for both methodologies, the maximum current limit of SEI optimal strategy should be higher279

than optimal CCCV. Two cases are recorded in this analysis, where charging time is the same in both strategies.280

It is evident from Table 1 that in order to get the same charging time, current upper bounds in both strategies are not the

Table 1: Same Charging Time Cases

Case Charging Current upper bound in Current upper bound in
No. time (s) SEI optimal charging, Imax(A) optimal CCCV charging, Imax(A)
1 1125 5 4.55
2 902 7 5.7

281

same. Consider case 2 of Table 1, the charging time is set to 902 seconds which is charging time for SEI optimal strategy at282

Imax = 7A (Figure 1(d), (e) and (f)). To get same charging time for optimal CCCV, current upper bound needs to decrease283

because at Imax = 7A, charging time is 740 seconds. Figures 3 and 4 show the relationship between SOC, current and SEI284

layer resistance versus time.285

286

Figure 3(a) shows the SOC of the negative electrode. Reference SOC is attained in both methods at the same time.287

The optimal SOC profile initially has a slightly low slope as compared to optimal CCCV. This is because of the optimal288

charge current profile (Figure 3(b)), which starts at a reasonably low value. The primary reason is to control side reaction289

overpotential at a low state of charge, ultimately avoiding the effects of lithium plating.290
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Figure 3: State of charge (a) and current profile (b) for same charging time; Case 2 of Table 1; Optimal CCCV Charging(Imax = 5.7A), Proposed
SEI optimal charging(Imax = 7A)

At Imax = 5.7A, SEI layer resistance is recorded as 0.01155 Ωm2(15.5% increase) compared to the SEI layer growth in the291

proposed SEI optimal charging method, as shown in Figure 4. The percentage increase in the SEI layer at Imax = 5.7A,292

goes up to approximately 2.5% compared to charging at Imax = 7A. Hence, the percentage difference of SEI layer resistance293

between proposed SEI optimal and optimal CCCV strategies climbs up to 8.6% keeping similar charging time.294

Similar results are found for case 1 of Table 1, which shows that to get the similar charging time of 1125 seconds, the current295

upper bounds must be 5A and 4.55A in proposed SEI optimal and optimal CCCV strategies, respectively. The SEI layer296

resistance in optimal CCCV is increased to 0.01211 Ωm2(21.1% increase) which is 0.0118 Ωm2 at Imax = 5A. An overall297

percentage increase of 3.1% is recorded as at Imax = 4.55A compared to optimal CCCV at Imax = 5A. Thus, the percentage298

difference of SEI layer resistance between proposed SEI optimal and optimal CCCV strategies climbs up to 7.8% keeping299

similar charging time.300

301

Scenario I analysis is summarised in Figure 5. It shows a relationship between charging time versus maximum current302

upper bound. Maximum current is taken from 2.3A(1C) to 9.2A(4C). Understandably, optimal CCCV charging is fast at303

a specific current upper bound value. For example, at Imax = 7A, proposed SEI optimal charging takes almost three extra304

minutes. In order to find the same charging time for both methods, one can get values of current upper bounds by drawing305

vertical and horizontal lines from data labels. For charging time of 1100 seconds, maximum current values of optimal CCCV306

17



Figure 4: Same Charging time: Comparison of SEI film resistance in optimal CCCV charging (Imax = 5.7A) and proposed SEI optimal charging
(Imax = 5.7A)

Figure 5: Relationship between charging time and current upper bound (Imax) in optimal CCCV and proposed SEI optimal charging methodologies

and proposed SEI optimal methodologies should be 4.7A and 5.1A, respectively. As the maximum value of current increases,307

charging time difference between optimal CCCV and the proposed SEI optimal charging strategies also increases.308

The conclusion from the scenario I is that charging time for proposed SEI optimal and optimal CCCV strategies can be the309

same, but on the cost of higher SEI layer growth. The proposed method outperforms the optimal CCCV because of two310
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reasons; (i) SEI layer growth is low and (ii) it successfully avoids side reaction overpotential to attain value less than zero.311

Thus by keeping current upper bound or charging time same, the proposed SEI optimal framework is far better than optimal312

CCCV as it minimises SEI layer growth and tackles lithium plating too.313

7.2. Scenario II: Same SEI layer Resistance314

Figure 6: Relationship between SEI film resistance and current upper bound (Imax) in optimal CCCV and proposed SEI optimal charging
methodologies

Figure 6 shows the relationship between SEI layer growth and maximum current in both methodologies. It can be seen315

that at low current rating, the difference in the SEI layer resistances corresponding to optimal CCCV and proposed SEI316

optimal strategies is high. As the value of the maximum current increases, the difference in the SEI layer resistances de-317

creases. The primary reason for a more significant difference in the SEI layer at low current, is the high charging time. To318

get SEI layer resistance of 0.011 Ωm2, the maximum current in optimal CCCV and proposed SEI optimal methodologies319

should be 8.1A and 5.6A, respectively. Thus, a proposed optimal framework uses a low current upper bound along with320

generating small value of SEI layer resistance. It has been noted that there is no significant change in SEI layer resistance321

from Imax = 7A to 9.2A in proposed optimal charging framework.322

The percentage difference in SEI layer resistance between optimal CCCV and proposed SEI Optimal methodologies is shown323

in Figure 7. The highest percentage difference is recorded as 24% at the current rating of 1C. This difference kept on324

decreasing from 1C to 2C and 3C to 4C. The percentage difference fluctuates around 5% from 2C to 3C. Because of the325

minimum range of work from 3C to 4C, % difference in SEI layer growth is almost constant.326

Charging time is not the only factor that influences SEI layer growth, but higher current can contribute to exfoliation of327

graphite. It leads to a loss of active anode material which can be a source of capacity and power fade. Hence, it can be328

concluded from the above analysis that battery charging is a trade-off between optimal charging time and the current upper329
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Figure 7: Percentage difference in SEI layer resistances between optimal CCCV and proposed SEI optimal charging methodologies from Imax =1C
(2.3A) to Imax =4C (9.2A)

Figure 8: SEI film resistance versus charging time in optimal CCCV and proposed SEI optimal charging methodologies

bound.330

Scenario II analysis is summarised in Figure 8. It shows the relationship between SEI layer resistance and charging time at331

the current upper bound range of 1C to 4C. It is evident from Figure 8 that at any charging time, SEI layer resistance is332

higher in optimal CCCV than the proposed SEI optimal charging. SEI layer resistance is recorded as 0.0117 Ωm2 (proposed333
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Table 2: Overall computational times of optimal CCCV and proposed SEI optimal charging strategies at different current rates

Current Upper Bound (Imax) CCCV (s) NMPC (s)
1 C (2.3 A) 242 285
2 C (4.6 A) 132 164
3 C (6.9 A) 54 78
4 C (9.2 A) 39 58

SEI optimal) and 0.0132 Ωm2(optimal CCCV), at the charging time of 1500 seconds. The percentage difference in SEI layer334

resistance is 12 % whereas the corresponding maximum current Imax is 3.2 A and 3.6 A in the proposed SEI optimal and335

optimal CCCV strategies, respectively.336

337

Another critical aspect of online control strategies is computational time. Although the proposed NMPC successfully338

minimises the SEI layer resistance, it must be practically implementable. Computational times of both optimal and CCCV339

methodologies are presented in Table 2 at different maximum current upper bounds using MATLAB R2016b on DELL laptop340

with intel (R) Core (TM) i-7-8650U CPU @ 1.90GHz 2.11 GHz processor. The simulations of optimisation problems (39)341

and (46) are conducted using 4 collocation points, same SPM model and a prediction horizon of 200 seconds. Moreover,342

a more significant range of SOC (10% to 96%) is considered to evaluate the full charging process. Overall computational343

time is defined as the time taken by an algorithm to charge the battery from initial to final SOC. The overall computational344

times of optimal CCCV and the proposed SEI optimal strategies at 1C rating are 242 and 285 seconds, respectively. The345

percentage difference in computational times between both strategies tends to increase as the current rate increases. The346

higher current decreases the simulation time, keeping all other parameters constant. At 1C, the difference in computational347

time between both strategies is 43 seconds. The difference keeps on decreasing as current upper bound increases, 19 seconds348

at 4C. As computational time difference between two strategies is not significant; it can be concluded that the proposed SEI349

optimal charging strategy is suitable for real-time implementation in battery management systems.350

8. Conclusion

This article proposes an online non-linear model predictive control framework which minimises SEI layer film resistance

during charging. It uses the integral Gauss pseudo-spectral approach to optimise battery charging trajectory. Apart from

the SEI layer minimisation, it deals with another side reaction, i.e. lithium plating, which is the main factor causing capacity

fade. The proposed algorithm guarantees that the battery works in a healthy regime during charging. It is evident from

the results that SEI film resistance decreases significantly in proposed SEI optimal charging as compared to optimal CCCV

charging. There is up to 24% difference in SEI layer growth, recorded in case of proposed SEI optimal methodology. In

case of same charging time for both charging methodologies, SEI layer resistance is higher in optimal CCCV charging. The

proposed SEI optimal methodology is the best candidate to charge the battery. This work can be further used to compute

cyclic capacity fade, thus estimating the life of batteries.
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Nomenclature

List of Symbols

c concentration (mol m−3)

r radius of electrode (m)

t time (s)

J molar flux (A m−2)

F Faraday’s constant (C mol−1)

D Diffusion constant (m2s−1)

a interfacial surface area (m−1)

I current (A)

S area of electrode (m2)

L length of electrode (m)

T temperature (◦C)

i current density (Am−2)

U equilibrium potential (V )

V voltage of cell (V )

M molecular weight (kg mol−1)

Greek

ε porosity of electrode

α transfer coefficient

η overpotential

φ potential, Legendre polynomial

β time coefficient

δ thickness

ρ density of products

κ conductivity of electrolyte
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Subscripts/Superscripts

s solid state

p positive electrode

n negative electrode

avg average

max maximum

surf surface

a anode

c cathode

g gas

1 solid

2 solution

film SEI film

sr side reaction

SEI solid electrolyte interface

eq equivalent

ref reference

Acronyms

NMPC non-linear model predictive control

EV electric vehicle

CCCV constant current constant voltage

SOH state of health

BMS battery management system

NLP non-linear programming

SPM single particle model

SOC state of charge

MPC model predictive control

IAM integration approximation matrix
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