
BATS: Binary ArchitecTure Search

Adrian Bulat1[0000−0002−3185−4979], Brais Martinez1[0000−0001−7511−8941], and
Georgios Tzimiropoulos1,2[0000−0002−1803−5338]

1 Samsung AI Center, Cambridge, UK
adrian@adrianbulat.com, brais.mart@gmail.com
2 Queen Mary University of London, London, UK

g.tzimiropoulos@qmul.ac.uk

Abstract. This paper proposes Binary ArchitecTure Search (BATS),
a framework that drastically reduces the accuracy gap between binary
neural networks and their real-valued counterparts by means of Neural
Architecture Search (NAS). We show that directly applying NAS to the
binary domain provides very poor results. To alleviate this, we describe,
to our knowledge, for the first time, the 3 key ingredients for successfully
applying NAS to the binary domain. Specifically, we (1) introduce and
design a novel binary-oriented search space, (2) propose a new mecha-
nism for controlling and stabilising the resulting searched topologies, (3)
propose and validate a series of new search strategies for binary networks
that lead to faster convergence and lower search times. Experimental re-
sults demonstrate the effectiveness of the proposed approach and the
necessity of searching in the binary space directly. Moreover, (4) we set a
new state-of-the-art for binary neural networks on CIFAR10, CIFAR100
and ImageNet datasets. Code will be made available.

Keywords: Binary networks, Neural Architecture Search

1 Introduction

Network quantization and Network Architecture Search (NAS) have emerged as
two important research directions with the goal of designing efficient networks
capable of running on mobile devices. Network quantization reduces the size
and computational footprint of the models by representing the activations and
the weights using N < 32 bits. Of particular interest is the extreme case of
quantization, binarization, in which the model and the activations are quantized
to a single bit [33,10,9]. This allows to replace all floating point multiply-add
operations inside a convolutional layer with bit-wise operations resulting in a
speed-up of up to 57× [33]. Recent years have seen a progressive reduction of
the performance gap with real-valued networks. However, research has almost
exclusively focused on the ResNet architecture, rather than on efficient ones
such as MobileNet. This is widely credited to pointwise convolutions not being
amenable to binarization [4,2].

As an orthogonal direction, NAS attempts to improve the overall perfor-
mance by automatically searching for optimal network topologies using a vari-

ar
X

iv
:2

00
3.

01
71

1v
2

 [
cs

.C
V

]
 2

3
Ju

l 2
02

0
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/340119544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Bulat et al.

ous of approaches including evolutionary algorithms [41,34], reinforcement learn-
ing [47,52] or more recently by taking a differentiable view of the search process
via gradient-based approaches [27,25]. Such methods were shown to perform bet-
ter than carefully hand-crafted architectures on both classification [25,27,32,52]
and fine-grained tasks [24]. However, all of the aforementioned methods are tai-
lored towards searching architectures for real-valued neural networks.

The aim of this work is to propose, for the first time, ways of reducing the
accuracy gap between binary and real-valued networks via the state-of-the-art
framework of differentiable NAS (DARTS) [27,25].

We show that direct binarization of existing cells searched in the real domain
leads to sub-par results due to the particularities of the binarization process, in
which certain network characteristics typically used in real-valued models (e.g.
1 × 1 convolutions) may be undesired [4,2]. Moreover, we show that perform-
ing the search in the binary domain comes with a series of challenges of its
own: it inherits and amplifies one of the major DARTS [27] drawbacks, that of
“cell collapsing”, where the resulting architectures, especially when trained for
longer, can result in degenerate cells in which most of the connections are skip
connections [25] or parameter-free operations. In this work, we propose a novel
Binary Architecture Search (BATS) method that successfully tackles the above-
mentioned issues and sets a new state-of-the-art for binary neural networks on
the selected datasets, yet simultaneously reducing computational resources by a
wide margin. In summary, our contributions are:

1. We show that directly applying NAS to the binary domain provides very poor
results. To alleviate this, we describe, to our knowledge, for the first time,
the 3 key ingredients for successfully applying NAS to the binary domain.

2. We devise a novel search space specially tailored to the binary case and
incorporate it within the DARTS framework (Section 4.1).

3. We propose a temperature-based mechanism for controlling and stabilising
the topology search (Section 4.2).

4. We propose and validate a series of new search strategies for binary networks
that lead to faster convergence and lower search times (Section 4.3).

5. We show that our method consistently produces superior architectures for
binarized networks within a lower computational budget, setting a new state-
of-the-art on CIFAR10/100 and ImageNet datasets (Section 6).

2 Related work

NAS: While hand-crafted architectures significantly pushed the state-of-the-art
in Deep Learning [18,36,46,30,19,16], recently, NAS was proposed as an auto-
mated alternative, shown to produce architectures that outperform the man-
ually designed ones [35]. NAS methods can be roughly classified in three cate-
gories: evolutionary-based [41,34,35], reinforcement learning-based [1,47,52] and,
more recently, one-shot approaches, including differentiable ones [3,27,24,6]. The
former two categories require significant computational resources during the

BATS: Binary ArchitecTure Search 3

search phase (3150 GPU-days for AmoebaNet [34] and 1800 GPU-days for NAS-
Net [52]). Hence, of particular interest in our work is the differentiable search
framework (DARTS) of [27] which is efficient. Follow-up work further improves
on it by progressively reducing the search space [8] or by constraining the ar-
chitecture parameters to be one-hot [42]. Our method builds upon the DARTS
framework incorporating the progressive training of [8]. In contrast to all the
aforementioned methods that search for optimal real-valued topologies, to our
knowledge, we are the first to study NAS for binary networks.

Network binarization is the most extreme case of network quantization in
which weights and activations are represented with 1 bit. It allows for up to 57×
faster convolutions [33], a direct consequence of replacing all multiplications with
bitwise operations [9]. Typically, binarization is achieved by taking the sign of
the real-valued weights and features [9,10]. However, such an approach leads to
large drops in accuracy, especially noticeable on large scale datasets. To allevi-
ate this, Rastegari et al . [33] introduce analytically computed real-valued scaling
factors that scale the input features and weights. This is further improved in [5]
that proposes to learn the factors via back-propagation. In Bi-Real Net, Lin et
al . [28] advocate the use of double-skip connections and of real-valued down-
sample layers. Wang et al . [40] propose a reinforcement learning-based approach
to learn inter-channel correlations to better preserve the sign of convolutions.
Ding et al . [14] introduce a distribution loss to explicitly regularize the acti-
vations and improve the information flow thought the network. While most of
these methods operate within the same computational budget, another direction
of research attempts to bridge the gap between binary and their real-valued net-
works by increasing the network size. For example, ABC-Net [23] proposes to
use up to M = N = 5 branches, equivalent with running M ×N convolutional
layers in parallel, while Zhu et al . [50] use an ensemble of up to 6 binary mod-
els. These methods expand the size of the network while preserving the general
architecture of the ResNet [16] or WideResNet [44]. In contrast to all the afore-
mentioned methods in which binary architectures are hand-crafted, we attempt
to automatically discover novel binary architectures, without increasing the com-
putational budget. Our discovered architectures set a new state-of-the-art on the
most widely used datasets.

Very recent work on binary NAS done concurrently with our work in-
clude [37] and [38]. As opposed to our work, [37] simple searches for the number
of channels in each layer inside a ResNet. [38] uses a completely different search
space and training strategy. We note that we outperform significantly both of
them in terms of accuracy/efficiency. On ImageNet, using 1.55×108 FLOPs, we
obtain a Top-1 accuracy of 66.1% vs 58.76% using 1.63 × 108 FLOPS in [38].
On CIFAR-10 we score a top-1 accuracy of 96.1% vs 94.43% in [37]. While [37]
achieves an accuracy of 69.65% on ImageNet, they use 6.6× 108 FLOPS (4.2×
more than our biggest model).

4 Bulat et al.

3 Background

Network binarization: We binarize the models using the method proposed by
Rastegari et al . [33] with the modifications introduced in [5]: we learn the weight
scaling factor α via back-propagation instead of computing it analytically while
dropping the input feature scaling factor β. Assume a given convolutional layer
L with weights W ∈ Ro×c×w×h and input features I ∈ Rc×win×hin , where o
and c represent the number of output and input channels, (w, h) the width and
height of the convolutional kernel, (win ≥ w, hin ≥ h) the spatial dimensions
of I. The binarization is accomplished by taking the sign of W and I and then
multiplying the output of the convolution by the trainable scaling factor α ∈ R+:

I ∗W ≈ (sign(I)©∗ sign(W))� α, (1)

where � denotes the element-wise multiplication, ∗ the real-valued convolution
and©∗ its binary counterpart. During training, the gradients are used to update
the real-valued weightsW while the forward pass is done using sign(W). Finally,
we used the standard arrangement for the binary convolutional layer operations:
Batch Norm, Sign, Convolution, Activation.
DARTS: Herein, we review DARTS [27] and P-DARTS [8] upon which we build
our framework: instead of searching for the whole network architecture, DARTS
breaks down the network into a series of L identical cells. Each cell can be seen
as a Direct Acyclic Graph (DAG) with N nodes, each representing a feature
tensor. Within a cell, the goal is to choose, during the search phase, an opera-
tion o(·) from the predefined search space O that will connect a pair of nodes.
Given a pair of such nodes (i, j) the information flow from i to j is defined as:

fi,j(xi) =
∑
o∈O

exp(αo
i,j)∑

o
′∈O

exp(αo
′

i,j)
· o(xi), where xi is the output of the i-th node

and αoi,j is an architecture parameter used to weight the operation o(xi). The
output of the node is computed as the sum of all inputs xj =

∑
i<j fi,j(xi) while

the output of the cell is a depth-wise concatenation of all the intermediate nodes
minus the input ones (2, 3, . . . , N − 1). During the search phase, the networks
weights W and the architectures parameters α are learned using bi-level opti-
mization where the weights and α are optimized on two different splits of the
dataset. Because the search is typically done on a much shallower network due
to the high computational cost caused by the large search space O, DARTS may
produce cells that are under-performing when tested using deeper networks. To
alleviate this, in [8] the search is done using a series of stages during which the
worse performing operations are dropped and the network depth increases. For
a complete detailed explanation see [27] and [8].

4 Method

This section describes the 3 key components proposed in this work: the binary
search space, the temperature regularization and search strategy. As we also show

BATS: Binary ArchitecTure Search 5

experimentally in Section 5.1, we found that all 3 components are necessary for
successfully applying NAS to the binary domain3.

4.1 Binary Neural Architecture Search Space

Since searching across a large space O is computationally prohibitive, most of
the recent NAS methods manually define a series of 8 operations known to pro-
duce satisfactory results when used in hand-crafted network topologies: 3 × 3
and 5×5 dilated convolutions, 3×3 and 5×5 separable convolutions, 3×3 max
pooling, 3×3 average pooling, identity (skip) connections plus the zero (no) con-
nection. Table 1 summarizes the operations used for the real-valued case. Having
an appropriate search space containing only desirable operations is absolutely es-
sential for obtaining good network architectures: for example, a random search
performed on the aforementioned space on CIFAR-10 achieves already 3.29%
top-error vs. 2.76% when searched using second-order DARTS [27].

Table 1: Comparison between the commonly used searched space for real valued
networks and the proposed one, specially tailed for binary models.

Real-valued Ours (proposed)

Separable conv. (3 × 3) Group convolution (3 × 3)
Separable conv. (5 × 5) Group convolution (5 × 5)

Dilated conv. (3 × 3) Dilated Group conv. (3 × 3)
Dilated conv. (5 × 5) Dilated Group conv.(5 × 5)

Identity (skip connection)

Max pooling (3 × 3)

Average pooling (3 × 3)

Zero-op

However, not all operations used for the real-valued case are suitable for
searching binary architectures. In fact, we found that when using the standard
DARTS search space, searching in the binary domain does not converge. This is
due to several reasons: the depth-wise convolutions are notoriously hard to bi-
narize due to what we call the “double approximation problem”: the real-valued
depth-wise convolution is a “compressed” approximate version of the normal
convolution and, in turn, the binary depth-wise in a quantized approximation of
the real-valued one. Furthermore, the 1× 1 convolutional layers and the bottle-
neck block [16] were already shown to be hard to binarize [4] because the features
compression that happens in such modules amplifies the high information degra-
dation already caused by binarization. Both 1×1 and separable convolutions are
present in the current search space typically used for search real-valued architec-
tures (see Table 1), making them inappropriate for binarization. Moreover, while

3 When any of the components was not used, the obtained results were very poor.

6 Bulat et al.

the dilated convolution contains 2 serialized convolutions, the separable one con-
tains 4 which (a) causes discrepancies in their convergence speed and (b) can
amplify the gradient fading phenomena that often happens during binarization.

To this end, we propose a new search space O, shown in Table 1, constructed
from a binary-first point of view that avoids or alleviates the aforementioned
shortcomings. While we preserve the zeros and identity connections alongside the
3×3 max and average pooling layers which do not contain learnable parameters
or binary operations, we propose to replace all the convolutional operations with
the following new ones: 3×3 and 5×5 grouped convolutions and dilated grouped
convolutions, also with a kernel size of 3×3 and 5×5. This removes all the 1×1
convolutional layers directly present in the cell’s search space while maintaining
the efficiency via the usage of grouped convolutions.

We note that there is a clear trade-off here between efficiency and accuracy
controlled via the group size and number of channels. In this work, and in con-
trast to other works that rely on grouped convolutions (e.g. [46]), we propose to
use a very high group size which leads to behaviours closer to that of a depth-
wise convolution (a small one will come at a price of higher computational bud-
gets, while the extreme case #groups=#in channels will again exacerbate the
double-approximation problem). We used a group size of 12 and 3 (only) chan-
nels per group (totalling 36 channels) for CIFAR, and a group size of 16 and 5
(only) channels per group (totalling 80 channels) for ImageNet. Note that we
also explored the effect of adding a channel shuffle layer [46] after each grouped
convolution, typically used to enable cross-group information flow for a set of
group convolution layers. However, due to the fact that #groups � #channels
per group, they were unable to offer accuracy gains. Instead, we found that
the 1 × 1 convolutions present between different DARTS cells are sufficient for
combining information between the different groups.

Furthermore, in the proposed search space, in all convolutional layers, the
depth of all operations used is equal to 1 meaning that we used 1 convolution
operator per layer, as opposed to 4 convolutions (2 depth-wise separable) used
in DARTS, which facilitates learning. Another consequence of using operations
with a depth equal to 1 is a latency improvement due to effectively a shallower
network. For a visual illustration of differences between DARTS and the proposed
BATS please check the supplementary material.

Finally, to improve the gradient and information flow, which is even more
critical for the case of binary networks, while also speeding-up the convergence of
such operations during the search phase, we explicitly add an identity connection
on each convolutional operation such that fi,j(xi) = fi,j(xi) + xi.

The efficacy of the proposed search space is confirmed experimentally in
Table 5. As the results from Table 5 show, the architectures found by searching
within the proposed search space constantly outperform the others.

4.2 Search Regularization and Stabilisation

Despite its success and appealing formulation, DARTS accuracy can vary wildly
between runs depending on the random seed. In fact, there are cases in which the

BATS: Binary ArchitecTure Search 7

architectures found perform worse than the ones obtained via random search.
Furthermore, especially when trained longer or if the search is performed on
larger datasets DARTS can converge towards degenerate solutions dominated
by skip connections [8]. While in [8] the authors propose to address this by a)
applying a dropout on the skip connections during the architecture search and
b) by preserving a maximum of 2 skip connections per cell as a post processing
step that simply promotes the operation with the second highest probability, we
found that such mechanism can still result in a large amount of randomness and
is not always effective: for example, it can replace skip connections with pooling
layers (which have no learning capacity) or the discovered architecture might
even already contain too few skip connections.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5
T = 1
T = 0.5
T = 0.2

Fig. 1: Distribution of architecture pa-
rameters after the first stage for a given
cell (data points were sorted by magni-
tude and do not correspond to the same
ops): for low temperatures the network
is forced to be more discriminative.

Such problems are even more no-
ticeable when the search is performed
in the binary domain directly. Given
that, during search, the input to
the node j is obtained by taking a
weighted sum of all incoming edges,
in order to maximise the flow of infor-
mation, the architecture parameters α
tend to converge to the same value
making the selection of the final archi-
tecture problematic and susceptible to
noise resulting in topologies than may
perform worse than a random selec-
tion. Furthermore, the search is highly
biased towards real-valued operations
(pooling and skip connections) that at
early stages can offer larger benefits.

To alleviate the aforementioned is-
sues and encourage the search proce-
dure to be more discriminative forcing it to make ”harder“ decisions, we propose
to use a temperature factor T < 1 defining the flow from node i to j as follows:

fi,j(xi) =
∑
o∈O

exp(αoi,j/T)∑
o′∈O exp(αo

′

i,j/T)
· o(xi). (2)

This has the desirable effect of making the distribution of the architecture
parameters less uniform and spikier (i.e. more discriminative). Hence, during
search, because the information streams are aggregated using a weighted sum,
the network cannot equally (or near-equally) rely on all possible operations by
pulling information from all of them. Instead, in order to ensure convergence
to a satisfactory solution it has to assign the highest probability to a non 0-
ops path, enforced by a sub-unitary temperature (T < 1). This behaviour also
follows closer the evaluation procedure where a single operation will be selected,
reducing as such the performance discrepancy between the search, where the
network pulls information from all paths, and evaluation.

8 Bulat et al.

Fig. 1 depicts the distribution of the architecture parameters for a given
cell for different temperatures. For low temperatures, the network is forced to
make more discriminative decisions which in turn makes it rely less on identity
connections. This is further confirmed by Fig. 2 which depicts the chance of
encountering a given op. in a normal cell at the end of the search process for
different temperatures.

4.3 Binary Search Strategy

d
il
gc
on

v
3
×

3

d
il
gc
o
n
v
5
×
5

gc
on

v
3
×
3

gc
on

v
5
×

5

m
ax

p
o
ol

3
×

3

sk
ip

co
n
n
ec
t

0

10

20

30

40

50

P
ro
p
or
ti
on

of
o
p
er
at
io
n
s
(%

)

T = 1
T = 0.2

Fig. 2: Probability of a given op. in a cell
at the end of the search process for dif-
ferent temperatures: for T = 0.2 there
is a significant increase in the number of
5× 5 convolutions and a decrease in the
number of skip connections.

Despite their appealing speed-up and
space saving, binary networks re-
main harder to train compared to
their real-valued counterparts, with
methods typically requiring a pre-
training stage [28] or carefully tuning
the hyper-parameters and optimiz-
ers [33,9]. For the case of searching bi-
nary networks, directly attempting to
effectuate an architecture search us-
ing binary weights and activations in
most of our attempts resulted either
in degenerate topologies or the train-
ing simply converges to extremely low
accuracy values. We also note that,
as expected and as our experiments
have confirmed, performing the search
in the real domain directly and then
binarizing the network is sub-optimal.

To alleviate the problem, we pro-
pose a two-stage optimization process
in which during the search the activa-
tions are binarized while the weights
are kept real, and once the optimal architecture is discovered we proceed with
the binarization of the weights too during the evaluation stage4. This is moti-
vated by the fact that while the weights of a real-valued network can be typically
binarized without a significant drop in accuracy, the same cannot be said about
the binarization of the activations where due to the limited number of possible
states the information flow inside the network drops dramatically. Hence, we
propose to effectively split the problem into two sub-problems: weight and fea-
ture binarization and during the search we try to solve the hardest one, that is
the binarization of the activations. Once this is accomplished, the binarization
of the weights following always results in little drop in accuracy (∼ 1%).

4 More specifically, during evaluation, we first train a new network with binary acti-
vations and real-valued weights from scratch, and then binarize the weights. Then,
the fully binarized network is evaluated on the test set.

BATS: Binary ArchitecTure Search 9

gconv (5× 5)

max pool (3× 3)

gconv (5× 5)

gconv (3× 3)

dil gconv (5× 5)

dil gconv (5× 5)

max pool (3× 3)

dil gconv (5× 5)

ck−2

0

1

2

3ck−1

ck

(a) Normal binary cell

max pool (3× 3)

gconv (5× 5)

gconv (5× 5)

gconv (3× 3)

avg pool (3× 3)

gconv (5× 5)

gconv (5× 5)

max pool (3× 3)

ck−2

0

1

3

ck−1

2

ck

(b) Reduction binary cell

Fig. 3: Binary normal (a) and reduction (b) cells discovered by our method.
Notice the prevalence of large kernels (5 × 5) and of the wider reduction cell,
both contributing to increasing the filters’ diversity and the flow of information.

5 Ablation studies

5.1 Effect of the proposed components

Herein, we analyse the contribution to the overall performance of each proposed
component: the newly introduced search space for binary networks (Section 4.1),
the effect of the temperature adjustment (Section 4.2) and finally, of perform-
ing the search using real-valued weights and binary activations (Section 4.3).

Table 2: Effect of search space on Top-1
accuracy on CIFAR-10.

Search space Temperature Accuracy

Ours Ours 93.7± 0.6
[27] Ours 51.0± 7.5
Ours [27] 86.0± 2.0

We emphasize that all 3 ingredi-
ents are needed in order to stabi-
lize training and obtain good accu-
racy. This suggests that it is not
straightforward to show the effect
of each component in isolation. To
this end, we always keep fixed 2 of
the proposed improvements and vary
the other component to understand
its impact. We also note that in all cases the final evaluated networks
are fully binary (i.e. both the weights and the activations are binarized).

Table 3: Effect of temperature on Top-1
accuracy on CIFAR-10. T=1 was used in
DARTS [27]. *Often leads to degenerate
solution (i.e. all skip connections).

Temperature 1 0.5 0.2 0.05

Accuracy 86.0* 92.1 93.7 93.3

Importance of new search space:
We keep the temperature from Sec-
tion 4.2 and search strategy from Sec-
tion 4.3 fixed and then compare the
proposed search space with that used
in [27]. As the results from Table 2
show, searching for binary networks
using the search space of [27] leads to
much worse results (∼ 51% vs.∼ 94%)
and a high variation in the performance of the networks (a std. of 7.5% across
5 runs). This clearly shows that the previously used search space is not suitable
for binary networks.

10 Bulat et al.

Impact of temperature: We keep the search space from Section 4.1 and
search strategy from Section 4.3 fixed and evaluate the use of the tempera-
ture proposed in Section 4.2. As Table 3 shows, a decrease in temperature
has a direct impact on discovering of higher performing models. At the op-
posite spectrum, a low temperature often leads to degenerate solutions. Note
that decreasing the temperature further has a negative impact on the accu-
racy, because, as the temperature goes to 0, the distribution of the architec-
ture parameters resembles a delta function, which hinders the training process.

2 3 4 5 6 7 8 9 10 11
70

71

72

73

74

75

76

77

78

Parameters ×106

A
cc
u
ra
cy
,
T
op

1,
%

mixup + autoaug.
cutout

mixup (alpha = 0.1)

mixup (alpha = 0.2)

Fig. 4: Effect of data augmentation: Top-
1 accuracy on CIFAR-100 of the network
constructed using the discovered cell for
different number of network parameters.

Importance of search strategy:
We keep the search space from Sec-
tion 4.1 and temperature from Sec-
tion 4.2 fixed and evaluate the effect
of the proposed search strategy from
Section 4.3. Table 4 summarizes the
different strategies for searching bi-
nary architectures and their proper-
ties. The first row represents the case
where the search is done in the real
domain and then binarization follows.
As the second row shows, if the search
is done in the binary domain for both
weights and activations, the search
does not converge. As the third row
shows, searching in the binary domain
for the weights while keeping the ac-
tivations real converges but results in low accuracy networks. Finally, the last
row shows the proposed search strategy where the search is done in the binary
domain for the activations and in the real domain for the weights. This config-
uration is the only one that yields stable search procedure and high accuracy
networks (see std). Note that for all cases, the architectures are fully binarized
(i.e. both activations and weights) prior to evaluation on the test set.

Table 4: Different strategies for searching binary architectures and their proper-
ties. The last row represents the proposed strategy. All resulting topologies
were trained using binary weights and activations during evaluation.

Search domain Search cost
Stable Accuracy

W A (GPU-days)

Real Real 0.2 Yes 88.4 ± 0.8
Binary Binary 0.3 No 84.6 ± 1.7
Binary Real 0.25 Yes 91.1 ± 1.7

Real Binary 0.25 Yes 93.7± 0.6

BATS: Binary ArchitecTure Search 11

5.2 Impact of augmentation

While the positive impact of data augmentation has been explored for the case
of real-valued networks, to the best of our knowledge, there is little to no work
on this for the case of binary networks. Despite the fact that binarization is con-
sidered to be an extreme case of regularization [9], we found that augmentation
is equally important, and confirm that most of the augmentations applied to
real-valued networks, can also improve their binarized counterparts. See Fig. 4.

6 Experiments

We conducted experiments on three different image classification datasets, namely
CIFAR10 [21], CIFAR100 [21] and ImageNet [12]. Note that the architecture
search is carried out on CIFAR-10 and tested on all three.

6.1 Architecture search

Implementation details: The training process consists of 3 stages during
which the network depth is increased from 5 to 11 and finally 17 cells. Con-
comitantly, at each stage, the search space is gradually reduced to 8, 5 and
respectively 3 ops. As opposed to [8], we did not use on-skip dropout since we
found that it leads to unstable solutions. Instead, we used the mechanism pro-
posed in Section 4.2, setting the temperature for the normal and reduction cells
to 0.2 and 0.15 respectively. The latter is lower to encourage wider cells. During
each stage, the network is trained using a batch size of 96 for 25 epochs. For the
first 10 epochs only the network weights are learned. The remaining 15 epochs
update both the architecture and network parameters. All the parameters are
optimized using Adam [20]. The learning rate was set to η = 0.0006, weight
decay to wd = 0.001 and momentum to β = (0.5, 0.999) for the architecture
parameters and η = 0.001, wd = 0.0003, β = (0.9, 0.999) for the network param-
eters. To keep the search time low, we used the first-order optimization approach
of DARTS. All methods were implemented in PyTorch [31].
Discovered topologies: Overall, our approach is capable of discovering high-
performing binary cells, offering new or validating existing insights about optimal
binary topologies. As depicted in Fig. 3, the cells found tend to prefer convolu-
tional layers with larger kernel sizes (5 × 5) which help alleviating the limited
representational power found in such networks (a 3 × 3 kernel has maximum
number of 29 unique binary filters while a 5×5 has 225). In addition, to preserve
the information flow, a real-valued path that connects one of the input nodes to
the output is always present.

Furthermore, since the down-sampling operation compresses the information
across the spatial dimension, to compensate for this, the reduction cell tends
to be wider (i.e. more information can flow through) as opposed to the normal
cell which generally is deeper. As Table 5 shows, our searched architecture out-
performs all prior ones searched in the real-valued domain and then binarized.

12 Bulat et al.

Table 5: Comparison with state-of-the-art NAS methods on CIFAR10 and CI-
FAR100. For all methods we apply the binarization process described in Section 3
on the best cell provided by the authors.

Architecture
Test Acc. (%) Params Search Cost Search

Method
C10 C100 (M) (GPU-days)

ResNet-18 [16] 91.0 66.3 11.2 - manual
Random search 92.9 70.2 - - random

NASNet-A [52] 90.3 66.1 3.9 1800 RL
AmoebaNet-A [34] 91.5 65.6 3.2 3150 evolution

DARTS (first order) [27] 89.4 63.3 3.3 1.5 grad-based
DARTS (second order) [27] 91.1 64.0 3.3 4.0 grad-based
P-DARTS [8] 89.5 63.9 3.6 0.3 grad-based

Ours 93.7 70.7 2.8 0.25 grad-based
Ours + autoaug. [11] 94.1 71.3 2.8 0.25 grad-based
Ours (medium) 94.6 73.5 5.4 0.25 grad-based
Ours (medium) + autoaug. [11] 94.9 74.0 5.4 0.25 grad-based
Ours (large) 95.5 75.7 10.0 0.25 grad-based
Ours (large) + autoaug. [11] 96.1 76.8 10.0 0.25 grad-based

6.2 Comparison against state-of-the-art

In this section, we compare the performance of the searched architecture against
state-of-the-art network binarization methods on CIFAR10/100 and ImageNet.
Implementation details: This section refers to training the discovered archi-
tectures from scratch for evaluation purposes. For all models we use Adam with
a starting learning rate of 0.001, β = (0.9, 0.999) and no weight decay. The
learning rate was reduced following a cosine scheduler [29]. In line with other
works [27], on CIFAR10 and CIFA100, the models were trained for 600 epochs
while on ImageNet for 75. The batch size was set to 256. The drop-path [22]
was set to 0 for all experiments since binary networks are less prone to overfit-
ting and already tend to use all parallel paths equally well. Following [27], we
add an auxiliary tower [39] with a weight of 0.4. Unless otherwise stated, the
network trained consisted of 20 cells and 36 initial channels with a group size of
12 channels for CIFAR10/100 and respectively 80 initial channels and 14 cells
for ImageNet. For data augmentation, similarly to [27,8], we padded the images
appropriately on CIFAR10/100 and applied CutOut [13] with a single hole and a
length of 16px for CIFAR-10 and Mix-up (α = 0.2) for CIFAR-100 respectively.
For ImageNet, we simply resized the images to 256× 256px, and then randomly
cropped them to 224× 224px. During testing, the images were center-cropped.

CIFAR10: When compared against network topologies discovered by exist-
ing state-of-the-art NAS approaches, as the results from Table 5 show, our
method significantly outperforms all of them on both CIFAR-10 and CIFAR-

BATS: Binary ArchitecTure Search 13

100 datasets. When using 20% the parameters than the competing methods, our
approach offers gains of 5 to 7% on CIFAR-100 and 2.5−4% on CIFAR-10. This
clearly confirms the importance of the proposed search space and strategy. Fur-
thermore, we test how the discovered architecture performs when scaled-up. In
order to increase the capacity of the models we concomitantly adjust the width
and #groups of the cells. By doing so, we obtain a 2% improvement of CIFAR-
10 and 5% on CIFAR-100 almost matching the performance of a real-valued
ResNet-18 model. We note that for fairness all other topologies we compared
against where modified using the structure described in Section 3.
For an exhaustive comparison on CIFAR-10 see the supplementary material.

ImageNet: Herein, we compare our approach against related state-of-the-art
binarization and quantization methods. As the results from Table 7 show, our
discovered architecture outperforms all existing binarization methods while us-
ing a lower computational budget for the normal thin model and offers a gain
of 5% for the 2x-wider one. Furthermore, our methods compared favorable even
against methods that either significantly increase the network computational
requirements or use more bits for quantization.

Table 6: Comparison with selected SOTA binary methods on ImageNet in terms
of computational cost. Notice, that within a similar budget our method achieves
the highest accuracy. For a full comparison see Table 7.

Architecture
Accuracy (%) # Operations

bits
Top-1 Top-5 FLOPS×108 BOPS×109 (W/A)

BNN [10] 42.2 69.2 1.314 1.695 1/1
XNOR-Net [33] 51.2 73.2 1.333 1.695 1/1
CCNN [43] 54.2 77.9 1.333 1.695 1/1
Bi-Real Net [28] 56.4 79.5 1.544 1.676 1/1
XNOR-Net++ [5] 57.1 79.9 1.333 1.695 1/1
CI-Net [40] 59.9 84.2 − − 1/1

BATS (Ours) 60.4 83.0 0.805 1.149 1/1
BATS [2x-wider] (Ours) 66.1 87.0 1.210 2.157 1/1

6.3 Network efficiency

The current most popular settings of binarizing neural networks preserve the
first and last layer real-valued. However, for the currently most popular binarized
architecture, i.e. ResNet-18 [16], the first convolutional layer accounts for approx.
6.5% of the total computational budget (1.2 × 108 FLOPs out of the total of
1.8 × 109 FLOPs), a direct consequence of the large kernel size (7 × 7) and
the high input resolution. In order to alleviate this, beyond using the ImageNet
stem cell used in DARTS [27] that replaces the 7 × 7 layer with two 3 × 3,
we replaced the second convolution with a grouped convolution (g = 4). This
alone allows us to more than halve the number of real-valued operations (see

14 Bulat et al.

Table 6). Additionally, in order to transparently show the computational cost of
the tested models, we separate the binary operations (BOPs) and FLOPs into
two distinctive categories. Furthermore, as Table 6 shows, our method surpasses
sophisticated approaches while having a significantly lower number of ops.

Table 7: Comparison with state-of-the-art binarization methods on ImageNet,
including against approaches that use low-bit quantization (upper section) and
ones that increase the capacity of the network (middle section). For the latter
case the last column also indicates the capacity scaling used. Models marked
with ** use real-valued downsampling convolutional layers.

Architecture
Accuracy (%)

bits
Top-1 Top-5 (W/A)

BWN [10] 60.8 83.0 1/32
TTQ [49] 66.6 87.2 2/32
HWGQ [7] 59.6 82.2 1/2
LQ-Net [45] 59.6 82.2 1/2
SYQ [15] 55.4 78.6 1/2
DOREFA-Net [48] 62.6 84.4 1/2

ABC-Net (M,N = 1) [23] 42.2 67.6 1/1
ABC-Net (M,N = 5) [23] 65.0 85.9 (1/1)×52

Struct. Approx. [51] 64.2 85.6 (1/1)×4
Struct. Approx.** [51] 66.3 86.6 (1/1)×4
CBCN [26] 61.4 82.8 (1/1)×4
Ensamble [50] 61.0 - (1/1)×6

BNN [10] 42.2 69.2 1/1
XNOR-Net [33] 51.2 73.2 1/1
CCNN [43] 54.2 77.9 1/1
Bi-Real Net** [28] 56.4 79.5 1/1
Rethink. BNN** [17] 56.6 79.4 1/1
XNOR-Net++ [5] 57.1 79.9 1/1
CI-Net** [40] 59.9 84.2 1/1
BATS (Ours) 60.4 83.0 1/1
BATS [2x-wider] (Ours) 66.1 87.0 1/1

7 Conclusion

In this work we introduce a novel Binary Architecture Search (BATS) that dras-
tically reduces the accuracy gap between binary models and their real-valued
counterparts, by searching for the first time directly for binary architectures.
To this end we, (a) designed a novel search space specially tailored to binary
networks, (b) proposed a new regularization method that helps stabilizing the
search process, and (c) introduced an adapted search strategy that speed-ups the
overall network search. Experimental results conducted on CIFAR10, CIFAR100

BATS: Binary ArchitecTure Search 15

and ImageNet demonstrate the effectiveness of the proposed approach and the
need of doing the search in the binary space directly.

References

1. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures
using reinforcement learning. In: International Conference on Learning Represen-
tations (2017)

2. Bethge, J., Yang, H., Bornstein, M., Meinel, C.: Back to simplicity: How to train
accurate BNNs from scratch? arXiv preprint arXiv:1906.08637 (2019)

3. Brock, A., Lim, T., Ritchie, J., Weston, N.: SMASH: One-shot model architecture
search through hypernetworks. In: International Conference on Learning Repre-
sentations (2018)

4. Bulat, A., Tzimiropoulos, G.: Binarized convolutional landmark localizers for hu-
man pose estimation and face alignment with limited resources. In: IEEE Interna-
tional Conference on Computer Vision. pp. 3706–3714 (2017)

5. Bulat, A., Tzimiropoulos, G.: Xnor-net++: Improved binary neural networks. In:
British Machine Vision Conference (2019)

6. Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct neural architecture search on target
task and hardware. International Conference on Learning Representations (2019)

7. Cai, Z., He, X., Sun, J., Vasconcelos, N.: Deep learning with low precision by half-
wave gaussian quantization. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 5918–5926 (2017)

8. Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. IEEE International Con-
ference on Computer Vision (2019)

9. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: Training deep neural
networks with binary weights during propagations. In: Advances on Neural Infor-
mation Processing Systems (2015)

10. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural
networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)

11. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: Learn-
ing augmentation policies from data. IEEE Conference on Computer Vision and
Pattern Recognition (2019)

12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A large-
scale hierarchical image database. In: IEEE Conference on Computer Vision and
Pattern Recognition. pp. 248–255 (2009)

13. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

14. Ding, R., Chin, T.W., Liu, Z., Marculescu, D.: Regularizing activation distribution
for training binarized deep networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 11408–11417 (2019)

15. Faraone, J., Fraser, N., Blott, M., Leong, P.H.: Syq: Learning symmetric quantiza-
tion for efficient deep neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4300–4309 (2018)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

16 Bulat et al.

17. Helwegen, K., Widdicombe, J., Geiger, L., Liu, Z., Cheng, K.T., Nusselder, R.:
Latent weights do not exist: Rethinking binarized neural network optimization. In:
Advances in neural information processing systems. pp. 7533–7544 (2019)

18. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: MobileNets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

19. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep. (2009)

22. Larsson, G., Maire, M., Shakhnarovich, G.: Fractalnet: Ultra-deep neural networks
without residuals. arXiv preprint arXiv:1605.07648 (2016)

23. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network.
In: Advances on Neural Information Processing Systems. pp. 345–353 (2017)

24. Liu, C., Chen, L.C., Schroff, F., Adam, H., Hua, W., Yuille, A.L., Fei-Fei, L.: Auto-
deeplab: Hierarchical neural architecture search for semantic image segmentation.
In: IEEE Conference on Computer Vision and Pattern Recognition. pp. 82–92
(2019)

25. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille,
A., Huang, J., Murphy, K.: Progressive neural architecture search. In: European
Conference on Computer Vision. pp. 19–34 (2018)

26. Liu, C., Ding, W., Xia, X., Zhang, B., Gu, J., Liu, J., Ji, R., Doermann, D.:
Circulant binary convolutional networks: Enhancing the performance of 1-bit dcnns
with circulant back propagation. In: IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2691–2699 (2019)

27. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search. In-
ternational Conference on Learning Representations (2019)

28. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-Real Net: Enhanc-
ing the performance of 1-bit CNNs with improved representational capability and
advanced training algorithm. In: European Conference on Computer Vision. pp.
747–763 (2018)

29. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

30. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In: European Conference on Computer Vision.
pp. 122–138 (2018)

31. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: Advances
in Neural Information Processing Systems 32, pp. 8024–8035 (2019)

32. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture
search via parameters sharing. In: International Conference on Machine Learning.
pp. 4095–4104 (2018)

33. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet clas-
sification using binary convolutional neural networks. In: European Conference on
Computer Vision. pp. 525–542 (2016)

BATS: Binary ArchitecTure Search 17

34. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image clas-
sifier architecture search. In: AAAI Conf. on Artificial Intelligence. vol. 33, pp.
4780–4789 (2019)

35. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-scale evolution of image classifiers. In: International Conference
on Machine Learning. pp. 2902–2911 (2017)

36. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: In-
verted residuals and linear bottlenecks. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4510–4520 (2018)

37. Shen, M., Han, K., Xu, C., Wang, Y.: Searching for accurate binary neural ar-
chitectures. In: Proceedings of the IEEE International Conference on Computer
Vision Workshops. pp. 0–0 (2019)

38. Singh, K.P., Kim, D., Choi, J.: Learning architectures for binary networks. arXiv
preprint arXiv:2002.06963 (2020)

39. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference
on Computer Vision and Pattern Recognition (2015)

40. Wang, Z., Lu, J., Tao, C., Zhou, J., Tian, Q.: Learning channel-wise interactions for
binary convolutional neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 568–577 (2019)

41. Xie, L., Yuille, A.: Genetic CNN. In: IEEE International Conference on Computer
Vision. pp. 1379–1388 (2017)

42. Xie, S., Zheng, H., Liu, C., Lin, L.: Snas: stochastic neural architecture search. In:
International Conference on Learning Representations (2018)

43. Xu, Z., Cheung, R.C.: Accurate and compact convolutional neural networks with
trained binarization. arXiv preprint arXiv:1909.11366 (2019)

44. Zagoruyko, S., Komodakis, N.: Wide residual networks. British Machine Vision
Conference (2016)

45. Zhang, D., Yang, J., Ye, D., Hua, G.: Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In: European Conference on Computer
Vision. pp. 365–382 (2018)

46. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: An extremely efficient convolu-
tional neural network for mobile devices. In: IEEE Conference on Computer Vision
and Pattern Recognition. pp. 6848–6856 (2018)

47. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network
architecture generation. In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2423–2432 (2018)

48. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: DoReFa-Net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv (2016)

49. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. arXiv
preprint arXiv:1612.01064 (2016)

50. Zhu, S., Dong, X., Su, H.: Binary ensemble neural network: More bits per network
or more networks per bit? In: IEEE Conference on Computer Vision and Pattern
Recognition. pp. 4923–4932 (2019)

51. Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Structured binary neural networks
for accurate image classification and semantic segmentation. In: IEEE Conference
on Computer Vision and Pattern Recognition. pp. 413–422 (2019)

52. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures
for scalable image recognition. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 8697–8710 (2018)

18 Bulat et al.

A Additional comparison with state-of-the-art on
CIFAR10

To further showcase the improvements offered by our approach, herein we com-
pare its performance against an additional set of state-of-the-art methods on
the CIFAR-10 dataset. As the results from Table 8 show, our method signifi-
cantly outperforms all previous ones across different architectures(VGG, ResNet,
WRN) and quantization levels.

Method Acc.(%) Architecture # bits (W/A)

BC [9] 90.1 VGG-small 1/32
TTQ [49] 91.1 ResNet-20 2/32
HWGQ [7] 92.5 VGG-small 1/2
LQ-Net [45] 93.4 VGG-small 1/2

CBCN [26] 91.6 ResNet-18 (1/1)×4
CBCN [26] 93.4 WRN40 (1/1)×4
BNN [10] 89.9 VGG-small 1/1
XNOR-Net [33] 89.8 VGG-small 1/1
CCNN [43] 92.3 VGG-small 1/1
CI-Net [40] 92.5 VGG-small 1/1

BATS (Ours) 96.1 BATS 1/1

Table 8: Comparison with state-of-the-art binarization/quantization methods on
CIFAR-10 across various architecture. Notice that the discovered architecture by
our approach significantly outperforms all previous reported results.

B Going back to real

Herein we briefly evaluate the effectiveness of our novel search space and method-
ology for the case of real-valued networks. To do so, given the proposed search
space and temperature regularization mechanism, we performed a network search
on CIFAR-10 largely following the procedure described in Section 4, with the
following changes: the learning rate for both search and evaluation is set to 0.1
and the optimizer to SGD with momentum 0.9. As Table 9 shows, our method
generalizes well to the real-valued case, offering competitive results. This sug-
gests that the operations tailored to binary networks can work well for their
real-valued counterparts, too.

C Discovered real-valued topologies

While the proposed search space and method is mainly geared towards binary
networks, we also tested its generalizability on the real-valued domain. Fig. 5c
and 5d depict an example of cells found by our approach when using real valued
networks. Notice that as opposed to the binary ones (Fig. 5a and 5b), the real
valued ones tend to be deeper and use operations with smaller convolutional
kernels.

BATS: Binary ArchitecTure Search 19

gconv (5× 5)

max pool (3× 3)

gconv (5× 5)

gconv (3× 3)

dil gconv (5× 5)

dil gconv (5× 5)

max pool (3× 3)

dil gconv (5× 5)

ck−2

0

1

2

3ck−1

ck

(a) Normal binary cell

max pool (3× 3)

gconv (5× 5)

gconv (5× 5)

gconv (3× 3)

avg pool (3× 3)

gconv (5× 5)

gconv (5× 5)

max pool (3× 3)

ck−2

0

1

3

ck−1

2

ck

(b) Reduction binary cell

gconv (3× 3)

gconv (3× 3)

gconv (3× 3)

gconv (5× 5)

max pool (3× 3)

gconv (3× 3)

gconv (5× 5)

gconv (3× 3)

ck−2

0

1

2
ck−1

3

ck

(c) Normal real-valued cell

gconv (5× 5)

gconv (3× 3)

gconv (3× 3)

max pool (3× 3)

gconv (5× 5)

dil gconv (3× 3)

skip connect

dil gconv (3× 3)

ck−2
0

1

2
3

ck−1

ck

(d) Reduction real-valued cell

Fig. 5: Normal and reduction cells discovered by our proposed method using
the introduced search space for the binary case (first row) and real-valued case
(second row). Notice that the binary cells tend to be shallower and to contain
convolutional operations with larger kernels (i.e. 5×5) when compared with the
real-valued ones.

20 Bulat et al.

R
eL

U

D
W

C
o
n
v

(k
×

k
)

C
o
n
v

(1
×

1
)

B
a
tch

N
o
rm

R
eL

U

D
W

C
o
n
v

(k
×

k
)

C
o
n
v

(1
×

1
)

B
a
tch

N
o
rm

(a) DARTS depth-wise separable cell

R
eL

U

D
il.

D
W

C
o
n
v

(k
×

k
)

D
il.

C
o
n
v

(1
×

1
)

B
a
tch

N
o
rm

(b) DARTS dilated convolution cell

B
a
tch

N
o
rm

S
ig

n

G
C

o
n
v

(k
×

k
)

A
ctiva

tio
n

+

(c) Proposed grouped convolution bi-
nary cell

B
a
tch

N
o
rm

S
ig

n

D
il.

G
C

o
n
v

(k
×

k
)

A
ctiva

tio
n

+

(d) Proposed dilated grouped convolu-
tion binary cell

Fig. 6: Comparison between the convolutional operations used in the DARTS
search space (6a and 6b) and the proposed ones (6c and 6d). k × k denotes the

kernel size, + is the element-wise summation operation while each rectangle
represents a given operation defined by the inner text.

BATS: Binary ArchitecTure Search 21

Table 9: Comparison on the CIFAR-10 dataset for the case of real-valued net-
works.

Architecture Test Err. (%) Params (M)

NASNet-A [52] 2.65 3.3
AmoebaNet-A [34] 3.34 3.2

DARTS (first order) [27] 3.00 3.3
DARTS (second order) [27] 2.76 3.3
P-DARTS [8] 2.50 3.4

BATS (Ours) 2.70 2.5
BATS (Ours) 2.40 3.5

	BATS: Binary ArchitecTure Search

