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Abstract 

 

 

 

 

Breast cancer is the most common cancer in the UK, and mammographic density (‘density’) is 

one of its strongest known risk factors. At present, most research focuses on static measures of 

density to determine population effects. The central hypothesis of this thesis is that repeated 

measures of density are more valuable for personalised breast cancer prevention. This 

hypothesis was tested through the following research. 

 

Study-I investigated within-women associations between body mass index (BMI) and density, 

to assess whether density (visual/Cumulus/volumetric ‘Stepwedge’) acts as a mediator for breast 

cancer risk reduction during a premenopausal weight-loss intervention (n=65). Study-II 

evaluated the benefit of using a woman’s longitudinal history of (BI-RADS) density to improve 

breast cancer risk estimation (n=132,439). Study-III was a Cochrane systematic review 

investigating the association between endocrine therapy-induced density reduction and breast 

cancer risk and mortality. Studies-IV and V (n=575) evaluated visually-assessed density 

reduction with prophylactic anastrozole during the International Breast Cancer Intervention 

Study-II, and its use as a biomarker for concurrent breast cancer risk reduction, respectively. 

 

In Study-I, change in BMI was associated with change in breast fat but not dense tissue, 

negating density reduction as a biomarker for risk reduction with weight-loss. In Study-II, 

longitudinal density provided approximately a quarter more statistical information than most 

recent density and improved discriminatory accuracy. Study-III found evidence that density 

reduction may be a biomarker for reduction in risk and mortality with tamoxifen, but the level 

of evidence was limited by some study quality issues. Study-IV indicated that preventive 

anastrozole might marginally reduce density, but statistical significance was not obtained. In 

Study-V, sample size was too small to draw definitive conclusions. 

 

Overall, changes in density were useful for the study of breast cancer risk and should be 

considered for personalised breast cancer prevention strategies. 
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Chapter 1: Thesis background, rationale and aims 

 

1.1 Thesis background and rationale 

 

1.1.1 Introduction to breast cancer 

 
Breast cancer is the most common cancer in the UK, with approximately 55,000 new cases of 

invasive breast cancer diagnosed every year (1). An estimated 1 in 7 women in the UK will be 

diagnosed with the disease in their lifetime (based on multiple primary incidences) and around 

11,000 women will die from breast cancer in the UK each year; that’s 31 women every day (1). 

Worldwide, breast cancer is the second most common cancer, with an estimated 2.1 million new 

cases and 600,000 deaths recorded in 2018 (2). 

 

There is higher incidence of the disease in the Western world, which is thought to be a result of 

lifestyle factors such as delayed age at first full term birth, nulliparity, use of exogenous 

hormones and obesity (3-8). Implementation of routine mammographic screening programmes 

has also been linked to an increase in annual breast cancer incidence due to greater and earlier 

detection of tumours (6-8). Furthermore, early detection programmes allow treatment to be 

administered at an early stage of progression when it is most effective, thereby improving 

survival and reducing mortality as a result of the disease (6-10). Other factors, such as wider use 

of chemotherapy and adjuvant hormone therapy, have also contributed to reduced breast cancer 

mortality rates (6-8, 11). 

 

1.1.2 Anatomy of the breast 

 
The breast is part of the female reproductive system, and its main function is to produce and 

secrete milk. It consists of fatty adipose tissue, stroma (fibrous connective tissue), lobules 

(mammary glands), milk ducts, the lymphatic network, the nipple, the areola, blood vessels and 

Copper’s ligaments. Individual structures, known as terminal ductal lobular units (TDLUs), 

consist of a lobule and an extra-lobular duct connected to a larger milk duct. Milk production 

occurs in TDLUs, which is then transported through the milk ducts to the nipple. TDLUs are 

also the site of hormonal exchange, hence their number and size changes in response to 

hormone fluctuations during different reproductive stages such as menstruation, pregnancy, 

lactation and menopause. Most breast cancers develop in the epithelial cells lining TDLUs (12). 

Cancers developing in the lobules are known as lobular breast cancers, and cancers developing 

in the extra-lobular ducts are known as ductal breast cancers. 
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1.1.3 Principles of mammography 

 
In the UK, women aged 50-70yr (or 47-73yr in some areas) are invited to attend a 

mammography screening appointment every three years. At their first screen, mammograms are 

used to assess the presence of an already existent prevalent breast cancer, and at their 

subsequent screens, mammograms are used to detect incident breast cancers that have 

developed since the last screening appointment. Breast cancers which develop or are detected in 

between screens are known as interval breast cancers, which usually present as a result of 

symptoms such as a breast lump, skin dimpling or thickening, breast or nipple pain, and nipple 

retraction or discharge. Diagnostic mammograms are used to image the breast after a screening 

mammogram with suspicious results or as a result of the patient reporting symptoms that the 

physician believes warrants further investigation. 

 

The mammogram examination is an x-ray of the breast. The breast is placed between two 

compression paddles and an x-ray beam is used to penetrate the breast, which is then detected at 

the other side of the breast by a receptor (film-screen or digital detector). During screening 

mammography, women undergo two-view assessment: the cranio-caudal (CC) view and the 

medio-lateral oblique (MLO) view. These two complementary views capture the breast from 

different angles to image as much tissue as possible. 

 

Various imaging factors affect the quality of the image produced during a mammogram. The 

optimal mammogram is a trade-off between factors such as contrast (x-ray tube kilovoltage 

peak, kVp), exposure (milliampere-seconds, mAs) and breast compression. A lower level of 

kilovoltage peak produces a higher contrast (desirable), and a lower level of exposure produces 

a lower radiation dose (desirable) but grainy images (undesirable). However, a lower 

kilovoltage peak does not penetrate through thick or dense breast tissue, and requires higher 

exposure to produce the necessary dose for penetration through the breast to the receptor below. 

Therefore, exposure and dose generally increase with increased breast size and density. Breast 

compression can be described by the force (Newton, N) or pressure (kiloPascal, kPa); the latter 

being a measure of the force divided by the contact area (13). Contact area depends on the 

breast size and deformation of breast tissue under pressure. A higher breast compression leads 

to a smaller breast thickness (millimetres, mm) and increased spread of tissue which reduces the 

required dose whilst producing a higher quality image. These factors work in tandem and can be 

largely dependent on the patient and radiographer’s technique at the time of mammography 

examination. However, most (digital) mammography machines nowadays use calibration 

techniques to automate the process and determine the optimal factors for each examination, 

negating the need for radiographers to subjectively determine the imaging factors. 
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Mammography can either be film-screen or full-field digital mammography (FFDM). FFDM 

generates a ‘raw’ (‘for processing’) mammogram whereby the pixel values are linearly related 

to the exposure. These raw mammograms then undergo image processing to make the 

mammogram visible to the naked eye, which varies depending on the mammography machine’s 

manufacturer. The applied algorithms are usually unspecified and irreversible, so the 

appearance of ‘for presentation’ mammograms can differ from one mammography machine to 

another. 

 

1.1.4 Mammographic density – literature review 

 

1.1.4.1 Mammographic density 

 
Mammographic density is also referred to as ‘density’ or ‘breast density’. 

 

Broadly, the breast has two main components when assessed via mammography: dense and 

fatty tissue. The dense tissue are stroma (fibrous connective tissue) and duct epithelium 

(parenchyma or glandular tissue) within the breast; collectively known as the fibroglandular 

tissue. This fibroglandular tissue appears as white, radio-dense material on an x-ray, whereas the 

fatty adipose tissue is dark and translucent. 

 

The degree of density involvement within the breast can be described in a variety of ways. It is 

often defined as the area of fibroglandular tissue, known as the absolute dense area (DA); or as 

the percent dense area (PDA), which is a measure of the DA over the total breast area (TA). 

This TA is comprised of the DA and the fatty adipose tissue within the breast, also known as the 

absolute non-dense or fat area (FA). With the introduction of volumetric methods, density has 

also recently been described in terms of absolute dense volume (DV), percent dense volume 

(PDV), total breast volume (TV) and non-dense or fat volume (FV). Measurement of these area-

based and volumetric density measures are described in detail in the following section. 

 

 

 

Figure 1.1 Mammograms depicting low (left) and high (right) density. Images from the International 

Breast Cancer Intervention Study-I. 
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1.1.4.2 Measurement of mammographic density 

 
The first reference to density as a risk factor for breast cancer was made by Dr John Wolfe in 

1969 (14) who categorised density based on variations in the appearance of mammographic 

parenchymal patterns as well as the approximate proportion of the breast occupied by these 

patterns. These ‘Wolfe grades’ were described as: N1 (predominantly fat), P1 (ductal 

prominence in <25% of the breast), P2 (ductal prominence in >25% of the breast) and DY 

(extensive dysplasia). Wolfe observed that women with extensive dysplasia (DY) had an 

incidence of breast cancer that was 22 times higher than those with predominantly fatty breasts 

(N1). 

 

A similar method of assessment, known as the Tabar classification, was developed by Gram et 

al. in 1997 (15). This measurement of density is categorised into: I (scalloped contours and 

Cooper's ligaments, evenly scattered terminal ductal lobular units, 1-2 mm nodular densities and 

oval-shaped lucent areas corresponding to fatty replacement), II (complete fatty replacement), 

III (retro-areolar prominent duct pattern due to fatty involution), IV (extensive nodular and 

linear densities) and V (homogenous ground glass like, structure-less fibrosis with convex 

contour). The major difference between Wolfe and Tabar categorisations is the closer 

representation of premenopausal density seen with the Tabar grades. Since premenopausal 

women have denser breasts than postmenopausal women, Tabar I is thought to represent the 

high density patterns commonly observed in premenopausal women, whilst Tabar II, III, IV and 

V would represent Wolfe grades N1, P1, P2 and DY, respectively (16).  

 

Another assessment of density, the Breast Imaging Reporting and Data System (BI-RADS) 

lexicon, was first proposed by the American College of Radiology (ACR) in 1993 (17). In the 

third edition of the lexicon, BI-RADS density was defined qualitatively: BI-RADS I 

(predominantly fat), BI-RADS II (scattered fibroglandular density), BI-RADS III 

(heterogeneously dense) and BI-RADS IV (extremely dense), but in the fourth edition, 

quantitative descriptions of PDA were also included: BI-RADS I (<25%, predominantly fat), 

BI-RADS II (25%-50%, scattered fibroglandular density), BI-RADS III (50%-75%, 

heterogeneously dense) and BI-RADS IV (>75%, extremely dense) (18). These have since been 

dropped in the fifth edition which is again purely qualitative: BI-RADS I (predominantly fat), 

BI-RADS II (scattered fibroglandular density), BI-RADS III (heterogeneously dense breasts 

which may obscure small masses) and BI-RADS IV (extremely dense breasts which lower the 

sensitivity of mammography) (17). 

 

Since Wolfe, Tabar and BI-RADS grades assess density with a maximum of five categories; 

substantial risk information could be lost due to the grouping of density. An alternative 

measurement method, known as the visual assessment score (VAS), was therefore developed to 
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aid in the assessment of PDA on a continuous and quantitative scale. Visual assessment scoring 

ranks PDA from 0% to 100%; although PDA is sometimes also described in 5% incremental 

scores, creating a semi-continuous 21 point scale (19). 

 

Although the methods outlined so far are thought to do well in describing density, a major 

limitation is their subjective nature; basing measurements on a radiologist’s visual interpretation 

of density. Only moderate inter-observer (kappa score=0.54) and intra-observer (kappa 

score=0.71) agreements have been reported with BI-RADS assessment (20), and studies on 

visual assessment have reported differences as high as 30% and 35% for intra- and inter-

observer scores, respectively (21). This means that adequate reader training is essential in order 

to reduce the heterogeneity of density scores assessed subjectively (22). 

 

As well as purely visual assessments, computer-assisted methods of density measurement have 

also been introduced. In 1994, a computer-assisted thresholding technique, known as 

‘Cumulus’, was introduced to improve on the subjective nature of scoring (23). Cumulus is an 

interactive thresholding technique which requires its users to set pixel thresholds on a digitised 

(23) or digital (24, 25) mammogram. The user sets an initial grey-level threshold, iedge, to 

separate the breast edge from the background, for which any pixel with grey-level higher than 

this threshold is classed as the breast and any pixel with a lower grey-level is considered 

background. Another threshold, iDY, is then determined to separate the dense tissue (pixels 

higher than iDY) from the fatty tissue (pixels lower than iDY) within the breast. The user can also 

mask out the pectoral muscle (particularly visible in MLO views). Cumulus then sums the 

number of pixels categorised as breast, dense and non-dense tissue to provide information on 

compartmentalised breast composition i.e. TA, DA and FA, respectively. PDA can then be 

calculated by dividing the DA over the TA. Before Cumulus, a similar method of assessment 

called ‘planimetry’ was used to provide information on separate areas of breast tissue. This 

worked by tracing around the breast edge and regions of dense tissue on an acetate overlay and 

measuring TA and DA using an outlining tool (26). However, this method is somewhat 

cumbersome and requires greater user involvement than Cumulus, so is rarely used. 

 

The semi-automated, semi-subjective and quantitative nature of Cumulus provides a density 

score that has shown strong associations with breast cancer risk  (23, 27, 28); produces 

comprehensive information about separate breast tissue components; and reports high levels of 

agreement within and between adequately trained observers (intraclass correlation coefficient 

between observers >0.9 in Byng et al. (23)). In addition to the continuous Cumulus score, Boyd 

et al. introduced a categorisation of Cumulus, known as the Boyd classification, which sees 

density grouped into: none, <10%, 10 to <25%, 25 to <50%, 50 to <75% and ≥75% (27). Other 
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fully-automated or semi-automated area-based segmentation methods exist, including 

AutoDensity (29), fuzzy c-means-based methods (30) and an ImageJ-based method (31). 

 

 

 
Figure 1.2 Cumulus thresholds (23) applied to a mammogram. Image from the International Breast 

Cancer Intervention Study-I. 

Red pixels indicate the image background (excluded from area calculations); green pixels indicate the 

outline of dense tissue such that pixels inside the green boundary are dense tissue and pixels outside of 

the green boundary are non-dense breast fat. 

 

The methods introduced so far have their limitations. Manual (or semi-manual) density readings 

would be too labour-intensive and time-consuming to be incorporated into the UK National 

Health Service (NHS) breast screening programme (NHSBSP), which requires high-throughput 

mammography for approximately two million women per year (32); and subjective (or semi-

subjective) density readings are only practical with sufficient reader training (22). Incorporation 

of these density methods into the NHSBSP would place a time and cost burden on health 

services in order to cover extra staffing and training costs. Furthermore, the insufficient 

reproducibility and large intra- and inter-reader variability that occur with subjective density 

measures (21, 22) might make these methods of assessment unreliable in guiding clinical 

decisions about a woman’s healthcare. In addition to this, these measurement methods are based 

on a 2-dimensional projection of the breast, which undoubtedly loses information regarding the 

anatomical breast structure. Even with sufficient compression, superimposition can occur during 

mammography, creating an overlap of structures which may distort area-based interpretations. 

 

With the aim of resolving many of these issues, various volumetric methods based on two-class 

tissue models and FFDM have now been developed. These volumetric methods are intended to 

give a more realistic representation of dense tissue in the breast and provide objective, 

automated measures of absolute fibroglandular and non-dense tissue (33-36). The breast is 

assumed to contain only 2 mediums, dense and fatty tissue, which have separate x-ray 
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attenuation coefficients. Greyscale levels at each pixel in the mammogram are modelled as a 

function of these x-ray attenuations and the initial x-ray beam. This function is then used to 

produce estimates of the different amounts of dense and fatty tissue within each ‘stack’ of breast 

tissue at each pixel. Summing over the pixels in the whole breast gives the total volume of 

breast tissue (33). The most widely used and commercially available volumetric software is 

Volpara (36), but alternative approaches also exist (37-43). Volpara is a development of the 

standard mammographic form (SMF) (33) that produces estimates of TV, DV, FV and PDV. 

 

 

 
Figure 1.3: Representation of Volpara volumetric density physics model to estimate dense volume. 

Total breast thickness at 𝑃(𝑥, 𝑦) (i.e. pixel value of pixel (𝑥, 𝑦)) is made up of the thickness of dense and 

fatty tissue. The thickness of dense tissue at 𝑃(𝑥, 𝑦) is ℎ𝑑𝑒𝑛𝑠𝑒 (𝑥, 𝑦). The energy penetrating the breast 

is 𝐼0 , and the energy reaching the detector is assumed to be linearly related to  𝑃(𝑥,𝑦) . The pixel value o f 

pure fat, 𝑃𝑓𝑎𝑡 , is determined by finding the pixel value with the least x-ray attenuation (using an itera t ive 

approach to find the fatty, uncompressed breast edge). The linear x-ray attenuation coefficients for dense 

and fatty tissue using a particular filter, tube voltage and breast thickness are 𝜇𝑑𝑒𝑛𝑠𝑒  and 𝜇𝑓𝑎𝑡 , 

respectively. Values for 𝑃(𝑥, 𝑦)  and 𝑃𝑓𝑎𝑡  are measured on the ‘raw’ mammogram, and 𝜇𝑑𝑒𝑛𝑠𝑒  and 𝜇𝑓𝑎𝑡  

are assumed from reported data. Summing values of ℎ𝑑𝑒𝑛𝑠𝑒(𝑥,𝑦) over all pixels of the breast gives an 

estimate of the volume of dense tissue in the breast. Derived from the physics model based on (44). 

 

An advantage of volumetric methods is that they offer high levels of agreement with magnetic 

resonance imaging (MRI)-assessed breast density (often seen as the ground truth for volumetric 

tissue distributions) (40, 44, 45). A study by Gilhuijs et al. found Pearson correlations of 0.93, 

𝐼0 
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0.97 and 0.85 for PDV, TV and DV, respectively, when comparing Volpara-assessed density to 

density measured using segmentation techniques in MRI scans (45). With such good 

representation of breast tissue and high reproducibility (46), it was hypothesised that volumetric 

density would also improve breast cancer risk prediction. However, studies have indicated a 

somewhat similar performance to area-based methods (41, 47-51). 

 

Some researchers have also hypothesised that density may be acting as a risk factor not purely 

through the amount of fibroglandular tissue it encompasses, but also through its distribution and 

pattern complexity (52, 53). This idea has led to a focus on structural components and spatial 

distributions (‘texture features’) of mammographic images, to assess whether they could have 

an effect on breast cancer risk, independent of the amount of density (52, 54-62). Some studies 

suggest that these textural features could add to or even outweigh the predictive power of 

density (52, 54-56, 61, 62), but these are less well validated than volumetric or visual density. 

 

Even though most measures of density involve assessment of mammograms, the breast may be 

assessed by other modalities. Density can be read from computed tomography (CT) (63-65), 

ultrasound (66, 67), MRI (68, 69) and dual energy x-ray (70) images. A relatively new approach 

to breast imaging comes in the form of digital breast tomosynthesis (DBT). DBT is an x-ray 

imaging modality which produces pseudo-3D images of the breast, using multiple low-dose 

exposures taken at different angles through 30° and reconstructed to produce image ‘slices’ 

through the breast (71). This provides a novel approach to density assessment, allowing cross-

sectional visualization through the breast to reduce the effect of superimposition of overlapping 

tissue. Since DBT is still relatively new, only a few studies have looked into its use in density 

assessment. Methods of density assessment using DBT include the application of Volpara (72) 

or the fully-automated volumetric software, Quantra, (73) to raw projections; a Cumulus-like 

threshold to reconstructed slices (74); Cumulus to a central projection (55); and integral curves 

(75), maximum entropy (75) or BI-RADS (73, 75, 76) to a set of projections. Density can then 

be calculated as the average density from all raw projections (72, 73, 75) or slices (74), or it can 

be calculated as the total number of voxels identified as dense over the total number of voxels in 

the DBT 3D reconstruction (74). Cumulus-assessed percent density from DBT (central 

projection, mean of all projections, or mean of reconstructed slices) has shown high correlation 

with Cumulus-assessed percent density from 2D mammography, with Pearson correlations 

ranging between 0.76 and 0.97 (77). Similarly, Volpara-assessed density from DBT (one 

projection) has shown high correlation with Volpara-assessed density from 2D mammography 

(Pearson correlation 0.903) (77). 
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Table 1.1: Overview of density measurement techniques. 

Wolfe Tabár BI-RADS VAS Planimetry 

Semi-automated 

area-based e.g. 

Cumulus 

Boyd 

Fully-automated 

volumetric e.g. 

Volpara 

Techniques 

applied to 

Tomosynthesis 

images 

Subjective Subjective Subjective Subjective Subjective Semi-subjective 
Semi-

subjective 
Objective 

Semi-

subjective/ 

Objective 

Qualitative and 

quantitative 

categorised 

Qualitative 

categorised 

Qualitative 

categorised 

Quantitative 

continuous 

Quantitative 

continuous 

Quantitative 

continuous 

Quantitative 

categorised 

Quantitative 

continuous 

Quantitative 

continuous 

2D 2D 2D 2D 2D 2D 2D Volumetric 
Volumetric/ 

Pseudo-3D 

Manual Manual Manual Manual Manual Semi-automated 
Semi-

automated 
Automatic 

Semi-

automated/ 

Automatic 

 

Favourable density measurement technique characteristics: 

 Objective–consistent and reproducible scores, intra- and inter-reader variability eliminated, does not require user training, ideal for use in clinical and screening environments.  

 Quantitative–larger gradients in risk than qualitative measures (78); fine scale and continuous description of density makes it easier to distinguish small differences in  densi ty 

(28). 

 Volumetric–more realistic representation of the 3D breast structure, takes into account the thickness of the breast. 

 Automatic–fast results, ideal for use in clinical and screening environments, not very labour or time-intensive. 
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1.1.4.3 Mammographic density as a breast cancer risk factor 

 
Mammographic density is one of the strongest known independent breast cancer risk factors; 

women with mostly dense breasts are at a 4 to 6-fold increased risk relative to women with fatty 

breasts (79). The density-risk association is seen with both qualitative and quantitative density 

measurements, however many studies show a better risk prediction for quantitative density (78-

81). In a meta-analysis of over 14,000 cases and 226,000 controls from 42 studies, McCormack 

and dos Santos Silva reported a pooled relative risk (RR) estimate of 3.98 (95% CI, 2.53 to 

6.27) for Wolfe grade DY relative to N1; 4.08 (95% CI, 2.96 to 5.63) for extremely dense 

relative to fatty BI-RADS scores; and 4.64 (95% CI, 3.64 to 5.91) for VAS PDA ≥75% relative 

to <5% (79). As for computerised methods, a study by Boyd et al. showed a fairly high relative 

risk of 4.04 (95% CI, 2.12 to 7.69) for Cumulus ≥75% density relative to no density (27).  

 

Risk associations with volumetric modalities have been somewhat mixed (41, 47-51, 82-84), 

with some studies suggesting a superior performance over area-based methods (82-84), but 

many reporting similar risk associations (41, 47-51). In a recent case-control study, the screen-

detected cancer odds ratios (ORs) for the highest quintile percent density (relative to the lowest 

quintile percent density) were 2.42 (95% CI, 1.56 to 3.78), 2.12 (95% CI, 1.30 to 3.45) and 2.17 

(95% CI, 1.41 to 3.33) for Volpara, Cumulus and the fully-automated area-based measure, 

Densitas, respectively. VAS was the strongest predictor with an OR of 4.37 (95% CI, 2.72 to 

7.03), whilst the fully-automated volumetric method, Quantra, had no significant association 

with risk, with an OR of 1.02 (95% CI, 0.67 to 1.54) (50). Another recent study reported similar 

risk associations for BI-RADS and Volpara (fractioned into categories analogous to BI-RADS 

categories) (85). It has also been suggested that a combination measure of Volpara DV and BI-

RADS may improve breast cancer risk estimation beyond using only one of the measures (86). 

 

As well as looking into the effects of qualitative and quantitative density measures on breast 

cancer risk, many studies have investigated whether the chosen description of density can vary 

the extent of risk. Both percent and absolute density are strongly and positively associated with 

breast cancer risk (87-90), but most literature suggests that PDA has stronger risk associations 

than DA (88-90).  

 

Other examinations of density as a risk factor for breast cancer suggest that risk is not specific 

to breast side or location of the eventual cancer (89), and risk associations are similar for both 

MLO and CC mammographic views and right or left side (91). Of note, even though risk 

profiles are similar between views, PDA does tend to differ between views, with CC views 

regularly reporting higher PDA estimates than MLO views (92). The reason for this is quite 

intuitive. Subcutaneous fat is more visible in MLO views than CC views, which leads to larger 
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TA values in MLO images, and subsequently lower PDA (93). It has been suggested, therefore, 

that both MLO and CC views should be used for density assessment, which is supported by 

evidence of a more consistent risk score when assessing density from two view mammography 

(93). 

 

With the advent of FFDM, differences in risk estimates may also exist depending on the type of 

mammogram used for density assessment. Density tends to appear darker and therefore less 

dense in FFDM images compared with film images (94), which can be partly explained by 

better recognition of the skin line on digital mammograms (94). There is also an increased 

variability in density measured using FFDM on different machine types. Each mammography 

machine uses its own processing algorithm to display mammograms ‘for presentation’, which 

can affect the perceived relationship between the input x-ray and received image signal (35). 

Volumetric measures use raw, pre-processed mammograms in their estimation of density (35), 

because these images represent the x-ray attenuation of the breast tissue directly. However, raw, 

processed and film images have different appearances, and adjustments may be required to 

calibrate their density-breast cancer risk associations. 

 

1.1.4.4 Mammographic density in screening 

 
There is some concern regarding density in screening; mainly due to the masking effect caused 

by dense breasts. Since dense tissue has a similar attenuation coefficient to many types of 

tumours, high density can cause an inability to detect breast cancers (95), resulting in higher 

levels of missed prevalent cancers at first screen in women with dense breasts. Because of this 

masking effect, many advocacy groups in the US, such as the ‘Are You Dense?’ campaign (96), 

have been arguing for access to information regarding density scores. In 2009, the first breast 

density legislation was subsequently passed in Connecticut, mandating the disclosure of BI-

RADS density to screened women (97). As of July 2019, a total of 38 US states now require 

some level of breast density notification (98). The ACR also addressed the issue of masking in 

their fifth edition BI-RADS lexicon. This latest fifth edition lexicon now includes guidance on 

grading breasts with high density behind the nipple as BI-RADS III or IV (99). This emphasis 

on masking effects has, however, also caused some concern that healthcare practitioners may be 

more likely to grade women as having dense breasts (100), perhaps as a safeguard for missing 

prevalent cancers at the time of screening. 

 

It was previously thought that this masking effect could introduce bias into the density-risk 

relationship (101). Masking bias arises from lower mammographic sensitivity in dense breasts 

compared with fatty breasts, creating higher rates of false negative screens. Prevalent, but 

missed, cancers might be detected after a negative screen, creating a high level of interval 
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cancers and low level of screen-detected cancers (95, 102, 103) (as shown by the 20-30% 

stronger density-risk association seen in studies of incident cancer (cancer diagnosed after a 

negative screen) compared with prevalent cancer (density assessment and diagnosis occurring at 

the same time) in McCormack and dos Santos Silva’s meta-analysis (79)). Supporting evidence 

for this masking effect comes from Boyd et al. (95) who found an increased probability of 

interval cancer detection within 12 months after a negative screen (OR=17.8, 95% CI, 4.8 to 

65.9) for women with >75% visually-assessed density relative to women with <10% visually-

assessed density, suggesting that these cancers were likely already prevalent, but missed, at 

screening. It has also been hypothesised that masking bias could cause an overestimation of 

incident cancers in cohort studies, and an underestimation in case-control studies (22). The 

reason for the overestimation in cohort studies would be due to missed prevalent cancers in 

dense breasts at study entry being revealed during follow-up, whilst the underestimation in case-

control studies is thought to be due to the error in categorisation of women with dense breasts. 

Prevalent cancers in dense breasts could be missed and therefore misplaced as ‘healthy’, hence 

underrepresenting dense breasts amongst cases and over-representing dense breasts amongst 

controls. This would create an artificially low relationship between high density and the 

subsequent cancers detected. However, another study by Boyd et al. also reported that both 

cohort and case-control studies carried similar risk associations (22), which would disprove the 

idea that masking bias was an influence on these study designs. In addition to this, studies by 

Byrne et al. and Rebolj et al. have found that the risk effect of density exists for at least 10 years 

post mammogram examination (104, 105). Harvey et al. estimated that if masking bias did have 

a substantial effect on the density-risk relationship, about 75% of prevalent cancers in dense 

breasts of women in Byrne et al.’s study would have been missed and subsequently diagnosed 

10 or more years later, which is a highly unlikely scenario (106). It is therefore now commonly 

accepted that the effect of density on breast cancer risk is not a result of masking (79). 

 

A further issue regarding density and screening is the debate surrounding the treatment of 

women who present dense breasts at screening. Due to the masking effect, dense breasts tend to 

decrease both sensitivity and specificity of breast cancer detection during mammography (107, 

108). This effect is especially apparent in younger women (for example, <50 years old) who are 

likely to have denser breasts than older screening ages (108). Sensitivity has been shown to 

improve with digital mammography in pre- and perimenopausal women <50 years old with 

dense breasts (109, 110) but with film mammography in postmenopausal women >65 years old 

with fatty breasts (109). Specificity is somewhat different between digital and film 

mammography (109), if not slightly improved with film mammography in younger women 

(aged 40-49) (110). The lower levels of sensitivity and specificity seen in dense breasts assessed 

by mammography have led many to advocate the need for stratified surveillance dependent on 

density. 
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One proposed method of stratified screening in women with dense breasts is the use of 

supplemental or adjunct imaging. These may be particularly useful in young, high-risk or 

symptomatic women requiring frequent examinations throughout their lifetime. Whilst 

mammography in these women would increase lifetime exposure to x-ray ionisation, the use of 

MRI or ultrasound (which do not use ionising radiation) would lower this lifetime x-ray 

exposure. Adjunct automated whole-breast ultrasound (111-115) and MRI (113, 114, 116) have 

the potential to improve sensitivity compared with mammography alone in women with dense 

breasts. However, compared with mammography alone, specificity has been shown to fall with 

these modalities, which could increase the number of false positives (111, 114). Supplemental 

screening using ultrasound or MRI in women with dense breasts given the ‘all-clear’ after a 

negative mammogram has also been suggested (117). A simulation study by Sprague et al. 

(118) found that supplemental screening ultrasound after a negative mammogram in women 

with BI-RADS III or IV would avert 0.36 additional breast cancer deaths and gain 1.7 quality-

adjusted life years per 1000 women. However, they also found that there would be an additional 

354 false-positive biopsy recommendations per 1000 women with supplemental ultrasound 

screening. With an estimated cost-benefit ratio of $325,000 per quality-adjusted life years 

gained, this study suggested that supplemental ultrasound screening for women with 

heterogeneously or extremely dense breasts could greatly increase costs while producing 

relatively small benefits in comparison.  

 

Another increasingly popular imaging modality is DBT. Although relatively new, this imaging 

modality is progressively replacing FFDM in the US and it is quickly gathering more interest in 

other countries. DBT has been shown to lower the effects of masking and provide better 

imaging for the detection of tumours within dense breasts (119-121). It is also possible to 

capture a DBT image in the same compression as FFDM imaging with little added dose and 

little extra resource (117). Since MRI is a relatively expensive modality requiring a large 

amount of user training, and both MRI and ultrasound still produce relatively high false positive 

rates in comparison to tomosynthesis (122), DBT could be a prime candidate for adjunct or 

supplemental screening, particularly since its U.S. Food and Drug Administration approval in 

2011. However, adjunct screening tomosynthesis may increase the time required to interpret a 

mammographic examination (123); but one could argue that with the increased specificity of 

tomosynthesis (120), this additional reading time would be balanced by the reduced number of 

non-cancers recalled for diagnostic tests. It is also possible to produce a synthesised 2D image 

with DBT that replicates projections captured with FFDM. Studies of DBT + synthesised 2D 

mammography have shown similar results to DBT + FFDM (124); and with no additional x-ray 

dose than DBT alone, DBT + synthesised 2D mammography could negate the need for both 

FFDM and DBT.  
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Whilst supplemental screening in women with dense breasts is promising, recent evidence 

suggests that this implementation may be too premature (125). For supplemental screening to be 

beneficial, it must improve sensitivity as well as reducing the number of interval cancers, 

advanced-stage disease or breast cancer-specific mortality (125). However, so far, studies have 

shown only a small reduction in breast cancer deaths (118) and many have been underpowered 

to show an effect on women with advanced-stage disease (126). There is also limited evidence 

for the effects of supplementary screening on interval cancers in women with dense breasts. A 

large randomised control trial (RCT), DENSE, is currently underway to assess whether 

supplementary MRI can reduce rates of interval cancer amongst women with dense breasts 

(127). 

 

Not only does high density increase the risk of an incorrect ‘all-clear’ mammographic 

examination, but density has also been shown to increase the risk of more aggressive (107, 128, 

129) or larger (128, 130) cancers due to its masking effect. In the UK, women between 50-70 

years (or 47-73 years in some areas) are currently invited for screening every three years 

regardless of their level of density (131). However, shorter screening intervals in women with 

dense breasts may be more beneficial. More frequent screening in women with dense breasts 

could increase the likelihood of catching rapidly progressing cancers and existent cancers 

missed by masking on previous screens, at an earlier stage. One must note, however, that basing 

surveillance frequency on density alone would ignore women who are at an increased risk of 

more severe tumours but who do not necessarily have dense breasts. It may therefore be better 

to base stratified surveillance on risk assessment from established risk models rather than 

density alone, to ensure that those at the highest risk of breast cancer are given frequent 

examinations, even if they perhaps have low density. This idea has already been implemented in 

some healthcare services, such as the NHS, who now offer more frequent surveillance to women 

at a high risk of breast cancer based on family history (132, 133). 

 

Whilst stratified screening could potentially improve efficiency and provide more targeted 

surveillance for the most at-risk women (131, 134), there are still questions surrounding the 

cost-effectiveness of supplemental screening as well as the advantages of notifying women of 

their density (135). For example, a study by Hooley et al. found that only 45% of women in 

Connecticut referred for supplemental ultrasound screening actually received it (136). This 

raises concerns over the inconsistency of implementing breast density legislation. It also creates 

a problem whereby women may be informed of their dense breasts but are not offered suitable 

treatment to decrease their risk or to reduce the effects of masking. Whether this lack of follow-

through is due to personal choice, inefficiencies in healthcare services or possibly insufficient 

medical insurance to cover further examinations, appropriate care should be available to women 
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with dense breasts if they are to be notified of their high density and increased risk of incidence 

and masking. 

 

1.1.4.5 Mammographic density and breast cancer risk factors 

 

Mammographic density is associated with many other breast cancer risk factors including age, 

body mass index and reproductive factors such as parity and menopause. These relationships are 

discussed in more detail below. 

 

1.1.4.5.1 Age 

 
Density decreases with age (137-141). Adjustments are therefore necessary in order to 

counteract the negative confounding of age on the density-risk relationship (27, 104). If no 

adjustment is made for age, the effect of density on risk will be underestimated (142). This 

creates a contradiction between density, age and breast cancer risk, since age and density are 

positively associated with risk, but inversely associated with each other. To help to understand 

this inconsistency, one could consider the cumulative rate of ‘breast tissue aging’ (i.e. 

cumulative rate of exposure to hormones) rather than chronological age, as suggested in Pike’s 

model (143, 144). Risk from density might reflect the breast tissue response to lifetime exposure 

of reproductive hormones (such as oestrogen) and growth factors (such as insulin-like growth 

factor (IGF-I) or prolactin) which stimulate epithelial and stromal cell division in the breast (78, 

145-149). According to Pike’s model, the rate of breast tissue aging is most rapid at the time of 

menarche, slows with each pregnancy, slows further in the perimenopausal period, and is lowest 

after the menopause. This implies that an earlier age at menarche, nulliparity, later age at first 

birth and later age at menopause will increase cumulative exposure to hormones. Later 

menarche, parity, earlier age at first birth and earlier age at menopause are suggested to decrease 

cumulative exposure to hormones (27, 143, 144). It has been hypothesised that the higher the 

cumulative exposure to hormones, the higher the density. Hormonal exposures in early life 

might therefore be the most important predictors in the development of density, since this stage 

in life sees the highest rates of breast tissue aging. 

 

Furthermore, the density and breast cancer risk association can be seen in both younger and 

older women (27, 79, 104). However, one must bear in mind that density estimates in women 

younger than the screening age may not be fully applicable to general populations of women. 

Since these younger women do not undergo routine mammography, density measures taken 

from this age group may be skewed by the potentially symptomatic or high-risk populations of 

women examined. 
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Figure 1.4: Pike’s model showing rates of breast tissue aging with chronological age. 

The rate of breast tissue aging is greatest after menarche, declines with successive pregnancies and in the 

perimenopausal period, and is lowest after the last menstrual period i.e. post-menopause. This model is 

used as a theory to explain the increasing incidence rate of breast cancer with increasing age . Derived 

from Boyd et al. (78) which uses data from Pike et al. (143) and Rosner and Colditz (144). 

 

1.1.4.5.2 Menarche  

 
There is only a small amount of literature regarding the association between age at menarche 

and breast density, but according to Pike’s model, one would expect there to be a correlation 

between early menarche and both increased density and increased breast cancer risk. There is 

some evidence to suggest that density is higher in women with early menarche (150), but this is 

not always the case (138). On the other hand, breast cancer risk increases with earlier menarche, 

but the effects are only marginal (151). 

 

1.1.4.5.3 Parity 

 
Density reduces with a first full-term pregnancy (152, 153), and reduces even further with each 

subsequent pregnancy (81, 153). This is thought to be due to the lower levels of reproductive 

hormones circulating post-pregnancy. Lower density is therefore associated with parity (81, 

138, 152, 153) and earlier age at first full-term birth (152, 153). 
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1.1.4.5.4 Menopause 

 
Density reductions occur over the menopause (140, 154). This effect is thought to reflect the 

decrease in circulating reproductive hormones and increase in breast tissue involution that occur 

at this stage of female reproduction (155). Density is also positively associated with age at 

menopause, with lower densities existing in women who begin menopause at an earlier age 

(154). The density and breast cancer risk association is not limited to a particular menopausal 

status, with both premenopausal and postmenopausal women seeing higher risk with increasing 

density (104). 

 

1.1.4.5.5 Body Mass Index 

 
As well as age, systemic adiposity (commonly measured as body mass index (BMI)) is one of 

the strongest confounders of density (138, 156). Percent density, whether measured as PDA or 

PDV, is negatively associated with BMI (88, 157-165); as women with higher BMI are more 

likely to have higher non-dense tissue and total breast tissue (157, 166, 167) which will lead to 

lower percentage estimates of density. Absolute dense area has a less consistent relationship 

with BMI (87, 157-160, 168, 169). DV, on the other hand, has shown positive associations with 

BMI (161-165). These relationships are further complicated by the fact that density and 

excessive postmenopausal BMI are both positively associated with risk of breast cancer (170-

173), but (percent) density reduces with increasing BMI (88, 157-165). Relationships involving 

(percent) density as a risk factor therefore require an adjustment for BMI, otherwise breast 

cancer risk will be underestimated (174).  

 

Some studies have also suggested a protective effect of BMI on breast cancer risk in 

premenopausal women (172, 175, 176). However, others have argued that these contrary 

findings are a result of negative confounding by density (166, 169).  

 

To understand the contradictory relationships between adiposity, density and breast cancer risk, 

it helps to first understand the biological mechanisms behind the positive effect of BMI on 

breast cancer risk in postmenopausal women. This can largely be explained by the high levels of 

oestrogen present in overweight or obese postmenopausal women, as a result of the aromatase 

enzyme converting androgens to oestrogen in peripheral adipose tissue. This process of 

aromatisation acts as the main source of oestrogen in postmenopausal women whose hormonal 

production in the ovaries has ceased (177). Elevated levels of oestrogen act as a risk factor by 

binding to oestrogen receptor (ER)-positive tumour cells and stimulating their growth and 

proliferation (177). 
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1.1.4.5.6 Endogenous hormones 

 
Circulating endogenous oestrogen levels have been shown to influence the growth of density 

(146, 147, 178), making density a potential mediator for the effects of reproductive hormones 

on breast cancer risk. It has been theorised that density is a reflection of the breast tissue 

response to lifetime hormone exposure, as outlined in Pike’s model (143, 144). According to 

this theory, variations in density would mirror different levels of cumulative hormonal 

stimulation. However, this relationship between systemic hormones and density might not be 

applicable to all women, since little to no association between density and blood serum 

oestrogen has been seen in postmenopausal women (179-181). Some studies have investigated 

the role of local environments surrounding density, suggesting that certain hormones produced 

locally at these sites, may be stimulating the proliferation of epithelial cells. Most evidence 

suggests that a relationship exists between circulating oestrogens and density in premenopausal 

women, but not in postmenopausal women, with local breast tissue perhaps acting as the main 

oestrogen source in postmenopausal women (180-182). 

 

Other hormones that are known to influence density include IGF-I and prolactin. High levels of 

serum IGF-I in premenopausal women and prolactin in postmenopausal women have shown 

significantly positive associations with density (145, 183, 184). Recent evidence to support this 

suggests that the breast cancer risk associations of plasma prolactin and mammographic density 

are independent in premenopausal women (185). It has also been suggested that consideration 

of both density and endogenous hormones (such as prolactin, circulating testosterone and 

estrone sulphate) may add to current breast cancer risk prediction models (185, 186). 

 

1.1.4.5.7 Exogenous hormones 

 
Hormone replacement therapy (HRT) increases both risk of breast cancer (142, 187, 188) and 

density (189-194). Specifically, combined oestrogen and progesterone HRT has greater 

associations with density than oestrogen only HRT (192-194), and continuous use of combined 

HRT is also associated with higher density than cycled HRT use (191, 194). However, the 

effects of HRT are only short-term, with a decrease in density visible just 4 weeks after HRT 

cessation (195, 196) and a decrease in risk (to the level of a non-HRT user) is apparent within a 

few years of stopping treatment (197). 

 

Whilst HRT increases both risk of breast cancer and density, selective oestrogen receptor 

modulators (SERMs) have been shown to decrease risk (198-202), and certain SERMs, such as 

tamoxifen, can also reduce density (203-206). A study from the International Breast Cancer 

Intervention Study-I (IBIS-I) found that visually-assessed density reductions of 10% or more 

after 12-18 months of tamoxifen treatment were associated with an approximately 63% 
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reduction in breast cancer risk (OR=0.37, 95% CI, 0.20 to 0.69), p=0.002) compared with 

placebo, whereas smaller reductions or increases in density on tamoxifen had the same 

association with risk as placebo (OR=1.13, 95% CI, 0.72 to 1.77), p=0.60) (19). This suggests 

that change in density could be used as a biomarker to measure the efficacy of tamoxifen for 

prevention. Aromatase inhibitors (AIs), such as anastrozole, can also be used to treat and 

prevent breast cancer (207, 208). However, the effect of AIs on density is less clear, and it is yet 

unknown whether change in density can also be used as a biomarker for response to treatment 

with these drugs. 

 

1.1.4.5.8 Heritability 

 
Family history and heritability can also influence mammographic density. Twin studies have 

shown a 60% correlation between Cumulus-assessed PDA in monozygotic twins compared with 

30% in dizygotic twins (209), and findings suggest that heritability can explain around two 

thirds of the residual variance seen in Cumulus-assessed PDA (209).  

 

There has also been interest in the links between women with BRCA1/2 mutations and density 

(210, 211). Weak evidence suggests that BRCA1/2 carriers have higher density that is lower in 

contrast and coarser than low-risk women without these genetic mutations (210). However, 

studies also show similar relative risks of developing breast cancer for high density relative to 

low density amongst carriers of the BRCA1/2 mutation and non-carriers (211), proposing no 

effect modification by genetic mutations. 

 

In addition to this, a series of genome-wide association studies (GWAS) have so far identified at 

least 100 Single Nucleotide Polymorphisms (SNPs) that are thought to be associated with breast 

cancer susceptibility (212, 213). Each of these SNPs has been shown to slightly modify an 

individual woman’s risk, but together, they could provide a significant amount of information 

regarding a woman’s risk. Attention has therefore turned towards these SNPs and investigations 

are on-going to ascertain their effect on density (212, 214-220). Candidate SNPs suggested to 

have an association between both breast cancer risk and density include SNPs located within the 

HSD17B1, CYP1B1 and COMT oestrogen-related genes (218, 220), rs6220 (IGF-1) (217), 

rs3817198 (LSP1) (214), rs13281615 (8q) (214) and rs10509168 (ZNF365) (216), but the 

effects of these latter SNPs on density require validation. A particular SNP, rs10995190 

(ZNF365), has shown significance in more than one study (215, 216), suggesting a promising 

locus for further genetic evaluation. However, not all studies report an association between 

density and those SNPs identified in GWAS (219), and some studies suggest that independent 

information can be gained from the two risk factors (221); hence the relationship between SNPs, 

density and breast cancer risk remains an active area of research. 



42 

 

 

1.1.4.6 Mammographic density and breast cancer risk models 

 
Various breast cancer risk models aim to distinguish between women at different levels of risk. 

These include the Gail (222), Tyrer-Cuzick (223), BCSC (224), BOADICEA (225), Claus (226) 

and Ford (227) models. The Tyrer-Cuzick model is used in the UK and US, whilst the Gail 

model is more commonly used in the US. The Gail model includes age, age at menarche, age at 

first full-term birth, family history, number of biopsies, presence of atypical hyperplasia and 

ethnicity. A major limitation of the Gail model, however, is that it includes only first-degree 

relatives, which can result in underestimation of risk in women with a familial risk of cancer 

from the paternal side, for example. The Tyrer-Cuzick model expands on this by incorporating 

extensive family history information. The Tyrer-Cuzick model also includes age, age at 

menarche, BMI, age at first full-term birth, menopausal status, age at menopause, benign breast 

disease, presence of atypical hyperplasia, HRT use and length, Ashkenazi Jewish heritage, and 

genetic mutations in the BRCA1/2 genes, as well as a lower-penetrance ‘unknown’ BRCAX gene 

which may increase susceptibility to hereditary breast cancer, and is used to account for residual 

familial clustering. 

 

The Gail model has shown good calibration between predicted and observed numbers of breast 

cancer (228), but there is some evidence that including more risk factors provides better 

discriminatory accuracy (229-234).  

 

Breast cancer risk models are continually being updated, and attempts to include density into the 

models have shown promising results (235-244). One early study investigating the inclusion of 

density in a breast cancer risk model was conducted by Tice et al., who compared a risk model 

containing age and ethnicity-adjusted BI-RADS density only, the Gail model, and a combined 

version of the two. The age and ethnicity-adjusted BI-RADS model was shown to perform just 

as well as the Gail model. However, adding density to the Gail model modestly but significantly 

increased the discriminatory accuracy of the Gail model (237). Further studies by Chen et al. 

(241) and Barlow et al. (240) have also found slight improvements in discriminatory power after 

adding visually-assessed (241) or BI-RADS (240) density to the Gail model, and a recent study 

by Rice et al. found an improvement in the Rosner-Colditz breast cancer risk model when 

percent density was included (245). In 2014, Warwick et al. showed that density significantly 

added to the Tyrer-Cuzick model in a case–control analysis of high-risk women from the 

placebo arm of the IBIS-I trial (242). In this study, the area under the receiver operator 

characteristic curve (AUC) increased from 0.51 in the Tyrer-Cuzick model to 0.62 in the model 

containing both Tyrer-Cuzick risk and a density residual (p=0.002). More recently, Brentnall et 

al. showed that visually-assessed density improved the Tyrer-Cuzick model (235). Using data 
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from the PROCAS cohort study of around 55,000 women attending screening, they found that 

AUC (0.57) and IQR-OR (an odds ratio for the 75th vs. 25th percentile; 1.36, 95% CI, 1.25 to 

1.48) for the Tyrer-Cuzick model increased with the addition of density (AUC=0.61; IQR-

OR=1.47, 95% CI, 1.33 to 1.62). In another study, Brentnall et al. also showed that more high-

risk screened women can be identified when using the Tyrer-Cuzick model with BI-RADS or 

volumetric density than without (without: 4.8% identified, with BI-RADS: 7.1% identified, with 

volumetric density: 6.8% identified) (246). The Tyrer-Cuzick model now includes VAS, BI-

RADS and Volpara-assessed density in its latest version of risk calculation (243, 244). 

 

1.1.5 Changes in mammographic density – literature review 

 
Mammographic density is a promising tool, with great potential for breast cancer prevention. 

However, most research has so far focused on static measures of density, giving insight into 

population-based relationships. Density is a dynamic phenotype, so repeated measures of 

density may be more informative for predicting individual breast cancer risk and for developing 

personalised breast cancer prevention strategies. Assessing individual women’s repeated 

measures could help to reveal within-women relationships between density and other breast 

cancer risk factors, to help to understand the aetiology of breast cancer development and the 

interacting influences of different risk factors. It may also provide information on risk of breast 

cancer for individual women and hence be useful for personalised breast cancer risk estimation. 

Consideration of changes in density may also be useful for indicating a woman’s response to 

breast cancer treatment, such as endocrine therapy. If reductions in risk are mirrored by 

reductions in density, change in density could be used as a potential biomarker for decrease in 

risk as a result of the drug. It is therefore hypothesised that changes in density may be of greater 

use in breast cancer prevention than fixed density measures.  

 

Several studies have previously looked into the benefit of using repeated measures of density 

for breast cancer risk and prevention. A review of key studies is outlined below, along with 

further research ideas arising from the studies that formed the rationale for this thesis. 

 

1.1.5.1 Repeated measures of mammographic density and other breast cancer risk factors (body 

mass index) 

 
An important breast cancer risk factor and confounder of density is BMI. BMI is a well-

established risk factor for postmenopausal women (170, 172, 173), but weight gain across 

premenopausal years has also been linked to an increased risk of postmenopausal breast cancer 

(173, 247). However, this can be reversible with short-term weight-loss through dietary (248) or 

surgical (249) means. For example, the Iowa Women’s Health Study showed a 25-40% decrease 

in postmenopausal breast cancer risk in women who sustained a 5% loss of body weight 
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compared with women who continued to gain weight at different periods of time between 18 

years of age and menopause (250). However, the effects of short-term weight-loss on density 

are less well understood. 

 

There have been few studies assessing the effect of short-term weight change on density, 

particularly over the premenopausal years when a loss in weight is most effective. A dietary 

intervention study by Boyd et al. assessed the effect of a two year low-fat, high-carbohydrate 

diet on density, and found that women on the weight-loss intervention saw a reduction in 

Cumulus TA (2.4% reduction), whereas the control group had increased TA (0.3% increase), 

and DA decreased in the intervention group more so than the control group (6.1% reduction vs. 

2.1% reduction, respectively). The reduction in dense area was particularly apparent in women 

who transitioned from pre- to postmenopausal or who remained premenopausal during the study 

(251). Other studies exploring the effect of more drastic weight-loss after bariatric surgery on 

premenopausal dense tissue have not shown any consistent effect of the weight-loss intervention 

on dense tissue (252, 253). 

 

If weight-loss-induced reductions in risk are shown to be mediated by density, a reduction in 

density could act as a possible biomarker for risk reduction as a result of weight-loss and 

lifestyle interventions. However, with only one known study published to have previously 

assessed dietary-based weight-loss on density in premenopausal women, more studies are 

required to assess this mediating pathway, and to test this possible risk reduction biomarker. 

 

1.1.5.2 Repeated measures of mammographic density for breast cancer risk estimation 

 
Several studies have made use of repeated measures of density to predict breast cancer risk in 

populations of women attending screening (254-261). These have mainly focused on change in 

density between two serial mammograms and its effect on breast cancer risk. For instance, in a 

case-control study of 85 breast cancer cases and 85 matched controls in the Women at Risk 

(WAR) Columbia University study, Work et al. reported that Cumulus-assessed density 

between two pre-diagnostic mammograms (median 4 years apart) decreased in time with 

controls (p=0.004), but not with cases (p=0.6) (259). This suggested that a lack of density 

reduction over time may be indicative of a future risk of breast cancer. Another study from the 

Breast Cancer Surveillance Consortium (BCSC) tested whether changes in density between 

current and previous mammograms (average 3 years apart) were associated with risk of breast 

cancer. This study involved a large cohort of over 300,000 women screened at various US 

registries, with around 2600 subsequent breast cancers diagnosed during follow-up. Here, 

Kerlikowske et al. found that within-women changes in BI-RADS categories were associated 

with risk in women with previous BI-RADS categories I, II and III, but not for women with 
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previous BI-RADS category IV (258), suggesting a potential residual effect of high density. 

However, these interpretations were limited by the small number of women in the most extreme 

categories (for instance, only 0.1% of controls and 0.2% of cases moved from BI-RADS IV to 

I). Furthermore, no adjustments could be made for BMI which may have introduced negative 

confounding to the density-risk association. 

 

The null effect seen in Kerlikowske et al.’s study in women with initially high density, was also 

reported in a study by vans Gils et al. (257). Fully computerised methods were used to measure 

density change over a 10 year period in over 100 postmenopausal breast cancer patients and 400 

matched controls. This study found that women who started the study with high density (>25%) 

which decreased over time, experienced the same risk as women who had prolonged levels of 

high density. However, similar to Kerlikowske et al., very few women moved between the 

extreme density categories (only 12 women had initial density >25% which reduced to <5% 

during the study). Another key finding suggested that women whose density decreased from 

moderate (5-25%) to low (<5%), had (non-significantly) higher risk than women who had 

consistently low density (OR=1.9, 95% CI, 0.6 to 6.1). Compared with the consistently low 

group, women with consistently moderate density had an OR of 5.7 (95% CI, 2.2 to 15.2), and 

women whose density increased from moderate to high had an OR of 6.9 (95% CI, 2.1 to 22.9). 

 

However, not all studies show an effect of change in serial density measurements on breast 

cancer risk. Longitudinal studies by Maskarinec et al. and Vachon et al. showed that changes in 

Cumulus percent density did not differ between women with and without breast cancer (255, 

256). Nonetheless, both studies were limited by their collection of BMI information. 

Maskarinec et al. reported that many of their mammograms did not have corresponding BMI 

measurements taken at the same time as mammography, and Vachon et al. also reported 

differences in the timings of BMI assessments, with 17% of women having BMI data extracted 

over a year after their mammogram. BMI is not a static measurement and may have changed 

between the time of mammography and BMI assessment, potentially affecting the results. 

 

Whilst, changes between two measures of density may have an effect on breast cancer risk, little 

is known as to whether repeated measures of density add information to risk estimation beyond 

what’s already explained by a woman’s current density. Only one other known study has 

evaluated this by assessing the predictive ability of using two density measures. Kerlikowske et 

al., again using data from the BCSC, found that the BCSC 5-year risk model better 

discriminated between cases and controls with a two-measure density predictor than with a one-

measure density predictor (AUCs 0.640 vs. 0.635, respectively) (262). However, no studies 

have evaluated the benefit of including more than two density measures; particularly an 
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unlimited number of mammograms taken at arbitrary points in time, as would be seen in a 

screening environment. 

 

1.1.5.3 Repeated measures of mammographic density for breast cancer risk with endocrine 

therapy interventions 

 

IBIS-I was the first trial to show that change in density could reflect the beneficial effect of 

tamoxifen in the primary prevention of breast cancer. A nested case-control study within the 

trial assessed 123 breast cancer cases and 942 controls to test whether density reduction on 

tamoxifen was associated with risk of developing breast cancer. Cuzick et al. found that women 

who had at least a 10% reduction in VAS density in the first 12-18 months after the start of 

tamoxifen had an approximately 63% reduction in breast cancer risk compared with women on 

placebo, whilst women who experienced <10% density reduction on tamoxifen had no 

difference in risk compared with women on placebo (19). This result suggested that density 

change could be used as an early biomarker to assess the efficacy of prophylactic tamoxifen in 

order to predict a woman’s response to treatment. With the help of this biomarker, healthcare 

practitioners may advise women who see at least a 10% density reduction after 12-18 months of 

treatment to continue with their 5 year course of chemoprevention, whereas those who see a 

more modest reduction or increase in density might not be responding to treatment and would 

perhaps benefit from alternatives such as lifestyle interventions or chemoprevention with other 

SERMs or AIs (19). 

 

Other studies have since tested the biomarker in the adjuvant setting for breast cancer patients 

on endocrine therapy for treatment of the disease. Some studies have suggested that a reduction 

in density may be used as a biomarker for breast cancer recurrence on tamoxifen (263, 264) and 

AIs (264), and others have suggested its use for predicting a reduction in mortality for 

tamoxifen treatment (265, 266). However, there are currently no systematic reviews focussing 

on the evidence to suggest that mammographic density reduction in women receiving endocrine 

therapy is a biomarker for breast cancer outcomes such as reduction in risk, recurrence, 

mortality and incidence of contralateral breast cancer. A review of this sort is essential to 

determine the strength of certainty for this biomarker before it can be implemented into clinical 

practice. 

 

There is also very little evidence for the mammographic density biomarker in women treated 

with AIs, and there are no known studies in women on preventive AI therapy. The IBIS-II trial 

showed that the AI, anastrozole, reduced the risk of ER+ breast cancer in high-risk 

postmenopausal women by 60% (208), and it is a good resource to test this biomarker for 

preventive anastrozole therapy. 
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Previous studies assessing the effect of AIs on density have reported only modest (and often 

underpowered) results (267-270). In the preventive setting, the NCIC CTG MAP.1 prevention 

trial of letrozole vs. placebo found that 12 and 24 month changes in Cumulus-assessed PDA 

were small and similar between arms (12 months: mean PDA change -1.74 on letrozole, -0.24 

on placebo (adjusted p=0.61); 24 months: mean PDA change -0.01 on letrozole, -1.32 on 

placebo (adjusted p=0.61)) (268). Vachon et al. also found similar results in a study of over 100 

postmenopausal women (adjusted mean PDA change -1.0% on letrozole vs. -0.3% on placebo 

(p=0.58)) (270). The NCIC CTG MAP.2 prevention trial found similar results for exemestane 

(mean 12 month Cumulus-assessed PDA change: 0.56 on exemestane and 0.58 on placebo 

(adjusted mean difference between arms p=0.96), mean 24 month PDA change: -0.17 on 

exemestane and -2.93 on placebo (adjusted mean difference between arms p=0.52)) (269). 

Studies in the adjuvant setting have shown similar results (267), but there has been some 

suggestion of a small effect of AIs on volumetric density with a larger sample size (271). 

However, there are currently no studies testing the effect of AIs on density in the preventive 

setting with a similarly sufficient sample size. The IBIS-II trial could be an important resource 

for testing the effect of preventive AIs on density with the potential to provide an adequately 

sized sample of women. 

 

1.2 Aims and thesis outline 

 

1.2.1 Repeated measures of mammographic density and other breast cancer risk factors 

(body mass index) 

 
Chapter two aimed to assess the dynamic relationship between BMI and density during a 

dietary-based weight-loss intervention in premenopausal women to help assess whether weight-

loss-induced reductions in risk are potentially mediated by reductions in density. Repeated 

measures data on density (visual, Cumulus and a ‘Stepwedge’ volumetric method) and BMI 

were collected over 2 years during the weight-loss intervention (Lifestyle study) in Manchester, 

UK (n=65). The intention of this intervention was to reduce postmenopausal breast cancer risk 

in susceptible premenopausal women who had gained weight since the age of 20 years through 

improvements in diet and exercise. Each woman’s measure of BMI varied across the study as 

she actively lost weight, and density was measured at the same time as BMI in order to assess 

concurrent changes in density. These within-women associations were tested using repeated 

measures correlation coefficients and a linear mixed model for short-term BMI change on 

density. 
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1.2.2 Repeated measures of mammographic density for breast cancer risk estimation 

 
Chapter three aimed to develop a longitudinal density measure that accounted for individual 

women’s changing density values, and to assess the benefit of using this longitudinal density 

measure for breast cancer risk assessment. Repeated measures data on density and BMI were 

collected as part of the Kaiser Permanente Washington Breast Cancer Surveillance Consortium 

breast imaging registry, taken over a period of up to 20 years in an at-risk screening population 

in Washington State, USA. Substantial follow-up and linkage to cancer registries recording 

breast cancer incidence allowed for long-term assessment of density over time and its effect on 

breast cancer risk. The longitudinal density measure was developed using a linear mixed model 

for age and BMI on density (BI-RADS). The benefit of using longitudinal density for breast 

cancer risk assessment was tested using likelihood ratio statistics to assess the predictive ability 

of proportional-hazards Cox models for time to breast cancer diagnosis with baseline, most 

recent or longitudinal density. Discriminatory accuracy was also tested using a yearly at-risk 

concordance index. 

 

1.2.3 Repeated measures of mammographic density for breast cancer risk with 

endocrine therapy interventions 

 
Most breast cancer risk factors are difficult to change, for example: age, female sex, family 

history, genetics and endogenous hormone levels; or can jeopardise a woman’s integrity and 

significant life-choices, such as reproductive events. However, density is a dynamic trait and it 

is modifiable. Density has also been shown to decrease in response to risk-reducing therapy by 

tamoxifen (19, 203). This is a promising result since an endocrine therapy-induced reduction in 

density that is concomitant with a reduction in risk could be used as a potential biomarker for 

monitoring the efficacy of risk-reducing endocrine therapies. Use of this biomarker would be 

more beneficial than the current “wait-and-see” approach, and because mammography is less 

invasive than the alternative tissue and blood sample biomarkers, change in density is a 

particularly appealing tool for indicating risk. 

 

Chapter four is a Cochrane systematic review of the published evidence to suggest that 

endocrine therapy-induced reduction in density can be used as a biomarker to predict breast 

cancer risk and mortality. This biomarker may exist in both the preventive and adjuvant 

settings, hence both risk and mortality outcomes were considered. 

 

Chapter five aimed to assess whether reductions in density occur with preventive anastrozole 

therapy. This is because it is important to first establish whether anastrozole has the potential to 

change density before assessing the biomarker’s association with breast cancer risk. This study 

was nested within the IBIS-II international, double-blind, randomised placebo-controlled 
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prevention trial of anastrozole vs. placebo in high-risk postmenopausal women. Change in 

density at approximately 2 and 5 years after initiation of treatment was compared between 

women on anastrozole or placebo, to determine whether preventive anastrozole treatment 

reduces density more than the natural decline that occurs with age. 

 

Chapter six aimed to assess whether preventive anastrozole-induced density reduction at 

approximately 2 years after the start of therapy is associated with a reduction in breast cancer 

risk. This study used the same data as Chapter 5, but with density change and treatment as 

predictors and breast cancer incidence as the outcome. 

 

Chapter seven concludes the thesis with a discussion of findings and future direction for 

research on changes in mammographic density and breast cancer risk. 
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Chapter 2: The relationship between body mass index and mammographic 

density during a premenopausal weight-loss intervention study 

 

2.1 Introduction 

 
As discussed in Chapter 1, mammographic density is one of the strongest risk factors for breast 

cancer. Percent breast density is measured as the relative proportion of dense tissue in the 

breast, either in terms of area or volume depending on the measurement method. Visual 

assessment measures the percent density with respect to the TA; whilst automated and semi-

automated methods can also measure the extent of dense and fatty tissue separately. Both DA 

and PDA are positively associated with risk of premenopausal (and postmenopausal) breast 

cancer (27, 104, 272), and absolute DV and PDV have also shown positive relationships (82, 

246). Associations of FA and FV with breast cancer risk are unclear, although there is some 

suggestion of an inverse relationship with premenopausal breast cancer risk (246, 272). 

 

In postmenopausal women, higher attained BMI is associated with a higher risk of breast cancer 

(170, 172, 173), with an estimated 40% increase in risk for every 10kg/m2 of BMI in never users 

of hormone replacement therapy (172). This increase in risk is partly explained by increased 

aromatisation of androgens to oestrogen in peripheral adipose tissue, which promotes cell 

proliferation (273, 274), carcinogenesis (273, 274) and insulin resistance (275). Whilst BMI is a 

widely accepted risk factor for breast cancer in postmenopausal women, there may be an inverse  

relationship in premenopausal women (175). However, this is not always consistent (276). For 

example, a 5kg/m2 increase is sometimes associated with a reduction in risk of premenopausal 

breast cancer risk amongst Caucasian and African women, but an increase amongst Asian 

women (276). 

 

Weight gain across the premenopausal years has also been linked to an increased risk of 

postmenopausal breast cancer. Every 5kg of adult weight gain is associated with an approximate 

10% increase in risk amongst never users (or low dose users) of hormone replacement therapy 

(173, 247). However, a number of studies (as summarised by Hardfeldt et al. (248)) suggest that 

these effects are reversible with efficient weight-loss, whereby short-term weight-loss is 

associated with an overall 20% breast cancer risk reduction (248). A reduction in risk of 

approximately 40% can also be seen with large weight-losses as a result of bariatric surgery in 

populations of pre- and postmenopausal women (249). 

 

The effects of short-term weight change on breast density are less well understood, particularly 

those as a result of dietary weight-loss. Mammographic density is a dynamic phenotype, and has 

the potential to respond to short-term weight changes, making density reduction a possible 
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biomarker for reduction in risk as a result of weight-loss. This study aims to explore the effect 

of short-term dietary weight change on density using both area-based and volumetric methods in 

a cohort of premenopausal women, to ascertain whether the relationship between weight-loss 

and reduced postmenopausal breast cancer risk could, in part, be mediated by reductions in 

mammographic tissue. 

 

2.2 Methods 

 

2.2.1 Study design and participants 

 
The Lifestyle study (277-279) was a 1 year diet and exercise weight-loss intervention study 

amongst 79 high-risk premenopausal women who attended annual screening within the Breast 

Cancer Family History clinic at the Prevent Breast Cancer research unit at the Manchester 

University Hospital Foundation NHS Trust between 2002 and 2004. Women were required to 

be aged 35-45 years, premenopausal with regular menstrual cycles, non-smokers, have a self-

reported adult weight gain ≥7kg, and a sedentary lifestyle (<40 minutes moderate physical 

activity per week). All women had a family history of breast cancer (with lifetime risk 16–40% 

as assessed by the Tyrer-Cuzick model (223, 243)), but were excluded if they had a known 

BRCA1/2 mutation or a previous history of cancer. Women were also excluded if they were 

already successfully dieting or losing weight, were pregnant or planning to become pregnant 

over the next year, had used hormonal oral contraceptives in the last 6 months, or had 

psychiatric or physical co-morbidities that could affect their ability to take part in a diet and 

physical activity weight-loss programme. In the intervention group, 40 women were assigned to 

a 12 month intensive supervised weight-loss programme which involved a 25% energy-

restricted Mediterranean type diet and an individualised physical activity program (150 minutes 

moderate intensity physical activity and 40 minutes of resistance exercise per week). A further 

39 women were separately recruited to a limited intervention control group who received 

standard written advice about diet and physical activity but no additional support for weight-

loss. 

 

The objective of this analysis was to assess the relationship between BMI and density in a 

cohort of women with changing BMI measures, regardless of their method of weight-loss. Since 

women from both the intervention and control groups were given lifestyle advice to lose weight 

(although less so for the control group), all women had within-women variation in BMI. To 

increase power, the analysis combines both intervention arms. Additionally, to limit the effect 

of women contributing observations to an area-based measure or volumetric measure only, the 

cohort is restricted to those with both an area and volumetric density measurement at any one or 

more time points (n=65, 82% of the cohort). 
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2.2.2 Mammographic density 

 
Mammographic films were digitised using a Kodak LS85 digitiser at a pixel size of 50µm and 

with 12-bits (4096 grey levels) pixel depth. Mammograms were analysed using three different 

methods: (1) a visual assessment score of percentage density read to the nearest 5% by two 

experienced readers (Dr Ruth Warren, Caroline Boggis), expressed as an average of the two 

scores to calculate PDA, (2) a semi-automated area-based measure based on computer-assisted 

thresholding (Cumulus, Sunnybrook health sciences centre, Toronto, Canada, (23)) (Dr Ruth 

Warren), and (3) an automated volumetric ‘Stepwedge’ method developed at Manchester 

University (280) (Dr Sue Astley). The Manchester Stepwedge method used markers on the 

compression paddle to determine breast thickness, and a calibration device (Stepwedge) to 

match each pixel density in the mammogram with the equivalent density in the Stepwedge. This 

method therefore required availability of the Stepwedge so that it could be imaged alongside the 

breast at the time of mammography. The Manchester Stepwedge method calculated TV, DV, 

FV and PDV and Cumulus was used to calculate TA, DA, FA and PDA. Density assessments 

were made at 3 time points: baseline, 1yr follow-up (at the end of the intervention) and 1yr after 

the end of the intervention. Baseline mammograms were taken at the point of entry to the study; 

for those women with a mammogram performed within one year of entry, their most recent 

mammogram within the last 12 months was used. Each woman had four mammographic views 

taken at each time point: left CC, right CC, left MLO and right MLO, and a final 

mammographic score at each time point was calculated using an average of the four views. The 

primary analysis refers to Cumulus-assessed DA, FA and PDA, and Stepwedge-assessed DV, 

FV and PDV to assess the effect of BMI on dense and non-dense tissue separately. Visually-

assessed density had similar results to Cumulus-assessed PDA so is included as a secondary 

density measure only. Results for TA and TV are also reported as secondary density measures 

in the results tables. 

 

2.2.3 Body weight and body composition 

 
Weight, BMI and a variety of different measures of body composition were assessed at baseline, 

1yr and 2yr after the start of the intervention. Weight (kg) and height at baseline (m) were 

determined using a calibrated beam balance and stadiometer, and used to calculate BMI 

(kg/m2). Other body composition assessments were also made i.e. waist circumference 

(measured by a trained research nurse using a measuring tape); total body fat, fat free mass and 

% body fat (assessed using a DXA whole body scanner (Hologic Inc., Bedford, MA, USA) and 

bioelectrical impedance (Tanita TBF-300A, Tanita Europe B.V., Hoogoorddreef 56E, 1101 BE 

Amsterdam, The Netherlands)); and intra-abdominal and abdominal subcutaneous area 

(assessed using an MRI scan with a single transverse scan taken at the level of the intervertebral 

disc between the L2 and L3 vertebrae). Weight, BMI, waist circumference, and total body fat, 
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fat free mass and % body fat (impedance) were recorded at all 3 time points. Intra-abdominal 

area, abdominal subcutaneous area, and total body fat, fat free mass and % body fat (DXA) 

were only measured at baseline and at 1yr. Weight at age 20yr was self-reported via 

questionnaire, and BMI at age 20yr was calculated using weight at age 20yr and height at study 

entry. Long-term BMI gain was calculated as the difference between baseline BMI and BMI at 

age 20yr. BMI is discussed as the primary measure of body weight throughout the analysis 

because BMI is a commonly used adjustment for density and it is a well-established risk factor 

for breast cancer. BMI also provided the most longitudinal information because it was only 

missing for 1 observation at 2yr, whereas other measures had more missing data (such as 

impedance which was missing for 19 observations). Other body composition measures gave 

similar correlations with density to those of BMI and were highly correlated with BMI. 

Therefore, other body composition measures are included as secondary analyses. Weight gain 

during the intervention was defined as ≥+3% of baseline weight, weight-loss was defined as ≤ -

3% of baseline weight, and a weight change >-3% to <+3% of baseline weight was defined as a 

stable weight (281). 

 

2.2.4 Statistical methods 

 

This analysis used the statistical software, R (282). All tests were two-sided and considered 

significant at the 5% level. 

 

2.2.4.1 Repeated measures correlation coefficients (primary analysis) 

 
Correlation (r) between BMI and mammographic density was assessed on a cross-sectional 

basis (between-women), and within-women as their short-term BMI changed, using repeated-

measures methods as described by Bland and Altman (283, 284). These correlations used all of 

the available data together to get an overall statistic across repeated measures. Between-women 

correlations were used to evaluate the relationship between breast density measures and BMI 

cross-sectionally across the group of women, for example, whether heavier women were more 

likely to have dense breasts. Within-women correlations were used to assess whether breast 

density changed for an individual woman in line with their changing BMI. If there was little 

relationship seen between-women, then it was unlikely that there would be a relationship 

within-women. 

 

A Pearson correlation coefficient could have been used to calculate between-women correlation, 

however this does not take into account the different number of observations contributed by 

each woman. Repeated measures correlation coefficients overcome this issue by calculating a 
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weighted Pearson correlation coefficient. With summations for woman 𝑖 = 1 … 𝑛, the weighted 

Pearson correlation coefficient is defined as: 

 

∑ 𝑚𝑖�̅�𝑖𝑦𝑖 −
∑ 𝑚𝑖�̅�𝑖 ∑ 𝑚𝑖𝑦𝑖
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) − (∑ 𝑚𝑖𝑦𝑖

2 −
(∑ 𝑚𝑖𝑦𝑖)2

∑ 𝑚𝑖
)

 ; 

 

where 𝑚𝑖 is the number of observations for woman 𝑖; and 𝑥̅𝑖 and 𝑦𝑖 are the mean BMI and 

density measures for woman 𝑖, respectively (284). Missing pairs of density and BMI were 

excluded. 

 

The within-women correlation coefficients effectively remove the differences between subjects 

to assess the changes within subjects only. The measure is based on the decomposition of sums 

of squares from an Analysis of variance (ANOVA). A linear model was first fit with a factor for 

each woman 𝑖 = 1 … 𝑛 at each time point 𝑗 = 1, 2, 3 so that: 

 

𝑦𝑖𝑗 = 𝛽0 + 𝜓𝑖 + 𝛽1𝑥𝑖𝑗 + 𝑒𝑖𝑗 ; 

 

where 𝑦𝑖𝑗 is the density measure for woman 𝑖 at time point 𝑗; 𝑥𝑖𝑗 is the BMI for woman 𝑖 at time 

point 𝑗; 𝛽1 is the parameter for BMI; 𝛽0 is an overall intercept; 𝜓𝑖  is a categorical factor variable 

with 𝑛 factors (dummy variables); and 𝑒𝑖𝑗 is the random error for each observation with mean 

zero and unknown variance. Missing pairs of density and BMI were excluded. 

 

The ANOVA table for this linear regression model is: 

 

Source of 

variation 

Degrees of 

freedom 

Sum of 

squares 

Mean square 

error 

F-ratio 

Women 𝑛 − 1 𝑆𝑆𝑤𝑜𝑚𝑒 𝑛  𝑆𝑆𝑤𝑜𝑚𝑒𝑛

𝑛 − 1
 

𝑀𝑆𝐸𝐵𝑀𝐼

𝑀𝑆𝐸𝑒𝑟𝑟𝑜𝑟

 

BMI 1 𝑆𝑆𝐵𝑀𝐼  𝑆𝑆𝐵𝑀𝐼

1
 

 

Residual 𝑛(𝑘 − 1) − 1 𝑆𝑆𝑒𝑟𝑟𝑜𝑟  𝑆𝑆𝑒𝑟𝑟𝑜𝑟

𝑛(𝑘 − 1) − 1
 

 

Total (𝑛𝑥𝑘) − 1 𝑆𝑆𝑡𝑜𝑡𝑎𝑙 
𝑆𝑆𝑡𝑜𝑡𝑎𝑙

(𝑛𝑥𝑘) − 1
 

 

 

where 𝑛 is the sample size; and 𝑘 is the total number of observations divided by 𝑛 i.e. mean 

number of observations per woman. Proof of the number of degrees of freedom has been 

described elsewhere (285). 
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ANOVA assessed the variability in density partitioned into components based on the source of 

the variation. Removing the variation from women (𝑆𝑆𝑤𝑜𝑚𝑎𝑛), the within-women correlation 

coefficient was obtained: 

 

(±)√
𝑆𝑆𝐵𝑀𝐼

𝑆𝑆𝐵𝑀𝐼 + 𝑆𝑆𝑒𝑟𝑟𝑜𝑟
  ; 

 

where the sign is equal to that of 𝛽1 (283). 

 

As a secondary analysis, these repeated measures correlation coefficients were also completed 

for all mammographic density measures against each other and for all adiposity measures 

against each other. As an exploratory analysis, DXA bone density was also measured and added 

to the list of adiposity measures. 

 

2.2.4.2 Tadpole plots 

 
Density data were also plotted against BMI using ‘tadpole plots’ to show simultaneous between- 

and within-women associations graphically. In these scatter plots, each tadpole represents a 

woman: the head of the tadpole represents a woman’s density and BMI at their last 

mammogram, and the tail shows the same but for previous follow-ups (if density was available). 

This way, the reader may assess a woman's joint between- and within-women effects over the 2-

year period, for example, assess whether the tadpole tails (within-women effects) followed the 

pattern seen by comparing the tadpole heads (between-women effects). If there was no 

relationship between-women, the heads would be horizontal, and if density did not change as a 

woman lost weight, the tails would be horizontal. 

 

2.2.4.3 Empirical bootstrap 

 
95% confidence intervals for correlation coefficients were estimated using an empirical 

bootstrap with 10,000 resamples. The idea behind this non-parametric method is to generate a 

random bootstrap sample from the original dataset sample using ‘with replacement’ selection so 

that each unit of the original sample may be selected more than once. The bootstrap sample is 

selected so that it is of the same size as the original dataset sample. The statistic of interest can 

then be calculated (here, this was the correlation coefficient). This is repeated a number of times 

(for example, 10,000 times) to get a distribution of bootstrapped statistics. From this, the 2.5th 

percentile and 97.5th percentile can be obtained to give the empirical lower and upper bounds 

for the 95% confidence interval, respectively (286). 
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2.2.4.4 Linear mixed models (1) 

 
The ANOVA method for within-women correlations does not account for unbalanced data. 

Namely, some women were missing a density-BMI pair at one or more of their time points, 

therefore each woman contributed a different number of repeated measurements. Additionally, 

including a factor for each woman in the linear model for the ANOVA method might be 

affected by overfitting. Therefore, to check the robustness of repeated measure correlation 

coefficients, a multivariable linear mixed model was also fitted (287). Linear mixed models are 

robust to unbalanced data and reduce overfitting by including random effects per woman, as 

opposed to factors for each woman. The linear mixed model also allowed for assessment of the 

simultaneous association of between- and within-women correlations, alongside the adjustment 

for age. 

 

Linear mixed models are frequently used to model repeated measures. Repeated measures give 

rise to clustered data where data points within the same group more closely resemble each other 

than data points in other groups. Clustered or grouped measurements, for example, within-

person, tend to have high correlation with each other which results in lower variance than 

independent measurements. The linear mixed model overcomes this by introducing random 

effects in the linear regression model alongside the usual fixed effects representing population 

predictors. Estimated fixed effects are shared across all observations, whereas random effects 

vary across clusters. 

 

Random effects are comprised of two or more levels. The lowest base level represents each 

outcome measurement and the level above represents the grouping of repeated measures, for 

example, each individual woman (as seen in this study). If the data structure were to involve 

additional grouping such as hospitals or regions, a higher level could have been included to 

account for further clustering. These random effects are used to model deviations of each level’s 

groups about population mean effects (after accounting for the deviations for the levels below). 

Each level above the base level therefore separates the variance into two components: one that 

comprises the unobservable variance from that level and one comprising the variance from the 

level(s) below. Random effects can be modelled using random intercepts and random slopes. A 

random intercept allows for deviations about the mean fixed intercept and a random slope 

allows for deviations about a mean fixed effect slope so that each woman’s slope is not 

necessarily parallel to that of the population. 

 

In this chapter, the hierarchical structure of the linear mixed model includes two levels: the base 

level for each density measure at each time point, and the second level representing each 

woman. A diagram of this model is represented in Figure 2.1; which is also depicted as an 

equation (Equation 2.1). 
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Figure 2.1: Representation of the 2-level linear mixed model. 

 
Equation 2.1: The univariate linear mixed model. 

Level 1:         𝑦𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑥𝑖𝑗 + 𝑒𝑖𝑗 

Level 2:                    𝛽0𝑖 = 휁0 + 𝑢0𝑖 

                     𝛽1 𝑖 = 휁1 + 𝑢1𝑖  

 

where 𝑦𝑖𝑗 is the outcome for woman 𝑖 = 1, … , 𝑛 at time point 𝑗 = 1, … , m𝑖 , 휁0 is the population 

fixed intercept, 휁1 is the population fixed parameter for variable 𝑥𝑖𝑗, 𝑒𝑖𝑗 is the conditional 

random error (residual), 𝑢0𝑖 is the random intercept for woman 𝑖, and 𝑢1𝑖  is the random slope 

for woman 𝑖. 

 

The basic model assumptions used in the analysis are: 

 

 The random effects 𝒖𝑖 = (𝑢0𝑖, 𝑢1𝑖
) are normally-distributed, such that 𝒖𝑖 ∼ 𝑁 (𝝁𝑢, 𝚺) 

where 𝝁𝑢 = (
0
0

) and 𝚺 is the 2x2 square, symmetric, and positive semi-definite variance-

covariance matrix, defined as: 𝚺 = ( 
𝜏00 

2 𝜏01 
2

𝜏10 
2 𝜏11 

2

 

) , where 𝜏00 
2 is the variance of the random 

intercept, 𝜏11
2  is the variance of the random slope, and  𝜏01 

2 and 𝜏10 
2  represent the covariance 

of the random intercept and slope. Different structures can be assumed for 𝚺. The two main 

structures mentioned in this thesis are: independent (covariance elements, 𝜏01 
2 and 𝜏10

2 , are 

constrained to be zero, hence random effects are uncorrelated) which is the simplest 

assumed structure, and unstructured (all elements are estimated and each of the random 

effects is allowed to be correlated with each other) which is commonly used for repeated 

measures data. 

 The random errors (residuals) 𝒆𝑖 =  (𝑒𝑖1, … , 𝑒𝑖m𝑖
) are normally-distributed, such that 𝒆𝑖 ∼

𝑁 (𝝁𝑒 , 𝑬𝑖) where 𝝁𝑒𝑚𝑖𝑥1 = (
0
⋮
0

) and  𝑬𝑖 = σ2𝑰𝑚𝑖
 with σ2 being the sample residual 

….. 

… … 

Woman 1 

𝑦11 𝑦12 𝑦1𝑚1
 … 

Woman 2 

𝑦21 𝑦22 𝑦2𝑚2
 

Woman n 

𝑦𝑛1 𝑦𝑛2 𝑦𝑛𝑚𝑛
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variance and 𝑰𝑚𝑖
 is the 𝑚𝑖 x 𝑚𝑖 identity matrix. This is the most common structure 

assumption and the only assumption mentioned in this thesis, although other structures, 

such as compound symmetry or autoregressive, can be assumed. 

 For the same woman: 

 All residuals are independent. 

 All random effects are (conditionally) independent of all residuals. 

 For different women: 

 All random effects for one woman are independent of all random effects for another 

woman. 

 All residuals for one woman are independent of all residuals for another woman. 

 All random effects for one woman are independent of all residuals for another woman. 

 

The linear mixed model for this study is described below. 

 

Breast density 𝑦𝑖𝑗 for woman 𝑖 = 1, … , 𝑛 at time 𝑗 = 1, 2, 3 was modelled as: 

 

Equation 2.2 

                𝑦𝑖𝑗 = 𝛼 + 𝛽𝑎𝑔𝑒𝑖𝑗 + 𝛾𝑥̅𝑖. + 𝛿(𝑥𝑖𝑗 − 𝑥̅𝑖.) + 𝑢0𝑖 + 𝑒𝑖𝑗;        

 
where α is an overall intercept, 𝑎𝑔𝑒𝑖𝑗 is the age for woman 𝑖 at time 𝑗, 𝛽 is the parameter for 

age, 𝑥̅𝑖. is mean BMI for woman 𝑖, 𝛾 is the between-women BMI parameter, 𝑥𝑖𝑗 is the BMI of 

woman 𝑖 at time 𝑗, 𝛿 is the within-women parameter, and 𝑒𝑖𝑗 is an independent random error. 

The term that allowed for differences between women in their overall density level is the 

independent random intercept 𝑢0𝑖 for woman 𝑖. The model is completed by assuming normal 

distributions for 𝑢0i and 𝑒𝑖𝑗, with zero mean, unknown variances and: zero covariance between 

𝑒𝑖𝑗 of the same woman or different women, zero covariance between 𝑢0i and 𝑒𝑖𝑗 of the same 

woman or different women, and zero covariance between 𝑢0i of different women. Missing pairs 

of density and BMI were excluded. The model was fitted by maximum likelihood (2.2.4.7). To 

aid interpretation of the estimates across different measures of density, the density values were 

first standardised (2.2.4.6). To test 𝛾=0 (between-women correlation) and 𝛿=0 (within-women 

correlation) a Wald test was applied (2.2.4.9). 

 

A secondary analysis was also undertaken to assess the effect of adding BMI gain since 20yr of 

age to the model. The model was extended to consider BMI gain from age 20yr: 

 

Equation 2.3 

                         𝑦𝑖𝑗 = 𝛼 + 𝛽𝑎𝑔𝑒𝑖𝑗 + 𝛾𝑥̅𝑖. + 𝛿(𝑥𝑖𝑗 − 𝑥̅𝑖.) + 𝑢0𝑖 + 휀𝑧𝑖 + 𝑒𝑖𝑗; 
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where 𝑧𝑖 is the BMI gain since age 20yr for woman 𝑖: calculated as the difference between 

baseline BMI for woman 𝑖 and BMI at age 20yr for woman 𝑖, and 휀 is the parameter for BMI 

gain since age 20yr. To test 휀=0 a Wald test was applied (2.2.4.9). 

 

In the linear mixed model, BMI was modelled as both a between-women and within-women 

effect to mirror the repeated measures correlation coefficients. Using the mean BMI for the 

between-women effect ensured that all of the data across the intervention was used for each 

woman, whilst determining a stable reference point from which a relative within-women change 

measure could be calculated. As this model contained repeated measures, random variation 

about the overall population mean density was allowed by including random intercepts.  

 

Likelihood ratio tests were conducted to test for inclusion of random slopes which would allow 

individual-woman deviation about the within-women population effect, 𝛿. These likelihood 

ratio tests are explained in more detail in section 2.2.4.8. No interactions were considered so 

that effects from the linear mixed model were the same as the repeated measures correlation 

coefficients. 

 

2.2.4.5 Transformations 

 
Diagnostic Q-Q plots were used to check the normality assumption of residual errors and 

random effects i.e. 𝒆𝑖 ∼ 𝑁 (𝝁𝑒 ,𝑬𝑖) and 𝒖𝑖 ∼ 𝑁 (𝝁𝑢, 𝚺). Quantiles of the estimated residual 

errors, �̂�, and predicted random effects, �̂�, were plotted against theoretical quantiles from a 

standard normal distribution, to visually assess whether plots formed a straight line and were 

thus normally distributed (288). To make density measures more symmetric and approximately 

normal-distributed they were transformed: a square root transformation for area measures and a 

cube root transformation for volumetric measures. 

 

2.2.4.6 Standardisation 

 
To help with comparisons across different measures of breast density, the breast density values 

were first standardised for woman 𝑖 = 1, … , 𝑛 at time point 𝑗 = 1, 2, 3 using: 

 

an overall mean:               𝑥̅ =
∑ �̅�𝑖

𝑛 
𝑖=1

𝑛
 , 

 

and variance:            𝜎2 =
∑ (�̅�𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
 , 

 

to get a standardised density measure:          𝜑𝑖𝑗 =
𝑑𝑖𝑗−�̅� 

𝜎
 ;  
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where 𝑥̅𝑖 is the mean density for woman 𝑖 and 𝑑𝑖𝑗 is the density measure for woman 𝑖 at time 

point 𝑗. 

 

2.2.4.7 Maximum likelihood 

 
The likelihood of a parameter, 𝜃, given the observed data, 𝑥1, … , 𝑥𝑛 = 𝒙, is ℒ(𝜃|𝒙). The aim is 

to find the value for 𝜃 that maximises the likelihood function by taking the supremum (‘sup’) of 

ℒ(𝜃|𝒙), also known as the maximum likelihood estimator (MLE). The natural logarithm of the 

likelihood (denoted with a lower case symbol, ℓ(𝜃|𝒙)) is also often used. An estimated MLE 

(�̂�) can be found by taking the derivative of ℒ(𝜃|𝒙) or ℓ(𝜃|𝒙) with respect to 𝜃 and equating 

this to zero to find the global maximum and then solving the resulting equation. 

 

One problem that arises when using maximum likelihood (ML) for linear mixed models is that 

variance component estimators, �̂� and σ̂2, tend to be negatively biased because fixed 

coefficients are assumed to be known without uncertainty. As a solution, unbiased restricted 

maximum likelihood estimation (REML) can be used instead (289). Briefly, maximum 

likelihood is applied to the residuals from the fixed part of the model therefore estimation of the 

variance components is independent of the fixed effects coefficients. A limitation of REML is 

that it is biased when comparing nested models that differ in their fixed effects. On the other 

hand, ML is biased when comparing nested models that differ in their random effects, however 

this bias decreases as the sample size increases (290). 

 

2.2.4.8 Likelihood ratio tests 

 
For a statistical model with parameter space, 𝛺: the null hypothesis (𝐻0) states that parameter 

𝜃 ∈ 𝛺0, where 𝛺0 is a subset of 𝛺, and the alternative hypothesis (𝐻1) states that 𝜃 ∈ 𝛺0
𝐶, where 

𝛺0
𝐶 is the complement of 𝛺0 (291). 

 

The likelihood ratio statistic for testing 𝐻0 vs. 𝐻1 is defined as: 

 

𝜆(𝒙) =
sup (ℒ(𝜃|𝒙) ∶ 𝜃 ∈ 𝛺0)

 sup (ℒ(𝜃|𝒙) ∶ 𝜃 ∈ 𝛺)
 

 

Assuming the null hypothesis is true, Wilks’ theorem (292) can be used to conduct tests on 

whether to reject 𝐻0 in nested models. Asymptotically (as the sample size  𝑛 → ∞), the statistic 

−2 log(𝜆) follows a chi-squared distribution i.e. −2 log(𝜆) ~ 𝜒2 with degrees of freedom equal 

to: dimensionality (𝛺) - dimensionality(𝛺0). 
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The natural logarithm of the likelihood, ℓ(𝜃|𝒙), is often used because with logarithms, products 

become summations and division becomes subtraction: 𝑙𝑜𝑔(𝑎𝑏) = 𝑙𝑜𝑔(𝑎) + 𝑙𝑜𝑔(𝑏) ; 

𝑙𝑜𝑔 (
𝑎

𝑏
) = 𝑙𝑜𝑔(𝑎) − 𝑙𝑜𝑔(𝑏).  

 

In this case:            −2 log(𝜆) = −2 log (
sup(ℒ(𝜃|𝒙)∶𝜃∈𝛺0)

 sup (ℒ(𝜃|𝒙)∶𝜃∈𝛺)
) 

                                                        = 2(log(sup(ℒ(𝜃|𝒙) ∶ 𝜃 ∈ 𝛺)) − log(sup(ℒ(𝜃|𝒙) ∶ 𝜃 ∈ 𝛺0))); 

 

And since the logarithm function on the set of positive real numbers is a monotonically 

increasing function, log(sup(ℒ(𝜃|𝒙))) = sup (log(ℒ(𝜃|𝒙))). 

 

Therefore −2 log(𝜆) can be rewritten as: 

 

                       −2 log(𝜆) =  2(sup((ℓ(𝜃|𝒙) ∶ 𝜃 ∈ 𝛺)) − sup((ℓ(𝜃|𝒙) ∶ 𝜃 ∈ 𝛺0))) 

 

The significance of a model compared with its nested model can then be tested by assessing the 

statistic −2 log(𝜆) using a 𝜒2 distribution. 

 

2.2.4.9 Wald tests 

 
A Wald test is used to assess how far an estimated parameter is from 0 (the value under the null 

hypothesis) in terms of its standard error. A Wald test that fails to reject the null hypothesis 

suggests that the estimated parameter is very small relative to its standard error and that 

removing this coefficient from the model will not harm the model fit. 
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2.3 Results 

 

2.3.1 Baseline characteristics 

 
Baseline characteristics of the cohort are shown in Table 2.1. Median age was 41yr 

(interquartile range (IQR), 38-43), and the majority of women were Caucasian (n=60, 92%) and 

parous (n=55, 85%). At baseline, 27 women (42%) were classified as overweight (BMI ≥25 

kg/m2 and <30 kg/m2), 20 (31%) were obese (BMI ≥30 kg/m2) and 18 (28%) were in the normal 

BMI range (BMI ≥18.5 kg/m2 and <25 kg/m2). All women gained at least 7kg of weight from 

the age of 20yr. By the end of the study, 16 women (25%) had gained weight, 22 (34%) had lost 

weight and 26 (41%) maintained their original weight. 

 

2.3.2 Mammographic density measurements 

 
Median PDA, DA and FA of each woman’s average density measure over the intervention were 

37.1% (IQR, 2.5%-71.3%), 59.9cm2 (IQR, 5.8cm2-158.4cm2) and 107.3cm2 (IQR, 23.6cm2-

405.1cm2), respectively. For Stepwedge measures, PDV, DV and FV were 22.7% (IQR, 6.7%-

69.4%), 191.5cm3 (IQR, 56.7cm3-710.4cm3) and 573.0cm3 (IQR, 72.8cm3-1992.1cm3), 

respectively. There was a large amount of missing data for volumetric density at baseline 

because of unavailability of the Stepwedge calibration tool, therefore volumetric density was 

only available for 36 women at baseline. Non-missing data was adequate for Stepwedge 

measurements at the other time points (n at 1yr and 2yr = 60 and 61, respectively) and for 

Cumulus measurements at all time points (n at baseline, 1yr and 2yr = 61, 64 and 55, 

respectively). 

 

2.3.3 Repeated measures correlation coefficients – body mass index and mammographic 

density 

 
The estimated repeated measure correlations are shown in Table 2.3. DV was positively 

correlated with BMI between-women (r=0.41, 95% CI, 0.17 to 0.61) but less so within-women 

(r=0.08, 95% CI, -0.16 to 0.28). There was little association between DA and BMI (between-

women r=-0.12, 95% CI, -0.38 to 0.16; within-women r=0.01, 95% CI, -0.24 to 0.25). PDV was 

inversely associated with BMI between- and within-women (between r=-0.48, 95% CI, -0.64 to 

-0.33; within r=-0.36, 95% CI, -0.54 to -0.12), and PDA was inversely associated with BMI 

between-women (r=-0.58, 95% CI, -0.72 to -0.42), but less so within-women (r=-0.22, 95% CI, 

-0.44 to 0.01). FV and FA were positively correlated with BMI between- and within-women 

(volume: between r=0.77, 95% CI, 0.69 to 0.84, within r=0.58, 95% CI, 0.36 to 0.75; area: 

between r=0.74, 95% CI, 0.63 to 0.82, within r=0.45, 95% CI, 0.23 to 0.63). The magnitude and 

significance of correlations were weaker within-women than between-women. 
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Table 2.1: Participant characteristics at baseline. 

 

Factor Summary 

Age (years) 41 (38-43)* 

Baseline BMI (kg/m2) 
       Normal (≥18.5 to <25) 

       Overweight (≥25 to <30) 
       Obese (≥30) 

27.1 (24.7-33.4)* 
18 (28%) 
27 (42%) 
20 (31%) 

Height (m) 1.64 (1.60-1.68)* 

Age at menarche (years) 12 (12-13)* 

Number of live births 
Nulliparous 

1-2 
3-4 
≥5 

 
10 (15%) 
41 (63%) 
12 (18%) 
2 (3%) 

Age first live birth (years) 27 (22-29)* 

Ethnicity (% Caucasian) 60 (92%) 

Previous smoker 
Never 

Ever 

 
54 (83%) 
11 (17%) 

Previous oral contraception use 
Never 

Ever 
Missing 

 
5 (8%) 

58 (89%) 
2 (3%) 

Breastfed 
Never 

Ever 
Missing 

 
22 (34%) 
41 (63%) 
2 (3%) 

10 year Tyrer-Cuzick risk (%) 4.0 (3.0-5.0)* 

Alcohol intake (units per week) 11 (3-24)* 

Physical activity (kJ/kg per week) 974 (945-999)* 

 

*Median (interquartile range); Body mass index (BMI). 
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Table 2.2: Mammographic density measure counts during the intervention . 

 

Factor N (%) 

N women with VAS density at 3 time points 53 (82%) 

N women with VAS density at 2 time points 7 (11%) 

N women with VAS density at 1 time point 5 (8%) 

N women with Cumulus density at 3 time points 51 (78%) 

N women with  Cumulus density at 2 time points 13 (20%) 

N women with  Cumulus density at 1 time point 1 (2%) 

N women with Stepwedge density at 3 time points 31 (48%) 

N women with  Stepwedge density at 2 time points 29 (45%) 

N women with  Stepwedge density at 1 time point 5 (8%) 

 
Visual assessment score (VAS). 

 
Table 2.3: Repeated-measures between-women and within-women correlations (95% confidence 

intervals) for density and body mass index. 

Field 
VAS 

(95% CI) [sqrt%] 
PDA 

(95% CI) [sqrt%] 
PDV 

(95% CI) [cbrt%] 

Cross-sectional 
BMI (between-

women) 

-0.62 
 (-0.74 to -0.47) 

-0.58  
(-0.72 to -0.42) 

-0.48  
(-0.64 to -0.33) 

Short-term BMI 
change (within-

women) 

-0.27 
 (-0.48 to -0.05) 

-0.22 
 (-0.44 to 0.01) 

-0.36 
 (-0.54 to -0.12) 

 

Field 
FA 

(95% CI) [sqrt] 
FV 

(95% CI) [cbrt] 
DA 

(95% CI) [sqrt] 
DV 

(95% CI) [cbrt] 

Cross-sectional 
BMI (between-

women) 

0.74  
(0.63 to 0.82) 

0.77  
(0.69 to 0.84) 

-0.12  
(-0.38 to 0.16) 

0.41  
(0.17 to 0.61) 

Short-term BMI 
change (within-

women) 

0.45 
 (0.23 to 0.63) 

0.58  
(0.36 to 0.75) 

0.01 
 (-0.24 to 0.25) 

0.08  
(-0.16 to 0.28) 

 

Visual assessment score (VAS), percent dense area (PDA), percent dense volume (PDV), fat area (FA), 

fat volume (FV), dense area (DA), dense volume (DV), square root transformed (sqrt), cube root 

transformed (cbrt), body mass index (BMI). 
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Figure 2.2: Tadpole plots showing density measures by body mass index during the intervention.  

Each tadpole represents a woman: the head shows density and body mass index (BMI) at their last 

mammogram; the tail shows the same but for previous follow-ups (if density available). 

 

2.3.4 Tadpole plots 

 
Tadpole plots showed similar patterns to those seen with the repeated measures correlation 

coefficients (Figure 2.2). For Cumulus and Stepwedge, the heavier the woman was the fattier 

her breasts (between-women correlation of the tadpole heads). As women lost weight, their 

breast fat also decreased (within-women correlation depicted by the direction of tadpole tails). 

Tadpole heads for DA remained flat, suggesting that there was little association with BMI 

between-women; and lack of a discernible pattern for the tails indicated that there was little 

association within-women too. Tadpole heads for DV suggested that heavier women had higher 

dense volume (between-women), but the direction of tadpole tails (within-women associations) 

was less evident between BMI and DV. In general, the tadpole tails more-or-less followed the 

pattern for the tadpole heads, providing some evidence that the relationship between BMI and 

density reported in population studies can be applied to make predictions about the breast 

density of a woman as she diets. 
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2.3.5 Repeated measures correlation coefficients - other adiposity measures and 

mammographic density 

 
There were similar associations between breast density and other body fat compositions as with 

BMI (Table 2.4, Table 2.5). There was a positive association for DV between-women of 

approximately 0.4 (although less so in DXA %fat, MRI subcutaneous and MRI abdominal fat), 

and little association within-women. There was also little association for DA and other body fat 

compositions between- or within-women. There was an inverse association for PDV between-

women (approximately -0.5) and within-women (approximately -0.3), although within-women 

associations were less strong than between with only weight and impedance total fat showing 

significant effects. Similarly, there was an inverse association for PDA between-women 

(approximately -0.5), but less so within-women (only impedance %fat showed a significant 

effect of approximately -0.3). FV and FA were positively associated with other body fat 

compositions between-women (approximately 0.7) and within-women (approximately 0.4). 

However, the within-women correlations for FV and DXA %fat or MRI measures, and within-

women correlations for FA and DXA lean mass or MRI total fat were not significant. 

 

2.3.6 Repeated measures correlation coefficients – adiposity measures (between-

women) and mammographic density measures (between-women) 

 

Exploratory between-women correlations were also performed amongst the different body 

composition measures (Table 2.6) and amongst the different density measures (Table 2.7). As 

expected, associations between body composition measures were strong, albeit slightly weaker 

for measures of lean mass (DXA lean and impedance lean mass). Associations between 

different density measures were mostly expected for percent density where a strong positive 

association was seen between different percentage density methods and an inverse relationship 

was seen between percent density and both breast fat and total area or volume. However, a 

positive association was only seen between percent density methods and DA, but not DV 

(except for PDV which had a modest correlation with DV). Breast fat measures were strongly 

and positively correlated with each other and with total area or volume. Breast fat measures 

were moderately positively correlated with DV. There was some indication of an inverse 

relationship between FA and DA, but this was less so when assessing the association between 

FV and DA. Similarly, TA and TV were strongly positively correlated with each other, and both 

were moderately correlated with DV; but little association was seen with DA. A moderately 

positive association was seen between DA and DV. 
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Table 2.4: Complete results for repeated-measures between-women correlations (95% confidence 

intervals) for density and body composition measures. 

 

VAS 

(95% CI) 

[sqrt%] 

PDA 

(95% CI) 

[sqrt%] 

PDV 

(95% CI) 

[cbrt%] 

FA 

(95% CI) 

[sqrt] 

DA 

(95% CI) 

[sqrt] 

Weight 
-0.55 

(-0.70 to -0.37) 

-0.49 

(-0.64 to -0.30) 

-0.40 

(-0.56 to -0.23) 

0.69 

(0.59 to 0.79) 

0.00  

(-0.28 to 0.27) 

BMI 
-0.62 

(-0.74 to -0.47) 

-0.58 

(-0.72 to -0.42) 

-0.48 

(-0.64 to -0.33) 

0.74 

(0.63 to 0.82) 

-0.12  

(-0.38 to 0.16) 

Waist 
-0.63 

(-0.76 to -0.46) 
-0.59 

(-0.73 to -0.41) 
-0.54 

(-0.67 to -0.38) 
0.77 

(0.67 to 0.85) 
-0.09  

(-0.34 to 0.18) 

Imped(total fat) 
-0.57 

(-0.71 to -0.39) 

-0.53 

(-0.68 to -0.35) 

-0.42 

(-0.58 to -0.26) 

0.71 

(0.61 to 0.80) 

-0.03  

(-0.32 to 0.25) 

Imped(% fat) 
-0.57 

(-0.71 to -0.40) 

-0.55 

(-0.69 to -0.38) 

-0.49 

(-0.66 to -0.30) 

0.71 

(0.60 to 0.80) 

-0.06  

(-0.33 to 0.22) 

Imped(lean) 
-0.40 

(-0.58 to -0.17) 

-0.34 

(-0.55 to -0.13) 

-0.26 

(-0.45 to -0.07) 

0.57 

(0.44 to 0.69) 

0.06  

(-0.23 to 0.33) 

DXA(total fat) 
-0.55 

(-0.69 to -0.36) 

-0.53 

(-0.68 to -0.35) 

-0.54 

(-0.68 to -0.39) 

0.69 

(0.58 to 0.79) 

-0.02  

(-0.32 to 0.26) 

DXA(lean) 
-0.36 

(-0.56 to -0.15) 
-0.30 

(-0.52 to -0.07) 
-0.23 

(-0.41 to -0.04) 
0.53 

(0.39 to 0.66) 
0.13  

(-0.21 to 0.42) 

DXA(% fat) 
-0.53 

(-0.69 to -0.31) 

-0.55 

(-0.70 to -0.36) 

-0.64 

(-0.77 to -0.49) 

0.63 

(0.48 to 0.76) 

-0.09 

 (-0.35 to 0.17) 

DXA(bone) 
-0.23 

(-0.47 to 0.03) 

-0.08 

(-0.31 to 0.17) 

-0.03 

(-0.31 to 0.25) 

0.17 

(-0.08 to 0.41) 

0.11  

(-0.14 to 0.37) 
MRI(subcutaneous

) 

-0.64 

(-0.77 to -0.46) 

-0.62 

(-0.76 to -0.46) 

-0.60 

(-0.73 to -0.48) 

0.74 

(0.64 to 0.83) 

-0.13  

(-0.42 to 0.15) 

MRI(abdominal) 
-0.65 

(-0.76 to -0.48) 

-0.65 

(-0.77 to -0.49) 

-0.60 

(-0.73 to -0.48) 

0.78 

(0.68 to 0.86) 

-0.15  

(-0.42 to 0.10) 

MRI(total fat) 
-0.57 

(-0.69 to -0.42) 
-0.61 

(-0.73 to -0.47) 
-0.52 

(-0.66 to -0.38) 
0.76 

(0.61 to 0.86) 
-0.18  

(-0.39 to 0.05) 

 

 

TA 

(95% CI) [sqrt] 

FV 

(95% CI) [cbrt] 

DV 

(95% CI) [cbrt] 

TV 

(95% CI) [cbrt] 

Weight 
0.71 

(0.61 to 0.80) 
0.74 

(0.65 to 0.82) 
0.49 

(0.28 to 0.66) 
0.77 

(0.69 to 0.85) 

BMI 
0.72 

(0.59 to 0.82) 

0.77 

(0.69 to 0.84) 

0.41 

(0.17 to 0.61) 

0.78 

(0.70 to 0.86) 

Waist 
0.76 

(0.64 to 0.85) 

0.80 

(0.72 to 0.87) 

0.37 

(0.12 to 0.59) 

0.79 

(0.69 to 0.87) 

Imped(total fat) 
0.72 

(0.61 to 0.81) 

0.76 

(0.67 to 0.84) 

0.48 

(0.26 to 0.66) 

0.79 

(0.70 to 0.86) 

Imped(% fat) 
0.71 

(0.59 to 0.81) 

0.78 

(0.68 to 0.86) 

0.43 

(0.20 to 0.62) 

0.79 

(0.69 to 0.87) 

Imped(lean) 
0.59 

(0.47 to 0.71) 
0.60 

(0.46 to 0.71) 
0.45 

(0.25 to 0.62) 
0.64 

(0.51 to 0.74) 

DXA(total fat) 
0.69 

(0.57 to 0.79) 

0.76 

(0.68 to 0.84) 

0.35 

(0.06 to 0.58) 

0.77 

(0.68 to 0.85) 

DXA(lean) 
0.59 

(0.45 to 0.71) 

0.58 

(0.45 to 0.70) 

0.52 

(0.29 to 0.70) 

0.64 

(0.51 to 0.74) 

DXA(% fat) 
0.61 

(0.45 to 0.74) 

0.72 

(0.60 to 0.81) 

0.16 

(-0.12 to 0.43) 

0.69 

(0.55 to 0.80) 

DXA(bone) 
0.22 

(-0.03 to 0.47) 

0.26 

(0.00 to 0.50) 

0.33 

(0.09 to 0.54) 

0.31 

(0.06 to 0.54) 

MRI(subcutaneous) 
0.73 

(0.62 to 0.81) 
0.78 

(0.70 to 0.85) 
0.25 

(-0.04 to 0.48) 
0.77 

(0.67 to 0.85) 

MRI(abdominal) 
0.76 

(0.63 to 0.85) 

0.80 

(0.73 to 0.86) 

0.28 

(-0.01 to 0.51) 

0.79 

(0.70 to 0.86) 

MRI(total fat) 
0.73 

(0.55 to 0.85) 

0.75 

(0.65 to 0.83) 

0.34 

(0.07 to 0.54) 

0.75 

(0.64 to 0.84) 

Significant, non-significant, borderline significance, visual assessment score (VAS), percent dense area 

(PDA), percent dense volume (PDV), fat area (FA), fat volume (FV), dense area (DA), dense volume 

(DV), total area (TA), total volume (TV), square root transformed (sqrt), cube root transformed (cbrt), 

body mass index (BMI), impedance (Imped). 
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Table 2.5: Complete results for repeated-measures within-women correlations (95% confidence 

intervals) for density and body composition measures. 

 

VAS 

(95% CI) 

[sqrt%] 

PDA 

(95% CI) 

[sqrt%] 

PDV 

(95% CI) 

[cbrt%] 

FA 

(95% CI) 

[sqrt] 

DA 

(95% CI) 

[sqrt] 

Weight 
-0.27 

(-0.49 to -0.05) 

-0.22 

(-0.44 to 0.02) 

-0.37 

(-0.55 to -0.13) 

0.46 

(0.24 to 0.65) 

0.01 

(-0.24 to 0.25) 

BMI 
-0.27 

(-0.48 to -0.05) 

-0.22 

(-0.44 to 0.01) 

-0.36 

(-0.54 to -0.12) 

0.45 

(0.23 to 0.63) 

0.01 

(-0.24 to 0.25) 

Waist 
-0.17 

(-0.38 to 0.06) 
-0.10 

(-0.31 to 0.12) 
-0.23 

(-0.42 to 0.00) 
0.25 

(0.03 to 0.47) 
0.01 

(-0.19 to 0.21) 

Imped(total fat) 
-0.22 

(-0.44 to 0.03) 

-0.24 

(-0.46 to 0.01) 

-0.32 

(-0.52 to -0.09) 

0.44 

(0.22 to 0.63) 

-0.07 

(-0.31 to 0.17) 

Imped(% fat) 
-0.14 

(-0.35 to 0.10) 

-0.28 

(-0.47 to -0.03) 

-0.23 

(-0.45 to 0.03) 

0.44 

(0.21 to 0.62) 

-0.10 

(-0.29 to 0.11) 

Imped(lean) 
-0.29 

(-0.63 to 0.03) 

-0.25 

(-0.67 to 0.28) 

-0.34 

(-0.64 to 0.03) 

0.51 

(0.05 to 0.81) 

-0.12 

(-0.57 to 0.40) 

DXA(total fat) 
-0.08 

(-0.51 to 0.34) 

-0.24 

(-0.56 to 0.16) 

-0.27 

(-0.61 to 0.24) 

0.46 

(0.12 to 0.71) 

0.07 

(-0.31 to 0.41) 

DXA(lean) 
-0.05 

(-0.50 to 0.33) 
-0.07 

(-0.47 to 0.25) 
-0.39 

(-0.75 to 0.08) 
0.27 

(-0.02 to 0.63) 
0.01 

(-0.42 to 0.43) 

DXA(% fat) 
-0.09 

(-0.48 to 0.32) 

-0.32 

(-0.61 to 0.06) 

-0.26 

(-0.61 to 0.28) 

0.49 

(0.15 to 0.74) 

-0.02 

(-0.29 to 0.23) 

DXA(bone) 
-0.07 

(-0.48 to 0.30) 

-0.01 

(-0.33 to 0.34) 

-0.07 

(-0.52 to 0.43) 

-0.21 

(-0.52 to 0.14) 

-0.14 

(-0.45 to 0.20) 
MRI(subcutaneous

) 

-0.24 

(-0.59 to 0.18) 

-0.38 

(-0.68 to 0.01) 

-0.38 

(-0.71 to 0.19) 

0.55 

(0.22 to 0.78) 

-0.01 

(-0.38 to 0.32) 

MRI(abdominal) 
-0.23 

(-0.57 to 0.19) 

-0.33 

(-0.65 to 0.08) 

-0.28 

(-0.63 to 0.28) 

0.49 

(0.09 to 0.77) 

0.01 

(-0.39 to 0.37) 

MRI(total fat) 
-0.17 

(-0.53 to 0.22) 
-0.21 

(-0.61 to 0.20) 
-0.08 

(-0.50 to 0.42) 
0.32 

(-0.13 to 0.71) 
0.04 

(-0.44 to 0.41) 

 

 

TA 

(95% CI) [sqrt] 

FV 

(95% CI) [cbrt] 

DV 

(95% CI) [cbrt] 

TV 

(95% CI) [cbrt] 

Weight 
0.54 

(0.36 to 0.69) 
0.59 

(0.37 to 0.76) 
0.07 

(-0.17 to 0.28) 
0.75 

(0.55 to 0.85) 

BMI 
0.54 

(0.35 to 0.69) 

0.58 

(0.36 to 0.75) 

0.08 

(-0.16 to 0.28) 

0.74 

(0.54 to 0.85) 

Waist 
0.32 

(0.10 to 0.51) 

0.37 

(0.09 to 0.58) 

0.05 

(-0.15 to 0.24) 

0.46 

(0.14 to 0.68) 

Imped(total fat) 
0.47 

(0.27 to 0.63) 

0.47 

(0.20 to 0.67) 

0.01 

(-0.24 to 0.24) 

0.58 

(0.29 to 0.76) 

Imped(% fat) 
0.43 

(0.19 to 0.62) 

0.36 

(0.05 to 0.60) 

0.09 

(-0.15 to 0.29) 

0.48 

(0.15 to 0.70) 

Imped(lean) 
0.65 

(0.26 to 0.85) 
0.52 

(0.06 to 0.79) 
-0.03 

(-0.46 to 0.38) 
0.55 

(-0.04 to 0.83) 

DXA(total fat) 
0.55 

(0.27 to 0.75) 

0.48 

(0.03 to 0.77) 

0.19 

(-0.22 to 0.53) 

0.65 

(0.15 to 0.87) 

DXA(lean) 
0.31 

(0.06 to 0.63) 

0.53 

(0.12 to 0.80) 

-0.13 

(-0.58 to 0.37) 

0.48 

(0.08 to 0.78) 

DXA(% fat) 
0.52 

(0.20 to 0.74) 

0.44 

(-0.12 to 0.79) 

0.20 

(-0.21 to 0.48) 

0.63 

(-0.03 to 0.87) 

DXA(bone) 
-0.31 

(-0.61 to 0.05) 

-0.06 

(-0.62 to 0.48) 

-0.29 

(-0.60 to 0.20) 

-0.25 

(-0.70 to 0.27) 

MRI(subcutaneous) 
0.64 

(0.38 to 0.81) 
0.48 

(-0.13 to 0.80) 
-0.01 

(-0.47 to 0.47) 
0.56 

(-0.19 to 0.87) 

MRI(abdominal) 
0.57 

(0.27 to 0.77) 

0.42 

(-0.16 to 0.77) 

0.10 

(-0.37 to 0.54) 

0.53 

(-0.21 to 0.83) 

MRI(total fat) 
0.37 

(0.04 to 0.67) 

0.24 

(-0.25 to 0.66) 

0.21 

(-0.25 to 0.61) 

0.38 

(-0.23 to 0.75) 

Significant, non-significant, borderline significance, visual assessment score (VAS), percent dense area 

(PDA), percent dense volume (PDV), fat area (FA), fat volume (FV), dense area (DA), dense volume 

(DV), total area (TA), total volume (TV), square root transformed (sqrt), cube root transformed (cbrt), 

body mass index (BMI), impedance (Imped). 
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Table 2.6: Complete results for repeated-measures between-women correlations (95% confidence 

intervals) for different body composition measures. 

 
Weight 

(95% CI) 
BMI (95% 

CI) 
Waist (95% 

CI) 

Imped(total 

fat) 
(95% CI) 

Imped(% 

fat) 
(95% CI) 

Imped(lean) 
(95% CI) 

DXA(total 

fat) 
(95% CI) 

Weight 
1.00 (1.00 to 

1.00) 
0.92 (0.88 to 

0.95) 
0.87 (0.81 to 

0.91) 
0.98 (0.98 to 

0.99) 
0.91 (0.87 to 

0.94) 
0.93 (0.88 to 

0.96) 
0.95 (0.93 to 

0.97) 

BMI 
0.92 (0.88 to 

0.95) 

1.00 (1.00 to 

1.00) 

0.87 (0.81 to 

0.92) 

0.94 (0.91 to 

0.96) 

0.89 (0.85 to 

0.94) 

0.79 (0.65 to 

0.88) 

0.94 (0.91 to 

0.97) 

Waist  
0.87 (0.81 to 

0.91) 
0.87 (0.81 to 

0.92) 
1.00 (1.00 to 

1.00) 
0.89 (0.84 to 

0.93) 
0.87 (0.82 to 

0.91) 
0.72 (0.61 to 

0.83) 
0.89 (0.83 to 

0.93) 

Imped(total 
fat) 

0.98 (0.98 to 
0.99) 

0.94 (0.91 to 
0.96) 

0.89 (0.84 to 
0.93) 

1.00 (1.00 to 
1.00) 

0.96 (0.94 to 
0.97) 

0.85 (0.77 to 
0.91) 

0.97 (0.96 to 
0.98) 

Imped(% fat) 
0.91 (0.87 to 

0.94) 
0.89 (0.85 to 

0.94) 
0.87 (0.82 to 

0.91) 
0.96 (0.94 to 

0.97) 
1.00 (1.00 to 

1.00) 
0.71 (0.58 to 

0.81) 
0.94 (0.92 to 

0.97) 

Imped(lean) 
0.93 (0.88 to 

0.96) 
0.79 (0.65 to 

0.88) 
0.72 (0.61 to 

0.82) 
0.85 (0.77 to 

0.91) 
0.71 (0.58 to 

0.81) 
1.00 (1.00 to 

1.00) 
0.82 (0.70 to 

0.90) 
DXA(total 

fat) 
0.95 (0.93 to 

0.97) 
0.94 (0.91 to 

0.97) 
0.89 (0.83 to 

0.93) 
0.97 (0.96 to 

0.98) 
0.94 (0.92 to 

0.97) 
0.82 (0.70 to 

0.90) 
1.00 (1.00 to 

1.00) 

DXA(lean) 
0.88 (0.81 to 

0.92) 
0.72 (0.59 to 

0.81) 
0.64 (0.50 to 

0.75) 
0.82 (0.72 to 

0.89) 
0.70 (0.56 to 

0.80) 
0.93 (0.90 to 

0.96) 
0.70 (0.58 to 

0.79) 

DXA(% fat) 
0.75 (0.65 to 

0.83) 
0.81 (0.75 to 

0.87) 
0.80 (0.71 to 

0.88) 
0.81 (0.73 to 

0.88) 
0.87 (0.81 to 

0.91) 
0.50 (0.30 to 

0.67) 
0.90 (0.86 to 

0.94) 

DXA(bone) 
0.31 (0.11 to 

0.50) 
0.18 (-0.03 to 

0.40) 
0.11 (-0.11 to 

0.34) 
0.27 (0.07 to 

0.47) 
0.25 (0.02 to 

0.46) 
0.40 (0.18 to 

0.61) 
0.17 (-0.04 to 

0.38) 
MRI(subcuta

neous) 

0.86 (0.80 to 

0.92) 

0.90 (0.85 to 

0.94) 

0.89 (0.85 to 

0.94) 

0.88 (0.84 to 

0.93) 

0.87 (0.83 to 

0.92) 

0.72 (0.55 to 

0.84) 

0.93 (0.88 to 

0.96) 
MRI(abdomi

nal) 
0.87 (0.82 to 

0.92) 
0.92 (0.88 to 

0.96) 
0.93 (0.89 to 

0.96) 
0.90 (0.86 to 

0.94) 
0.89 (0.85 to 

0.92) 
0.73 (0.58 to 

0.85) 
0.93 (0.89 to 

0.96) 

MRI(total fat) 
0.77 (0.69 to 

0.88) 

0.84 (0.77 to 

0.90) 

0.88 (0.80 to 

0.93) 

0.80 (0.72 to 

0.90) 

0.79 (0.71 to 

0.87) 

0.66 (0.51 to 

0.84) 

0.80 (0.71 to 

0.90) 

 

 
DXA(lean) 
(95% CI) 

DXA(% fat) 
(95% CI) 

DXA(bone) 
(95% CI) 

MRI(subcutane
ous) (95% CI) 

MRI(abdominal
) 

(95% CI) 

MRI(total fat) 
(95% CI) 

Weight 
0.88 (0.81 to 

0.92) 

0.75 (0.65 to 

0.83) 

0.31 (0.11 to 

0.50) 

0.86 (0.80 to 

0.92) 

0.87 (0.82 to 

0.92) 

0.77 (0.69 to 

0.87) 

BMI 
0.72 (0.58 to 

0.81) 
0.81 (0.75 to 

0.87) 
0.18 (-0.03 to 

0.39) 
0.90 (0.85 to 

0.94) 
0.92 (0.88 to 

0.96) 
0.84 (0.77 to 

0.90) 

Waist  
0.64 (0.50 to 

0.75) 
0.80 (0.71 to 

0.88) 
0.11 (-0.11 to 

0.34) 
0.89 (0.85 to 

0.94) 
0.93 (0.89 to 

0.96) 
0.88 (0.79 to 

0.93) 
Imped(total 

fat) 
0.82 (0.72 to 

0.89) 
0.81 (0.73 to 

0.88) 
0.27 (0.07 to 

0.47) 
0.88 (0.84 to 

0.93) 
0.90 (0.86 to 

0.94) 
0.80 (0.72 to 

0.90) 

Imped(% fat) 
0.70 (0.55 to 

0.80) 
0.87 (0.81 to 

0.91) 
0.25 (0.02 to 

0.46) 
0.87 (0.83 to 

0.92) 
0.89 (0.85 to 

0.92) 
0.79 (0.71 to 

0.87) 

Imped(lean) 
0.93 (0.90 to 

0.96) 
0.50 (0.30 to 

0.67) 
0.40 (0.18 to 

0.61) 
0.72 (0.55 to 

0.84) 
0.73 (0.59 to 

0.85) 
0.66 (0.51 to 

0.84) 

DXA(total fat) 
0.70 (0.58 to 

0.80) 
0.90 (0.86 to 

0.94) 
0.17 (-0.04 to 

0.38) 
0.93 (0.88 to 

0.96) 
0.93 (0.89 to 

0.96) 
0.80 (0.71 to 

0.90) 

DXA(lean) 
1.00 (1.00 to 

1.00) 
0.36 (0.18 to 

0.52) 
0.47 (0.30 to 

0.62) 
0.58 (0.44 to 

0.69) 
0.61 (0.47 to 

0.71) 
0.57 (0.41 to 

0.73) 

DXA(% fat) 
0.36 (0.18 to 

0.53) 
1.00 (1.00 to 

1.00) 
-0.03 (-0.27 to 

0.21) 
0.86 (0.79 to 

0.91) 
0.85 (0.78 to 

0.90) 
0.71 (0.60 to 

0.82) 

DXA(bone) 
0.47 (0.30 to 

0.62) 

-0.03 (-0.27 to 

0.21) 

1.00 (1.00 to 

1.00) 

0.16 (-0.07 to 

0.38) 

0.13 (-0.09 to 

0.37) 

0.06 (-0.15 to 

0.32) 
MRI(subcutan

eous) 
0.58 (0.44 to 

0.70) 
0.86 (0.79 to 

0.90) 
0.16 (-0.07 to 

0.39) 
1.00 (1.00 to 

1.00) 
0.98 (0.97 to 

0.99) 
0.80 (0.72 to 

0.89) 
MRI(abdomin

al) 

0.61 (0.48 to 

0.71) 

0.85 (0.78 to 

0.90) 

0.13 (-0.09 to 

0.37) 

0.98 (0.97 to 

0.99) 

1.00 (1.00 to 

1.00) 

0.90 (0.86 to 

0.94) 

MRI(total fat) 
0.57 (0.42 to 

0.73) 
0.71 (0.60 to 

0.82) 
0.06 (-0.15 to 

0.32) 
0.80 (0.72 to 

0.89) 
0.90 (0.86 to 

0.94) 
1.00 (1.00 to 

1.00) 

 
Significant, non-significant, borderline significance, repeated, body mass index (BMI), impedance 

(Imped). 
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Table 2.7: Complete results for repeated-measures between-women correlations (95% confidence 

intervals) for different density measures. 

 

VAS 

(95% CI) [sqrt%] 

PDA 

(95% CI) [sqrt%] 

PDV 

(95% CI) [cbrt%] 

FA 

(95% CI) [sqrt] 

DA 

(95% CI) [sqrt] 

VAS (sqrt%) 
1.00  

(1.00 to 1.00) 

0.90  

(0.83 to 0.95) 

0.79 

 (0.70 to 0.86) 

-0.83  

(-0.89 to -0.77) 

0.50  

(0.29 to 0.67) 

PDA (sqrt%) 
0.90 

 (0.83 to 0.95) 
1.00 

 (1.00 to 1.00) 
0.78 

 (0.71 to 0.85) 
-0.84 

 (-0.90 to -0.78) 
0.68  

(0.52 to 0.80) 

PDV (cbrt%) 
0.79  

(0.70 to 0.86) 

0.78 

 (0.71 to 0.85) 

1.00  

(1.00 to 1.00) 

-0.67  

(-0.77 to -0.56) 

0.48  

(0.29 to 0.64) 

FA (sqrt) 
-0.83  

(-0.89 to -0.77) 

-0.84  

(-0.90 to -0.78) 

-0.67  

(-0.77 to -0.56) 

1.00 

 (1.00 to 1.00) 

-0.23 

 (-0.41 to -0.01) 

DA (sqrt) 
0.50  

(0.30 to 0.67) 

0.68 

 (0.51 to 0.80) 

0.48 

 (0.29 to 0.64) 

-0.23  

(-0.42 to -0.01) 

1.00  

(1.00 to 1.00) 

TA (sqrt) 
-0.67  

(-0.77 to -0.54) 

-0.62  

(-0.75 to -0.46) 

-0.48  

(-0.64 to -0.28) 

0.94 

 (0.89 to 0.97) 

0.11 

 (-0.10 to 0.34) 

FV (cbrt) 
-0.81  

(-0.88 to -0.73) 
-0.74 

 (-0.83 to -0.63) 
-0.72  

(-0.81 to -0.60) 
0.94 

 (0.92 to 0.97) 
-0.10 

 (-0.30 to 0.12) 

DV (cbrt) 
-0.09  

(-0.31 to 0.14) 

0.02 

 (-0.20 to 0.24) 

0.30 

 (0.05 to 0.52) 

0.42 

 (0.23 to 0.58) 

0.55 

 (0.32 to 0.74) 

TV (cbrt) 
-0.71  

(-0.81 to -0.59) 

-0.63  

(-0.75 to -0.49) 

-0.55  

(-0.69 to -0.37) 

0.92 

 (0.87 to 0.95) 

0.05 

 (-0.16 to 0.28) 

 

 

TA 

(95% CI) [sqrt] 

FV 

(95% CI) [cbrt] 

DV 

(95% CI) [cbrt] 

TV 

(95% CI) [cbrt] 

VAS (sqrt%) 
-0.67 

(-0.77 to -0.53) 

-0.81  

(-0.88 to -0.72) 

-0.09  

(-0.31 to 0.13) 

-0.71  

(-0.81 to -0.59) 

PDA (sqrt%) 
-0.62  

(-0.75 to -0.46) 
-0.74  

(-0.83 to -0.63) 
0.02  

(-0.20 to 0.23) 
-0.63 

 (-0.75 to -0.49) 

PDV (cbrt%) 
-0.48 

 (-0.64 to -0.28) 

-0.72  

(-0.81 to -0.60) 

0.30  

(0.05 to 0.52) 

-0.55  

(-0.69 to -0.38) 

FA (sqrt) 
0.94  

(0.89 to 0.97) 

0.94  

(0.92 to 0.97) 

0.42  

(0.23 to 0.58) 

0.92  

(0.87 to 0.95) 

DA (sqrt) 
0.11  

(-0.10 to 0.34) 

-0.10  

(-0.30 to 0.12) 

0.55  

(0.32 to 0.74) 

0.05  

(-0.16 to 0.28) 

TA (sqrt) 
1.00  

(1.00 to 1.00) 

0.92  

(0.87 to 0.95) 

0.66  

(0.54 to 0.76) 

0.96  

(0.93 to 0.98) 

FV (cbrt) 
0.92  

(0.87 to 0.95) 
1.00  

(1.00 to 1.00) 
0.43  

(0.22 to 0.61) 
0.97  

(0.95 to 0.98) 

DV (cbrt) 
0.66  

(0.54 to 0.75) 

0.43  

(0.23 to 0.62) 

1.00 

 (1.00 to 1.00) 

0.63  

(0.49 to 0.75) 

TV (cbrt) 
0.96  

(0.93 to 0.98) 

0.97  

(0.95 to 0.98) 

0.63  

(0.49 to 0.75) 

1.00  

(1.00 to 1.00) 

 
Significant, non-significant, borderline significance, repeated, visual assessment score (VAS), percent 

dense area (PDA), percent dense volume (PDV), fat area (FA), fat volume (FV), dense area (DA), dense 

volume (DV), total area (TA), total volume (TV), square root transformed (sqrt), cube root transformed 

(cbrt). 



71 

 

2.3.7 Linear mixed model 

 
The between- and within-women associations for density and BMI measures were also 

estimated jointly in an age-adjusted linear mixed model. Q-Q plots for conditional residuals and 

predicted random effects showed a slight improvement when area density measures were square 

root transformed and volumetric density measures were cube root transformed since lines 

became straighter after these transformations (Figure 2.3). 

  

VAS 

 

 

PDA 

 

 

PDV 

 

Figure 2.3: Q-Q plots for conditional residuals and predicted random effects. 

Visual assessment score (VAS), percent dense area (PDA), percent dense volume (PDV), fat area (FA), 

fat volume (FV), dense area (DA), dense volume (DV) . 
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Figure 2.3 continued 
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Tests for random slopes in the linear mixed model for within-women BMI and age were not 

significant (Table 2.8, Table 2.9). The parameters, 𝛽 and 𝛿, from Equation 2.2 are therefore 

assumed to be the same for all women. No covariance structure was required because only one 

random effect was included (intercept). 

 

Table 2.8: Linear mixed model likelihood ratio tests for within-women body mass index random slope. 

 
Likelihood ratio 

test 

Density outcome ΔLR-χ² P-value 

VAS (sqrt%) 0.86 0.65 

PDA (sqrt%) 0.35 0.84 

PDV (cbrt%) 1.71 0.43 

FA (sqrt) 4.13 0.13 

FV (cbrt) 1.23 0.54 

DA (sqrt) 1.13 0.57 

DV (cbrt) 0.00 1.00 

 

ΔLR-χ² represents the difference in likelihood ratio for Equation 2.2 with and without a within-women 

BMI random slope (test with 2 degrees of freedom: random slope and covariance), visual assessment 

score (VAS), percent dense area (PDA), percent dense volume (PDV), fat area (FA), fat volume (FV), 

dense area (DA), dense volume (DV), square root transformed (sqrt), cube root transformed (cbrt). 

Table 2.9: Linear mixed model likelihood ratio tests for age random slope. 

 
Likelihood ratio 

test 

Density outcome ΔLR-χ² P-value 

VAS (sqrt%) 0.00 1.00 

PDA (sqrt%) 0.01 0.99 

PDV (cbrt%) 0.00 1.00 

FA (sqrt) 0.00 1.00 

FV (cbrt) 0.00 1.00 

DA (sqrt) 0.04 0.98 

DV (cbrt) 0.11 0.95 

 

ΔLR-χ² represents the difference in likelihood ratio for Equation 2.2 with and without an age random 

slope (test with 2 degrees of freedom: random slope and covariance), visual assessment score (VAS), 

percent dense area (PDA), percent dense volume (PDV), fat area (FA), fat volume (FV), dense area (DA), 

dense volume (DV), square root transformed (sqrt), cube root transformed (cbrt). 
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In a sensitivity analysis, the linear mixed model was fit using weight instead of BMI but it had a 

worse model fit for almost all density measures Table 2.10. All models (except DV) had a 

higher log-likelihood when fitting with BMI compared to weight. 

 

Table 2.10: Multivariable linear mixed model fit results for Equation 2.2 using either body mass index  or 

weight. 

 
Log-likelihood 

 
BMI Weight 

VAS (sqrt%) -105.9 -109.7 

PDA (sqrt%) -147.6 -151.8 

PDV (cbrt%) -171.3 -173.5 

FA (sqrt) -77.8 -81.4 

FV (cbrt) -88.4 -90.1 

DA (sqrt) -180.5 -180.9 

DV (cbrt) -156.3 -153.4 

 

Model fit with body mass index (BMI) or weight. Model: density on age and BMI (between and within) or 

weight (between and within), with a random per-woman intercept; between-women BMI calculated as the 

mean BMI for each woman; within-women BMI calculated as the difference between each woman’s BMI 

and her mean BMI; between-women weight calculated as the mean weight for each woman; within-

women weight calculated as the difference between each woman’s weight and her mean weight. Visual 

assessment score (VAS), percent dense area (PDA), percent dense volume (PDV), fat area (FA), fat 

volume (FV), dense area (DA), dense volume (DV) , square root transformed (sqrt), cube root transformed 

(cbrt). 

 
The jointly-fit and age-adjusted between- and within-women associations (Table 2.11) were 

very similar to those using repeated measures correlation coefficients (Table 2.3), showing the 

robustness of the estimates using either method. 

 

When a term for BMI gain since age 20yr was added to the linear mixed model, the model fit 

improved for PDA, PDV, FV and DA (all ΔLR-χ2 p<0.05) (Table 2.12). Within-women effects 

of BMI on density were almost unchanged when including BMI gain since age 20yr (Table 

2.11, Table 2.12). After including BMI gain since age 20yr, between-women associations for 

BMI became more strongly inversely associated with percent density (coefficient approximately 

-0.5 to -0.8), and more strongly positively associated with breast fat (coefficient approximately 

0.6 to 0.8). BMI became more strongly inversely associated with DA (coefficient -0.1 to -0.5) 

and less strongly positively associated with DV between-women (coefficient 0.4 to 0.2). BMI 

gain from age 20yr was positively associated with DA, PDA and PDV (5kg/m2 increase in BMI 
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gain since age 20yr associated with 0.61 (95% CI, 0.12 to 1.09), 0.61 (95% CI, 0.21 to 1.02) and 

0.47 (95% CI, 0.05 to 0.88) standard deviation increase in breast density (β), respectively), and 

inversely associated with FV (β=-0.31, 95% CI, -0.62 to 0.00), but less association was seen 

with DV (β=0.15, 95% CI, -0.29 to 0.59) and FA (β=-0.32, 95% CI, -0.67 to 0.03). 
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Table 2.11: Multivariable linear mixed model fit results (95% confidence intervals) for density on body mass index (between- and within-women), adjusted for age (Equation 2.2). 

 

Density outcome Intercept (95% CI) 
Age (95% CI) [per 

10yr] 

BMI (95% CI) [between] 

[per 5kg/m2] 

BMI (95% CI) 

[within] [per 5kg/m2] 

VAS (sqrt%) 3.75 (1.88 to 5.61) -0.19 (-0.56 to 0.19) -0.51 (-0.68 to -0.35) -0.27 (-0.44 to -0.10) 

PDA (sqrt%) 2.87 (0.57 to 5.17) -0.05 (-0.53 to 0.43) -0.46 (-0.63 to -0.30) -0.32 (-0.59 to -0.05) 

PDV (cbrt%) 1.73 (-1.07 to 4.53) 0.12 (-0.48 to 0.71) -0.39 (-0.57 to -0.21) -0.85 (-1.32 to -0.39) 

FA (sqrt) -3.63 (-5.25 to -2.02) 0.04 (-0.28 to 0.36) 0.60 (0.46 to 0.74) 0.43 (0.27 to 0.58) 

FV (cbrt) -3.46 (-5.27 to -1.64) -0.04 (-0.42 to 0.34) 0.63 (0.50 to 0.76) 0.79 (0.56 to 1.03) 

DA (sqrt) 0.57 (-2.13 to 3.27) -0.03 (-0.59 to 0.53) -0.08 (-0.28 to 0.11) 0.01 (-0.30 to 0.33) 

DV (cbrt) -2.39 (-5.11 to 0.33) 0.09 (-0.48 to 0.66) 0.35 (0.16 to 0.53) 0.16 (-0.24 to 0.55) 

 

Between-women body mass index (BMI) calculated as the mean BMI for each woman; within-women BMI calculated as the difference between each woman’s BMI and her mean 

BMI; density measures are standardised (2.2.4.6); 1 woman with missing BMI at age 20yr excluded. Visual assessment score (VAS), percent dense area (PDA), percent dense 

volume (PDV), fat area (FA), fat volume (FV), dense area (DA), dense volume (DV) , square root transformed (sqrt), cube root transformed (cbrt), 95% confidence interval (95% 

CI). 

 

 

 

 

 

 



77 

 

Table 2.12: Multivariable linear mixed model fit results (95% confidence intervals) for density on body mass index (between- and within-women) and body mass index gain since 

20yr of age, adjusted for age (Equation 2.3). 

 

Density 

outcome 
Intercept (95% CI) 

Age (95% CI) [per 

10yr] 

BMI (95% CI) 

[between] [per 5kg/m2] 

BMI (95% CI) [within] 

[per 5kg/m2] 

BMI gain since 20yr 

of age (95% CI) [per 

5kg/m2] 

ΔLR-χ2 p-

value Equation 

2.3 vs. 

Equation 2.2 

VAS (sqrt%) 5.47 (3.34 to 7.60) -0.25 (-0.61 to 0.12) -0.92 (-1.23 to -0.62) -0.27 (-0.45 to -0.10) 0.59 (0.20 to 0.97) 0.0031 

PDA (sqrt%) 4.90 (2.34 to 7.46) -0.16 (-0.63 to 0.31) -0.89 (-1.22 to -0.57) -0.32 (-0.59 to -0.06) 0.61 (0.21 to 1.02) 0.0033 

PDV (cbrt%) 3.35 (0.30 to 6.40) 0.01 (-0.57 to 0.60) -0.71 (-1.05 to -0.38) -0.85 (-1.32 to -0.39) 0.47 (0.05 to 0.88) 0.0267 

FA (sqrt) -4.59 (-6.49 to -2.69) 0.08 (-0.24 to 0.40) 0.82 (0.54 to 1.10) 0.43 (0.28 to 0.59) -0.32 (-0.67 to 0.03) 0.0704 

FV (cbrt) -4.42 (-6.44 to -2.40) 0.01 (-0.37 to 0.38) 0.84 (0.59 to 1.09) 0.79 (0.56 to 1.03) -0.31 (-0.62 to 0.00) 0.0476 

DA (sqrt) 2.58 (-0.48 to 5.64) -0.14 (-0.70 to 0.41) -0.51 (-0.90 to -0.12) 0.01 (-0.31 to 0.32) 0.61 (0.12 to 1.09) 0.0145 

DV (cbrt) -1.90 (-4.96 to 1.15) 0.06 (-0.51 to 0.64) 0.24 (-0.12 to 0.60) 0.16 (-0.24 to 0.55) 0.15 (-0.29 to 0.59) 0.4967 

 

Between-women body mass index (BMI) calculated as the mean BMI for each woman; within-women BMI calculated as the difference between each woman’s BMI and her mean 

BMI; BMI gain from age 20yr calculated as the difference between each woman’s BMI at baseline and her BMI at age 20yr; densit y measures are standardised (2.2.4.6); 1 woman 

with missing BMI at age 20yr excluded. Visual assessment score (VAS), percent dense area (PDA), percent dense volume (PDV), fat area (FA), fat volume (FV), dense area (DA), 

dense volume (DV), square root transformed (sqrt), cube root transformed (cbrt), 95% confidence interval (95% CI). ΔLR-χ² represents the difference in likelihood ratio for 

Equation 2.3 vs. Equation 2.2. 
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2.3.8 Exploratory analysis 

 
Finally, in tests of association between breast and bone density, there was little correlation 

within-women, but there was some indication of a positive between-women correlation for bone 

density and FV (r=0.26, 95% CI, 0.00 to 0.50), DV (r=0.33, 95% CI, 0.09 to 0.54) and TV 

(r=0.31, 95% CI, 0.06 to 0.54) (Table 2.4, Table 2.5). Correlations between DXA bone and 

other body composition measures (between-women) were weak to moderate and only 

significant for weight, DXA lean mass and impedance measures. 

 

2.4 Discussion 

 

In this dietary weight-loss intervention study amongst premenopausal women, changes in breast 

fat were seen within-women as they lost weight, but little change was seen in dense tissue. 

Effective weight-loss during premenopausal years has been shown to reduce risk of 

postmenopausal breast cancer (248), but this study suggests that the effect is unlikely to be 

mediated by a reduction in dense breast tissue. 

 

The between-women associations of attained premenopausal BMI and density observed in this 

study are consistent with the literature. Some of the effects of high attained BMI increasing 

breast cancer risk may be explained through its relationship with dense tissue. As suggested in 

this study (and others (161, 164, 165)), high BMI is associated with high DV in premenopausal 

women. The relationship between BMI and DA is less consistent. Some previous studies 

suggest an inverse association in premenopausal women (158, 169, 293) (which was also 

suggested in this study), but other studies have suggested a positive relationship (159). Since the 

breast is a deposit for adipose tissue, high attained BMI is strongly associated with high levels 

of FA (158, 159, 169, 293) and FV (161, 164), which in turn leads to an inverse association 

between BMI and both PDA (158, 159, 169, 293-295) and PDV (161-165). This is expected 

since increased breast fat contributes to an increased total breast area or volume, which is the 

denominator in percent density calculations. 

 

A reduction in postmenopausal risk can be seen with effective premenopausal weight-loss (248-

250). In a large cohort study of almost 34,000 women, the Iowa women’s health study showed 

that weight gain from 18yr to 30yr followed by weight-loss from 30yr to menopause had a risk 

comparable to weight maintenance in both time periods (RR=0.61; 95% CI, 0.46 to 0.80 and 

RR=0.73; 95% CI, 0.64 to 0.84, respectively, relative to women who gained weight during both 

time periods). Premenopausal women were therefore the target for recruitment in this weight-

loss intervention, because they were of an age that is thought to be the most important for 

reducing breast cancer risk later on in life. 
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There have been few studies assessing the effect of weight-loss on density. In this study, a 

positive within-women relationship was seen for short-term BMI change and breast fat, but no 

association was seen with dense tissue, resulting in an inverse association for percent density. 

Another dietary intervention trial showed reductions in TA with weight-loss, but unlike this 

study, they also found reductions in DA. Boyd et al. reported a 5.4% decrease in DA for 

premenopausal women on a 2 year low-fat, high-carbohydrate diet (n=249) compared with a 

2.5% decrease in the control group (n=264) (251). Since dietary interventions similar to Boyd et 

al. have reported lower blood levels of estradiol and estrone (particularly amongst 

premenopausal women (296)), one theory for this reduction in dense tissue is that the dietary-

induced reduction of oestrogen restricted fibroglandular tissue growth. Therefore, it is possible 

that a specific diet similar to that of Boyd et al.’s might be necessary to see an effect on dense 

tissue. Another intervention study in postmenopausal women showed a reduction in PDA after 2 

years of dieting or physical exercise (297). Other studies have explored the effect of weight-loss 

after bariatric surgery on dense tissue. Some studies suggest a decrease in dense tissue with 

bariatric surgery in premenopausal women (252), whilst others suggest little effect (253). 

Weight-loss interventions can also be exercise-induced. An intervention study of one year of 

moderate exercise amongst postmenopausal women reported results similar to those found in 

this chapter, reporting a decline in FA and FV with moderate to high exercise duration but no 

significant effect on absolute density (298). The within-women associations of short-term BMI 

change and density in this chapter are consistent with previous evidence for breast fat, but the 

effect of dietary weight-loss on dense tissue, particularly in premenopausal women, is still 

unclear. It may be that specific diets or an extended period of intervention time are required to 

see an effect on dense tissue. 

 

Adult weight gain over the premenopausal years is a risk factor for postmenopausal breast 

cancer (173, 247, 299-303). Some evidence in this chapter suggested that increased adult BMI 

gain was linked with higher dense tissue and percent density, which might partly explain an 

increase in risk with adult weight gain. In several studies, breast cancer risk from adult weight 

gain has been limited to (or has been stronger in) women who have never used HRT (299-301). 

Therefore, it has been suggested that this increase in risk may be oestrogen-related. HRT raises 

oestrogen levels; hence any breast cancer risk derived from elevated oestrogen would be 

attenuated in women with already high amounts of the hormone. Risk from adult weight gain 

may be mediated by higher amounts of dense tissue, which are thought to reflect cumulative 

lifetime exposure to oestrogen (143), and would explain the results seen in this study. Pollan et 

al. reported increased premenopausal PDA with adult weight gain (294); however, an inverse 

association was seen in a study by Samimi et al. (295). Tseng et al. found a positive association 

between adult weight gain and premenopausal DA, but very little association with PDA and FA 
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(159). Very few studies have assessed this relationship volumetrically. Alimujiang et al. 

suggested a positive association with premenopausal DV and FV, but an inverse association 

with PDV (164). Some of these conflicting results may be explained by the different 

adjustments used; for instance, some of the studies adjusted for current adiposity (294), some 

adjusted for adiposity at 18yr (164, 295), whilst others adjusted for both (159). To fully 

understand the long-term effects of weight on density it would be useful to assess life course 

effects in a large cohort of women. However, since mammography is not routinely conducted in 

young premenopausal women, alternative non-ionising methods of measuring density may 

prove to be more useful (304). 

 

The associations between adipose tissue, dense tissue and breast cancer risk are somewhat 

contradictory. A high BMI represents elevated amounts of adipose tissue, which is a main site 

of aromatisation of androgens to oestrogen. Oestrogen is known to promote cell proliferation 

and carcinogenesis (273, 274), which may explain the positive relationship between BMI, dense 

volume and breast cancer risk in postmenopausal women whose hormonal production in the 

ovaries has ceased and whose main oestrogen source is adipose tissue. However, the effect of 

aromatisation is negligible in premenopausal women whose main source of oestrogen is the 

ovaries. Moreover, the association between circulating blood serum oestrogen and density is 

seen in premenopausal (178) but not postmenopausal (180) women. One suggestion for these 

differences is that systemic oestrogens transported in the blood have an effect on dense tissue 

growth in premenopausal women, but not postmenopausal women; and local oestrogen from 

aromatisation in breast fat affects dense tissue development in postmenopausal women but less 

so in premenopausal women (182). This leads to the idea that adipose tissue has differing 

effects on dense tissue (and breast cancer risk) whether measured during pre- or postmenopausal 

years and whether distributed systemically or locally within the breast. The idea of systemic and 

local breast fat operating through different mechanisms may also explain the contradiction seen 

in weight-loss studies where decreased BMI reduces risk but also elevates percent density, 

which is itself associated with an increased risk of breast cancer. Perhaps the reduction in 

adipose tissue elsewhere in the body offsets the increased risk from a reduction in breast fat.  

 

There is some suggestion that BMI has a protective effect on dense tissue and breast cancer risk 

in premenopausal women (172, 175, 176). In this study, there was indication of an inverse effect 

of attained BMI and breast fat on DA, which has been seen previously in premenopausal 

women (attained BMI: (158, 169, 293); FA: (158, 305)). However, this effect is unclear since 

the study conversely found a positive effect of attained BMI and breast fat on DV. This positive 

association between attained BMI and DV has been seen previously in premenopausal women 

(161, 164, 165), but there have been few studies assessing the relationship between breast fat 

and DV. There is also some evidence to suggest a protective effect of breast fat on 
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premenopausal breast cancer risk (90, 175, 246, 272), however, some studies show that the 

protective effect of BMI on premenopausal risk is reversed after adjustment for percent density 

(166, 169). 

 

An exploratory analysis tested the association between breast density and DXA bone density. 

Both are considered to be markers of the cumulative rate of exposure to oestrogen (143, 306) 

(which is related to breast cancer risk (307)), but their association with each other has shown 

inconsistent results (308-311). There was some indication of a positive between-women 

correlation for bone density and FV, DV and TV, but little correlation within-women (which is 

expected since bone density is unlikely to have changed over a 2 year period). 

 

Strengths of this study include the use of Cumulus and the Stepwedge method which allowed 

for the assessment of dense and fatty tissue separately as well as volumetrically, which in theory 

should represent breast tissue more accurately than area-based methods by accounting for 

overlapping tissue. Additionally, this study used many different measures of body weight to 

assess adiposity overall and deposited in different parts of the body. All women were 

encouraged to lose weight (more so in the intervention arm), which provided data with large 

within-women variation in BMI, providing great potential to measure effects across the study. 

The intervention also took place at a time in a woman’s life that is thought to be the most 

influential for breast cancer prevention and risk reduction. Additionally, the Lifestyle study 

provided a data source to assess premenopausal density associations, which is not available in 

studies of routine screening data. Moreover, the analysis utilised repeated measures correlation 

coefficients and linear mixed models which are robust techniques that used all of the data and 

assessed all of the time points simultaneously to provide an overall estimate of effects across the 

intervention as a whole. 

 

Limitations of the study include the small sample size, which may have reduced power in the 

study. This may have been particularly relevant for volumetric measures which had a moderate 

amount of missing data at baseline. To increase statistical power, the two intervention arms 

were combined, but this limited the ability to determine the effects that were specific to the 

intervention. There may have also been methodological issues with these volumetric measures 

since a positive association was only seen between percent density measures and dense area, but 

not dense volume (except for PDV, which had a modest correlation with DV). Since both 

percent density and absolute density are risk factors for breast cancer, one would expect their 

measurements to be positively correlated. Volumetric measures are greatly influenced by breast 

thickness (312), which undoubtedly changed as BMI changed, and may have increased variation 

in serial measurements, reducing the accuracy of volumetric estimates. Different breast 

positioning between serial mammograms may have also introduced variation in both area-based 
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and volumetric measurements since radiographer technique can change from one examination to 

the next, causing different levels of breast compression, breast thickness and the amount of 

breast that is imaged. The latter is particularly relevant in MLO views since these views can 

capture subcutaneous fat (representing systemic BMI instead of breast fat) (93), which will be 

more prominent if the breast is adequately pulled onto the x-ray plate. This can make 

differentiation between breast adipose tissue and subcutaneous fat difficult, hence the effects of 

local and systemic adipose tissue can be hard to distinguish (313). At present, this is an 

unavoidable issue with subjective mammography techniques, and the need for image 

registration is essential for assessment of serial mammography. Another limitation of this study 

is the use of self-reported weight at age 20yr which may have suffered from recall bias. 

Nonetheless, a good correlation of 0.87 between recalled weight and actual weight in early 

adulthood has been reported previously in a similar cohort of young women, suggesting that this 

is a suitably robust measure (314). Finally, there was no adjustment for other lifestyle factors 

such as increased physical activity or reduced alcohol intake, which may have had independent 

effects on density beyond their indirect effect via weight-loss. However, these are unlikely to 

have confounded the results since no strong nor consistent effects of these variables have been 

reported previously, hence any influences are likely to be negligible (296). 

 

2.5 Conclusion 

 

This study suggests that premenopausal weight-loss reduced breast fat but did not reduce dense 

tissue. Short-term premenopausal weight-loss is likely to be linked to a lower postmenopausal 

breast cancer risk through reductions in adipose tissue but not fibroglandular tissue. This study 

suggests that density change is unlikely to be a useful biomarker for risk reduction associated 

with short-term weight-loss. 
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Chapter 3: Longitudinal modelling of mammographic density for accurate 

breast cancer risk estimation 

 

3.1 Introduction 

 
As described in Chapter 1, mammographic density is one of the strongest known risk factors for 

breast cancer (79) and inclusion of BI-RADS density in breast cancer risk models has been 

shown to improve the accuracy of assessments of individual risk (315). Providing accurate 

estimations of a woman’s risk of breast cancer could help with decisions regarding 

supplemental screening, risk-reducing behaviour strategies and chemoprevention, as well as 

providing a prerequisite for risk-stratified screening. 

 

Most studies assessing the effect of breast density on breast cancer risk are based on a  density 

value at a single time point. However, mammographic density is a dynamic trait that decreases 

with increasing age and BMI, and changes in response to endocrine treatment and hormone 

replacement therapy. Using a woman’s history of density might therefore be more informative 

for breast cancer risk estimation than density taken at a single point in time.  

 

Several studies have explored the use of two serial breast density values in the assessment of 

breast cancer risk (254-261), including a recent large US cohort study of over 700,000 women, 

which showed a small improvement in the discriminatory accuracy of a breast cancer risk 

prediction model when two BI-RADS density values were used instead of one (AUC 0.640 vs. 

0.635) (262). However, including information on the longitudinal history of density with more 

than two density values may improve risk prediction even further. Of particular importance is 

the ability to include information on an unlimited number of mammograms that are arbitrarily 

spaced through time, which reflects a screening environment in practice. No breast cancer risk 

model currently incorporates such information. The aims of this study are to develop a measure 

of density based on an individual woman’s complete history of density taken at arbitrary time 

points (longitudinal density), and to assess how much more information this longitudinal density 

measure provides for risk assessment than a density value taken at a single time point. 
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3.2 Methods 

 

3.2.1 Study design 

 

3.2.1.1 Study population 

 
This analysis is of a cohort of women from the Kaiser Permanente Washington Breast Cancer 

Surveillance Consortium breast imaging registry. All women were enrollees of Kaiser 

Permanente Washington, an integrated healthcare system that provides both insurance and 

healthcare in Washington State. The data were previously used to assess the long-term 

performance of breast cancer risk assessment with and without breast density (315). Women in 

the cohort attended screening from January 1, 1996, through December 31, 2013 (with follow-

up from January 1, 1996, through December 31, 2014) with no prior diagnosis of invasive 

breast cancer or ductal carcinoma in situ (DCIS) at study entry, or lobular carcinoma in situ 

(LCIS) at baseline mammogram. To ensure that the included cohort represented the screening 

population, women aged <40 years or >73 years at baseline mammogram were excluded. To 

also ensure that there were no prevalent breast cancers at the start of the study, women who 

were diagnosed with DCIS or invasive breast cancer within 6 months after their baseline 

mammogram were excluded. 

 

 

Figure 3.1: Flow diagram of the study population and reasons for exclusions. 

144,423 consenting women with at least a 
baseline mammogram (BI-RADS density 

available) and no prior invasive breast 
cancer or DCIS

Excluded: 110 women with LCIS at baseline mammogram

Excluded: 6 women aged <40yr or >73yr at baseline mammogram

Excluded: 11,868 women diagnosed with invasive breast cancer or DCIS 
within 6 months after their baseline mammogram

132,439 women included in the study
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3.2.1.2 Endpoints 

 
The primary outcome was diagnosis of invasive breast cancer. Women were followed from their 

first mammogram with an available density assessment (baseline mammogram) until the earliest 

of: diagnosis of invasive breast cancer or censoring (at 75 years of age (the recommended end of 

screening age), December 31, 2014 (the end of calendar time follow-up), diagnosis of DCIS, 

death, or health plan disenrollment). Outcomes were obtained through linkage with the regional 

population-based Surveillance, Epidemiology, and End Results (SEER) tumour registry and 

pathology databases. 

 

3.2.1.3 Exposure variables 

 
Mammographic breast density was recorded at each screening mammogram by the interpreting 

radiologist using BI-RADS density categories (1=almost entirely fat, 2=scattered fibroglandular, 

3=heterogeneously dense, or 4=extremely dense (18)). Only mammograms with a BI-RADS 

density were included. Self-reported height and weight were collected using a questionnaire 

completed at each screening mammogram. BMI was derived by dividing weight (kg) by height 

(m) squared. Values were also checked for validity at the time of scanning for research 

purposes. Approximately 5% of women who underwent screening opted out of having their 

questionnaire data used for research and were excluded. To enable a prognostic factor study 

design, any mammogram taken on the same date as a woman’s breast cancer event was removed 

(no women were excluded because all women had a baseline mammogram at least 6 months 

before an event, by definition of the study design). 

 

3.2.2 Statistical methods 

 

Analysis was conducted using the statistical software packages Stata (316) and R (282). 

Statistical tests were two-sided with a significance level of 5%. 

 

3.2.2.1 Missing data 

 
Missing BMI values were imputed to allow for adjustment of density and to ensure that no data 

points were dropped from the analysis due to missing data. If BMI was unavailable at baseline 

mammogram, it was imputed using the sample mean BMI given age at the baseline 

mammogram; otherwise, by carrying forward the last recorded BMI. This was considered to be 

a robust method because the number of women requiring BMI imputation was small relative to 

the large sample size (6,047/132,439 women (5%)) (appendix A.I). Imputation was not required 

for age or density since all mammograms had a matching age and density value (only 
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mammograms with a BI-RADS density value were included in the analysis, as outlined in 

section 3.2.1.3). BMI was then winsorised for values below 15kg/m2 and above 35kg/m2; hence 

women who were morbidly obese were given the same risk for adiposity as women who were 

obese, and extremely underweight women were given a similar risk for adiposity as 

underweight women. 

 

3.2.2.2 Linear mixed models (2) 

 

A model for longitudinal density was developed by fitting a linear mixed model with BI-RADS 

density as the outcome (treated as an integer to approximate linear relationships with density). 

This model uses a similar two-level hierarchical structure as that in Chapter 2, whereby the base 

level is each density measure at each time point, and the second level is each woman (2.2.4.4). 

 

The linear mixed model for this study is described below. Breast density 𝑦𝑖𝑗 for woman  𝑖 =

1, … , 𝑛 at time 𝑗 = 1, … , m𝑖  was modelled as: 

 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖 + (𝛽1 + 𝑢1𝑖)𝑎𝑔𝑒𝑖𝑗 + 𝛽2𝑎𝑔𝑒𝑖𝑗
2 + 𝛽3𝑎𝑔𝑒𝑖𝑗

3 + 𝛽4𝑎𝑔𝑒𝑖𝑗
4 + 𝛽5𝐵𝑀𝐼𝑖𝑗

+ 𝛽6𝑎𝑔𝑒𝑖𝑗𝐵𝑀𝐼𝑖𝑗 + 𝑒𝑖𝑗 ; 

 

where 𝛽0 is an overall intercept, 𝑎𝑔𝑒𝑖𝑗 is the age for woman 𝑖 at time 𝑗, 𝛽1 is the slope for age, 

𝛽2 is the slope for age-squared, 𝛽3 is the slope for age-cubed, 𝛽4 is the slope for age to the 

power of four, 𝐵𝑀𝐼𝑖𝑗 is the BMI for woman 𝑖 at time 𝑗, 𝛽5 is the slope for BMI,  𝛽6 is the 

interaction effect for BMI and the linear age term, and 𝑒𝑖𝑗 is a random error. The term that 

allowed for differences between-women in their overall density level is the independent random 

intercept 𝑢0𝑖 for woman 𝑖. The term that allowed for differences between-women in their age 

slope is the independent random slope 𝑢1𝑖  for woman 𝑖. In other words, the random age slopes 

allowed each woman to have density trajectories that deviated from the average trajectory 

through time. Age had a non-linear relationship with density, as has been seen previously (141, 

255, 317). The model is completed by assuming normal distributions for 𝒖𝑖 =

 (𝑢0i ,𝑢1i ) and 𝑒𝑖𝑗, with zero mean, unknown variances and: zero covariance between 𝑒𝑖𝑗 of the 

same woman or different women, zero covariance between 𝒖𝑖 and 𝑒𝑖𝑗 of the same woman or 

different women, zero covariance between 𝒖𝑖  of different women, and unknown covariance 

between  𝑢0𝑖  and  𝑢1𝑖  of the same woman. The model was fitted by maximum likelihood 

(2.2.4.7). To test  𝛽𝑘 = 0 for 𝑘 = 0, … ,6, Wald tests were applied (2.2.4.9). 

 

The linear mixed model building strategy was based on a series of likelihood ratio tests to assess 

goodness of fit with various polynomial terms and interactions as well as visual assessment of 
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graphs plotting predicted density against age and BMI. Standard errors for the longitudinal 

model were calculated using robust sandwich estimators (318-320). These were calculated 

empirically without making any assumptions on the structure of heteroscedasticity (unequal 

variance across variable values) in the model. 

 

From this linear mixed model, each woman’s random effects, 𝒖𝑖 =  (𝑢0i, 𝑢1i ), were then 

predicted using Empirical Bayes, as described below (287).  

 

To better understand the Empirical Bayes prediction, it is useful to describe a linear mixed 

model in its matrix form, whereby, for woman 𝑖 = 1, … , 𝑛 with 𝑗 = 1, … , m𝑖  time points: 

 

𝒚𝑖 = 𝑿𝑖𝜷 + 𝒁𝑖𝒖𝑖 + 𝒆𝑖  ; 

where: 

 𝒚𝑖 =  (𝑦𝑖1,… , 𝑦𝑖m𝑖
)

𝑇
 is the m𝑖  x 1 column vector of observed outcomes for woman 𝑖 

 𝑿𝑖 =  (

𝑥𝑖11 … 𝑥𝑖1𝑎

⋮ ⋱ ⋮
𝑥𝑖m𝑖1 … 𝑥𝑖m𝑖𝑎

)  is the m𝑖  x 𝑎 design matrix of observed predictors for fixed 

effects 𝑝 = 1, … , 𝑎 for woman 𝑖 

 𝜷 =  (𝛽0, … , 𝛽a−1)𝑇 is the 𝑎 x 1 column vector of regression coefficients for fixed effects 

𝑝 = 1, … , 𝑎 

 𝒁𝑖 =  (

𝑥𝑖11 … 𝑥𝑖1𝑏

⋮ ⋱ ⋮
𝑥𝑖m𝑖1 … 𝑥𝑖m𝑖𝑏

)  is the m𝑖  x 𝑏 design matrix of observed predictors for random 

effects 𝑞 = 1, … , 𝑏 for woman 𝑖 

 𝒖𝑖 =  (𝑢0i, … , 𝑢b−1 i)𝑇 is the 𝑏 x 1 column vector of unobserved random effects 𝑞 = 1, … , 𝑏 

for woman 𝑖 

 𝒆𝑖 =  (𝑒𝑖1, … , 𝑒𝑖m𝑖
)

𝑇
 is the m𝑖  x 1 column vector of unobserved random errors for woman 𝑖 

 

Under the above model, density measures for woman 𝑖 have mean = 𝑿𝑖𝜷 + 𝒁𝑖𝒖𝑖  and variance = 

𝑽𝑖 =  𝒁𝑖𝚺𝒁𝑖
𝑇 +  σ2𝑰𝑚𝑖

  . 

 

Recalling from Chapter 2, 𝚺 is the variance-covariance matrix, and σ2𝑰𝑚𝑖
= 𝑬𝑖 which is the 

variance of the residuals for woman 𝑖, with σ2 being the sample residual variance and 𝑰𝑚𝑖
 being 

the 𝑚𝑖 x 𝑚𝑖 identity matrix. The values for 𝒚𝑖 ,  𝑿𝑖 and 𝒁𝑖  are measured, and estimates of 

parameters 𝜷, 𝚺 and σ2 are obtained by generalised least squares, which corresponds to 

maximum likelihood assuming normality of 𝒖𝑖 and 𝒆𝑖  (2.2.4.4). 
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Empirical Bayes can be used to predict the random effects, 𝒖𝑖, by entering the observed values 

and estimated parameters into the following equation: 

 

𝔼 (𝒖𝑖  | 𝑿𝑖 ,𝒁𝑖 , �̂�, �̂�, σ̂2) = �̂�𝒁𝑖
𝑇�̂�𝑖

−1 (𝒚𝑖 − 𝑿𝑖�̂�) 

 

In this study, the above equation was used to predict the random intercept and random slope for 

each woman 𝑖 = 1, … , 𝑛 at each time point 𝑗 = 1, … , m𝑖  using data from her most recent and 

previous observations only. Therefore, each woman’s individual observations had a uniquely 

determined predicted random intercept and random slope. 

 

A predicted density value was then calculated by entering the observed values, estimated 

parameters and predicted random effects into the equation: 

 

𝔼 (𝒚𝑖 | 𝑿𝑖 , 𝒁𝑖 , �̂�, �̂�, σ̂2) = 𝑿𝑖�̂� + 𝒁𝑖�̂�𝑖 

 

In the analysis, these Bayes predicted density measures are referred to as the longitudinal 

density measures.  

 

At this point, each observation for each woman had a corresponding baseline density value (the 

starting value for woman 𝑖), most recent density value (the updated density value for woman  𝑖 

at time 𝑗), longitudinal density value (the updated Bayes predicted density for woman  𝑖 at 

time 𝑗), age at baseline (the baseline age for woman 𝑖), baseline BMI (the baseline BMI for 

woman 𝑖), and most recent BMI (the updated BMI for woman  𝑖 at time 𝑗). 

 

3.2.2.3 Proportional-hazards Cox models for breast cancer risk 

 

The primary analysis fitted proportional-hazards Cox models to assess the association between 

the survival time of women and density, age and BMI. Proportional-hazards Cox models were 

fit for an invasive breast cancer event using three different density measurements: baseline 

density (model 1), most recent density (model 2) and longitudinal density (model 3). Since all 

women had a value for baseline density, most recent density and longitudinal density as well as 

age and BMI at each of her observations, each woman contributed the same number of 

measurements to each model. Additionally, because the data consisted of repeated measures, the 

proportional-hazards Cox model equations used time-dependent covariates for density and BMI. 
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For model 1, the proportional-hazards Cox model equation for woman 𝑖 = 1, … , 𝑛 is defined as: 

 

𝜆𝑖(𝑡) = 𝜆0(𝑡)𝑒𝑥𝑝(𝛽1 𝑎𝑔𝑒(𝑡0)𝑖 + 𝛽2𝐵𝑀𝐼(𝑡0)𝑖 + 𝛽3𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡0)𝑖) ; 

 

where 𝜆𝑖(𝑡) is the hazard function at time 𝑡 for woman 𝑖; 𝜆0(𝑡) is the baseline hazard function; 

𝑡0 = time 0 i.e. baseline; 𝑎𝑔𝑒(𝑡0)𝑖  is the age at baseline for woman 𝑖; 𝐵𝑀𝐼(𝑡0)𝑖  is the BMI at 

baseline for woman 𝑖; 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡0)𝑖  is the BI-RADS density at baseline for woman 𝑖; 𝛽1 is the 

effect of age at baseline; 𝛽2 is the effect of BMI at baseline; and 𝛽3 is the effect of density at 

baseline.  

 

For model 2, the proportional-hazards Cox model equation for woman 𝑖 = 1, … , 𝑛 is defined as: 

 

𝜆𝑖(𝑡) = 𝜆0(𝑡)𝑒𝑥𝑝(𝛽1 𝑎𝑔𝑒(𝑡0)𝑖 + 𝛽2𝐵𝑀𝐼(𝑡)𝑖 + 𝛽3𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)𝑖) ; 

 

where 𝜆𝑖(𝑡) is the hazard function at time 𝑡 for woman 𝑖; 𝜆0(𝑡) is the baseline hazard function; 

𝑡0 = time 0 i.e. baseline; 𝑎𝑔𝑒(𝑡0)𝑖  is the age at baseline for woman 𝑖; 𝐵𝑀𝐼(𝑡)𝑖  is the BMI at 

time 𝑡 for woman 𝑖; 𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)𝑖  is the BI-RADS density at time 𝑡 for woman 𝑖; 𝛽1 is the effect 

of age at baseline; 𝛽2 is the effect of BMI; and 𝛽3 is the effect of density.  

 

For model 3, the proportional-hazards Cox model equation for woman 𝑖 = 1, … , 𝑛 is defined as: 

 

𝜆𝑖(𝑡) = 𝜆0(𝑡)𝑒𝑥𝑝(𝛽1𝑎𝑔𝑒(𝑡0)𝑖 + 𝛽2𝐵𝑀𝐼(𝑡)𝑖 + 𝛽3𝑙𝑜𝑛𝑔_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)𝑖) ; 

 

where 𝜆𝑖(𝑡) is the hazard function at time 𝑡 for woman 𝑖; 𝜆0(𝑡) is the baseline hazard function; 

𝑡0 = time 0 i.e. baseline; 𝑎𝑔𝑒(𝑡0)𝑖  is the age at baseline for woman 𝑖; 𝐵𝑀𝐼(𝑡)𝑖  is the BMI at 

time 𝑡 for woman 𝑖; 𝑙𝑜𝑛𝑔_𝑑𝑒𝑛𝑠𝑖𝑡𝑦(𝑡)𝑖  is the longitudinal density at time 𝑡 for woman 𝑖; 𝛽1  is 

the effect of age at baseline; 𝛽2 is the effect of BMI; and 𝛽3 is the effect of longitudinal density.  

 

Each model was fitted by maximum partial likelihood (321). The coefficients 𝛽1, 𝛽2 and 𝛽3 

were different for each model and they were each tested using Wald tests (2.2.4.9). 

 

All models were adjusted for age at baseline (per year; continuous). Model 1 was additionally 

adjusted for BMI at baseline (per kg/m2; continuous) and models 2 and 3 were instead adjusted 

for most recent BMI (per kg/m2; continuous). This was done so that BMI matched the 

corresponding density value.  
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3.2.2.4 Model building 

 

To allow for a non-linear relationship between density and risk, density was included as a factor 

variable for models 1 and 2 (degrees of freedom (df)=3) (corresponding to the BI-RADS density 

value). Likelihood ratio tests were used to test for a non-linear fit with longitudinal density 

(2.2.4.8). The best fit for model 3 included longitudinal density modelled as a linear and 

quadratic variable (df=2). The rationale for including a quadratic longitudinal density term is 

described in section 3.3.4. 

 

3.2.2.5 Measures of predictive ability (primary analysis) 

 

To assess the predictive ability of each model, likelihood ratio statistics were estimated 

(2.2.4.8). Additionally, to account for the different number of parameters in each model, 

Akaike information criterion (AIC) were estimated. This is useful because the more parameters 

included in a model, the higher the likelihood. However, including too many parameters in a 

model can lead to overfitting which decreases the generalisability of results. There is a trade-off 

between developing a model that has both goodness of fit and parsimony. The AIC is a statistic 

that has been proposed to assess model fit by penalising overfitting. This is done by adding 

another term to the likelihood, namely: 

 

𝐴𝐼𝐶 = −2ℓ(𝜃|𝒙) + 2𝑘 ; 

 

where ℓ(𝜃|𝒙) is the log-likelihood and 𝑘 is the number of parameters in the model (322). 

 

3.2.2.6 Measures of discriminatory accuracy 

 

To measure the discriminatory accuracy of longitudinal density, a yearly mean at-risk 

concordance index (yC) was estimated through time. This is a non-standard method that was 

developed for the purpose of this longitudinal study. The method for calculating the at-risk 

concordance index is described below. 

 

Survival status for woman 𝑖 = 1, … , 𝑛 is denoted (𝑡𝑖 , 𝛿𝑖) for the time 𝑡𝑖 of breast cancer event 

(𝛿𝑖 = 1) or censoring (𝛿𝑖 = 0). A risk score, 𝑟𝑖𝑗, is determined for each woman 𝑖 = 1, … , 𝑛 at 

each breast cancer event 𝑗 = 1, … , 𝑚 using the estimated hazard ratio (HR) from the 

proportional-hazards model. That is, 𝑟 = exp(𝜷𝒙), where 𝒙 = (𝑥1, 𝑥2, 𝑥3) includes age (𝑥1), 

BMI (𝑥2) and breast density (𝑥3), with corresponding parameters 𝜷𝑇 = (𝛽1 , 𝛽2, 𝛽3). BMI and 

breast density values are updated through time, hence  𝑥2 and 𝑥3 are time-varying covariates. 
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At each breast cancer event 𝑗 = 1, … , 𝑚 (occurring at time, 𝑆𝑗), a concordance index, 𝐶𝑗, is 

defined as: 

 

𝐶𝑗 =

∑ 𝐼(𝑡𝑖 ≥ 𝑆𝑗) {𝐼(𝑟𝑖𝑗 < �̃�𝑗) +
1
2

𝐼(𝑟𝑖𝑗 = �̃�𝑗)}𝑛
𝑖=1

𝑖≠𝜔𝑗

∑ 𝐼(𝑡𝑖 ≥ 𝑆𝑗)𝑛
𝑖=1

𝑖≠𝜔𝑗

  ;        (∗) 

 

where the risk score of the woman with the event 𝑗 = �̃�𝑗, and the index of the woman with the 

event 𝑗 = 𝜔𝑗. That is, 𝐶𝑗 is the proportion of women with a risk score less than or equal to the 

risk score of the woman generating the breast cancer event (out of the total number of women 

still at-risk at the time of the breast cancer event). 

 

Generalising to include ties (≥1 woman (= �̃�𝑗) with an event at the same time, 𝑆𝑗), (∗) is 

calculated separately for each tied woman 𝑘 = 1, … , �̃�𝑗 at event 𝑗. The index, 𝜔𝑗, is extended to 

be a vector of indices, 𝝎𝒋 = (𝜔𝑗1, … , 𝜔𝑗�̃�𝑗
), and the risk score of the tied woman 𝑘 at event 

𝑗 = �̃�𝑗𝑘. Hence:  

 

𝐶𝑗𝑘 =

∑ 𝐼(𝑡𝑖 ≥ 𝑆𝑗){𝐼(𝑟𝑖𝑗 < �̃�𝑗𝑘) +
1
2

𝐼(𝑟𝑖𝑗 = �̃�𝑗𝑘)}𝑛
𝑖=1

𝑖∉𝝎𝒋

∑ 𝐼(𝑡𝑖 ≥ 𝑆𝑗)𝑛
𝑖=1
𝑖∉𝝎𝒋

 

 

In the results, a yearly mean concordance index, 𝑦𝐶𝑧, is presented at each yearly interval 𝑧 =

1, … , 18, starting at 0.5yr. So, for example, the yearly mean concordance index between 0.5yr 

and 1.5yr was defined as: 

 

𝑦𝐶1 =
∑ ∑ 𝐶𝑗𝑘  {𝐼(0.5 ≤ 𝑆𝑗 < 1.5)}

�̃�𝑗

𝑘=1
𝑚
𝑗=1

∑ �̃�𝑗 {𝐼(0.5 ≤ 𝑆𝑗 < 1.5)}𝑚
𝑗=1

 

 

The maximum follow-up time was 19yr, hence the final 𝑦𝐶𝑧 (= 𝑦𝐶18) was calculated between 

17.5yr and 18.5yr and the 4 women who developed breast cancer ≥18.5yr were excluded. 

 

The standard error on each 𝑦𝐶𝑧 was calculated by estimating the variance about the mean, 𝑦𝐶𝑧, 

(variance generated by the women with a breast cancer event, 𝑗, occurring in yearly interval, 𝑧). 
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So, for example, for 𝑧 = 1 (between 0.5yr and 1.5yr), the variance about the mean, 𝑦𝐶1, is 

defined as: 

𝑦1 =
∑ ∑ (𝐶𝑗𝑘 − 𝑦𝐶1)

2
 {𝐼(0.5 ≤ 𝑆𝑗 < 1.5)}

�̃�𝑗

𝑘=1
𝑚
𝑗=1

∑ �̃�𝑗 {𝐼(0.5 ≤ 𝑆𝑗 < 1.5)}𝑚
𝑗=1

  

 

Hence, the standard error (SE) on 𝑦𝐶1 is calculated as: 

 

𝑆𝐸1 = √
𝑦1

∑ �̃�𝑗 {𝐼(0.5 ≤ 𝑆𝑗 < 1.5)}𝑚
𝑗=1

 

               

An overall concordance index (mean concordance index across the entire follow-up) was also 

calculated, and a 95% confidence interval was estimated using an empirical bootstrap of the 

mean with 10,000 resamples (2.2.4.3). 

 

3.2.2.7 Assessment of risk stratification 

 

To assess the effect of using longitudinal history of density on risk stratification, the distribution 

of observed risk based on the proportional-hazards model was assessed using histograms at 6 

months, 5yr, 10yr and 15yr. Observed risk (i.e. relative hazard ratio (HR)) was generated by 

calculating each woman’s risk score at each mammogram (defined as 𝑟𝑖𝑗 from section 3.2.2.6) 

relative to the average risk at 6 months. The proportion of lowest risk women (<1/2 relative HR) 

and highest risk women (≥2 relative HR) were plotted at 6 months, 5yr, 10yr and 15yr to assess 

the distribution of risk through time for the most extreme risk categories. The greater the spread 

of risk, the greater the ability for risk stratification. This analysis was also conducted in 

subgroups of women aged 40-49/50-59/≥60 years at baseline. 

 

3.2.2.8 Secondary analyses 

 

To assess whether predictive ability varied for different subgroups of women, a series of 

secondary analyses calculated likelihood ratio statistics throughout the follow-up for models 1-3 

in:  

 

 Women aged 40-44/45-49/50-54/55-59/60-64/≥65 years at baseline. 

 Women with baseline mammogram before or after 2007 (as a proxy for film or digital 

mammography). 

 Women with baseline mammogram before or after 2003 (as a proxy for the 3rd or 4th BI-

RADS density lexicon (18). 
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 Premenopausal or postmenopausal women at baseline. 

 Women <60 years old at baseline with baseline mammogram taken before the year 2000 

(younger women starting the trial early enough to have a long follow-up before being 

censored at 75 years of age). 

 Premenopausal women <60 years old at baseline with baseline mammogram taken before 

the year 2000 (premenopausal women whose long follow-up was likely to include their 

transition into postmenopausal status). 

 

It was hypothesised that the random slopes (representing the likely future trajectory of density 

for each woman) would further improve the statistical output of the longitudinal model. Another 

secondary analysis tested the inclusion of the random slopes in model 3 by a likelihood ratio test 

(2.2.4.8). Furthermore, likelihood ratio tests were conducted to assess the benefit of an 

interaction between longitudinal density and age or BMI in model 3. 

 

A final secondary analysis tested the predictive ability, discriminatory ability and capacity for 

risk stratification of longitudinal density in the subgroup of women with at least 3 

mammograms (women with an adequate history of density), starting follow-up at their third 

mammogram. 

 

3.2.2.9 Sensitivity analyses 

 

To test the influence of BMI imputation on the results, predictive ability was also assessed in 

models 1-3 after removing mammograms with a missing corresponding BMI. Here, the start of 

follow-up began at the (potentially) new baseline mammogram for each woman. Additionally, 

to test the influence of screen-detected mammograms on results, predictive ability was also 

assessed in models 1-3 after removing mammograms taken within 6 months before a breast 

cancer event. Each woman had the same baseline mammogram (no breast cancer event occurred 

within 6 months after the baseline mammogram, by definition of the study design), so the start 

of follow-up remained the same as the primary analysis. 
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3.3 Results 

 

Table 3.1: Univariate hazard ratios of age, body mass index and BI-RADS density baseline variables. 

Baseline 

Variable 

No. (%) 

of 

Women 

Follow-up, 

1000 

Women-

years 

No. of 

Invasive 

Breast 

Cancer 

Cases 

Incidence 

Rate per 

1000 

Women/yr 

Univariate 

Hazard Ratio 

(95% CI) 

LR-

χ2(1) 

Trend 

Test 

P 

Total 
132,439 

(100) 
941 2,704 2.9 - - - 

Age (yr)  

40-49 
60,325 

(45.6) 
448 977 2.2 

1 

[Reference] 

309.1 <0.001 50-59 
43,878 

(33.1) 
339 1,057 3.1 

1.41  

(1.29-1.53) 

≥60 
28,236 

(21.3) 
153 670 4.4 

2.26  

(2.04-2.50) 

BMI (kg/m2)  

<18.5 
1,657 

(1.3) 
11 25 2.3 

0.88  

(0.59-1.31) 

5.5 0.019 

≥18.5 to 25 
48,713 

(36.8) 
355 931 2.6 

1 

[Reference] 

≥25 to 30 
42,868 

(32.4) 
299 962 3.2 

1.24  

(1.13-1.36) 

≥30 to 35 
20,791 

(15.7) 
146 415 2.8 

1.09  

(0.97-1.23) 

≥35 
18,410 

(13.9) 
129 371 2.9 

1.11  

(0.99-1.25) 

BI-RADS 

density 
 

Fatty 
10,387 

(7.8) 
66 107 1.6 

0.70  

(0.57-0.85) 

91.8 <0.001 

Scattered 
46,206 

(34.9) 
332 786 2.4 

1 

[Reference] 

Heterogeneous 
57,158 

(43.2) 
405 1,338 3.3 

1.40  

(1.28-1.53) 

Extremely dense 
18,688 

(14.1) 
137 473 3.4 

1.44  

(1.29-1.62) 

 

Hazard Ratios from a Proportional-hazards Cox model; 95% confidence intervals (CIs) from Wald tests; 

LR-χ2(1) trend test: represents the difference in likelihood ratio statistics (LR-χ2) between the nu l l  model  

and a model fit to the covariate (age and body mass index (BMI) fit as continuous variables; BI-RADS 

density fit as an integer); P-value from LR-χ2(1) trend test. 
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Table 3.2 Longitudinal model fit for BI-RADS density (integer) on age (continuous) and body mass index 

(continuous) 

Fixed effects 

Variable β-coefficient Robust standard error** 

Intercept 2.9659 0.0044 

Age (per 5yr) 0.0491 0.0079 

Age2 (per 52yr) -0.0780 0.0048 

Age3 (per 53yr) 0.0127 0.0011 

Age4 (per 54yr) -0.0006 0.0001 

BMI (per kg/m2) -0.0584 0.0005 

Age x BMI (per 5yr; per kg/m2) 0.0033 0.0001 

Random effects 

Variable 
Standard 

Deviation 
Robust standard error** Correlation 

Robust standard 

error** 

Intercept 0.5865 0.0027 
-0.4590 0.0068 

Age (per 5yr) 0.1107 0.0010 

**Standard errors calculated using robust sandwich estimators. Age from 40yr, body mass index (BMI) 

from 25kg/m2. 

 

Figure 3.2: Adjusted Hazard Ratios for longitudinal density: continuous and categorical.  

Hazard Ratios (HRs) from Proportional-hazards Cox models for longitudinal density: categorised into 6 

arbitrary groups (relative to HR for longitudinal density group ‘2 to <2.5’, plotted against mean 

longitudinal density in each group (x-axis)) and as a continuous variable (including a quadratic term, 

relative to HR for mean longitudinal density in group ‘2 to <2.5’ (longitudinal density=2.22)); adjusted 

for age at baseline (continuous) and most recent body mass index (BMI) (continuous), centred at 40y r a t  

baseline and BMI of 25kg/m2; y-axis on a log-scale; 95% confidence intervals (CIs) from Wald tests. 
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3.3.1 Details of the cohort 

 
In total, 132,439 women were included with a median follow-up of 5.2 years (interquartile 

range (IQR), 2.4-11.1 years) and maximum follow-up of 19 years. Younger women entered the 

cohort earlier and thus had greater follow-up (for example, median of 10.8 years (IQR, 3.8-17.2 

years) for 46,484 women younger than 60 years with baseline mammogram before 2000). 

Median time between mammograms was 1.8 years (IQR, 1.0-2.0 years) and the median number 

of mammograms per woman was 3 (IQR, 2-6), with 32,010 women (24.2%) having a baseline 

mammogram only. The number of mammograms was similar across different ages at baseline 

and throughout the follow-up (appendix A.II). In total, 2704 women (2.0%) were diagnosed 

with invasive breast cancer during the follow-up. 

 

3.3.2 Baseline characteristics 

 
At baseline, median age was 50 years (IQR, 44-58 years), median BMI was 26.8 kg/m2 (IQR, 

23.2-31.1 kg/m2) and the majority of women had dense breasts (75,846 (57.3%) of women had 

heterogeneous or extremely dense breasts). In the univariate model of variables at baseline, 

most statistical information was in age (LR-χ2(1)=309.1), followed by density (LR-χ2(1)=91.8) 

then BMI (LR-χ2(1)=5.5) (all p<0.05) (Table 3.1). 

 

3.3.3 Model building of the linear mixed model  

 
Hereafter, the model building strategy for the linear mixed model is described. Initially, the 

model included fixed effects for an intercept, age (per 5yr; continuous) and most recent BMI 

(per kg/m2; continuous). Age was centred at 40yr and modelled per 5yr to aid interpretation of 

the age coefficient, and BMI was centred at 25kg/m2. Random effects were also included for the 

intercept and age effect to account for each woman’s deviation from the population mean 

density and population mean age effect. Model fit improved considerably with an unstructured 

covariance matrix allowing for correlation between the random effects (ΔLR-χ2(1)=2473, 

p=2x10-308). Age was modelled as a quartic polynomial because this was determined to be the 

best fit after likelihood ratio tests of goodness of fit and visual assessment of plotted graphs 

(appendix A.III). For example, an improvement in model fit was seen until the 7th power of age 

(all p<0.05). However, when assessing plots of predicted density against age, polynomial terms 

past the 4th power appeared to be overfitting to the data for ages above 73yr (density is expected 

to decrease or plateau but it increased for these older women). For BMI, including a quadratic 

age term had little improvement on model fit (ΔLR-χ2(1)=4, p=0.06); but a cubic term improved 

the fit considerably (ΔLR-χ2(1)=655, p=1x10-144). This improvement continued until the 10th 

power of BMI (all p<0.05). However, the plots for predicted density against BMI were 

somewhat unchanged when quadratic or cubic terms were added and there was evidence of 
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overfitting with BMI to the 4th power or more due to the peaking curve for the relationship 

between BMI and density (appendix A.IV). Thus, no polynomial BMI terms were included in 

the model. An interaction between the linear age term and BMI further improved model fit 

(ΔLR-χ2(1)=619, p=1x10-136) and was therefore included. In order to minimise overfitting and to 

create a parsimonious model, only fixed effects were tested for polynomials and only the linear 

age fixed effect was tested for an interaction with BMI. Table 3.2 shows the results for the final 

linear mixed model. 

 

3.3.4 Model building of the proportional-hazards Cox models 

 
In the proportional-hazards Cox model (model 3), the addition of a quadratic longitudinal 

density term improved model fit (relative to the model including linear longitudinal density 

only: ΔLR-χ2(1)=15.0, p<0.001), but a cubic term did not improve model fit further (ΔLR-

χ2(1)=1.1, p=0.3). This non-linear relationship could also be seen in a plot of hazard ratios 

against longitudinal density. Figure 3.2 shows that the proportional-hazards model including a 

quadratic term for continuous longitudinal density mirrored the curved relationship seen 

between risk and longitudinal density when it was categorised into 6 arbitrary groups. There 

was little difference in risk between the highest 2 groups of longitudinal density; further 

showing the need for a quadratic term to capture the attenuating rate of increasing risk for the 

higher longitudinal density values. A non-linear relationship was also tested between breast 

cancer risk and age at baseline, BMI at baseline or most recent BMI, but model fit did not 

improve with inclusion of polynomial terms for these variables (likelihood ratio tests had 

p>0.05). 
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Table 3.3: Multivariable hazard ratios and statistical information on model fit from proportional-hazards Cox models using different breast density measures 

Model BMI Density 
No. of women at 

baseline (%) 

Multivariable Hazard 

Ratio (95% CI) 

df 

(model) 

LR-χ2 

(model) 

AIC 

(model) 

df 

(density) 

ΔLR-χ2 

(density) 

ΔAIC 

(density) 

1 Baseline 

Baseline BI-RADS  

5 607.4 58,361.0 3 296.2 290.2 

Fatty 10,387 (7.8) 0.59 (0.48-0.72) 

Scattered 46,206 (34.9) 1 [Reference] 

Heterogeneous 57,158 (43.2) 1.76 (1.61-1.93) 

Extremely dense 18,688 (14.1) 2.31 (2.04-2.63) 

2 
Most 

recent 

Most recent BI-RADS  

5 624.6 58,343.8 3 307.7 301.7 

Fatty 10,387 (7.8) 0.49 (0.40-0.60) 

Scattered 46,206 (34.9) 1 [Reference] 

Heterogeneous 57,158 (43.2) 1.71 (1.56-1.86) 

Extremely dense 18,688 (14.1) 2.11 (1.84-2.42) 

3 
Most 

recent 

Longitudinal density 

(continuous) 
 

4 696.5 58,269.9 2 379.6 375.6 
Linear (per unit) 132,439 (100) 5.53 (3.34-9.14) 

Quadratic (per unit2) 132,439 (100) 0.83 (0.76-0.92) 

4 
Most 

recent 

Longitudinal density (4 

category) 
 

5 629.3 58,339.2 3 312.3 306.3 
‘Fatty’ 10,383 (7.8) 0.59 (0.51-0.68) 

‘Scattered’ 46,208 (34.9) 1 [Reference] 

‘Heterogeneous’ 57,160 (43.2) 1.67 (1.52-1.83) 

‘Extremely dense’ 18,688 (14.1) 2.15 (1.89-2.46) 
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Table 3.3 continued 

5 
Most 

recent 

Longitudinal density (8 

category) 
 

9 692.1 58,284.4 7 375.1 361.1 

‘Fatty’ I 5,191 (3.9) 0.48 (0.36-0.63) 

‘Fatty’ II 5,192 (3.9) 0.83 (0.69-1.00) 

‘Scattered’ I 23,103 (17.4) 1 [Reference] 

‘Scattered’ II 23,105 (17.5) 1.43 (1.24-1.64) 

‘Heterogeneous’ I 28,569 (21.6) 1.82 (1.59-2.07) 

‘Heterogeneous’ II 28,591 (21.6) 2.44 (2.11-2.81) 

‘Extremely dense’ I 9,341 (7.1) 2.66 (2.23-3.17) 

‘Extremely dense’ II 9,347 (7.1) 3.03 (2.48-3.70) 

 

Hazard Ratios from Proportional-hazards Cox models for baseline BI-RADS density (model 1), most recent BI-RADS density (model 2), continuous longitudinal density (model 3), 4  

category longitudinal density (cut-points chosen so that 4 category longitudinal density and BI-RADS density have the same distribution of women at baseline (frequency matched) )  

and 8 category longitudinal density (cut-points chosen so that the distribution in each 4 category longitudinal density is halved); longitudinal density: predi cted density for each 

woman from linear mixed model; all models adjusted for age at baseline; baseline density additionally adjusted for baseline body mass index (BMI); most recent density and 

longitudinal density (continuous, 4 category and 8 category) additionally adjusted for most recent BMI; age, BMI and continuous longitudinal density fit as continuous variab les; 

continuous longitudinal density fit with a quadratic term; baseline, most recent, 4 category longitudinal and 8 category long itudinal density fit as factor variables; 95% confidence 

intervals (CIs) from Wald tests; ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age and BMI and a model additionally incorporating the 

density term(s); ΔAIC represents the difference in Akaike Information Criterion (AIC) between a model fit to age and BMI and a model additionally incorporatin g the density 

term(s). 
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Time (yr) 0-5 5-10 10-15 15+ 

No. at start of period 132,439 68,307 37,302 19,563 

No. of events 1,159 864 487 194 

ΔLR-χ2 (density)* 
Most recent 187.2 98.7 31.1 13.9 

Longitudinal 221.7 133.6 43.6 8.3 

Figure 3.3: Yearly mean concordance index (yC) through time for most recent density and longitudinal density. 

*ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at baseline and most recent body mass index (BMI) and a model additionally 

incorporating the density term(s). 
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Figure 3.4: Comparison of observed relative risk distributions for most recent density and longitudinal density.  

(a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr, 10yr and 15yr (HRs relative to the average HR at 0.5yr for each model); (b) 

Graph showing the percentage of women in the lowest (<1/2 relative HR) and highest (2+ relative HR) risk groups at each 6 mon th period. 
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Table 3.4: Multivariable hazard ratios and statistical information on model fit from proportional -hazards Cox models using different breast density measures (subgroup of women 

with at least 3 mammograms (n=76,313), starting follow-up at third mammogram) 

 

Model BMI Density 
No. of women 

at baseline (%) 

Multivariable Hazard 

Ratio (95% CI) 

df 

(model) 

LR-χ2 

(model) 

AIC 

(model) 

df 

(density) 

ΔLR-χ2 

(density) 

ΔAIC 

(density) 

1 Baseline 

Baseline BI-RADS  

5 397.8 45,677.0 3 178.3 172.3 

Fatty 4,901 (6.4) 0.68 (0.54-0.84) 

Scattered 26,151 (34.3) 1 [Reference] 

Heterogeneous 36,351 (47.6) 1.65 (1.49-1.83) 

Extremely dense 8,910 (11.7) 2.11 (1.83-2.43) 

2 Most recent 

Most recent BI-RADS  

5 411.6 45,663.2 3 186.1 180.1 

Fatty 4,901 (6.4) 0.53 (0.42-0.66) 

Scattered 26,151 (34.3) 1 [Reference] 

Heterogeneous 36,351 (47.6) 1.58 (1.43-1.74) 

Extremely dense 8,910 (11.7) 1.85 (1.58-2.17) 

3 Most recent 

Longitudinal density (continuous)  

4 477.9 45,594.9 2 252.5 248.5 Linear (per unit) 76,313 (100) 5.35 (3.10-9.24) 

Quadratic (per unit2) 76,313 (100) 0.82 (0.74-0.91) 

4 Most recent 

Longitudinal density (4 category)  

5 434.4 45,640.4 3 208.9 202.9 

‘Fatty’ 4,899 (6.4) 0.51 (0.41-0.64) 

‘Scattered’ 26,152 (34.3) 1 [Reference] 

‘Heterogeneous’ 36,348 (47.6) 1.63 (1.48-1.81) 

‘Extremely dense’ 8,914 (11.7) 2.09 (1.78-2.46) 
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Table 3.4 continued 

5 Most recent 

Longitudinal density (8 category)  

9 465.2 45,617.6 7 239.8 225.8 

‘Fatty’ I 2,449 (3.2) 0.49 (0.35-0.69) 

‘Fatty’ II 2,450 (3.2) 0.65 (0.48-0.88) 

‘Scattered’ I 13,080 (17.1) 1 [Reference] 

‘Scattered’ II 13,072 (17.1) 1.28 (1.10-1.50) 

‘Heterogeneous’ I 18,178 (23.8) 1.69 (1.47-1.95) 

‘Heterogeneous’ II 18,170 (23.8) 2.21 (1.90-2.58) 

‘Extremely dense’ I 4,457 (5.8) 2.46 (1.99-3.05) 

‘Extremely dense’ II 4,457 (5.8) 2.57 (2.03-3.25) 

 

Hazard Ratios from Proportional-hazards Cox models for baseline BI-RADS density (model 1), most recent BI-RADS density (model 2), continuous longitudinal density (model 3), 4  

category longitudinal density (cut-points chosen so that 4 category longitudinal density and BI-RADS density have the same distribution of women at baseline (frequency matched) )  

and 8 category longitudinal density (cut-points chosen so that the distribution in each 4 category longitudinal density is halved); longitudinal density: predicted de nsity for each 

woman from linear mixed model; all models adjusted for age at baseline; baseline density additionally adjusted for baseline  body mass index (BMI); most recent density and 

longitudinal density (continuous, 4 category and 8 category) additionally adjusted for most recent BMI; age, BMI and c ontinuous longitudinal density fit as continuous variab les; 

continuous longitudinal density fit with a quadratic term; baseline, most recent, 4 category longitudinal and 8 category long itudinal density fit as factor variables; 95% confidence 

intervals (CIs) from Wald tests; ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age and BMI and a model additionally incorporating the 

density term(s); ΔAIC represents the difference in Akaike Information Criterion (AIC) b etween a model fit to age and BMI and a model additionally incorporating the density 

term(s). 
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Time (yr) 0-5 5-10 10-15 15+ 

No. at start of period 76,313 41,326 21,731 3,743 

No. of events 1,308 556 281 24 

ΔLR-χ2 

(density)* 

Most recent 119.1 57.4 15.4 6.4 

Longitudinal 168.5 78.3 13.8 3.2 

Figure 3.5: Yearly mean concordance index (yC) through time for most recent density and longitudinal density (subgroup of women with at  least 3 mammograms (n=76,313), 

starting follow-up at third mammogram). 

*ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at baseline and most recent body mass index (BMI) and a model additionally 

incorporating the density term(s). 
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Figure 3.6: Comparison of observed relative risk distributions for most recent density and longitudinal density ( subgroup of women with at least 3 mammograms (n=76,313), 

starting follow-up at third mammogram). 

(a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr, 10yr and 15yr (HRs relative to the average HR at 0.5yr for each model); (b) 

Graph showing the percentage of women in the lowest (<1/2 relative HR) and h ighest (2+ relative HR) risk groups at each 6 month period. 



106 

 

3.3.5 Measures of predictive ability  

 
As expected, baseline, most recent and longitudinal density were strongly associated with risk 

(Table 3.3). Longitudinal density added 28% more statistical information to a model with age 

and BMI than baseline density (ΔLR-χ2(2)=379.6 vs. ΔLR-χ2(3)=296.2, respectively) and 23% 

more statistical information than most recent density (ΔLR-χ2(2)=379.6 vs. ΔLR-χ2(3)=307.7, 

respectively). Similar results were observed with AIC statistics. Moreover, this improvement 

was attained with fewer degrees of freedom. Longitudinal density was also fit as a categorical 

variable to compare the model performance at different levels of granularity (frequency matched 

with baseline BI-RADS density). Eight-category longitudinal density had better model fit than 

four-category longitudinal density (ΔLR-χ2(7)=375.1 vs. ΔLR-χ2(3)=312.3), which improved 

further (and with fewer degrees of freedom) when fitting a continuous variable (ΔLR-

χ2(2)=379.6). The gradient of risk for longitudinal density also increased with finer granularity. 

With eight-category longitudinal density, the densest breasts had a six-fold greater risk than the 

fattiest breasts (‘Extremely dense’ II HR=3.03 (95% CI, 2.48 to 3.70) vs. ‘Fatty’ I HR=0.48 

(95% CI, 0.36 to 0.63)), but only a four-fold increased risk was seen with baseline density 

(Extremely dense HR=2.31 (95% CI, 2.04 to 2.63) vs. Fatty HR=0.59 (95% CI, 0.48 to 0.72)) 

and most recent density (Extremely dense HR=2.11 (95% CI, 1.84 to 2.42) vs. Fatty HR=0.49 

(95% CI, 0.40 to 0.60)). 

 

3.3.6 Measures of discriminatory accuracy 

 
Figure 3.3 compares the yearly mean concordance index measures for most recent density 

(model 2) and longitudinal density (model 3). Baseline density was not included at this stage 

because it was the worst performing density measure in terms of predictive ability. In the first 

13 years of follow-up, longitudinal density had better discriminatory accuracy than most recent 

density, as reflected in the likelihood ratio statistics for the first 15 years of follow-up. Of note, 

the concordance index measures differed at baseline between most recent density and 

longitudinal density because longitudinal density is adjusted for age and BMI and therefore 

takes into account their population effects. The overall mean concordance index was 0.634 

(95% CI, 0.623 to 0.645) for most recent density and 0.642 (95% CI, 0.631 to 0.652) for 

longitudinal density.  

 

3.3.7 Assessment of risk stratification 

 
In Figure 3.4, the relative distributions of risk using most recent and longitudinal density were 

similar, with a comparable proportion of women categorised as highest and lowest risk using 

either model 2 or 3. Therefore, the ability for risk stratification was somewhat similar when 

using longitudinal density or most recent density. When stratified by age at baseline, 
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longitudinal density categorised a greater proportion of women as high- and low-risk than most 

recent density in women 60 years or older (appendix A.V-A.VII). 

 

3.3.8 Secondary analyses 

 
In subgroup analyses, longitudinal density continued to provide greater statistical information 

than baseline density and most recent density regardless of age at baseline, before or after 2007 

(proxy for film or digital mammography), before or after 2003 (proxy for the 3rd or 4th BI-RADS 

density lexicon), or menopausal status. Longitudinal density also provided greater statistical 

information than baseline density and most recent density when assessed in the subgroup of 

women with long follow-up, including those likely to have been transitioning from 

premenopausal to postmenopausal status (appendix A.X-A.XV). 

 

Tests for the addition of density trajectories to the longitudinal model (LR-χ2(5)=700.5 and 

AIC=58,267.9) showed only a small improvement on model 3 in terms of predictive ability 

(ΔLR-χ2(1)=4.0, p=0.046, ΔAIC=2.0). This resulted in an additional 1% statistical information 

output than using longitudinal density alone. Tests for an interaction between longitudinal 

density and age or BMI were not significant (HR for the interaction with age at baseline=1.00 

(95% CI, 0.99 to 1.01), p=0.5; HR for the interaction with BMI=1.02 (95% CI, 1.00 to 1.03), 

p=0.08). Exploratory tests for an interaction between baseline density and age at baseline or 

BMI at baseline were not significant (p>0.05). Similarly, exploratory tests for an interaction 

between most recent density and age at baseline or most recent BMI were not significant 

(p>0.05). 

 

When analyses were restricted to women with at least three mammograms (n=76,313 (58% of 

the cohort), 2,169 invasive breast cancers), statistical information output increased to 42% more 

than baseline density (compared with a model including age and BMI only: ΔLR-χ2(2)=252.5 

vs. ΔLR-χ2(3)=178.3, respectively) and 36% more than most recent density (compared with a 

model including age and BMI only: ΔLR-χ2(2)=252.5 vs. ΔLR-χ2(3)=186.1, respectively), with 

similar results for AIC statistics (Table 3.4). Longitudinal density had better model fit as an 

eight-category variable than a four-category variable (ΔLR-χ2(7)=239.8 vs. ΔLR-χ2(3)=208.9), 

and an even better fit as a continuous variable (ΔLR-χ2(2)=252.5). Risk gradient between the 

densest and fattiest breasts was five-fold with eight-category longitudinal density (‘Extremely 

dense’ II HR=2.57 (95% CI, 2.03 to 3.25) vs. ‘Fatty’ I HR=0.49 (95% CI, 0.35 to 0.69)), but 

only three-fold with baseline density (Extremely dense HR=2.11 (95% CI, 1.83 to 2.43) vs. 

Fatty HR=0.68 (95% CI, 0.54 to 0.84)) and most recent density (Extremely dense HR=1.85 

(95% CI, 1.58 to 2.17) vs. Fatty HR=0.68 (95% CI, 0.54 to 0.84)). The overall mean 

concordance index measures for most recent and longitudinal density were 0.623 (95% CI, 



108 

 

0.611 to 0.635) and 0.633 (95% CI, 0.621 to 0.644), respectively. The graph of yearly mean 

concordance index measures in the subgroup of women with at least three mammograms is 

shown in Figure 3.5. This, however, is not comparable to Figure 3.3 since follow-up starts at the 

third mammogram so all women are older at baseline and the age range of the cohort decreases; 

therefore discriminatory accuracy reduces for both most recent and longitudinal density. In 

Figure 3.6, the relative distributions of risk using longitudinal density and most recent density in 

the subgroup of women with at least three mammograms were again similar. When stratified by 

age at baseline, longitudinal density categorised a greater proportion of women as high-risk for 

women 40-50 years at baseline, a greater proportion as low-risk for women 50-60 years at 

baseline, and a greater proportion as low- and high-risk for women 60 years at baseline 

(appendix A.XVI-A.XVIII). 

 

3.3.9 Sensitivity analyses 

 
In sensitivity analyses, longitudinal density provided 29% and 30% more information than 

baseline density and most recent density, respectively, when mammograms with a missing 

corresponding BMI were removed (n=129,748 (98% of the cohort), 2,668 invasive breast 

cancers) (appendix A.VIII). Furthermore, longitudinal density provided 31% and 23% more 

information than baseline density and most recent density, respectively, when screen-detected 

mammograms were removed (n=132,439 (100% of the cohort)) (appendix A.IX). 

 

3.4 Discussion 

 

This cohort study found that using a woman’s longitudinal history of breast density may 

improve risk prediction beyond using her baseline density or most recent density. Longitudinal 

density had the greatest predictive ability of the density measures, providing approximately a 

quarter more statistical information than baseline or most recent density. Women in the highest 

category of longitudinal density had a six-fold greater risk of developing breast cancer than 

women in the lowest category; but only a four-fold greater risk was seen with BI-RADS density 

at baseline or most recent mammogram. The benefit of longitudinal density for breast cancer 

risk estimation was not limited by age, menopausal status, image type or BI-RADS density 

classification lexicon. Discriminatory ability was also greatest with longitudinal density, 

whereby a small proportion more women were correctly classified as having breast cancer when 

using longitudinal density than when using the single measure for most recent density. 

 

These results support previous findings that suggest an improvement in predictive ability of 

breast cancer risk estimation when using breast density values from more than one time point 

(262). In 2015, Kerlikowske et al. assessed BI-RADS density in a screening cohort of over 
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700,000 women from the Breast Cancer Surveillance Consortium, where a two-measure density 

score was developed combining each woman’s first and last BI-RADS density taken on average 

1.8 years apart (262). They found a slight improvement to the Breast Cancer Surveillance 

Consortium 5-year risk model when using the two-measure BI-RADS score compared with the 

one-measure BI-RADS score, whereby AUC for the two-measure score was 0.005 units higher 

than that for the one-measure score. Several other studies have made use of two serial 

mammograms (254-261, 323), however these studies aimed to assess the association between 

change in density and breast cancer risk (no specific intervention) as opposed to assessing the 

predictive ability of using both mammograms compared with just one. Results from most of 

these studies suggest that density change between two serial mammograms is associated with 

change in breast cancer risk (254, 257-261), indicating the benefit of considering more than one 

time point for breast cancer risk estimation. However, the Breast Cancer Surveillance 

Consortium study is the only other known study to have evaluated predictive ability when using 

more than one density measure (262). 

 

The results suggest that the main advantage of longitudinal density is in its ability to act as a 

shrinkage estimator, making use of multiple data points to reduce measurement error (324). This 

is apparent because the predictive ability of longitudinal density improved substantially when it 

was modelled as a finer-grained variable which allowed density to be measured to a greater 

level of precision. Additionally, only a small benefit was seen when including random slopes to 

the model which represented each woman’s density trajectory over time; suggesting a high level 

of density tracking (which has been seen before (325, 326)). The ability of longitudinal density 

to act as a shrinkage estimator also makes it a potentially useful tool for other aspects of density 

assessment including use as an outlier detection technique whereby observed values that deviate 

significantly from a predicted value could be flagged-up for investigation. 

 

In this study, predictive and discriminatory ability improved with longitudinal density, however 

the capacity for risk stratification was somewhat similar for longitudinal density and most recent 

density. This may have been driven by the adjustment for age and BMI only. The ability to 

separate out extreme risk groups with longitudinal density might improve with the inclusion of 

other risk factors in the proportional-hazards Cox model alongside age and BMI, and remains a 

point for further investigation. There was better separation of high- and low-risk women with 

longitudinal density than most recent density for older ages (particularly 60 years and over). 

This is because the range of density values for most recent density in older women was small 

(all women were likely to have had fatty breasts), whereas longitudinal density accounted for 

previously high density values, hence giving it a greater range and ability to stratify risk. Of 

note, the proportion of women classified as high-risk increased and the proportion of women 

classified as low-risk decreased throughout follow-up when using either most recent or 
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longitudinal density. This is due to aging of the cohort. Risk scores were determined by age, 

which increased throughout the follow-up and hence increased the risk scores. Therefore, 

through time, women moved from a lower 10-year risk into a higher 10-year risk. Another 

notable point is the decreasing concordance index values for both most recent and longitudinal 

density throughout the follow-up. Again, this is due to aging of the cohort and narrowing of the 

age range through time. For example, at baseline the women at-risk were aged 40-73 years, but 

after 10 years the women at-risk would have been 50-74 years (the maximum is 74 years 

because of censoring at 75 years of age). Since the concordance index was based on a risk score 

that was indicated by age, it lost discriminatory ability through the follow-up regardless of the 

density measure. It is also noted that the improvement in discriminatory ability for longitudinal 

density compared with most recent density potentially attenuated towards the end of follow-up; 

which was possibly driven by fewer events occurring in this latter stage of follow-up which 

limited statistical power. 

 

The major strength of this study is the ability to model a woman’s entire history of density; 

including an unlimited number of mammograms arbitrarily spaced through time. This makes 

longitudinal density a particularly useful tool for clinical practice where women can have a 

number of mammograms taken at any point in time. Furthermore, predicting a woman’s 

longitudinal density at each time point using only her current and previous densities would 

allow for the measure to be continually updated at each screening visit. Longitudinal density is 

not limited to any one density measurement technique, and it could just as easily be developed 

using semi-automated or fully-automated area-based or volumetric techniques. Predictive 

accuracy of breast cancer risk models that estimate personal breast cancer risk scores, such as 

the Tyrer-Cuzick, Gail or BCSC model, may also improve with the inclusion of longitudinal 

density. Using longitudinal density to assess risk of breast cancer may also prevent fluctuations 

in classifying women into different risk categories. For example, a women who has always had 

a high BI-RADS category 4 density that decreases to a BI-RADS category 3 could drop into a 

lower risk category that excludes her from supplemental screening or eligibility for 

chemoprevention. However, assessing her breast cancer risk using longitudinal density would 

take into account all of her previous measures and hence be more conservative with decreasing 

her risk. 

 

A limitation of the study is that BI-RADS density categories were modelled as quantitative 

integer values to crudely approximate a linear association between density and the age and BMI 

predictors in the linear mixed model. It was considered best to first investigate longitudinal 

density using this simple linear model to identify if there is indeed an added benefit in assessing 

a woman’s history of density, and from this, a more complex model could be developed. It may 

be that other models, for example a multinomial or ordinal logit model, better fit the data and 
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perhaps outperform the linear model (327). Furthermore, the linear mixed model used to 

develop longitudinal density was adjusted for age and BMI only. Including additional 

confounders of density such as HRT use, benign breast disease or reproductive factors might 

improve model fit and also the approximation of longitudinal density. Finally, the distribution of 

breast cancer risk was somewhat similar when using most recent or longitudinal density. Again, 

including additional breast cancer risk factors could potentially improve this risk stratification.  

 

There are many ideas for future work on longitudinal density. These include evaluating the 

benefit of longitudinal density in different cohorts of women such as younger or older women 

outside of the routine screening age, or women at increased risk due to a family history of breast 

cancer. Assessment using other density measures including volumetric or semi/fully-automated 

methods would also be useful. Improving the prediction of longitudinal density is another area 

of future work. It is not yet known whether all previous density values are needed to predict 

longitudinal density, or whether the value of historical density measures reduces in time. It may 

be useful to up-weight more recent density measures or perhaps apply ‘forgetting factors’ to the 

linear mixed model to down-weight older measures (328). Moreover, previous research suggests 

a possible benefit of assessing the extent of density fluctuation through time (329), which has 

the potential to further improve the prediction of longitudinal density. Moreover, as mentioned 

earlier, a multinomial or ordinal logit model may improve model fit for the longitudinal density 

measure (327). The value of longitudinal density in assessing response to treatment also 

requires assessment in a future study. It may be that an observed decrease in density greater than 

that predicted from individual density trajectories is indicative of a response to treatment. 

Finally, the assessment of breast cancer risk with longitudinal density could potentially be 

improved by using different approaches for modelling risk. These include combining additional 

risk factors into the proportional-hazards Cox model, incorporating a longitudinal BMI measure 

(predicted using a similar linear mixed model approach), or using a joint longitudinal-survival 

model to maximise the likelihood of random effects that are common to both the mixed model 

and the proportional-hazards model simultaneously (327, 330, 331). 

 

3.5 Conclusion 

 

In this study, longitudinal density was shown to have greater predictive ability, better 

discriminatory accuracy and a higher risk gradient between the extreme density categories than 

a single measure of baseline or most recent density. Including information on a woman’s history 

of mammographic density has the potential to improve the accuracy of breast cancer risk 

estimation and its implementation in breast cancer prevention strategies should be considered. 
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Chapter 4: Mammographic density, endocrine therapy and breast cancer 

risk: a prognostic and predictive biomarker review 

 

4.1 Background 

 

4.1.1 Description of the intervention 

 
Selective oestrogen receptor modulators (SERMs) and aromatase inhibitors (AIs) are two types 

of endocrine drug used as therapy for ER+ breast cancers. SERMs prevent breast cancer (198, 

200), and in the adjuvant setting, they reduce the chance that breast cancer will reoccur when it 

has been diagnosed at an early stage (332, 333). SERMs work by competing with oestrogen 

molecules for oestrogen receptor binding sites, hence reducing the amount of oestrogen uptake 

in breast tumours. SERMs are therefore effective in ER+ breast cancers only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Mechanism for selective oestrogen receptor modulators (SERMs) competing with oestrogen 

for binding sites. 

 
AIs are suitable for postmenopausal women only, and they are associated with greater average 

reductions in the risk of breast cancer (208, 334), and recurrence than SERMs (335). Like 

SERMs, AIs reduce oestrogen levels, but they instead work by inhibiting oestrogen synthesis in 

peripheral tissue by preventing the aromatase enzyme from converting adrenal androgens 

(androstenedione and testosterone) into oestrogens (estrone and estradiol). This process, known 

as aromatisation, is the main source of oestrogen after the menopause. 
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Figure 4.2: Mechanism for aromatase inhibitors (AIs) blocking oestrogen production in peripheral tissue 

(subcutaneous adipose tissue, liver, muscle, or brain). 

 

4.1.2 How the biomarker might be related to treatment response 

 

The biomarker for this review is mammographic density. As described in Chapter 1, exogenous 

hormones can change a woman’s mammographic density. For instance, HRT increases density 

as well as breast cancer risk (188, 189). However, after cessation of HRT, mammographic 

density has been shown to decrease in as little as four weeks (195), and within a couple of years, 

breast cancer risk is likely to return to the same level as a non-HRT user (197). Treatment with 

certain SERMs can also decrease density more so than would be expected with age (203-206, 

336), but the evidence for AIs is less clear (267-271, 337). There is evidence to suggest that 

increased risk from combination HRT is mediated by density (142, 338, 339), and that change 

in density may be an appropriate biomarker for response to SERMs used for both prevention 

(19) and treatment (263-266). A working hypothesis is that density reduction in women 

receiving endocrine therapy for treatment or prevention might indicate who is responding to the 

drug, making it a reliable surrogate outcome and biomarker for treatment efficacy. The 

underlying biological mechanism is still unclear, but one theory is that decreases in density 

reflect the body’s ability to effectively metabolise the drug (340). 

 

4.1.3 Why it was important to do this review 

 

This review firstly aimed to assess the evidence that endocrine therapy-induced change in 

mammographic density is a prognostic biomarker (341). A prognostic biomarker is a measure 
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associated with a clinical outcome of interest in a defined group of patients. This is standard in 

the adjuvant setting when the group of patients has a health condition such as breast cancer. 

Several prognostic factors in the adjuvant setting include tumour size, grade and lymph node 

involvement, as well as biomarkers such as Ki67 and genetic scores such as OncotypeDX (342, 

343). The terminology for prognostic biomarkers associated with breast cancer in healthy 

women in the preventive setting is less frequently used. Prognostic biomarkers in healthy 

women are more commonly called risk factors. These include age, a family history of breast 

cancer, BMI and reproductive factors such as age at first full term birth and number of children 

(223). 

 

The second aim of this review was to assess the evidence that endocrine therapy-induced change 

in mammographic density is a predictive biomarker, such that it is a measure that is different in 

the presence of treatment and is therefore associated with response to treatment (344). Some, 

but not all, prognostic biomarkers are predictive biomarkers. Two examples for women with 

breast cancer are human epidermal growth factor receptor (HER-2) and ER status. HER-2 was 

first identified as a prognostic factor for breast cancer, and was subsequently recognised as a 

predictive biomarker whereby treatment with trastuzumab was shown to be effective for women 

with HER-2 breast cancer. ER status is a prognostic biomarker and a predictive biomarker for 

SERM and AI treatments, whereby these treatments improve clinical outcomes in ER+ patients 

only. 

 

There are currently no systematic reviews that focus on the evidence that mammographic 

density reduction in women receiving endocrine therapy is a prognostic or predictive biomarker. 

However, some other reviews on the topic have been published, including a study by Shawky et 

al. (345). This reported seven studies of density change as a prognostic factor for women 

receiving a SERM or AI in the adjuvant setting, but there were no data from a randomised trial 

or otherwise to evaluate change in mammographic density after initiation of adjuvant treatment 

as a predictive biomarker. For prevention, only one study (a case-control study from within a 

randomised control trial) was identified that evaluated density change as a prognostic and 

predictive biomarker. Another recent review by Kanbayti et al. assessed the relationship 

between mammographic density reduction following breast cancer treatment and patient 

outcomes, although this was not specific to women receiving endocrine therapy (346). This 

review reported nine studies of density reduction as a prognostic factor for women receiving 

breast cancer treatment, but, again, there were no data to evaluate change in mammographic 

density as a predictive biomarker in the adjuvant setting. 

 

This review should help to guide clinical decisions about whether to continue treatment or 

switch to another treatment regime, understand the aetiology of breast cancer development, 
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improve the design of trials in terms of implementing a surrogate marker, and improve 

personalised risk assessment (347). Findings are likely to be important to: clinicians and their 

patients undergoing or considering endocrine therapy by helping to predict response to 

treatment beyond the current ‘wait and see’ approach; regulators and ethics boards considering 

trials of products that use mammographic density reduction as a surrogate endpoint; and those 

with an interest in mechanisms by which endocrine therapy improves clinical outcomes. 

Additionally, as discussed in the study by Mullooly et al., had the randomised trials of SERMS 

and AIs included density change as a potential prognostic or predictive biomarker, then different 

conclusions might have been drawn regarding their effectiveness (348). For instance, in the 

ATAC trial, the AI anastrozole was shown to be more effective than the SERM tamoxifen in 

reducing risk of postmenopausal breast cancer recurrence (349). However, it is possible that 

women who had density reductions with tamoxifen might have had greater treatment benefits 

than those on anastrozole. Another possibility is that women who see density increases 

following a short-term decrease might in fact show resistance to the treatment (350, 351), but 

this is still unknown and requires investigation. 

 

4.2 Objectives 

 

The objective of the review was to synthesise available evidence testing whether 

mammographic density reduction in the preventive or adjuvant setting is (i) a prognostic 

biomarker and (ii) a predictive biomarker. Both prognostic and predictive biomarker reviews 

considered prevention and treatment populations separately, and within these, SERMs and AIs 

were considered separately.  

 

4.3 Methods 

 

This review was written according to PRISMA (352) and Remark (353, 354) guidelines. 

 

The aim was to conduct a literature-based analysis to identify relevant studies that could then be 

used in a subsequent individual-level analysis. This individual-level meta-analysis is not 

included in the thesis, but is instead proposed as a future review that should help to account for 

heterogeneity between the studies in terms of the participants, length of follow-up, 

mammographic density measures, cut-points and overall study design (347, 355). 

 

The methods described in this chapter outline the proposed procedure for conducting the 

systematic review. A version of this review plan is published as a Cochrane review protocol 

(356). At the review stage, it was decided that the studies were too heterogeneous to be able to 

combine into a meaningful meta-analysis. However, the full methodology is still presented 
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because it contains important information regarding other elements of the review and it explains 

the approach taken for conducting the literature-based analysis. 

 

4.3.1 Criteria for considering studies for this review 

 

4.3.1.1 Types of study designs 

 

Randomised and non-randomised observational studies (prospective and retrospective cohort 

and case-control studies) were included for both the prognostic and predictive reviews. Studies 

based on exploratory biomarkers whereby density was one of several biomarkers were included. 

 

4.3.1.2 Types of participants 

 

Studies were included if they had subsets that met the following participant criteria, but only the 

relevant subset data was to be extracted for the meta-analysis. 

 

For both the prognostic and predictive biomarker reviews, all adult women aged 18 years or 

older, with or without breast cancer (denoted respectively as treatment and prevention) were to 

be included based on the following criteria. 

 

 Treatment: women with early stage hormone receptor (oestrogen (ER) or progesterone 

(PgR))-positive breast cancer. This was defined to be women who had been diagnosed with 

histologically proven operable invasive hormone receptor-positive breast cancer or DCIS, 

and who were candidates to receive adjuvant endocrine therapy. There was to be no clinical 

evidence of metastatic disease to minimise the risk of a recurrence or contralateral breast 

cancer being a misclassified metastasis. Women were to be considered ineligible if their 

breast density measurements were not made on the contralateral breast because there was a 

risk that tumours may have been misclassified as dense tissue. For this same reason, women 

were to be considered ineligible if they had bilateral breast cancer. 

 

 Prevention: women who had not previously been diagnosed with invasive breast cancer or 

DCIS. Women of all levels of increased risk due to genetic factors (including BRCA1/2 

gene mutations or a family history of the disease, or both) or otherwise assessed by an 

absolute or relative risk prediction model were to be included. If women had breast implants 

or if they had undergone risk-reducing mastectomies, they were to be excluded. This was 

considered because these factors affect the ability to produce accurate density estimates. 
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Women were to be at-risk for at least the length of time between baseline and follow-up 

mammogram. Women could be included if they changed treatment or discontinued treatment 

throughout their follow-up, but they were to be excluded if they changed treatment between 

their mammograms as this may have affected the change in density. However, women could be 

included if they discontinued treatment between mammograms. Women were to be excluded if 

they received another SERM or AI before treatment because these effects may have continued 

into the second period of treatment. 

 

For AI comparisons, women had to be postmenopausal at the start of treatment; for SERM 

comparisons, they were allowed to be pre- or postmenopausal. The definition of 

postmenopausal women included women who had undergone a bilateral oophorectomy, or 

women who were aged more than 60 years, or women who were aged 40 to 59 years with an 

intact uterus and who were amenorrhoeic for at least 12 months. Women were to be excluded if 

they were rendered temporarily postmenopausal through medical interventions (e.g. 

gonadotropin-releasing hormone (GnRH) analogues).  

 

4.3.1.3 Types of interventions 

 

4.3.1.3.1 Interventions 

 

Studies were included if they had subsets that met the following intervention criteria, but only 

the relevant subset data was to be extracted for the meta-analysis. Studies including women 

receiving doses lower or higher than those outlined below were included, but for the meta-

analysis, these women were to be included in a secondary dose-response analysis only. Studies 

involving a mixture of women receiving SERMs and AIs were included, but for the meta-

analysis, these studies were to be included in the main analysis if the results could be separated 

by treatment; otherwise they were to be included in a secondary analysis only. 

 

For both the prognostic and predictive biomarker reviews, women were to be included if they 

received SERMs at the following minimum doses (357): Tamoxifen, 20 mg daily; Raloxifene, 

60mg daily; Lasofoxifene, 0.25mg daily; Arzoxifene, 20mg daily; Droloxifene, 40 mg daily; 

Bazedoxifene, 20 mg daily; and Fulvestrant, 250 mg monthly. Women were to be included if 

they received AIs at the following minimum doses: Anastrozole, 1 mg daily; Letrozole, 2.5 mg 

daily; and Exemestane, 25 mg daily. All treatments were to be orally-consumed, except 

Fulvestrant (intramuscular). Treatment was to be received for at least the length of time between 

baseline and follow-up mammogram (i.e. intended for at least 1 year). 
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4.3.1.3.2 Co-interventions 

 

Studies were included if they had subsets that met the following co-intervention criteria, but 

only the relevant subset data was to be extracted for the meta-analysis. The same types of co-

interventions were allowed for both the prognostic and predictive biomarker reviews. 

 

For treatment, women were to be considered ineligible if they had not completed primary loco-

regional treatment (surgery or radiotherapy, or both) and systemic treatment (chemotherapy or 

targeted therapy, either neoadjuvant or adjuvant) with curative intent. Women were to be 

considered ineligible if there was a gap of more than eight weeks between different treatment 

interventions, for example, between surgery and the start of radiotherapy, or if endocrine 

treatment was started more than 28 days before surgery. 

 

If women used HRT either during the study or up to 2 years before baseline, they could be 

included, but this was to be noted in the ‘Risk of bias’ assessment where relevant. Other co-

interventions were permitted, including exercise and diet advice, but these were also to be noted 

in the ‘Risk of bias’ assessment where relevant. 

 

4.3.1.3.3 Comparators 

 

The main difference between the prognostic and predictive biomarker review was the 

comparator. 

 

 Prognostic biomarker review: The comparison was within each intervention group (SERM 

or AI), whereby assessment was on the association between density change and outcome in 

women receiving the treatment. 

 

 Predictive biomarker review: The comparison was within each study, whereby assessment 

was on the association between density change and outcome in the intervention group 

compared with a control group. The within-study comparator group was defined as a 

corresponding randomised placebo group, or a non-randomised control group of women not 

receiving endocrine therapy. 

 

4.3.1.4 Biomarker 

 

The same definition of biomarker was used for both the prognostic and predictive reviews. A 

measure of mammographic density was required at baseline (start of endocrine therapy or study 

entry in those from the control group) and follow-up mammogram.  
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Studies were included if they had subsets that met the following biomarker criteria, but only the 

relevant subset data was to be extracted for the meta-analysis. 

 

For treatment, baseline mammograms could be taken before or after diagnosis, but they were to 

be no more than 2 years before the initial breast cancer diagnosis so that they represented the 

breast at the time of diagnosis as closely as possible. For treatment and prevention, baseline 

mammograms had to be taken before the start of treatment (or study entry) so that they reflected 

the breast phenotype before the effects of endocrine treatment. A follow-up mammogram had to 

be performed 90 days to 3 years after the start of endocrine treatment (or study entry), with the 

density closest to 1 year from the start of endocrine therapy (or study entry) selected if there was 

a choice. 

 

Range and average timings were recorded for the following (if they were available): time 

between baseline mammogram and diagnosis, time between diagnosis and start of endocrine 

therapy (or study entry), and time between start of endocrine therapy (or study entry) and 

follow-up mammogram. 

 

Density methods had to have been shown in more than one study (outside of the review studies) 

to have a relationship with breast cancer risk. Acceptable density methods included (but were 

not limited to) the following percentage methods: 

 

 Visual assessment by expert in 5% bands (%). 

 Visual assessment by expert in 20% bands (Boyd categories). 

 Visual assessment by expert as continuous percentage (%). 

 Semi-automated thresholding such as using ‘Cumulus’ software (23) by expert (or trained) 

reader (%). 

 Fully-automated percentage (based on area of density) (%). 

 Fully-automated volumetric percentage (e.g. Volpara, (44)) (%). 

 

Acceptable absolute density methods included (but were not limited to) the following: 

 

 Semi-automated thresholding such as using ‘Cumulus’ software (23) by expert (or trained) 

reader (cm2). 

 Fully-automated absolute density (based on area of density) (cm2). 

 Fully-automated volumetric absolute density (e.g. Volpara, (44)) (cm3). 
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Acceptable categorical density measures included (but were not limited to) the following: 

 

 BI-RADS density (18). 

 Wolfe grade (358). 

 Tabar grade (15). 

 

Information on the reliability of density measures was also used to qualitatively assess the 'Risk 

of bias’ due to measurement of the biomarker. Such information included: 

 

 The correlation between repeated measures from repeat mammograms. 

 Whether different readers of density were used and whether the same reader assessed 

mammograms from the same woman. 

 Intra-class correlation coefficients and Bland-Altman limits of agreement (359) to assess 

intra- and inter-reader reliability. 

 Whether the reader was blinded to case status. 

 Whether the reader was blinded to treatment allocation. 

 Whether randomisation was per mammogram (mammograms read independently) or per 

woman (mammograms for each woman read with the knowledge of her other 

mammograms). 

 Whether the order of per woman mammograms was sequential or random and assessed one 

at a time or simultaneously. 

 

If different definitions or measures of mammographic density were used between the time-

points used to assess density change, these women or studies were excluded. 

 

4.3.1.5 Types of outcome measures 

 

The same outcome measures were used for both the prognostic and predictive reviews. 

 

Primary outcomes 

 

Potential benefits from treatment: 

 Treatment: breast cancer mortality (time to death caused by breast cancer).  

 Prevention: incidence of invasive breast cancer and DCIS.  
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Potential harms from treatment: 

 Treatment and prevention: rate of all serious adverse events. These included serious side 

effects noted for Tamoxifen (cataracts, pulmonary embolism or deep vein thrombosis and 

endometrial cancer) and Anastrozole (osteoporosis and bone fractures).  

 

Secondary outcomes 

 

Potential benefits from treatment: 

 Treatment: recurrence. 

 Treatment: incidence of a secondary primary breast cancer (e.g. in the contralateral breast). 

 Treatment: any recurrence or any death (disease-free survival).  

 Treatment: distant metastases. 

 Treatment: death from all causes (all-cause mortality).  

 Treatment: recurrence of invasive cancer only. 

 Treatment: recurrence of DCIS cancer only. 

 Prevention: incidence of invasive cancer only. 

 Prevention: incidence of DCIS cancer only. 

 

Potential harms from treatment: 

 Treatment and prevention: troublesome but not serious side effects observed for SERMs 

and AIs, including vasomotor symptoms and joint or muscle pain.  

 

’Summary of findings’ table for assessing the quality of the evidence  

 

A ’Summary of findings’ table was produced for each of the prognostic and predictive 

biomarker reviews, following the approach outlined by GRADE (360) and using GRADEpro 

GDT software (361). 

 

4.3.2 Search methods for identification of studies 

 

4.3.2.1 Electronic searches 

 

The following databases were searched: 

 

 The Cochrane Breast Cancer Group’s (CBCG’s) Specialised Register. Details of the search 

strategies used by the Group for the identification of studies and the procedure used to code 

references are outlined on the Group’s website (362). Trials were extracted and considered 
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for inclusion if they included the key words “Tamoxifen, Raloxifene, Lasofoxifene, 

Arzoxifene, Droloxifene, Bazedoxifene, Fulvestrant, Anastrozole, Letrozole, Exemestane, 

selective estrogen receptor modulator, aromatase inhibitor”. 

 CENTRAL (The Cochrane Library, latest issue). See appendix B.I. 

 MEDLINE (via OvidSP) from 1996 to present. See appendix B.II. 

 Embase (via OvidSP) from 1996 to present. See appendix B.III. 

 The World Health Organization (WHO) International Clinical Trials Registry Platform 

(ICTRP) search portal (363) for all prospectively registered and on-going trials. See 

appendix B.IV. 

 ClinicalTrials.gov (364). See appendix B.V. 

 

4.3.2.2 Searching other resources 

 

Bibliographic searching: Further studies were sort out from reference lists of identified relevant 

studies. A copy of the full article was to be obtained for each reference reporting a potentially 

eligible study. 

 

4.3.3 Data collection and analysis 

 

4.3.3.1 Selection of studies 

 

All retrieved titles and abstracts were independently reviewed by the author of this thesis 

(Emma Atakpa) and Dr Brentnall to assess eligibility against the inclusion criteria. Any 

disagreements at this stage were discussed and resolved. Full-text copies of all potentially 

eligible studies were then obtained and reviewed by the thesis author (Emma Atakpa) and Dr 

Brentnall. Any disagreements at this stage were resolved by Dr Mangesh Thorat (the clinical 

expert on the systematic review). There was only one disagreement which regarded the 

inclusion of grey literature such as conference abstracts. It was determined that (although not 

explicitly stated in the protocol) only studies published in a peer-reviewed journal would be 

included and abstract-only records would be excluded as implied by the quotes: “We will obtain 

a copy of the full article for each reference reporting a potentially eligible trial” and “We will 

only include studies published in English” (356). Duplicate studies were recorded as one 

reference (for example, the same study but multiple papers with slightly different aims or 

follow-up). In this situation, the reference considered to be the most recent or up-to-date (largest 

number of participants, longest follow-up time, or correction to previous analysis) was included 

as the primary reference. Only studies published in English were included. The selection 

process was recorded in a PRISMA flow diagram (352) in the Review Manager 5 software 

(365). The whole process was recorded using the Covidence system (366). 
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4.3.3.2 Data extraction and management 

 

Data extraction was independently completed by the thesis author (Emma Atakpa) and Dr 

Brentnall using custom forms (appendix B.VI). Again, any disagreement at this stage was to be 

resolved by Dr Thorat (although this was not required). The following information was 

collected (if available): 

 

 Study design: type of study. For example, a nested case-control study from a randomised 

trial, or a non-randomised cohort study, or a case-control study. If there was matching, then 

what matching was by and to what level (e.g. age to plus/minus 2 years). Control group 

(women without treatment): yes/no. Whether a prognostic or predictive study, or both. For 

prognostic factor studies, what phase (following (355, 367)). 

 Participants: demographic information, including the number of participants, age, BMI, 

ethnicity, education. Summary statistics such as mean, interquartile range (or standard 

deviation) and range for age, BMI and absolute or relative baseline risk, or both, from a risk 

model (e.g. Gail model (222), Tyrer-Cuzick (223), BCSC (239)). Total number (percentage) 

postmenopausal, perimenopausal or premenopausal. For the predictive review, the previous 

variables were split by treatment or control group. 

 Biomarker: whether mammograms were from film (digitised for density or not) or full field 

digital mammography. Manufacturer of digital mammogram machine. Whether any pre-

processing was carried out for quality control of mammographic density. Density 

measure(s), and the range and average time between baseline mammogram and diagnosis, 

between diagnosis and start of endocrine therapy (or study entry), and between start of 

endocrine therapy (or study entry) and the follow-up mammogram. 

 Setting: country, whether in a high-risk clinic, a treatment clinic, time period, urban/rural. 

 Co-interventions: HRT use, chemotherapy use (treatment), targeted therapy use (treatment), 

radiotherapy use (treatment), neoadjuvant endocrine therapy use (treatment). 

 Follow-up time period: minimum, mean, median, interquartile range, standard deviation, 

maximum follow-up. 

 Sources of funding and stated conflicts of interest: descriptive text copied from sections in 

each paper. 

 

4.3.3.3 Assessment of risk of bias in included studies 

 

For the prognostic biomarker review, a modified version of the QUIPS tool (368) was used to 

assess the risk of bias affecting the included studies (369) using six domains: 
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 Study participation. 

 Attrition. 

 Measurement of density. 

 Measurement of the outcomes. 

 Confounding. 

 Statistical analysis. 

 

For the predictive biomarker review, the QUIPS tool was augmented with the ROBINS-I tool 

(370) to assess the risk of bias in estimation of an interaction between mammographic density 

change and treatment.  

 

'Risk of bias’ was independently conducted by the thesis author (Emma Atakpa) and Dr 

Brentnall, with disagreements to be resolved by Dr Thorat (although this was not required). For 

both prognostic and predictive biomarker reviews, the included studies were considered together 

and an individual ‘Risk of bias’ table was produced for each study (appendix B.VII). In the 

results, a narrative is presented identifying the risk of bias in the six domains across studies. 

Studies that had substantial potential for bias were to be excluded in the meta-analysis for a 

sensitivity analysis of the results. 

 

4.3.3.4 Measures of biomarker response 

 

4.3.3.4.1 Effect measure 

 

Studies were included in the quantitative synthesis if they had subsets that reported the 

following effect measures, but only the relevant subset data was to be extracted for the meta-

analysis. 

 

In both the prognostic and predictive biomarker reviews, the primary measure was to be the 

mean effect of treatment-induced density change over a five-year follow-up period. Other time 

periods could be included, but if they were split into different periods (e.g. 0 to 5 years, 5 to 10 

years) then periods outside of the initial five years were to be treated as a secondary analysis 

only in the meta-analysis. Results of the meta-analysis were to be presented as subgroups of 

similar cut-points and biomarkers using continuous measures, and reported as ratios whereby 

less than 1.0 was to favour a risk reduction associated with a decrease in mammographic density 

and greater than 1.0 was to indicate a risk increase. 

 

 Prognostic biomarker review: The primary measure was to be a hazard ratio (cohort study 

with time to event) or an odds ratio (case-control study) for the effect of density change. 
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Odds ratios were to be treated as an equivalent measure of the hazard ratio, unless the rate 

of breast cancer outcome was high. In this case, the odds ratio estimates were to be included 

in the meta-analysis as a secondary analysis only. 

 

 Predictive biomarker review: The primary measure was to be the interaction between 

treatment and density change, expressed as a relative hazard (cohort study) or odds ratio 

(case-control study). 

 

4.3.3.4.2 Adjustment 

 

 Prognostic biomarker review: The primary effect estimate was to be adjusted. Estimates of 

the effect of prognostic factors tend to be more relevant when they are adjusted for potential 

confounders than when they are unadjusted (347). However, unadjusted estimates were to 

be included if adjusted estimates were not available because it was not expected that change 

in density would be associated with the baseline value of most other prognostic factors. 

Nonetheless, it is noted that changes in BMI may have affected changes in density because 

BMI is negatively associated with breast density, so one would ideally adjust for this in any 

analysis of density change as a prognostic biomarker. 

 

 Predictive biomarker review: The primary effect estimate was to be adjusted. There are 

currently no established predictive biomarkers for either prevention or treatment in the 

groups of included women, so the adjustments are less clear than for the prognostic density 

change biomarker. 

 

4.3.3.4.3 Dealing with missing data 

 

Where data were missing, contact was to be made with the study authors in an attempt to obtain 

the data. 

 

4.3.3.4.4 Assessment of heterogeneity 

 

Heterogeneity in the meta-analysis was to be measured using the estimated variance in a 

random-effects model (Tau2), and publication bias was to be measured using a funnel plot and 

Egger’s test (371). 
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4.3.3.4.5 Subgroup analysis and investigation of heterogeneity 

 

When sufficient studies existed, the following a priori subgroup analyses were to be conducted 

in the meta-analysis to explore reasons for heterogeneity within the predefined homogeneous 

groups described above. 

 

Between-studies: 

 Drug within SERM (Tamoxifen, Raloxifene, Lasofoxifene, Arzoxifene, Droloxifene, 

Bazedoxifene, Fulvestrant) and AI grouping (Anastrozole, Letrozole, Exemestane). 

 Type of study: case-control, observational cohort, randomised trial (nested case-control). 

 Type of cancer at baseline (treatment): (percentage DCIS). 

 Severity of cancer at baseline (treatment): stage (percentage regional spread). 

 Co-interventions (treatment): chemotherapy/targeted therapy. 

 Hormone therapy use during therapy (yes/no, percentage if it was available), or in previous 

two years (yes/no, percentage if it was available). 

 Time between start of therapy (or study entry) and follow-up mammogram (mean and 

range). 

 Menopausal status (percentage premenopausal). 

 Age (mean). 

 BMI (mean). 

 Digital or film mammography (percentage digital). 

 Distribution of density at baseline (some studies may have excluded women with low 

density). 

 

Within-study estimates of effect: 

 Type of cancer at baseline (treatment): DCIS vs. invasive. 

 Severity of cancer at baseline (treatment): stage (percentage regional spread). 

 Co-interventions (treatment): chemotherapy/targeted therapy. 

 Hormone therapy use: no HRT prior to endocrine therapy, some HRT 2 years or more than 

2 years prior to endocrine therapy, some HRT less than 2 years prior to endocrine therapy, 

some HRT during endocrine therapy. 

 Menopausal status (pre-, peri- or postmenopausal). 

 Age group (< 50 years or ≥50 years) as a proxy for menopausal status. 

 BMI (<25, 25 to <30, 30 to <35, ≥35 kg/m2). 

 Baseline density. 
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4.3.3.4.6 Data synthesis 

 

Heterogeneity between studies was expected because this is common in reviews of prognostic 

biomarkers (347). Therefore, it was decided that a meta-analysis would only be conducted for 

studies within predefined groups that were believed to be homogenous enough in advance to be 

meaningful for data synthesis. Namely, those with the same class of drug, same outcome, same 

density measure, same effect measure (same cut-point or continuous variable assessment). 

Where more than one study was available, estimates were to be combined using an inverse-

variance weighting (fixed-effect estimation); and if there was substantial variability then results 

were to be presented but it was to be stated that the overall effect estimate has very limited 

interpretation. Additionally, subgroups (4.3.3.4.5) were to be investigated to help to explain the 

heterogeneity. 

 

4.4 Results 

 

4.4.1 Description of studies  

 

4.4.1.1 Results of the search 

 

The database search identified 1180 records (see PRISMA follow diagram: Figure 4.3), and 

after deduplication, there were 888 records. Of these, 801 records were deemed ineligible 

according to their title and abstract and 87 records were selected for full-text review. Seventy-

nine of the 87 full-text articles were excluded, and eight eligible studies that fulfilled the 

inclusion criteria were included in the qualitative synthesis, with six of these contributing to the 

quantitative synthesis. A bibliography search of the reference lists in the eight included studies 

was also conducted. Titles were reviewed and if they were considered potentially eligible (and 

not already included in the 888 records), their abstracts were reviewed. Nine potential records 

were identified but these were considered ineligible after abstract review, hence no additional 

studies were found through the bibliographic search. 

 

4.4.1.2 Included studies 

 

There was a large amount of variation across the eight included studies (see ‘Characteristics of 

included studies’ table: Table 4.1). All were observational studies, with four case-controls (19, 

266, 372, 373) and four retrospective cohorts (263-265, 374). Of the four case-control studies, 

three studies used a matched design (266, 372, 373). Two studies were sub-studies from 

randomised controlled trials (one nested case-control (19) and one cohort study (374)). The 

studies ranged in size from 349 (266) to 1066 (263) women. Six studies included women from 
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Western populations (the UK (19), Finland (19), USA (266, 372), Canada (372), Sweden (265, 

373) and the Netherlands (374)) and two studies were in women from South Korea (263, 264). 

Follow-up ranged from 5 years (263) to 14 years (265), and only one study (19) was in the 

preventive setting, with the rest being in the adjuvant treatment setting for women with breast 

cancer. Half of the studies assessed tamoxifen treatment only (19, 263, 265, 266), two studies 

assessed tamoxifen and an AI (264, 374), and two studies were not specific to a particular 

endocrine therapy, whereby only a subset of women were on endocrine therapy during their 

adjuvant treatment (372, 373). Two studies included a placebo (19) or control group (265), 

although the latter study did not compare across the interventions and could only be used in the 

prognostic review. Therefore, only one study was assessed in the predictive biomarker review 

(19). There was a mixture of premenopausal and postmenopausal women, and in the treatment 

setting, the two South Korean studies included women with DCIS or invasive breast cancer, 

whereas the other studies included women with invasive disease only.  

 

The two sub-studies from clinical trials used visually-assessed density, with one assessing 

density to the nearest 5% (19) and the other assessing density in 20% Boyd categories (374). 

Two studies used a machine learning-based density assessment trained on Cumulus images 

(265, 373), three studies used Cumulus percent density (264, 266, 372) and one study used BI-

RADS density (263). Density change cut-points varied greatly, with some adopting a 5% (264), 

10% (19, 372, 373) or top tertile (determined by the distribution of controls) (266) absolute 

percent density reduction cut-point, one using a 20% relative dense area reduction cut-point 

(265), and another using reduction in BI-RADS category (263). One study did not report their 

definition of density change (374). 

 

Two studies had recurrence (recurrence-free survival) as their endpoint (263, 264), two studies 

had mortality as their endpoint (265, 266), two studies looked at incidence of contralateral 

breast cancer (372, 373), one study assessed incidence of contralateral breast cancer and 

recurrence as its endpoint (374), whilst the final study assessed risk of developing invasive or 

DCIS breast cancer in a sample of at-risk women (19). 

 

A detailed description of the included studies can be found in the data capture forms (appendix 

B.VI). 
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Figure 4.3: PRISMA flow diagram for the review. 
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Table 4.1: Characteristics of included studies 

Cuzick 2011 

Methods Nested case-control within a multi-centre international randomised 

controlled trial (IBIS-I). 

Recruitment April 1992-March 2001, diagnosis before 1 October 

2007. 

Prognostic and predictive biomarker. 

Prevention setting. 

Participants 123 cases from the UK and Finland, 942 controls from the UK. 

Age 35-70 years at recruitment to IBIS-I trial. 

Premenopausal and postmenopausal women. 

Approximately twice the population risk of developing breast 

cancer. 

Interventions Tamoxifen 20mg daily (n=507), placebo daily (n=558), 5 years of 

treatment. 

Visually-assessed percent density. 

Density reduction 10% or more vs. no change at 12-18 month 

follow-up mammogram in tamoxifen arm (prognostic biomarker). 

Density reduction 10% or more vs. less than 10% at 12-18 month 

follow-up mammogram in tamoxifen arm compared with placebo 

arm (interaction, predictive biomarker). 

Outcomes Incidence of invasive breast cancer and DCIS. 

Notes   

Item 
Authors' 

judgement 
Support for judgement 

Study participation Low risk Source population described, demographic factors 

(and tumour characteristics for cases) similar in 

included and not included women from the IBIS-I 

main trial. 

Study attrition Low risk Only 44 women withdrew who were not included in 

this sub-study (referenced (200)). 

Prognostic factor 

measurement 

Moderate 

risk 

Valid and reliable density measure, although density 

change measure was determined by the data (the cut-

point was chosen as “the minimum change that could 

be reproducibly detected”), the reader was not 

blinded to case-control status. 
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Outcome measurement Low risk From trial database. 

Study confounding Low risk Adequate adjustment. 

Statistical analysis and 

reporting 

Low risk Adequate analysis, although no interaction reported 

in the paper (worked out from raw data provided by 

the study authors). 

 

Kim 2012 

Methods Retrospective cohort, non-randomised. 

Initial ER+ breast cancer diagnosis October 2003-December 2006. 

Follow-up median 69 months. 

Prognostic biomarker. 

Treatment setting. 

Participants Seoul National University Hospital, South Korea. 

1065 women. 

Age 24-77 years. 

No information on menopausal status but likely includes 

premenopausal and postmenopausal women. 

12% DCIS, 88% invasive at first diagnosis. 

Interventions Tamoxifen 5 years (n=657), tamoxifen 2-3 years + AIs (total 5 

years) (n=41), tamoxifen 5 years + AIs (unknown total time) 

(n=192), AIs 5 years (n=175), at least 2 years of treatment. 

Cumulus percent density. 

Density reduction 5% or more vs. less than 5% at 8-20 month 

follow-up mammogram in tamoxifen. 

Density reduction 5% or more vs. less than 5% at 8-20 month 

follow-up mammogram in AIs. 

Outcomes Recurrence. 

Notes   

Item 
Authors' 

judgement 
Support for judgement 

Study participation Moderate 

risk 

No information on source population or key 

characteristics in women included vs. not included 

from source population. 

Study attrition Moderate 

risk 

No information on participant drop-out, loss to 

follow-up or reasons for censoring. 

Prognostic factor Moderate No information on reader experience, blinding to 
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measurement risk treatment or time between baseline and follow-up 

mammogram. 

Outcome measurement Moderate 

risk 

No information on start of follow-up or reasons for 

censoring. 

Study confounding High risk No information on when confounding factors were 

measured, unclear adjustments (if any) for analysis 

separated by treatment. 

Statistical analysis and 

reporting 

High risk Unclear when follow-up started or reasons for 

censoring, unclear adjustments, unclear if subgroup 

analyses include women on tamoxifen only, AIs only 

or women who switched treatment. 

 

Knight 2018 

Methods Case-control (matched on follow-up time, geographical area, birth 

year, diagnosis year and ethnicity), non-randomised. 

Initial breast cancer diagnosis 1990-2008, recruitment 2009-2012. 

Follow-up mean 8 years. 

Treatment setting. 

Participants WECARE study (USA and Canada). 

224 cases and 243 controls with mammograms at both time points. 

Mean age 46 years at mammogram before or at first diagnosis. 

Premenopausal and postmenopausal women. 

All invasive at first diagnosis. 

Interventions Mainly tamoxifen, but specific treatments not reported. 

Cumulus percent density. 

Density reduction 10% or more vs. less than 10% at 6 month-4 

year follow-up mammogram. 

Outcomes Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast). 

Notes Cannot include as a prognostic or predictive biomarker because the 

analysis adjusted for tamoxifen use. 

Item 
Authors' 

judgement 
Support for judgement 

Study participation Moderate 

risk 

No information on source population but comparisons 

conducted on key characteristics between women 

included vs. not included from source population. 
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Study attrition High risk Potential for survival bias whereby women included 

were more likely to have survived at the time of 

interview than the wider cohort. Unsure about density 

or outcome in women who died before the study or 

who did not have available mammograms. "All 

women had to be alive at the time of contact for 

interview" and "Women in whom we could not obtain 

a mammogram in an appropriate time window (see 

below) were more likely to have an earlier year of 

first breast cancer diagnosis (65% diagnosed in 1990–

1996 vs. 40% in 1990–1996)". 

Prognostic factor 

measurement 

Moderate 

risk 

No information on blinding to treatment, or why 

435/467 women were used in the analysis (could have 

been digital mammograms (instead of film like the 

rest of the study sample) or poor quality 

mammograms). 

Outcome measurement Low risk From population registry. 

Study confounding Moderate 

risk 

435/467 women used in the analysis (could have been 

missing data on adjusting factors), risk factors were 

obtained retrospectively by a telephone survey 

(potential for recall bias). 

Statistical analysis and 

reporting 

High risk Analysis adjusted for treatment so unable to extract 

the effect as a prognostic or predictive biomarker, the 

study may have included other endocrine therapies 

besides tamoxifen. 

 

Ko 2013 

Methods Retrospective cohort, non-randomised. 

Initial ER+ breast cancer diagnosis January 2003-December 2008. 

Follow-up mean 59 months. 

Prognostic biomarker. 

Treatment setting. 

Participants National Cancer Centre, Goyang, South Korea. 

1066 women. 

Age 25-78 years. 

Unclear information on menopausal status but likely includes 

premenopausal and postmenopausal women. 
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13% DCIS, 87% invasive at first diagnosis. 

Interventions Tamoxifen (all women), at least 2 years of treatment. 

BI-RADS density. 

Reduction of at least 1 category vs. no reduction of at least 1 

category at 10-34 month follow-up mammogram. 

Outcomes Recurrence. 

Notes   

Item 
Authors' 

judgement 
Support for judgement 

Study participation Moderate 

risk 

No information on source population or key 

characteristics in women included vs. not included 

from source population. 

Study attrition Moderate 

risk 

No information on participant drop-out, loss to 

follow-up or reasons for censoring. 

Prognostic factor 

measurement 

Moderate 

risk 

No information on whether restricted to contralateral 

breast or time between baseline and follow-up 

mammogram, no test of intra-reader reproducibility. 

Outcome measurement Moderate 

risk 

No information on start of follow-up or reasons for 

censoring. 

Study confounding Moderate 

risk 

No information on when confounding factors were 

measured, no adjustment for chemotherapy although 

it was associated with mammographic density 

reduction. 

Statistical analysis and 

reporting 

High risk Unclear when follow-up started or reasons for 

censoring, title says 'premenopausal' women but 

likely includes postmenopausal women too since age 

range 25-78 years, no adjustment for confounding 

factors such as chemotherapy. 

 

Li 2013 

Methods Retrospective cohort, non-randomised. 

Initial breast cancer diagnosis 1993-1995, follow-up until 31 

December 2008. 

Follow-up median 14 years. 

Prognostic biomarker. 

Treatment setting. 
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Participants Sweden. 

974 women. 

Median age 62-63 years at diagnosis. 

Postmenopausal women. 

All invasive at first diagnosis. 

Interventions Tamoxifen 20mg daily (n=231), tamoxifen 40mg daily (n=123), 

tamoxifen 20+40mg daily (n=108), tamoxifen 'other' dose daily 

(n=12), median 60 months of treatment. 

Fully-automated area-based method measuring absolute dense 

area. 

Relative dense area reduction more than 20% vs. stable dense area 

(≤9% increase to ≤10% reduction) at 6-36 month follow-up 

mammogram. 

Outcomes Breast cancer mortality (time to death caused by breast cancer). 

Notes   

Item 
Authors' 

judgement 
Support for judgement 

Study participation Moderate risk No information on source population or key 

characteristics in women included vs. not included 

from source population. 

Study attrition Low risk Follow-up information from population registry, 

participant drop-out and loss to follow-up as a result 

of emigration likely to be small. 

Prognostic factor 

measurement 

Moderate risk Cut-points chosen "a priori" but without 

justification. 

Outcome measurement Low risk From population registry, clear definitions of start 

of follow-up and reasons for censoring. 

Study confounding Low risk Adequate adjustment. 

Statistical analysis and 

reporting 

Low risk 
Adequate analysis. 

 

Nyante 2015 

Methods Case-control (matched on age at diagnosis, diagnosis year and 

disease stage), non-randomised. 

Initial ER+ breast cancer diagnosis 1990-2008, recruitment 1 

January 1991-31 December 2010 (end of follow-up). 
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Prognostic biomarker. 

Treatment setting. 

Participants Kaiser Permanente Northwest, USA. 

97 cases and 252 controls. 

Age 32-87 years at first diagnosis. 

No information on menopausal status but likely includes 

premenopausal and postmenopausal women. 

All invasive at first diagnosis. 

Interventions Tamoxifen (all women), at least 1 tamoxifen prescription started 

within 1 year of diagnosis. 

Cumulus percent density. 

Density reduction more than 8.7% vs. less than 0.5% at 3-26 

month follow-up mammogram. 

Outcomes Breast cancer mortality (time to death caused by breast cancer). 

Notes   

Item 
Authors' 

judgement 
Support for judgement 

Study participation Moderate risk No information on source population or key 

characteristics in women included vs. not included 

from source population. 

Study attrition Low risk Follow-up information from population registry, 

reasons for censoring discussed. 

Prognostic factor 

measurement 

Low risk Valid and reliable density and density change 

measures (based on tertiles). 

Outcome measurement Low risk From population registry, clear definitions of start 

of follow-up and reasons for censoring. 

Study confounding Low risk Adequate adjustment. 

Statistical analysis and 

reporting 

Low risk 
Adequate analysis. 

 

Sandberg 2013 

Methods Case-control (matched on age and calendar period of first breast 

cancer diagnosis, adjuvant therapy and follow-up time), non-

randomised. 

Initial breast cancer diagnosis 1976-2005. 

Follow-up mean 8 years. 
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Prognostic biomarker. 

Treatment setting. 

Participants Sweden. 

211 cases and 211 controls. 

Age at first diagnosis: ≤45 years (n cases =37, n controls=37), 45-

55 years (n cases=68, n controls=68), 55-65 years (n cases=56, n 

controls=56) and ≥65 years (n cases =50, n controls=50). 

Premenopausal and postmenopausal women. 

All invasive at first diagnosis. 

Interventions Endocrine therapy (n cases=87, n controls=87), but specific 

treatments not reported. 

Fully-automated area-based method measuring percentage density. 

Density reduction 10% or more vs. stable density (<10% increase 

to <10% reduction) at 1-5 year follow-up mammogram. 

Outcomes Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast). 

Notes   

Item 
Authors' 

judgement 
Support for judgement 

Study participation Moderate 

risk 

No information on source population but comparisons 

conducted on key characteristics between women 

included vs. not included from source population. 

Study attrition Moderate 

risk 

Follow-up information from population registry, but 

no information on reasons for censoring or loss to 

follow-up. 

Prognostic factor 

measurement 

Moderate 

risk 

Large variability in time between baseline and follow-

up mammograms (follow-up mammogram 1-5 years 

after first breast cancer diagnosis), 66 women 

excluded if baseline percent density <10% or >90% 

because they could not undergo some of the defined 

density changes but these numbers were unknown for 

the subgroup of women on endocrine therapy. 

Outcome measurement Low risk From population registry. 

Study confounding Moderate 

risk 

Adjusted for age through matching, but other 

adjustments are unclear in the subgroup of women on 

endocrine therapy. 
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Statistical analysis and 

reporting 

Moderate 

risk 

Appropriate analysis for the study's primary objective, 

but the analysis in the subgroup of women on 

endocrine therapy was a secondary objective. 

Numbers unknown and unclear adjustments for the 

subgroup of women on endocrine therapy, cannot 

separate out endocrine therapies. 

 

van Nes 2015 

Methods Retrospective sub-cohort within a multi-centre randomised 

controlled trial (TEAM). 

Start of TEAM trial enrolment in 2001, but unknown time period 

of sub-cohort study. 

Follow-up median 6 years. 

Prognostic biomarker. 

Treatment setting. 

Participants The Netherlands. 

378 women. 

Age 45-91 years at baseline. 

Postmenopausal women. 

All invasive at first diagnosis. 

Interventions Exemestane 25mg daily for 5 years (n=197), tamoxifen 20mg daily 

for 2-3 years followed by 3-2 years of exemestane (totalling 5 

years) (n=181). 

Visually-assessed percent density in 20% bands (Boyd categories). 

Unclear comparison: "change in breast density". 

Outcomes Recurrence and incidence of a secondary primary breast cancer 

(e.g. in the contralateral breast) combined (loco-regional 

recurrence, distance recurrence or contralateral breast cancer). 

Notes Cannot include as a prognostic biomarker because there were no 

results to extract. 

Item 
Authors' 

judgement 
Support for judgement 

Study participation Low risk Source population not described but referenced (375), 

comparisons conducted between women included vs. 

not included from source population. 

Study attrition Moderate No information on participant drop-out, loss to 
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risk follow-up or reasons for censoring. 

Prognostic factor 

measurement 

Low risk Valid and reliable density and density change 

measures, although no information on which follow-

up mammograms were used for the density change 

measure (therefore no information on time between 

baseline and follow-up mammogram). 

Outcome measurement Low risk From trial database, clear definition of start of 

follow-up but unclear reasons for censoring (per 

protocol analysis so women were censored when they 

stopped treatment but no information on other 

reasons). 

Study confounding Moderate 

risk 
Unclear adjustments (if any). 

Statistical analysis and 

reporting 

High risk Insufficient presentation of data, adjustments and 

results for density change, both treatment arms 

combined so unable to separate out endocrine 

therapies. 

 

4.4.1.3 Excluded studies  

 

Seventy-nine studies were excluded after reading their full-text articles. Reasons for exclusion 

included wrong outcome (mammographic density change was modelled as the outcome), wrong 

study design (study was not designed to address the review question) and reviews (discussion 

regarding density change as a potential biomarker for endocrine therapy, but without any novel 

data). Abstracts from conference presentations were excluded because these had not undergone 

peer-review to be published as full-texts. For further details, see PRISMA flow diagram (Figure 

4.3) and ‘Characteristics of excluded studies’ table (Table 4.2) which highlights some 

potentially relevant records that were excluded and the reasons for exclusions.  

 

Table 4.2: Characteristics of excluded studies 

AllianceforClinicalTrialsinOncology 2006 (376) 

Reason for exclusion No results posted 

AllianceforClinicalTrialsinOncology 2007 (377) 

Reason for exclusion Wrong outcomes 

Andersson 2017 (331) 

Reason for exclusion Density change not measured (not defined as a measure between a 
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baseline and a follow-up mammogram) 

Atkinson 1999 (205) 

Reason for exclusion Wrong outcomes 

Becker 2009 (378) 

Reason for exclusion Review 

Boyd 2001 (78) 

Reason for exclusion Wrong study design 

Boyd 2011 (379) 

Reason for exclusion Wrong study design 

CaseComprehensiveCancer 2007 (380) 

Reason for exclusion Still recruiting 

Chlebowski 2003 (381) 

Reason for exclusion Wrong study design 

Cosmacini 1993 (382) 

Reason for exclusion Abstract only - not peer-reviewed, not enough information 

Cuzick 2012 (383) 

Reason for exclusion Wrong study design 

Decensi 2004 (384) 

Reason for exclusion Abstract only - not peer-reviewed, not enough information 

Decensi 2009 (385) 

Reason for exclusion Density change not measured (not defined as a measure between a 

baseline and a follow-up mammogram because repeated measures 

ANOVA was used, additionally digital density was calibrated by 

adjusting for different variables at different time points so the 

density measure was not the same at baseline and at follow-up 

mammogram) 

 

Ekpo 2016 (296) 

Reason for exclusion Wrong outcomes 

Engmann 2017 (271) 

Reason for exclusion Wrong outcomes 

Fabian 2006 (386) 

Reason for exclusion Wrong study design 

Fabian 2007 (387) 
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Reason for exclusion Wrong study design 

Fabian 2016 (388) 

Reason for exclusion Review 

Ghosh 2010 (389) 

Reason for exclusion Wrong study design 

Kim 2014 (390) 

Reason for exclusion Association between MRI density method and breast cancer risk 

not validated 

Kmietowicz 2013 (391) 

Reason for exclusion Editorial about another paper / not primary research data 

Macis 2011 (392) 

Reason for exclusion No results posted 

Martin 2009 (339) 

Reason for exclusion Wrong study design 

Martin 2016 (393) 

Reason for exclusion Abstract only - not peer-reviewed, not enough information 

Mullooly 2016 (348) 

Reason for exclusion Review 

NCICClinicalTrialsGroup 2000 (394) 

Reason for exclusion Wrong study design 

NCICClinicalTrialsGroup 2001 (395) 

Reason for exclusion Wrong study design 

NorthwesternUniversity 2003 (396) 

Reason for exclusion Wrong outcomes 

Ozhand 2013 (397) 

Reason for exclusion Abstract only - not peer-reviewed, not enough information 

 

Redfern 2016a (398) 

Reason for exclusion Wrong study design 

Redfern 2016b (399) 

Reason for exclusion Abstract only - not peer-reviewed, not enough information 

SeoulNationalUniversityHospital 2013 (400) 

Reason for exclusion Still recruiting 

SeoulNationalUniversityHospital 2018 (401) 
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Reason for exclusion Data collection not complete 

Shawky 2017 (345) 

Reason for exclusion Review 

UniversityofCalifornia 2013 (402) 

Reason for exclusion Withdrawn 

UniversityofVirginia 2004 (403) 

Reason for exclusion Wrong study design 

Ursin 1996 (404) 

Reason for exclusion Wrong outcomes 

Vachon 2013a (123) 

Reason for exclusion Wrong study design 

Vachon 2013b (267) 

Reason for exclusion Wrong outcomes 

Whitman 2000 (405) 

Reason for exclusion Review 

 

4.4.2 Risk of bias in included studies  

 

Study participation 

The risk of bias for study participation was moderate for most studies because the source 

populations were not adequately described. The two sub-studies within clinical trials (19, 374) 

were the only studies to give an indication of key characteristics of the source population, either 

in the text or through another referenced study. Four studies (19, 372-374) conducted an 

analysis to test the difference in key characteristics between women in the source population 

and women included in the study sample. The two sub-studies within clinical trials included 

information on both of these criteria and were rated low risk. 

 

 

Study attrition 

The risk of bias for study attrition was mixed across studies. Four studies were rated moderate 

risk because of a lack of information on participant drop-out, loss to follow-up or reasons for 

censoring. One study (372) required women to still be alive at the time of interview for the 

study, therefore it lacked information on women who had died before recruitment. Women who 

had a later breast cancer diagnosis were also more likely to be in the study, leading to a potential 

survival bias. This study was therefore given a high risk of bias for study attrition. 
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Prognostic factor measurement 

The risk of bias for the measurement of mammographic density was moderate or low. Studies 

were deemed to be at a higher risk of bias if they did not provide information on the experience 

of the reader(s), the time between baseline and follow-up mammogram, blinding to treatment (if 

the sample of women could be on more than one drug) or case-control status, reliability of 

measurements, number of women who had density measured, or reasons for missing density 

data. Two studies (19, 265) were given a moderate rating for risk of bias for the prognostic 

factor measurement because the density reduction cut-point was determined by the data (19) or 

an ‘a priori’ definition that was not justified (31). 

 

Outcome measurement 

The risk of bias for the outcome measurement was the domain considered to be at the lowest 

risk of bias. The two studies (263, 264) rated moderate risk conducted a survival analysis but 

did not define a start of follow-up or reasons for censoring, and there was no indication of 

women lost to follow-up. It is essential to determine these factors when conducting a survival 

analysis. The other studies to not report reasons for censoring or loss to follow-up were deemed 

to be low risk because they were linked to population registries or clinical trials. 

 

Study confounding 

The risk of bias for study confounding was mixed across studies. Two studies did not give clear 

definitions for age (263, 264), adjustments were unclear in three studies (264, 373, 374) and one 

study was potentially affected by recall bias since women recalled their confounding risk factors 

over telephone (372). One study (263) did not adjust for the confounding factor, chemotherapy, 

even though this was shown to have an effect on density reduction. Chemotherapy can induce 

menopause in premenopausal women, causing an oestrogen deprivation and reduction in density 

as well as recurrence. Therefore, adjustments should be made for chemotherapy in adjuvant 

studies where necessary. 

 

 

 

Statistical analysis and reporting 

The risk of bias for statistical analysis and reporting was considered to be the highest risk 

domain. The statistical methods for survival analysis were not adequately defined in two studies 

(263, 264) and the subgroup analysis of interest in one study (373) was not described in detail. 

The study by Knight et al. was not designed to look at women on endocrine therapy specifically 

and hence the analysis was adjusted for tamoxifen use, making the results ineligible for the 

prognostic or predictive biomarker review (372). Additionally, the results for van Nes et al. 

were not reported, so this study was given a high risk of bias for reporting (374). 
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The risk of bias in each domain and by each study is outlined in Figure 4.4. A detailed 

description of the risk of bias judgements can be found in appendix B.VII. 

 

 

 

Figure 4.4: Risk of bias plot (red: high risk, yellow: moderate risk, green: low risk). 

 

 

4.4.3 Effects of interventions 

 

The different classes of drugs, outcomes, mammographic density measures and effect measures 

(for instance, the cut-points used) of the included studies were deemed too heterogeneous to be 

able to conduct a meaningful meta-analysis. Instead, the results of each study were reported in 

the ‘Summary of findings’ tables (Table 4.3 and Table 4.4). The study by Knight et al. (372) 

could not be included in the prognostic or predictive biomarker review due to the adjustment for 

endocrine therapy, and the study by van Nes et al. (374) was not included in the prognostic 

biomarker review because of a lack of reported results. 
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In the prognostic biomarker review (prevention), Cuzick et al. reported a 68% reduction in 

breast cancer risk with prophylactic tamoxifen for women who had a 12-18 month visually-

assessed percent density reduction ≥10% compared with no change (OR=0.32 (95% CI, 0.14 to 

0.72)) (19). For the prognostic biomarker review in the treatment setting, Kim et al. reported 

HRs of 0.66 (95% CI, 0.40 to 1.09) and 0.14 (95% CI, 0.02 to 1.11) for risk of recurrence with 

an 8-20 month Cumulus-assessed percent density reduction ≥5% compared with <5% whilst on 

tamoxifen or AIs, respectively (264). Similarly, in the prognostic biomarker review (treatment), 

Ko et al. reported a 65% reduction in risk of recurrence for women with a 10-34 month 

tamoxifen-induced reduction in BI-RADS density compared with no reduction (HR=0.35 (95% 

CI, 0.17 to 0.68)) (263). For mortality (treatment) in the prognostic biomarker review, Li et al. 

reported a 50% reduction in risk of breast cancer death with 6-36 month tamoxifen-induced 

relative reduction in dense area (machine learning area-based method) >20% compared with 

little change (≤9% increase to ≤10% reduction) (HR=0.50 (95% CI, 0.27 to 0.93)) ((265)). In 

another prognostic biomarker review study (treatment), Nyante et al. reported a 56% decreased 

risk of breast cancer death with a 3-26 month tamoxifen-induced reduction in Cumulus-assessed 

percent density of >8.7% compared with <0.5% (OR=0.44 (95% CI, 0.22 to 0.88)) (266). The 

final prognostic biomarker study (treatment) reported an OR of 0.52 (95% CI, 0.18 to 1.51) for 

risk of contralateral breast cancer with a 1-5 year reduction in percent density (machine learning 

area-based method) of ≥10% compared with little change (<10% reduction to <10% increase) 

whilst on endocrine therapy (373). In the predictive biomarker review (prevention), the OR of 

risk of breast cancer for an interaction between prophylactic tamoxifen and 12-18 month 

visually-assessed percent density reduction (≥10% or <10%) was not reported, but it was 

calculated as 0.53 (95% CI (0.21 to 1.32)) from raw data provided by the study authors (19). 
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Table 4.3: Endocrine therapy-induced mammographic density reduction vs. No endocrine therapy-

induced mammographic density reduction as a prognostic biomarker 

 

Endocrine therapy-induced mammographic density reduction vs. No endocrine therapy-

induced mammographic density reduction as a prognostic biomarker 

Patient or population: Women on endocrine therapy (SERMs or AIs) 

Setting: Prevention or Treatment 

Intervention: Endocrine therapy-induced mammographic density reduction 

Comparison: No endocrine therapy-induced mammographic density reduction 

Outcomes Impact № of 

participants 

(studies) 

Certainty 

of the 

evidence 

(GRADE) 

Incidence of 

invasive breast 

cancer and DCIS: 

Prevention, 

Tamoxifen 

One study reported an OR of 0.32 (95% CI, 

0.14 to 0.72) for 12-18 month visually-assessed 

percent density reduction ≥10% compared with 

no density change. 

51 cases 456 

controls 

(1 

observational 

study) 

⊕⊕⊝⊝ 

LOW 

Recurrence: 

Treatment, 

Tamoxifen 

One study reported an HR of 0.66 (95% CI, 

0.40 to 1.09) for 8-20 month Cumulus-assessed 

percent density reduction ≥5% compared with 

<5%. Another study reported an HR of 0.35 

(95% CI, 0.17 to 0.68) for 10-34 month 

reduction in BI-RADS density compared with 

no reduction (or increase). 

1956 

(2 

observational 

studies) 

⊕⊝⊝⊝ 

VERY 

LOW 1 2 

Recurrence: 

Treatment, AIs 

One study reported an HR of 0.14 (95% CI, 

0.02 to 1.11) for 8-20 month Cumulus-assessed 

percent density reduction ≥5% compared with 

<5%. 

175 

(1 

observational 

study) 

⊕⊝⊝⊝ 

VERY 

LOW 3 4 
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Table 4.3 continued 

Breast cancer 

mortality: Treatment, 

Tamoxifen 

One study reported an OR=0.44 (95% CI, 

0.22 to 0.88) for 3-26 month Cumulus-

assessed percent density reduction >8.7% 

compared with <0.5%. Another study 

reported an HR of 0.50 (95% CI, 0.27 to 

0.93) for 6-36 month relative reduction in 

dense area (machine learning area-based 

method) >20% compared with stable 

density (≤9% increase to ≤10% 

reduction). 

1st study: 97 cases 

252 controls; 2nd 

study: 26 

events/217 exposed, 

49 events/257 

unexposed 

(2 observational 

studies) 

⊕⊕⊝⊝ 

LOW 

Incidence of a 

secondary primary 

breast cancer (e.g. in 

the contralateral 

breast): Treatment, 

unknown endocrine 

therapy 

One study reported an OR of 0.52 (95% 

CI, 0.18 to 1.51) for 1-5 year reduction in 

percent density (machine learning area-

based method) ≥10% compared with 

stable density (<10% increase to <10% 

reduction). 

87 cases 87 controls 

(1 observational 

study) 

⊕⊝⊝⊝ 

VERY 

LOW 5 6 

CI: Confidence interval; HR: Hazard ratio; OR: Odds ratio 

GRADE Working Group grades of evidence  

High certainty: We are very confident that the true effect lies close to that of the estimate of the 

effect 

Moderate certainty: We are moderately confident in the effect estimate: The true effect is 

likely to be close to the estimate of the effect, but there is a possibility that it is substantially 

different 

Low certainty: Our confidence in the effect estimate is limited: The true effect may be 

substantially different from the estimate of the effect 

Very low certainty: We have very little confidence in the effect estimate: The true effect is 

likely to be substantially different from the estimate of effect 

 

1 Little information about study participation and attrition, no information on start of follow -up or 

reasons for censoring, unclear if adjustments made in one study and no adjustment for important 

confounding factors such as chemotherapy in another study, there may have been switching of endocrine 

therapy between baseline and follow-up mammogram in one study, density assessment may have been 

made on the ipsilateral breast in one study without an assessment of reliability of the density measure.  
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2 Confidence interval includes the null effect for one study, no more than 147 events (one study does not 

give the number of events in the tamoxifen subgroup, but there are 80 events in the study overall + 67 

events in the other study). 

3 Little information about study participation and attrition, no information on start of follow -up or 

reasons for censoring, unclear if adjustments made, there may have been switching of endocrine therapy 

between baseline and follow-up mammogram. 

4 Confidence interval includes the null effect, no more than 80 events (study does not give the number of 

events in the AIs subgroup, but there are 80 events in the study overall). 

5 The analysis in the subgroup of women on endocrine therapy was only a secondary objective of the 

study, therefore the data for the women included in the subgroup analysis are not reported and the 

individual endocrine therapies cannot be separated. 

6 Confidence interval includes the null effect, no more than 87 events (study does not give the number of 

events in the endocrine therapy subgroup analysis, but there are 87 cases on endocrine therapy in the 

study overall), large range of 1-5 years between diagnosis and follow-up mammogram might capture an 

effect on density change other than endocrine therapy, for example, weight change (adjustment for 

change in adiposity between mammograms was not considered). 
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Table 4.4: Effect of mammographic density reduction in endocrine therapy group vs. Effect of 

mammographic density reduction in control group as a predictive biomarker 

 

Effect of mammographic density reduction in endocrine therapy group vs. Effect of 

mammographic density reduction in control group as a predictive biomarker 

Patient or population: Women on endocrine therapy (SERMs or AIs) or a control group 

Setting: Prevention or Treatment 

Intervention: Effect of mammographic density reduction in endocrine therapy group 

Comparison: Effect of mammographic density reduction in control group 

Outcomes Impact № of 

participants 

(studies) 

Certainty of 

the evidence 

(GRADE) 

Incidence of invasive 

breast cancer and 

DCIS: Prevention, 

Tamoxifen 

One study reported an OR of 0.53 (95% CI, 

0.21 to 1.32) for an interaction between 

prophylactic tamoxifen and 12-18 month 

visually-assessed percent density reduction 

(≥10% or <10%). 

123 cases 942 

controls 

(1 

observational 

study) 

⊕⊕⊝⊝ 

LOW 1 2 

CI: Confidence interval; OR: Odds ratio 

GRADE Working Group grades of evidence  

High certainty: We are very confident that the true effect lies close to that of the estimate of the 

effect 

Moderate certainty: We are moderately confident in the effect estimate: The true effect is 

likely to be close to the estimate of the effect, but there is a possibility that it is substantially 

different 

Low certainty: Our confidence in the effect estimate is limited: The true effect may be 

substantially different from the estimate of the effect 

Very low certainty: We have very little confidence in the effect estimate: The true effect is 

likely to be substantially different from the estimate of effect 

 

1 This is the only study found to investigate whether density change can be used as a predictive biomarker 

for women on endocrine therapy. 

2 Confidence interval includes the null effect, 123 cases provides small power t o detect an interaction 

effect. 
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4.5 Discussion 

 

4.5.1 Summary of main results 

 
This review demonstrated a potential use of mammographic density as a prognostic or 

predictive biomarker for endocrine therapy, but the evidence was limited by some quality issues 

in the included studies.  

 

All studies included in the quantitative synthesis were observational and the number of studies 

testing each outcome was considerably small, with no more than two studies contributing to an 

outcome. Most of the studies focused on the mammographic density biomarker whilst on 

tamoxifen, and only one study provided results for the density change biomarker for treatment 

with AIs (264). One study included women on ‘endocrine therapy’ but did not stipulate a 

particular drug (373). Only one study contributed to the predictive biomarker review (19), 

whereas six studies were included in the prognostic biomarker review (19, 263-266, 373). 

Similarly, only one study was in the preventive setting (19), whilst five studies were in the 

adjuvant setting (263-266, 373).  

 

There was a great deal of variation between studies. Density measurements included visual 

percentage score, BI-RADS categorical assessment, Cumulus semi-automated percentage score 

and machine-learned fully-automated percentage and absolute scores. Multiple cut-points for 

density reduction were tested, including 5%, 10% or tertile cut-points (absolute percentage 

density reduction), a 20% cut-point (relative dense area reduction), and BI-RADS categories. 

The characteristics of participants also varied. Studies were conducted in European, North 

American and Asian populations of premenopausal and postmenopausal women, with different 

disease status at first diagnosis in treatment studies. 

 

As seen in the ‘Summary of findings’ tables, the GRADE certainty of evidence for outcomes 

was either low or very low, which was mainly driven by all studies starting at a low level of 

certainty due to their observational design. Additionally, some studies were downgraded 

because of high risk of bias or indirectness whereby studies were not designed to address the 

objectives of this review. 

 

4.5.2 Overall completeness and applicability of evidence 

 

The evidence in this review is reasonably limited and more studies are required to improve the 

certainty of evidence for mammographic density to be used as a biomarker for endocrine 

therapy. The findings of this review suggest that a mammographic density biomarker is 
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currently applicable to further research, but is not yet reliable enough to be applied to clinical 

practice. More research is needed on the use of mammographic density as a biomarker in 

response to other SERMs beyond tamoxifen as well as AIs. 

 

4.5.3 Quality of the evidence 

 

There was a large amount of heterogeneity across studies and the amount of evidence was low, 

with only six studies included in the quantitative synthesis (19, 263-266, 373). There was very 

low certainty of evidence for the recurrence and contralateral breast cancer outcomes which was 

driven by high risk of bias and indirectness, respectively. Additionally, the recurrence outcome 

on AI treatment and contralateral breast cancer incidence outcome (with a mixture of endocrine 

therapies) had evidence from only one study each (264, 373). There was a low certainty of 

evidence for the ‘Incidence of invasive breast cancer and DCIS’ outcome and the ‘Breast cancer 

mortality’ outcome. The influence of bias was relatively low for these outcomes, but this was 

counterbalanced by the small number of contributing studies. Breast cancer incidence was 

assessed in only one study (prognostic and predictive) (19) and breast cancer specific mortality 

was assessed in two studies (265, 266); perhaps making the latter the outcome with the highest 

certainty of evidence. For the predictive biomarker review, the addition of the ROBINS-I tool in 

assessment of risk of bias up-weighted the quality of evidence of the observational study from 

low to high because the placebo comparison group gave more support for the effect being 

treatment-induced. Nonetheless, this was downgraded again because there was only one 

contributing study that reported an imprecise effect with a confidence interval covering the null 

effect (19). 

 

4.5.4 Potential biases in the review process  

 

A potential bias of the review process is the exclusion of grey literature which included five 

conference abstracts (382, 384, 393, 397, 399). These were regarded as ineligible because they 

had not been peer-reviewed and the abstracts were limited in the amount of information they 

could report, such as full statistical methodology, justification for chosen techniques, and 

number of women with density reductions by outcome. These studies may be eligible for 

inclusion in a subsequent updated version of this review once they are reported as peer-reviewed 

full texts. Similarly, there were two studies without reported results (376, 392), two studies still 

recruiting (380, 400) and one study still collecting data (401), which may also be eligible for 

inclusion in an updated review once results are published as peer-reviewed full texts. One study 

used a non-validated MRI density method (390), which may be eligible in an updated review if 

more than one study (outside of the review studies) can show an association between the density 

method and breast cancer risk. 
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4.5.5 Agreements and disagreements with other studies or reviews 

 

A systematic review by Shawky et al. entitled “Mammographic density: a potential monitoring 

biomarker for adjuvant and preventative breast cancer endocrine therapies” (345) reported 

findings similar to this review, although an assessment of quality was not included in their 

paper. Shawky et al.’s review included a study that was excluded from this review because it 

was a conference abstract (399). The study by Knight et al. that was included in this review was 

published after Shawky et al.’s paper and was hence not included in their list of studies. A 

recent systematic review by Kanbayti et al. (346) reported similar findings to this review, 

although their review assessed the relationship between mammographic density reduction and 

patient outcomes in women receiving any type of breast cancer treatment, therefore the focus 

was not specific to endocrine therapy. Furthermore, the review included two studies that were 

excluded at the full text screening stage of this review (331, 390). This is due to differences in 

the inclusion criteria: Kanbayti’s study did not specify that the density measurement was to 

have been validated as a breast cancer risk factor in more than one study (outside of the review 

studies), and the density biomarker did not have to be derived from a baseline and a follow-up 

mammogram as was stipulated in this review. Moreover, Kanbayti et al. did not include the 

study by Cuzick et al. (19) because their population of interest was breast cancer patients treated 

in the adjuvant setting only.  

 

4.6 Conclusions 

  

4.6.1 Implications for practice 

 

If mammographic density is determined to be a prognostic or predictive biomarker for 

endocrine therapy, it may be useful as a tool for measuring a woman’s response to treatment. 

Currently, women have to rely on a ‘wait-and-see’ approach to assess if a course of endocrine 

therapy is working for them or not, but a density biomarker would provide an early indication of 

response. Knowing this information would allow women to make more informed decisions 

about whether to stay on an initial course of endocrine therapy or to change to another form of 

treatment. This would be particularly useful for those experiencing side effects of treatment, 

who may wish to balance the benefits and harms of continuing on the drug, which provides a 

more personalised approach for adjuvant or chemo-preventive care. 
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4.6.2 Implications for research 

 

This review highlighted the need for more studies on density as a biomarker for endocrine 

therapy, to provide sufficient evidence before implementation of the biomarker into clinical 

practice. Some important points for consideration in future studies also arose as a result of the 

review. These are discussed in detail below: 

 

 As described in Shawky et al. (345), it is important to establish the best density change 

predictor (qualitative vs. quantitative, area vs. volume, percent density vs. absolute density 

etc.), the best density change measurement method (manual vs. semi-automated vs. fully-

automated etc.), the best density change cut-point, and whether absolute or relative density 

change is the better predictor of breast cancer risk and mortality.  

 Compliance may have a confounding effect on the relationship between endocrine therapy-

induced density change and breast cancer outcome. A lower compliance means less 

treatment is administered, hence a lower potential for density to reduce as well as a greater 

increase in risk and mortality. However, a lower compliance may be due to side effects of 

the treatment, which have been linked to a lower risk of recurrence (406, 407). Therefore, 

low compliance (as a result of side effects on endocrine therapy) might be a marker of 

treatment efficacy, and efforts should be made to test and control for the confounding effect 

of compliance in future studies. 

 Another factor to consider is the negative confounding effect on results caused by masking. 

Women who experience a decrease in density whilst on treatment have a lower masking 

effect compared with women who do not have a reduction in density (provided all women 

have a similar starting density), so it is more likely that a cancer will be found on the 

follow-up mammograms of women who experience a treatment-induced density reduction. 

This would therefore cause an attenuation of the true effect on risk, recurrence and 

contralateral disease, suggesting that the association of treatment-induced density reduction 

on these breast cancer outcomes may in fact be stronger than what is typically found. It is 

therefore essential to allow for a long enough follow-up to avoid masking bias and to ensure 

that cancers occurring after measuring density change are adequately recorded. Nonetheless, 

follow-up should not be so long as to capture a possible increase in density after treatment 

cessation (350, 351) which could further influence the association between treatment-

induced density change and breast cancer outcome. 

 Efforts should be made to ensure there has been no previous treatment with SERMs or AIs 

before women enter the study (for example, for DCIS or prevention). This is important 

because residual effects of these previous treatments might influence density change and 

outcome during the study. For instance, the prolonged benefit of tamoxifen (200) may 

confound results if the number of women with residual effects is imbalanced between the 
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new treatment groups (predictive biomarker). Additionally, women previously treated with 

an endocrine drug may have already experienced a density decrease which cannot decrease 

further. However, they may simultaneously experience the benefit of treatment, thereby 

attenuating the relationship between density reduction and breast cancer outcome in the 

study. 

 For studies of density change as a predictive biomarker, a suitable control group must be 

defined. Control groups defined as ‘no tamoxifen’ (as in Li et al. (265)) may have been 

treated with another SERM or AI, therefore changing the comparison group definition. 

Furthermore, women may have not received endocrine therapy because they had ER- breast 

cancers, which would be problematic if comparing groups of women with different starting 

prognoses. 

 Finally, studies assessing density change and breast cancer outcome need to have clear 

definitions of start of follow-up to avoid a potential immortal time bias. This occurs when 

patients are defined as having a longer follow-up time than they actual received because 

they were not truly at-risk for all of the follow-up time. For instance, women have to be 

alive in order to undergo follow-up mammography, so a breast cancer death event cannot 

occur before a follow-up mammogram by definition of the study design. Therefore, women 

are only at-risk of death from follow-up mammogram. Only one study (265) accounted for 

this by starting follow-up at the follow-up mammogram. Incorrect follow-up times can be 

problematic if the ‘immortal time’ differs between women exposed to and not exposed to 

the predictor. Additionally, studies should ideally only include women who are still at-risk 

between mammograms so that the prognostic biomarker occurs before the event. Therefore 

(by definition) follow-up has to start at follow-up mammogram. If a study stipulates that 

women have to be on treatment for a certain amount of time (for example, 1 year), then 

women are only at-risk from the latter of 1 year from start of treatment or follow-up 

mammogram, and follow-up should start from that point in time. These timing issues are 

mainly relevant for cohort studies assessing time-to-event, but they can also be applicable to 

case-control studies that match on follow-up time. For example, if follow-up is started when 

treatment begins and the time between start of treatment and follow-up mammogram differs 

between cases and controls, then they may not be matched correctly on follow-up time. 

 

The points outlined above indicate the implications for research derived from this review, and 

they are important considerations when designing future studies of mammographic density, 

endocrine therapy and breast cancer outcome. 
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Chapter 5: Anastrozole and mammographic density reduction in women at 

increased risk of breast cancer 

 

5.1 Introduction 

 
As mentioned in Chapter 4, SERMs and AIs are effective endocrine therapies for preventing 

and treating ER+ breast cancers. A particular selective oestrogen receptor modulator, tamoxifen, 

is a well-established drug used for preventing recurrence and reducing mortality in women with 

early stage ER+ breast cancer (408). As early as 1985, Cuzick and Baum also showed the 

benefit of tamoxifen in preventing new contralateral breast cancers (409), and in 2007, the IBIS-

I trial showed that prophylactic tamoxifen reduced the risk of ER+ breast cancer in women at an 

increased risk of breast cancer by 30-40% (410). Further still, the benefit of chemoprevention 

with tamoxifen can be seen at least 10 years after an initial course of treatment (200). 

 

However, AIs, including anastrozole, have been shown to be more effective in reducing the 

recurrence of early-stage ER+ disease than tamoxifen (349); and in 2014, analysis from IBIS-II 

showed that anastrozole reduced the risk of ER+ breast cancer in high-risk postmenopausal 

women by 60% (208). AIs have a low toxicity profile and tend to be well tolerated with fewer 

side effects than tamoxifen (411), making them a promising endocrine therapy for routine 

chemoprevention in postmenopausal women at increased risk of breast cancer. 

 

It has been shown in numerous studies that tamoxifen reduces density in the preventive and 

adjuvant setting (203-206, 336), and most importantly, a reduction in density may be a marker 

of concurrent reduction in risk. The IBIS-I trial showed that high-risk women who experienced 

≥10% density reduction after 12-18 months of prophylactic tamoxifen had approximately 63% 

lower risk of developing breast cancer compared with women on placebo, whilst women who 

experienced <10% density reduction on tamoxifen had a similar risk to women on placebo (19) 

(Figure 5.1). However, studies looking into the relationship between preventive AIs and density 

have so far shown modest or insignificant results (268-270), which is perhaps due to their small 

sample size; and larger studies looking into this association are in the adjuvant setting only 

(267, 271, 337). It is still unknown whether, like tamoxifen, preventive anastrozole treatment 

reduces density, and whether this is more than the natural decline occurring with age.  

 

This study aims to compare mammographic density changes between the placebo and 

anastrozole arms of the IBIS-II Prevention trial to determine whether women on anastrozole 

experience different density changes (between baseline and first follow-up mammogram, and 

baseline and final follow-up mammogram) to women on placebo. Then, in Chapter 6, the effect 

of this treatment-induced density change will be assessed on breast cancer risk. 
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a)                                                            b) 

 

 

Figure 5.1: Visually assessed density change between baseline and follow-up mammogram (12-18 

months after randomisation) in two women from the IBIS-I trial treated with tamoxifen. 

a) No density change for one woman (left: baseline, right: 12-18 month follow-up mammogram), b) 15% 

reduction in density for another woman (left: baseline, right: 12-18 month follow-up mammogram). A 

density change similar to b) was associated with a concurrent approximately 63% reduction in breast 

cancer risk relative to women on placebo, whilst no density change, such as a), had a breast cancer risk 

similar to women on placebo. 

 

A detailed description of the primary hypothesis and secondary hypotheses is outlined below: 

 

Primary hypothesis 

 H0: There is no difference in age-adjusted change in density from baseline to first follow-up 

mammogram between patients in the anastrozole arm and patients in the placebo arm 

(continuous effect is primary). 

 H1: Age-adjusted change in density from baseline to first follow-up mammogram is 

different between patients in the anastrozole arm and patients in the placebo arm 

(continuous effect is primary). 

 

Secondary hypothesis I 

 H0: There is no difference in change in density from baseline to first follow-up 

mammogram between patients in the anastrozole arm and patients in the placebo arm, after 

adjustment for age at randomisation, body mass index at randomisation, hormone 

replacement therapy use up to 12 months before randomisation, age at menopause, image 

type, and time between baseline and first follow-up mammogram. 

 H1: Change in density from baseline to first follow-up mammogram is different between 

patients in the anastrozole arm and patients in the placebo arm, after adjustment for age at 

randomisation, body mass index at randomisation, hormone replacement therapy use up to 
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12 months before randomisation, age at menopause, image type, and time between baseline 

and first follow-up mammogram. 

 

Secondary hypothesis II 

 H0: There is no difference in age-adjusted change in density from baseline to final follow-up 

mammogram between patients in the anastrozole arm and patients in the placebo arm. 

 H1: Age-adjusted change in density from baseline to final follow-up mammogram is 

different between patients in the anastrozole arm and patients in the placebo arm. 

 

Secondary hypothesis III 

 H0: There is no difference in change in density from baseline to final follow-up 

mammogram between patients in the anastrozole arm and patients in the placebo arm, after 

adjustment for age at randomisation, body mass index at randomisation, hormone 

replacement therapy use up to 12 months before randomisation, age at menopause, image 

type, and time between baseline and final follow-up mammogram. 

 H1: Change in density from baseline to final follow-up mammogram is different between 

patients in the anastrozole arm and patients in the placebo arm, after adjustment for age at 

randomisation, body mass index at randomisation, hormone replacement therapy use up to 

12 months before randomisation, age at menopause, image type, and time between baseline 

and final follow-up mammogram. 

 

Secondary hypothesis IV 

 H0: There is no difference in age-adjusted anastrozole-induced change in density from 

baseline to first follow-up mammogram between subgroups of covariates (age at 

randomisation, body mass index at randomisation, age at menarche, age at menopause, 

Tyrer-Cuzick 10-year risk, baseline density, age at first birth, oral contraception use, 

hormone replacement therapy use up to 12 months before randomisation, smoking status, 

history of atypical hyperplasia or LCIS, image type, and time between baseline and first 

follow-up mammogram). 

 H1: Age-adjusted anastrozole-induced change in density from baseline to first follow-up 

mammogram is different between subgroups of covariates (age at randomisation, body mass 

index at randomisation, age at menarche, age at menopause, Tyrer-Cuzick 10-year risk, 

baseline density, age at first birth, oral contraception use, hormone replacement therapy use 

up to 12 months before randomisation, smoking status, history of atypical hyperplasia or 

LCIS, image type, and time between baseline and first follow-up mammogram). 
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Secondary hypothesis V 

 H0: There is no difference in age-adjusted anastrozole-induced change in density from 

baseline to final follow-up mammogram between subgroups of covariates (age at 

randomisation, body mass index at randomisation, age at menarche, age at menopause, 

Tyrer-Cuzick 10-year risk, baseline density, age at first birth, oral contraception use, 

hormone replacement therapy use up to 12 months before randomisation, smoking status, 

history of atypical hyperplasia or LCIS, image type, and time between baseline and final 

follow-up mammogram). 

 H1: Age-adjusted anastrozole-induced change in density from baseline to final follow-up 

mammogram is different between subgroups of covariates (age at randomisation, body mass 

index at randomisation, age at menarche, age at menopause, Tyrer-Cuzick 10-year risk, 

baseline density, age at first birth, oral contraception use, hormone replacement therapy use 

up to 12 months before randomisation, smoking status, history of atypical hyperplasia or 

LCIS, image type, and time between baseline and final follow-up mammogram). 

 

5.2 Methods 

 

5.2.1 Study design 

 
This study uses mammograms collected as part of a case-control study from the IBIS-II trial; a 

double-blind multicentre randomised placebo-controlled trial of 3864 postmenopausal women 

aged 40-70yr at an increased risk of breast cancer, aimed at determining whether 

chemoprevention of breast cancer with anastrozole is beneficial in this population of women. In 

brief, increased risk was determined by family history, previous benign disease with 

proliferation, nulliparity, LCIS, atypical hyperplasia (ductal or lobular), DCIS, and 

mammographic density ≥50% without use of HRT in the previous 3 months. Women were 

breast cancer-free at randomisation, and had not had a cancer in the previous 5 years (except 

non-melanoma skin cancer or in situ cancer of the cervix). Women were ineligible if they had 

taken SERMs for more than 6 months previously (unless they were taken as part of the IBIS-I 

trial and treatment had been completed at least 5 years prior to study entry), and women were 

not allowed to take a concurrent SERM or HRT whilst enrolled on the trial. Women were also 

excluded due to: premenopausal status, a prophylactic mastectomy, evidence of severe 

osteoporosis, concomitant disease, life expectancy <10 years, psychiatric or physical co-

morbidities that could affect their ability to take part in the trial, and treatment with non-

approved drugs up to 3 months before randomisation. Postmenopausal status was defined as 

meeting at least one of the following criteria: bilateral oophorectomy, aged over 60yr, aged 

≤60yr with a uterus and amenorrhoea for at least 12 months, or aged ≤60yr without a uterus and 

FSH >30 IU/L. Eligible women were recruited between 2nd Feb 2003 and 31st Jan 2012 from 18 
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countries and were randomly assigned to a treatment arm on a 1:1 basis by central computer 

allocation. Women either received 1mg of orally-consumed anastrozole or a placebo alternative, 

to be taken every day for 5 years (n=1914 anastrozole and 1937 placebo). The primary endpoint 

was histologically confirmed breast cancer (invasive or non-invasive including ductal carcinoma 

in situ). A baseline questionnaire was completed by participants at recruitment to enable 

collection of information on confounding factors for risk of breast cancer. A mammogram was 

taken at baseline (after enrolment but before randomisation) and screening mammograms were 

taken at intervals as decided by the local co-ordinating centres, but at least every 2 years. These 

mammograms were subsequently sent to the trial co-ordinating centre. 

 

For this nested case-control study, a cohort at the start of follow-up was defined, from which 

cases and controls were chosen. This study was designed such that the defined cohort was all 

randomised women who had participated in the IBIS-II main trial and had at least one available 

baseline MLO mammogram and at least one available first follow-up MLO mammogram 

collected as of May 2017 (n=1,274: 43 cases and 1,231 controls). Baseline mammograms were 

defined to be ≥0 months to <12.5 months prior to date of randomisation, first follow-up 

mammograms were ≥8.5 months to <38.5 months after date of randomisation, and final follow-

up mammograms (if available) were ≥47.5 months to <60.5 months after date of randomisation. 

These time frames were chosen to mirror those used in IBIS-I (19) and in accordance with 

standard operating procedures for the local IBIS-II co-ordinating centres. Only MLO views 

were included to emulate the IBIS-I study (19) and because MLO views were predominantly 

collected during the trial. Follow-up began at each woman’s first follow-up mammogram (not 

including the actual time of first follow-up mammogram) and ended at the earliest of: date of 

diagnosis (cases) or May 2017 if disease-free at this time (controls). This was done so that 

breast cancer events happened only after the density change predictor had occurred. Starting 

follow-up at first follow-up instead of treatment initiation prevented an immortal time bias 

(4.6.2) whereby the section of follow-up that was not truly ‘at-risk’ was excluded. Later in the 

chapter, cases are excluded if their event occurred before or at first follow-up mammogram, so 

(by definition) all women were breast cancer-free at first follow-up mammogram and the clock 

should start from this point. This bias is most relevant when conducting time-to-event analyses 

and is therefore not applicable in this study, but for completeness and to plan for potential 

further analyses, this was considered. 

 

Cases were defined as women who developed breast cancer (invasive or non-invasive including 

DCIS) anytime throughout follow-up until (and including) May 2017 and controls were a 

random sample of the defined cohort who were breast cancer-free as of May 2017. 
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5.2.2 Power calculation 

 

Density change for postmenopausal women in the IBIS-I nested study (19) was weighted based 

on age at randomisation of the IBIS-II cohort, to estimate the expected density change in a 

sample of women with the same age structure as IBIS-II. This was done separately for controls 

on placebo, controls on tamoxifen, cases on placebo and cases on tamoxifen (appendix C.I-

C.IV). Different effect sizes (1/2 and 3/4) for tamoxifen were also tested by taking a weighting 

of the placebo and tamoxifen density change distributions corresponding to the proposed effect 

size (appendix C.V). This was done to allow anastrozole to have a weaker effect on density 

change than tamoxifen. For example, 1.11% of placebo controls and 0.23% of anastrozole 

controls were predicted to have a 30% reduction. If anastrozole was 3/4 as effective as 

tamoxifen at reducing density compared with placebo: 1.11% - (3/4)*(1.11%-0.23%) = 0.45% 

of anastrozole controls were predicted to have a 30% reduction. So, the proportions in each 

treatment arm became more similar as anastrozole became less effective. Then, an overall 

density change distribution for each treatment arm was formulated by weighting the density 

change distributions according to the distribution of cases and controls by treatment arm in 

IBIS-II (appendix C.VI-C.VII). The empirical cumulative distribution of density change in each 

treatment arm was then modelled, and two uniformly distributed random numbers were 

generated between (0,1) to find the inverse of the empirical cumulative distribution functions 

and simulate a density change value for placebo and anastrozole expected under the alternative 

hypothesis. This was repeated a number of times corresponding to the sample size in each 

treatment arm: sample sizes between 400 and 600 women per treatment arm were tested. Next, a 

linear regression model tested density change on treatment arm using the simulated data, and the 

simulation was recorded as a ‘pass’ if the (t-test) p-value for the treatment effect was <0.05 

(based on a test of superiority). Simulations were repeated 10,000 times and the percentage of 

passes was counted to give the power. This was also done for dichotomised density change 

(≥10% reduction and <10% reduction), using a logistic regression model with treatment arm as 

the predictor. Results for different sample sizes can be found in appendix C.VIII. 

 

Power was calculated to be 76%-94% for an anastrozole effect size 3/4 to 1 times that of 

tamoxifen, with 600 women per arm, to show a difference in density change (≥10% reduction 

and <10% reduction) from baseline to first follow-up mammogram between the two treatment 

arms at the 5% type-I error level (appendix C.IX). A proportion of women were also added to 

the required sample size to account for women with baseline density <10% that would later be 

excluded (based on the number of postmenopausal women with baseline density <10% in IBIS-

I) (appendix C.X). In total, 1473 controls and 44 cases were required. A sample size larger than 

this was impracticable given the resources and number of mammograms received. 
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5.2.3 Data collection 

 

An active effort was made to collect baseline and first follow-up mammograms for all IBIS-II 

participants. This was an attempt to include as many cases as possible in order to maximise 

statistical power. All national and international centres were emailed to request mammograms 

that had not yet been received by the co-ordinating centre. Response was greatest from the UK 

centres, ANZ centres (Australia and New Zealand), Belgium, Denmark, Italy and Finland, 

although the availability of case mammograms was somewhat disappointing. Many case 

mammograms were missing (lost, archived or destroyed in accordance with the local archiving 

policy) or had not been recorded at a participating site because the patient had moved address. 

 

The multicentre aspect of the trial also caused unavoidable variation in the types of 

mammograms sent to the trial co-ordinating centre. Mammograms were taken using different 

machines and different image sizes. Mammograms could come in hardcopy form (viewed on a 

light box) or softcopy form (viewed on a computer screen). Film mammograms received by the 

trial co-ordinating centre mainly came in the form of original hardcopy or digitised softcopy 

images, but a handful (either hardcopy or softcopy) had gone through a number of iterations of 

conversion. Digital mammograms were mainly received in the form of original DICOM images 

(softcopy), however, as with film mammograms, some had been through various conversions 

before being sent to the trial co-ordinating centre. This created variability in image quality (for 

instance, different scanners at different sites). There was also a change of scanner at the trial co-

ordinating centre throughout the trial, meaning that film mammograms received early on in the 

trial were scanned using a Vidar digitiser and saved as TIFF files, whilst films received later in 

the trial were digitised using an Array 2905 digitiser and saved as DICOM files. 

 

5.2.4 Updating the Standard Operating Procedures 

 

A number of issues were discovered in the standard operating procedure (SOP) outlining 

instructions for the IBIS-II members of staff to process, store and batch mammograms. 

Consequently, the SOP was updated by the author of this thesis (Emma Atakpa) and Dr 

Brentnall to rectify these issues. The main issues and implemented solutions are described 

below: 

 

 Mammograms had a ‘levels’ conversion applied to them to try to standardise images. The 

‘levels’ conversion was initially intended for film mammograms, however, its application to 

FFDM images was potentially detrimental to image quality since FFDM undergo their own 

optimisation when they are processed from raw to ‘for-presentation’. Additionally, on 
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inspection of the mammograms, it was apparent that this conversion had not been applied to 

all of the mammograms. 

 Mammograms no longer underwent the ‘levels’ conversion. It was left to the radiologist (Dr 

Linda Metaxa) to edit contrast and brightness settings on a DICOM viewer to an optimum 

level for visual assessment. 

 

 All mammograms were opened in Photoshop and had a black box placed over any patient 

identifiable information (PII) including name, date of birth and address. The image header 

was also anonymised if any PII was contained within it. All images were then saved as 

DICOM images. Whilst this was reasonable for film mammograms, this lost header 

information in FFDM images, which contained potentially useful imaging factors. 

 FFDM were no longer opened in Photoshop, but were instead copied directly from the file 

directory and headers were anonymised automatically using anonymisation software 

provided by Volpara (no PII was contained on the FFDM images themselves). Raw images 

were also saved (although they were not included in this study, but were saved for potential 

future studies). This ensured that the original high quality DICOM image was intact and it 

also increased efficiency by reducing manual processing workload. 

 

 Some images were of a very low resolution because they had been saved as JPEG images 

instead of TIFF or DICOM images. This appeared to be the case after digital mammograms 

had been opened in various DICOM viewers provided by the local sites that did not provide 

an option to save the image as a DICOM file. JPEG files compress images and remove 

some of the image information to make them more portable (412), and hence they can 

change the quality of the original mammogram.  

 FFDM images were no longer opened in DICOM viewers, but were instead copied directly 

from the file directory, and hence they were saved in their original DICOM format. Film 

mammograms were to continue being saved in DICOM format after anonymisation. 

 

It was decided that mammograms should undergo two stages of quality control (one by the 

thesis author (Emma Atakpa) at the batching stage and another by the radiologist, Dr Metaxa, at 

the density scoring stage) to reduce the remaining variation caused by differing mammogram 

types and quality. 

 

After implementation of the updated SOP, IBIS-II bio-specimen staff were trained by the thesis 

author (Emma Atakpa) to request, process and store mammograms using this new process. With 

the IBIS-II staff and the thesis author (Emma Atakpa) requesting outstanding images and 

working through a backlog of retrieved deliveries, the number of women with at least one 

available MLO baseline and at least one available MLO first follow-up mammogram reached 
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1,274 as of May 2017. These 1,274 women made up the defined cohort which consisted of 43 

cases and 1,231 controls. 

 

5.2.5 Exclusions 

 

Contralateral mammograms were kept for cases and mammograms from a randomly selected 

breast side (chosen using a random number generator) were kept for breast cancer-free controls 

to ensure that no cancers were present on the mammograms which could be misinterpreted as 

dense tissue. Women without information on diagnostic breast side or with bilateral breast 

cancer were excluded because it could not be guaranteed that either breast was breast cancer-

free at the time of follow-up mammogram. 

 

Duplicate mammograms were deleted so that each woman had only one mammogram per time 

point. Judgement of the best quality image was made by the thesis author (Emma Atakpa). 

 

To ensure that density change from baseline to first follow-up mammogram could be used as a 

predictor of breast cancer risk, breast cancer events had to occur after the first follow-up 

mammogram. Therefore, women with an event before or at first follow-up mammogram were 

excluded. If cases had an incomplete diagnosis date that could not be reasonably rounded to the 

1st day of the month, or if no diagnosis date had been entered, they were excluded. Final follow-

up mammograms at or after the event were also removed to ensure that all women were breast 

cancer-free at all mammograms. 

 

5.2.6 Exclusions – quality control (1) 

 

The method for anonymisation at the processing stage was subject to human error (placing a 

black box around PII on the image and deleting sensitive information in DICOM headers), and a 

number of FFDM images produced an error after Volpara-provided anonymisation software. 

Therefore, further checks were conducted to ensure sufficient anonymisation before batching to 

send to the radiologist. Dr Brentnall ran Python code on all images to remove sensitive PII that 

was still contained in the DICOM headers. The mammograms were checked over by the thesis 

author (Emma Atakpa) to find any PII still contained on the image itself. If sensitive PII 

remained, these were anonymised following the method outlined in the updated SOP (open 

mammogram in Photoshop, place a black box over the PII and save as a DICOM file). 

 

The mammograms were pseudo-anonymised using a random ID and suffix a, b or c for a 

woman’s baseline, first and final follow-up mammograms, respectively. These new identifiers 
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were then burned onto the bottom centre of the mammograms using Python code written by Dr 

Brentnall to aid Dr Metaxa’s analysis of density. 

 

Image quality was then assessed by the thesis author (Emma Atakpa) and any mammograms 

that were judged to be below an expected standard for density assessment were removed. 

Reasons for exclusion were: 

 

 Low resolution (JPEG images). 

 Mammograms were too dark or light and could not be adequately seen after adjustment of 

brightness or contrast. 

 Mammograms were too grainy. 

 Incorrect mammographic view or breast side. 

 Digital breast tomosynthesis slice – not the same imaging technique as the other 

mammograms i.e. 2D mammography. 

 Writing pre-burned onto the mammogram (by study centres and hospitals) that covered the 

breast and affected density assessment. 

 Wire localisation (this is an indicator of an abnormality possibly requiring a surgical 

biopsy) that affected the density assessment. 

 Breast implant – breast tissue removed for insertion. 

 Staples in the breast – indication of previous surgery which may have affected breast tissue 

composition. 

 

After exclusions, there were 973 women (35 cases and 938 controls) with one MLO baseline 

and one MLO first follow-up mammogram. 

 

5.2.7 Batching 

 

All images were sent to Dr Metaxa in one batch using the IBIS-II secure file transfer protocol. 

Dr Metaxa viewed the mammograms using the DICOM viewer ‘Sante DICOM Editor’ (413) on 

a workstation used to view mammograms for detection. After initial testing, it was noted that 

some DICOM files produced an error on opening. Therefore, all mammograms were converted 

to TIFF format to allow easier reading of the mammograms. A Python code was used by Dr 

Brentnall to convert DICOM images to TIFF format, and for those files that produced an error, 

the thesis author (Emma Atakpa) used the ‘Sante DICOM Editor’ program (413) to convert the 

images manually. The TIFF and DICOM files produced the same image (no processing when 

converting the files). 
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5.2.8 Mammographic density scoring 

 

Density was measured using visual assessment by an experienced radiologist (Dr Metaxa), who 

also made a judgement on whether she believed the original mammogram format to be film or 

digital. 

 

Before undertaking the readings, an assessment was made on inter-reader reliability of VAS 

between Dr Metaxa and Dr Ruth Warren (expert radiologist who read the mammograms for 

IBIS-I). A test set of 100 IBIS-I mammograms had been previously scored by Dr Warren and 

were compared with Dr Metaxa’s scores (Figure 5.2 and Figure 5.3). Correlation between the 

two readers was very good (Pearson correlation coefficient = 0.99, p<0.001, Spearman 

correlation coefficient = 0.98, p<0.001). 

 

 

Figure 5.2: Correlation between Dr Ruth Warren’s scores and Dr Linda Metaxa’s scores. 

 

Figure 5.3: Bland Altman plots of concordance (359) between Dr Ruth Warren’s scores and Dr Linda 

Metaxa’s scores. 
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Each mammogram was scored in 5% increments (on a 21 point scale from 0 to 100%), 

following the same method as in IBIS-I (19, 203). Mammograms were read on a per-woman 

basis and each mammogram was read sequentially, in date order, in comparison with the 

previous mammograms for that woman, i.e. baseline first, followed by first follow-up 

mammogram (compared with baseline mammogram) and finally, final follow-up mammogram 

(compared with both baseline and first follow-up mammograms). Dr Metaxa was blinded to 

treatment group, case status and other information including risk factors. 

 

5.2.9 Quality control (2) 

 

After assessment by Dr Metaxa, mammograms were removed for the following reasons: 

 

 Image quality was too low to reliably assess density. 

 Incorrect breast side or mammographic view (for example, medio-lateral (ML) view instead 

of MLO view). 

 Scarring indicating surgery (for example, a vacuum biopsy for a benign condition) which 

affected density assessment. 

 Breast partially cut off as it was too big for the compression plate which affected the ability 

to assess density. 

 Mammograms per-woman were of a different type (film or digital) – if baseline and first 

follow-up mammograms differed, the woman was excluded; if final follow-up mammogram 

differed from baseline and first follow-up mammogram, this mammogram was removed. 

These were excluded because digital mammograms tend to be darker than film 

mammograms and may therefore look less dense than if the breast had been imaged onto a 

film. 

 Digital mammograms per-woman were processed using different machines (e.g. Fuji, 

Philips, Siemens) – if baseline and first follow-up mammograms differed (and this was 

deemed to affect the true measure of density change), the woman was excluded; if final 

follow-up mammogram differed from baseline and first follow-up mammogram, this 

mammogram was removed. 

 Mammograms per-woman had substantially different radiographer techniques (e.g. different 

orientation of the breast positioning) which affected the spread of tissue and hence affected 

the true measure of density change – if baseline and first follow-up mammograms differed, 

the woman was excluded; if final follow-up mammogram differed from baseline and first 

follow-up mammogram, this mammogram was removed. 

 

The resulting number of women with a baseline and a first follow-up mammogram was 842 (31 

cases and 811 controls). 
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5.2.10 Baseline mammographic density at least 10% 

 

First and final density change were defined as the difference between baseline density and first 

or final follow-up mammogram density, respectively. This was measured continuously and 

dichotomised into <10% or ≥10% absolute reduction (and <5% or ≥5% absolute reduction). To 

be able to lose 10% density, women had to start with at least 10% density at baseline. Therefore, 

women with a baseline density <10% were excluded. 

 

The resulting number of women was 576 (19 cases and 557 controls) who had one available 

MLO baseline mammogram and one available MLO first follow-up mammogram. 

 

 

 

Figure 5.4: Flow diagram of study sample; QC=quality control. 

 

Case status was updated (October 2018), to reassign women who were initially recorded as 

controls to now be cases. New cases whose ipsilateral breast had been assessed were excluded; 

as were new cases with diagnosis before or at first follow-up mammogram (i.e. there was a 

delay in reporting their diagnosis to the trials unit after mammograms had been sent to the 

radiologist). Final follow-up mammograms at or after diagnosis were removed for these new 

cases. 

 

Defined cohort:

43 cases and 1,231 controls

No contralateral mammogram, breast cancer event before or at 1st follow-up 
mammogram, QC1:

8 cases and 293 controls excluded

QC2:

4 cases and 127 controls excluded

Baseline density <10%:

12 cases and 254 controls excluded

Rechecking case status:

1 control excluded (3 controls now cases)

Final sample:

22 cases and 553 controls
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The new definition for cases was therefore described as women who had been diagnosed with 

breast cancer as of October 2018, and breast cancer-free controls were defined as women who 

had not been diagnosed with breast cancer as of October 2018. 

 

The final number of women with one available MLO baseline mammogram and one available 

MLO first follow-up mammogram was 575 (22 cases and 553 controls). These women 

contributed mammograms from 46 participating centres across 6 countries: the UK, Italy, 

Finland, Denmark, Ireland and ANZ (Australia and New Zealand were grouped into one co-

ordinating centre). 

 

5.2.11 Statistical methods 

 

A statistical analysis plan was developed for the study (appendix C.XXIII). All statistical 

analysis was conducted using Stata (316), and tests were two-sided with a significance level of 

5%. The study used an intention-to-treat analysis (so the study design was based on the initial 

treatment intent, not the treatment that was eventually administered); therefore time on 

treatment was not included in adjustments. Only the trial statistician (Dr Ivana Sestak) was un-

blinded to treatment allocation, therefore a set of Stata code was sent to Dr Sestak to run on the 

un-blinded data. A proforma was developed and sent to the IBIS-II Trial Steering Committee, 

who approved the study (appendix C.XXIV). 

 

5.2.11.1 Baseline characteristics 

 
Baseline covariates (collected via questionnaires as part of the IBIS-II trial) were: age at 

randomisation (years), body mass index (BMI) at randomisation (kg/m2), age at menarche 

(years), age at menopause (years), Tyrer-Cuzick 10-year risk (%; version 7 excluding breast 

density), baseline density (%), age at first birth (nulliparous/>27/21-27/≤20), oral contraception 

use (never/previously/currently), hormone replacement therapy use up to 12 months before 

randomisation (no/yes; categorised in line with the IBIS-II main study (208); since HRT was 

not allowed during the trial, its use up to 12m before randomisation was considered to be a 

confounding factor which could have increased baseline density), smoking status 

(never/former/current), history of atypical hyperplasia or LCIS (no/yes) and image type 

(film/digital). Baseline covariates were summarised overall and by treatment arm using 

frequency tables. Frequency counts and percentages were provided for categorical data and 

means (standard deviation, SD) and medians (interquartile range, IQR) were provided for 

continuous data. Two-sample t-tests (for mean difference) and Wilcoxon rank sum tests (for 

median difference) were applied between treatment arms for continuous data and Pearson chi-
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squared tests (Fisher’s exact tests if cell size <5) tested independence between treatment arms in 

categorical data. 

 

5.2.11.2 Effect of covariates on baseline mammographic density 

 
An exploratory analysis assessed the effect of baseline covariates on baseline density using 

multivariable linear and logistic (baseline density dichotomised into <50% or ≥50%) regression 

models; adjusted for age at randomisation only and again for all covariates (except baseline 

density). Non-parametric empirical bootstrap 95% confidence intervals were used in linear 

regression models with continuous density outcome (2.2.4.3). 

 

5.2.11.3 Change in mammographic density 

 
There was a left skew on the density change data because density was assessed in comparison 

with previous mammograms and was more likely to decrease or stay the same than to increase 

(appendix C.XI-C.XXII), giving a small variance in per-woman readings (414). Therefore, 

density change did not follow a normal distribution, hence non-parametric methods (medians 

(interquartile range), Wilcoxon rank sum tests, and empirical bootstrap 95% confidence 

intervals in linear regression models (2.2.4.3)) were used as well as parametric methods (means 

(standard deviations) and two-sided t-tests). Furthermore, density change was assessed as a 

dichotomous variable (<10% absolute reduction or ≥10% absolute reduction, and <5% absolute 

reduction or ≥5% absolute reduction). The 5% cut-point was chosen because density was 

measured in 5% increments and the 10% cut-point was chosen because it was the minimum 

change that could be reproducibly detected in IBIS-I (19). 

 

5.2.11.4 Change in mammographic density – Boyd categories 

 
A cross tabulation was used to show the number of women in each Boyd category (0%, 1-10%, 

11-25%, 26-50%, 51-75%, 76-100%) at baseline and first and final follow-up, overall and by 

treatment.  

 

5.2.11.5 Change in mammographic density – unadjusted tests 

 
Two-sample t-tests (for mean difference) and Wilcoxon rank sum tests (for median difference) 

assessed whether there was a difference in first and final follow-up density change between 

treatment arms, and Pearson chi-squared tests (Fisher’s exact tests if cell size <5) tested whether 

there was independence in dichotomous first and final follow-up density change between 

treatment arms. 
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5.2.11.6 Change in mammographic density – adjusted regression models 

 
The primary analysis used linear (continuous density change) regression models to examine the 

association between treatment arm and change in density from baseline mammogram to first 

follow-up mammogram, adjusted for age at randomisation (years). This was also assessed using 

logistic regression models for dichotomous density change. The secondary analysis (I) repeated 

the primary analysis with adjustment for age at randomisation (years), body mass index at 

randomisation (kg/m2), hormone replacement therapy use up to 12 months before randomisation 

(no/yes), age at menopause (years), image type (film/digital) and time between baseline and 

follow-up mammogram (years). As an exploratory analysis, models were also adjusted for 

baseline density (%) and age at randomisation (years) only, and baseline density (%) and all 

other adjusting factors. The secondary analysis (II) repeated the primary analysis and the 

secondary analysis (III) repeated the secondary analysis (I) (including exploratory adjustments) 

but for final follow-up density change, in a subgroup of women who had an available final 

mammogram density score.  

 

The adjusting covariates for regression models were chosen based on literature which suggests 

that they have a confounding effect on density change, including those shown to be significant 

in the IBIS-I trial (203). Age at randomisation was retained in all regression models, regardless 

of significance, because age is a strong confounder of density and density change. To aid 

interpretation, continuous adjusting variables were centred about their median in regression 

models. 

 

5.2.11.7 Change in mammographic density – subgroup analyses 

 
The secondary analyses (IV) and (V) used two-sided t-tests and Wilcoxon rank-sum tests (2 

subgroups) or ANOVA F-tests and non-parametric Cuzick trend tests (>2 ordered subgroups) to 

assess heterogeneity, namely whether the effect of anastrozole on first and final density change 

varied between different covariate subgroups. Univariate logistic regression models were also 

used to assess the odds of a high density reduction (≥10% or ≥5% absolute reduction) in one 

subgroup relative to another subgroup, in anastrozole treated patients only. The covariates 

assessed in this subgroup analysis were the same as those at baseline, plus time between 

baseline and follow-up mammograms (years). Continuous variables were separated into 

subgroups by their median value. 

 

5.2.11.8 Change in mammographic density – sensitivity analyses 

 
As a sensitivity analysis, all analyses of density change at first follow-up mammogram were 

repeated in the subgroup of women with an available final mammogram. 
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5.3 Results 

 
Table 5.1: Baseline characteristics overall and by treatment arm. 

Variable n 

Overall 

n 

Placebo 

n 

Anastrozole 

Mean 

(SD) 

Median 

(IQR) 

Mean 

(SD) 

Median 

(IQR) 

Mean 

(SD) 

Median 

(IQR) 

Age at randomisation 

(yr) 
566 

58.9 

(5.5) 

59 (55-

63) 
271 

58.9 

(5.7) 

59 (55-

63) 
295 

58.9 

(5.4) 

59 (54-

63) 

P*  0.91, 0.77 

Body Mass Index 

(kg/m2) 
562 

27.1 

(4.6) 

26.5 

(23.8-

29.7) 

268 
27.0 

(4.8) 

26.5 

(23.8-

29.5) 

294 
27.1 

(4.4) 

26.5 

(23.8-

29.9) 

P*  0.77, 0.57 

Age at menarche (yr) 562 
12.9 

(1.6) 

13 (12-

14) 
269 

12.9 

(1.6) 

13 (12-

14) 
293 

12.8 

(1.7) 

13 (12-

14) 

P*  0.84, 0.69 

Age at menopause (yr) 563 
48.3 

(6.2) 

50 (46-

52) 
268 

48.4 

(6.0) 

50 (46-

52) 
294 

48.4 

(5.7) 

50 (45-

52) 

P*  0.97, 0.91 

Tyrer-Cuzick 10-year 

risk (%) 
568 

8.6 

(4.2) 

7.8 (6.1-

10.1) 
273 

8.7 

(3.8) 

7.9 (6.3-

10.6) 
295 

8.6 

(4.5) 

7.6 (5.9-

9.7) 

P*  0.72, 0.15 

Baseline density (%) 575 
43.5 

(24.8) 
45 (20-

65) 
276 

44.3 
(24.9) 

45 (20-
65) 

299 
42.7 

(24.8) 
40 (20-

65) 

P*  0.45, 0.45 

  n %  n %  n % 

Age at first birth (yr)  

Nulliparous 

566 

98 17.3 

271 

54 19.9 

295 

44 14.9 

>27 121 21.4 57 21.0 64 21.7 

21-27 245 43.3 110 40.6 135 45.8 

≤20 102 18.0 50 18.5 52 17.6 

P**  0.39 

Oral contraception 
use 

 

Never 

565 

120 21.4 

270 

65 24.1 

295 

55 18.6 

Previously 441 78.1 205 75.9 236 80.0 

Currently 4 0.7 0 0.0 4 1.4 

P**  0.04# 

HRT use < 12 months 

before randomisation 
 

No 
566 

534 94.4 
271 

253 93.4 
295 

281 95.3 

Yes 32 5.7 18 6.6 14 4.8 

P**  0.33 

Smoking status  

Never  317 56.1  156 57.6 

294 

161 54.8 

Former 565 73 12.9 271 32 11.8 41 14.0 

Current  175 31.0  83 30.6 92 31.3 

P**  0.70 

History of Atypical 

Hyperplasia or LCIS  
 

No 
566 

519 91.7 
271 

249 91.9 
295 

270 91.5 

Yes 47 8.3 22 8.1 25 8.5 

P**  0.88 

Image type  

Film 
575 

190 33.0 
276 

83 30.1 
299 

107 35.8 

Digital 385 67.0 193 69.9 192 64.2 

P**  0.15 

*P-value from two-sample t-test (for means) and Wilcoxon rank sum test (for medians), respectively, for 

continuous variables by treatment arm; **P-value from Pearson chi-squared test (# Fisher’s exact test if 

cell size <5) for variable categories by treatment arm; interquartile range (IQR), standard deviation 

(SD). 
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5.3.1 Baseline characteristics 

 
Baseline characteristics were well balanced between treatment arms for all women (Table 5.1). 

Women who had used or were currently using oral contraception were slightly more likely to be 

in the anastrozole group, but the difference in numbers was small. Nine women transferred to a 

different participating centre where their study number changed. Therefore, some covariates, 

such as age, could not be matched to the study number and were missing for these women.  

 

5.3.2 Timings of mammograms 

 
The median (IQR) and range of time between baseline mammogram and randomisation was 0.2 

years (0.1 years-0.4 years) and 0.0 years-1.0 years (i.e. 2.4 months (1.1 months-5.2 months) and 

0 months-12.2 months). The median (IQR) and range of time between randomisation and first 

follow-up mammogram was 2.0 years (1.4 years-2.2 years) and 0.7 years-3.2 years, and the 

median (IQR) and range of time between randomisation and final follow-up mammogram was 

4.4 years (4.1 years-4.8 years) and 4.0 years-5.0 years. The median (IQR) and range of time 

between baseline mammogram and first follow-up mammogram was 2.1 years (1.6 years-2.8 

years) and 0.9 years-3.9 years. The median (IQR) and range of time between baseline 

mammogram and final follow-up mammogram was 4.6 years (4.4 years-5.0 years) and 4.0 

years-5.9 years. 

 

5.3.3 Effect of covariates on baseline mammographic density 

 
Results from the age-adjusted and multivariable linear and logistic regression models for breast 

density at baseline are summarized in Table 5.2. Older age at randomisation was associated with 

reduced breast density (-0.45% (95% CI, -0.82 to -0.09) per year increase in age), but less so in 

multivariable models (-0.26% (95% CI, -0.64 to 0.11) per year increase in age). Higher body 

mass index was associated with a reduction in breast density in both age-adjusted (-1.69% (95% 

CI, -2.13 to -1.26) per kg/m2 increase) and multivariable (-1.73% (95% CI, -2.17 to -1.31) per 

kg/m2 increase) models. Age at first birth was another predictor of breast density in both age-

adjusted and multivariable models. Compared with nulliparous women (n=98), women who had 

their first full-term birth below the age of 20 years (n=102) had approximately 15% lower 

absolute breast density. The other statistically significant variable was image type, which 

showed lower density for digital images. This is expected since digital mammograms appear 

darker and thus less dense than film mammograms. 
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Table 5.2: Association between baseline covariates and baseline breast density (continuous (%) and dichotomised into <50% or ≥50%) in age-adjusted and multivariable linear and  

logistic regression models. 

Variable n+ 

Age-adjusted linear 

regression 

Multivariable linear 

regression 

Age-adjusted logistic 

regression 

Multivariable logistic 

regression 

β-coefficient 

(95%  CI)# 
P-value## 

β-coefficient 

(95%  CI)# 
P-value## 

OR 

(95%  CI)### 
P-value### 

OR 

(95%  CI)### 
P-value### 

Age at randomisation 

(yr)* 
566/553 

-0.45 

(-0.82,-0.09) 
0.01 

-0.26 

(-0.64,0.11) 
0.18 

0.97 

(0.94,1.00) 
0.04 

0.98 

(0.94,1.02) 
0.27 

Body Mass Index 

(kg/m2)* 
562/553 

-1.69 

(-2.13,-1.26) 
<0.01 

-1.73 

(-2.17,-1.31) 
<0.01 

0.87 

(0.83,0.91) 
<0.01 

0.86 

(0.82,0.90) 
<0.01 

Age at menarche (yr)* 562/553 
0.55 

(-0.73,1.84) 
0.41 

0.18 

(-0.99,1.39) 
0.77 

1.04 

(0.93,1.15) 
0.50 

1.02 

(0.90,1.14) 
0.79 

Age at menopause (yr)* 562/553 
0.11 

(-0.23,0.46) 
0.51 

0.03 

(-0.29,0.36) 
0.86 

1.00 

(0.97,1.03) 
0.99 

0.99 

(0.96,1.03) 
0.61 

Tyrer-Cuzick 10-year 

risk (% )* 
564/553 

0.45 

(-0.05,0.94) 
0.08 

0.47 

(-0.22,1.19) 
0.19 

1.03 

(0.99,1.08) 
0.11 

1.02 

(0.96,1.10) 
0.48 

Age at first birth (yr)**  

Nulliparous 

566/553 

Ref - Ref - Ref - Ref - 

>27 
-7.67 

(-14.50,-0.78) 
0.03 

-9.82 

(-16.61,-2.79) 
0.01 

0.74 

(0.43,1.27) 
0.28 

0.64 

(0.35,1.15) 
0.13 

21-27 
-8.97 

(-15.00,-2.91) 
<0.01 

-9.92 

(-16.04,-3.48) 
<0.01 

0.57 

(0.35,0.91) 
0.02 

0.52 

(0.30,0.89) 
0.02 

≤20 
-15.72 

(-22.48,-8.68) 
<0.01 

-15.40 

(-22.30,-8.09) 
<0.01 

0.33 

(0.19,0.60) 
<0.01 

0.31 

(0.16,0.61) 
<0.01 

Oral contraception use**  

Never 

565/553 

Ref - Ref - Ref - Ref - 

Previously 
-1.51 

(-6.47,3.49) 
0.55 

1.39 

(-3.30,6.18) 
0.57 

0.83 

(0.54,1.27) 
0.39 

1.04 

(0.66,1.66) 
0.86 

Currently 
-11.27 

(-32.00,36.28) 
0.50 

-2.95 

(-28.48,42.58) 
0.88 

0.47 

(0.05,4.65) 
0.52 

1.15 

(0.10,13.3) 
0.91 
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Table 5.2 continued 
 

HRT use up to 12 months 

before randomisation** 
 

No 

566/553 

Ref - Ref - Ref - Ref - 

Yes 
3.83 

(-5.38,13.18) 
0.42 

3.23 

(-5.80,12.83) 
0.50 

1.16 

(0.56,2.39) 
0.69 

1.16 

(0.51,2.62) 
0.72 

Smoking status**  

Never 

565/553 

Ref - Ref - Ref - Ref - 

Former 
4.01 

(-2.83,10.86) 
0.25 

1.74 

(-4.29,7.72) 
0.57 

1.19 

(0.71,2.00) 
0.51 

0.94 

(0.53,1.68) 
0.84 

Current 
2.55 

(-1.98,7.06) 
0.27 

3.72 

(-0.92,8.05) 
0.10 

1.08 

(0.74,1.57) 
0.69 

1.17 

(0.77,1.78) 
0.47 

History of Atypical 

Hyperplasia or LCIS** 
 

No 

566/553 

Ref - Ref - Ref - Ref - 

Yes 
4.83 

(-3.19,12.89) 
0.24 

2.46 

(-7.41,12.31) 
0.63 

1.60 

(0.88,2.92) 
0.13 

1.66 

(0.63,4.35) 
0.30 

Image type**  

Film 

566/553 

Ref - Ref - Ref - Ref - 

Digital 
-4.94 

(-9.15,-0.67) 
0.02 

-7.59 

(-11.61,-3.24) 
<0.01 

0.72 

(0.51,1.03) 
0.07 

0.57 

(0.38,0.84) 
0.01 

 

All covariates adjusted for age at randomisation (yr) in age-adjusted models (except for age at randomisation (yr)), all covariates included in multivariable models; continuous 

variables centred about their median (see Table 5.1 overall column); * β-coefficient represents effect on baseline density per unit increase in covariate, odds ratio (OR) represents 

odds of having ≥50% baseline density per unit increase in covariate; ** β-coefficient represents difference in baseline density from reference category, OR represents odds of having 

≥50% baseline density relative to the reference category; #empirical bootstrap 95% CI;  ##P-value from z-test with known sample mean and standard deviation (the population is to  

the sample as the sample is to the bootstrap sample); ###95% CI and P-value from a Wald test; +number in age-adjusted model/number in multivariable model. 
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Table 5.3: Cross tabulation of number of women in each Boyd category at entry to the study with category at first and final follow-up. 

Boyd category at 

entry 

Number of women 

Boyd category at first follow-up 
Total 

Boyd category at first follow-up (women with a final 

mammogram) Total 

0%  1-10%  11-25%  26-50%  51-75%  76-100% 0%  1-10%  11-25%  26-50%  51-75%  76-100%  

0%  - - - - - - 0(0/0) - - - - - - 0(0/0) 

1-10%  - 49(22/27) 1(1/0) - - - 50(23/27) - 14(9/5) - - - - 14(9/5) 

11-25%  - 13(7/6) 147(65/82) - - - 160(72/88) - 3(2/1) 37(18/19) - - - 40(20/20) 

26-50%  - - 5(2/3) 134(69/65) 1(0/1) - 140(71/69) - - 2(1/1) 35(20/15) - - 37(21/16) 

51-75%  - - - 6(1/5) 153(78/75) - 159(79/80) - - - 3(0/3) 41(20/21)  44(20/24) 

76-100%  - - - - 8(4/4) 58(27/31) 66(31/35) - - - - 2(2/0) 14(7/7) 16(9/7) 

Total 0(0/0) 62(29/33) 153(68/85) 140(70/70) 162(82/80) 58(27/31) 575(276/299) 0(0/0) 17(11/6) 39(19/20) 38(20/18) 43(22/21) 14(7/7) 151(79/72) 

 

Boyd category at 

entry 

Number of women 

Boyd category at final follow-up 
Total 

0%  1-10%  11-25%  26-50%  51-75%  76-100%  

0%  - - - - - - 0(0/0) 

1-10%  - 14(9/5) - - - - 14(9/5) 

11-25%  - 4(3/1) 36(17/19) - - - 40(20/20) 

26-50%  - - 2(1/1) 35(20/15) - - 37(21/16) 

51-75%  - - - 3(1/2) 41(19/22) - 44(20/24) 

76-100%  - - - - 2(2/0) 14(7/7) 16(9/7) 

Total 0(0/0) 18(12/6) 38(18/20) 38(21/17) 43(21/22) 14(7/7) 151(79/72) 

 

The first number in each cell is the total number of subjects; numbers in parentheses are the placebo and anastrozole groups,  respectively; ‘-‘ indicates no entries. 
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Table 5.4: Continuous change in density (%) by treatment arm. 

 

 n 
Mean (95% 

CI) 

Standard 

deviation 
P-value* Median IQR 

P-

value** 

First follow-up  

Placebo 276 
-0.82 

(-1.12, -0.51) 
2.59 

0.28 

0 (0,0) 

0.13 

Anastrozole 299 
-1.05 

(-1.36, -0.75) 
2.65 0 (0,0) 

First follow-up 

(women with a final 

mammogram) 

 

Placebo 79 
-1.08 

(-1.71, -0.44) 
2.85 

0.94 

0 (0,0) 

0.58 

Anastrozole 72 
-1.04 

(-1.56, -0.52) 
2.21 0 (0,0) 

Final follow-up  

Placebo 79 
-2.15 

(-3.01, -1.30) 
3.81 

0.47 

0 (-5,0) 

0.43 

Anastrozole 72 
-1.74 

(-2.48, -0.99) 
3.16 0 (-5,0) 

 

*P-value from two-sided t-test (for means); **P-value from Wilcoxon rank sum test (for medians); 

interquartile range (IQR), 95% confidence interval (95% CI). 

 
 
Table 5.5: Dichotomised change in density (%) by treatment arm. 

 

 n (% of follow-up) 
P-

value 

n (% of follow-up) 
P-

value  
<10% 

reduction 

≥10% 

reduction 

<5% 

reduction 

≥5% 

reduction 

First follow-up  

Placebo 268 (97.1%) 8 (2.9%) 
0.49 

236 (85.5%) 40 (14.5%) 
0.14 

Anastrozole 293 (98.0%) 6 (2.0%) 242 (80.9%) 57 (19.1%) 

First follow-up 

(women with a final 

mammogram) 

 

Placebo 75 (94.9%) 4 (5.1%) 
0.37# 

67 (84.8%) 12 (15.2%) 
0.49 

Anastrozole 71 (98.6%) 1 (1.4%) 58 (80.6%) 14 (19.4%) 

Final follow-up  

Placebo 75 (94.9%) 4 (5.1%) 
1.00# 

50 (63.3%) 29 (36.7%) 
0.43 

Anastrozole 69 (95.8%) 3 (4.2%) 50 (69.4%) 22 (30.6%) 

 

P-value from Pearson chi-squared test (#Fisher’s exact test if cell size <5).  
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5.3.4 Change in mammographic density – Boyd categories 

 
Change in density was summarised in terms of the number of women in each treatment group 

by Boyd scale at baseline and at first and final follow-up mammogram (Table 5.3). Movement 

between Boyd categories was minimal, and women who had a decrease in density moved by no 

more than one category below their baseline category. A similar percentage of women on 

placebo and anastrozole moved to a lower Boyd category at first follow-up mammogram 

(14/276=5% and 18/299=6%, respectively), with slightly more women moving down a category 

on placebo than anastrozole at final follow-up mammogram (7/79=9% and 4/72=6%, 

respectively). Increases in breast density were rare, and the two women (1 anastrozole control 

and 1 placebo control) who had increased density at first follow-up mammogram moved up by 

no more than one category. On inspection of the mammograms for these two women, both 

appeared to be caused by increases in dense tissue as opposed to weight-loss (decrease in breast 

fat), but the reason for the increase is unclear. These two women were not on HRT throughout 

the trial and they did not go on to develop breast cancer. 

 

5.3.5 Change in mammographic density – first follow-up mammogram 

 
At baseline, the mean breast density was 44.3% (95% CI, 41.4% to 47.3%) for the placebo 

group and 42.7% (95% CI, 39.9% to 45.6%) for the anastrozole group (p=0.45 from two-sample 

t-test and Wilcoxon rank sum test). By the first follow-up mammogram, breast density had 

fallen to an average 43.5% (95% CI, 40.5% to 46.4%) in the placebo group, with a change from 

baseline of -0.82% (95% CI, -1.12% to -0.51%) (Table 5.4). By the first follow-up 

mammogram, breast density had fallen to an average 41.7% (95% CI, 38.9% to 44.5%) in the 

anastrozole group, with a change from baseline of -1.05% (95% CI, -1.36% to -0.75%). The 

difference in density change at first follow-up mammogram between treatment arms 

(anastrozole minus placebo) was not significant (mean 0.24%, 95% CI, -0.19% to 0.67%, 

p=0.28 from two-sample t-test and p=0.13 from Wilcoxon rank sum test).  

 

5.3.6 Change in mammographic density – final follow-up mammogram 

 
By the final follow-up mammogram, breast density had fallen to an average 41.5% (95% CI, 

35.8% to 47.3%) in the placebo group, with a change from baseline of -2.15% (95% CI, -3.01% 

to -1.30%). For anastrozole, breast density had fallen to an average of 42.5% (95% CI, 36.7% to 

48.3%), with a change from baseline of -1.74% (95% CI, -2.48% to -0.99%). The difference in 

density change at final follow-up mammogram between treatment arms (anastrozole minus 

placebo) was not significant (mean -0.42%, 95% CI, -1.55% to 0.72%, p=0.47 from two-sample 

t-test and p=0.43 from Wilcoxon rank sum test) Table 5.4. 
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At first glance, anastrozole appeared to decrease more than placebo at first follow-up 

mammogram (-1.05% vs. -0.82%), but less than placebo at final follow-up mammogram (-

1.74% vs. -2.15%), suggesting a possible slowing down of anastrozole-induced rate of change 

in the latter stages of follow-up. However, when assessing the subgroup of women with an 

available final follow-up mammogram, anastrozole-treated women had less of a density 

reduction than those on placebo at both first and final follow-up mammogram (-1.04% vs. -

1.08% and -1.74% vs. -2.15%, respectively). Therefore, the effects seen at final follow-up 

mammogram may have been specific to this subgroup of women only.  

 

Results were similar for dichotomised density, where tests for differences in density change 

between treatment arms were non-significant (Table 5.5). The number of women losing at least 

10% density at first and final follow-up mammograms was small in both treatment arms, but 

numbers were larger for at least 5% density reduction. Although not significant, there was some 

suggestion that more women lost at least 5% density on anastrozole than placebo at first follow-

up mammogram (19.1% vs. 14.5%), but this was not the case at final follow-up mammogram. 

Overall, breast density fell over the course of the study for both anastrozole and placebo, but 

changes were not significantly different between treatment arms. 
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Table 5.6: Association between treatment arm and change in density (continuous (%), <10%/≥10% 

reduction and <5%/≥5% reduction) in adjusted linear and logistic regression models. 

 

Treatment Continuous# 

First follow-up 

 

Age-adjusted (n=566) 
Adjusted1 

(n=559) 

Adjusted2 

(n=566) 

Adjusted3 

(n=559) 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
-0.17 

(-0.59,0.26) 
0.43 

-0.27 

(-0.69,0.13) 
0.19 

-0.18 

(-0.60,0.26) 
0.41 

-0.29 

(-0.70,0.13) 
0.18 

First follow-up (women with a final mammogram) 

 

Age-adjusted (n=150) 
Adjusted1 

(n=148) 

Adjusted2 

(n=150) 

Adjusted3 

(n=148) 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
0.01 

(-0.77,0.81) 
0.98 

-0.07 

(-0.87,0.72) 
0.86 

0.01 

(-0.78,0.81) 
0.98 

-0.08 

(-0.87,0.73) 
0.84 

Final follow-up 

 

Age-adjusted (n=150) 
Adjusted1 

(n=148) 

Adjusted2 

(n=150) 

Adjusted3 

(n=148) 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

β-coefficient 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
0.39 

(-0.71,1.46) 
0.48 

0.27 

(-0.81,1.30) 
0.61 

0.39 

(-0.70,1.46) 
0.48 

0.26 

(-0.84,1.31) 
0.63 

 

Treatment ≥10% reduction* 

First follow-up 

 

Age-adjusted (n=566) 
Adjusted1 

(n=559) 

Adjusted2 

(n=566) 

Adjusted3 

(n=559) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
0.57 

(0.18,1.77) 
0.33 

0.82 

(0.25,2.73) 
0.75 

0.59 

(0.19,1.83) 
0.36 

0.84 

(0.25,2.79) 
0.77 

First follow-up (women with a final mammogram) 

 

Age-adjusted (n=150) 
Adjusted1 

(n=148) 

Adjusted2 

(n=150) 

Adjusted3 

(n=148) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
0.27 

(0.03,2.44) 
0.24 

0.37 

(0.04,3.83) 
0.40 

0.26 

(0.03,2.43) 
0.24 

0.36 

(0.03,3.77) 
0.40 

Final follow-up 

 

Age-adjusted (n=150) 
Adjusted1 

(n=148) 

Adjusted2 

(n=150) 

Adjusted3 

(n=148) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
0.83 

(0.18,3.91) 
0.82 

1.06 

(0.20,5.62) 
0.95 

0.82 

(0.17,3.92) 
0.81 

1.04 

(0.19,5.61) 
0.96 
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Table 5.6 continued 

 

Treatment ≥5% reduction** 

First follow-up 

 

Age-adjusted (n=566) 
Adjusted1 

(n=559) 

Adjusted2 

(n=566) 

Adjusted3 

(n=559) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
1.33 

(0.85,2.09) 
0.21 

1.51 

(0.95,2.40) 
0.08 

1.33 

(0.85,2.09) 
0.21 

1.51 

(0.95,2.41) 
0.08 

First follow-up (women with a final mammogram) 

 

Age-adjusted (n=150) 
Adjusted1 

(n=148) 

Adjusted2 

(n=150) 

Adjusted3 

(n=148) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
1.40 

(0.58,3.38) 
0.45 

1.76 

(0.68,4.51) 
0.24 

1.40 

(0.58,3.37) 
0.45 

1.75 

(0.68,4.49) 
0.25 

Final follow-up 

 

Age-adjusted (n=150) 
Adjusted1 

(n=148) 

Adjusted2 

(n=150) 

Adjusted3 

(n=148) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Placebo Ref - Ref - Ref - Ref - 

Anastrozole 
0.75 

(0.38,1.51) 
0.42 

0.87 

(0.41,1.82) 
0.71 

0.75 

(0.37,1.51) 
0.42 

0.87 

(0.41,1.82) 
0.71 

 

Treatment adjusted for age at randomisation (yr) in age-adjusted models; 1treatment adjusted for age at 

randomisation (yr), body mass index at randomisation (kg/m2), hormone replacement therapy use up to 

12 months before randomisation (no/yes), age at menopause ( yr), image type (film/digital) and time 

between baseline and follow-up mammogram (yr); 2treatment adjusted for age at randomisation (yr) and  

baseline density (%); 3treatment adjusted for age at randomisation (yr), body mass index at 

randomisation (kg/m2), hormone replacement therapy use up to 12 months before randomisation (no/yes), 

age at menopause (yr), image type (film/digital), time between baseline and follow-up mammogram (yr) 

and baseline density (%); # β-coefficient represents difference in density change from placebo, empirical 

bootstrap 95% CI, P-value from z-test with known sample mean and standard deviation (the population is 

to the sample as the sample is to the bootstrap sample); * odds ratio (OR) represents odds of ≥10% 

density reduction relative to placebo, 95% confidence interval (95% CI) and P-value from a Wald test; ** 

OR represents odds of ≥5% density reduction relative to placebo, 95% CI and P-value from a Wald test. 
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Table 5.7: Change in density (continuous, %) and odds ratios of relative risk of high density reduction (≥10% and ≥5%) by subgroups of covariates in the anastrozole arm only . 

Variable 

First follow-up First follow-up (women with a final mammogram) Final follow-up 

n 

Continuous ≥10% reduction# ≥5% reduction## 

n 

Continuous 
≥10% 

reduction# 
≥5% reduction## 

n 

Continuous ≥10% reduction# ≥5% reduction## 

Mean 

(SD) 

Median 

(IQR) 

OR 

(95% CI) 
P 

OR 

(95% CI) 
P 

Mean 

(SD) 

Median 

(IQR) 

OR 

(95% 

CI) 

P 
OR 

(95% CI) 
P 

Mean 

(SD) 

Median 

(IQR) 

OR 

(95% CI) 
P 

OR 

(95% CI) 
P 

Age at 

randomisation 

(yr)* 

 

<59 yr 145 
-1.07 

(2.84) 
0 (0,0) Ref - Ref - 33 

-1.21 

(2.18) 
0 (0,0) Ref - Ref - 33 

-2.12 

(3.54) 
0 (-5,0) Ref - Ref - 

≥59 yr 150 
-0.93 

(2.20) 
0 (0,0) 

1.46 

(0.24,8.86) 
0.68 

0.77 

(0.43,1.38) 
0.38 39 

-0.90 

(2.26) 
0 (0,0) n/a n/a 

0.57 

(0.17,1.85) 
0.35 39 

-1.41 

(2.80) 
0 (-5,0) 

0.41 

(0.04,4.71) 
0.47 

0.79 

(0.29,2.15) 
0.64 

P**  0.65 0.56  0.55 0.38  0.35 0.49  

Body Mass 

Index (kg/m2)* 
 

<26.5 kg/m2 146 
-1.03 

(2.19) 
0 (0,0) Ref - Ref - 38 

-0.92 

(1.96) 
0 (0,0) Ref - Ref - 38 

-1.71 

(3.14) 
0 (-5,0) Ref - Ref - 

≥26.5 kg/m2 148 
-0.98 

(2.84) 
0 (0,0) 

1.49 

(0.25,9.05) 
0.67 

0.94 

(0.52,1.69) 
0.84 34 

-1.18 

(2.48) 
0 (0,0) n/a n/a 

1.15 

(0.36,3.69) 
0.82 34 

-1.76 

(3.23) 
0 (-5,0) 

2.31 

(0.20,26.71) 
0.50 

1.17 

(0.43,3.20) 
0.75 

P**  0.87 0.69  0.63 0.77  0.94 0.86  

Age at menarche 

(yr)* 
 

<13 yr 126 
-1.19 

(2.93) 
0 (0,0) Ref - Ref - 33 

-0.91 

(1.96) 
0 (0,0) Ref - Ref - 33 

-1.36 

(2.87) 
0 (-5,0) Ref - Ref - 

≥13 yr 167 
-0.87 

(2.19) 
0 (0,0) 

1.13 

(0.19,6.89) 
0.89 

0.68 

(0.37,1.22) 
0.19 38 

-1.18 

(2.45) 
0 (0,0) n/a n/a 

1.20 

(0.37,3.90) 
0.76 38 

-2.11 

(3.42) 
0 (-5,0) 

1.78 

(0.15,20.54) 
0.65 

1.39 

(0.50,3.84) 
0.53 

P**  0.28 0.22  0.61 0.73  0.33 0.41  

Age at 

menopause (yr)* 
 

<50 yr 138 
-1.05 

(2.86) 
0 (0,0) Ref - Ref - 39 

-1.28 

(2.49) 
0 (0,0) Ref - Ref - 39 

-1.92 

(3.74) 
0 (-5,0) Ref - Ref - 

≥50 yr 156 
-0.96 

(2.21) 
0 (0,0) 

1.33 

(0.22,8.10) 
0.76 

0.82 

(0.46,1.48) 
0.51 32 

-0.78 

(1.84) 
0 (0,0) n/a n/a 

0.62 

(0.18,2.07) 
0.44 32 

-1.56 

(2.35) 
0 (-5,0) n/a n/a 

1.02 

(0.37,2.81) 
0.97 

P**  0.76 0.72  0.35 0.41  0.64 0.99  
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Table 5.7 continued 

 
Tyrer-Cuzick 10-year 

risk (%)* 
 

<7.8% 154 
-0.94 

(2.61) 

0 

(0,0) 
Ref - Ref - 43 

-0.93 

(2.25) 

0 

(0,0) 
Ref - Ref - 43 

-1.86 

(3.62) 

0 (-

5,0) 
Ref - Ref - 

≥7.8% 141 
-1.13 

(2.70) 

0 

(0,0) 

1.09 

(0.22,5.51) 
0.91 

1.07 

(0.59,1.92) 
0.83 28 

-1.07 

(2.09) 

0 

(0,0) 
n/a n/a 

1.40 

(0.42,4.72) 
0.58 28 

-1.43 

(2.30) 

0 (-

5,0) 
n/a n/a 

0.92 

(0.32,2.63) 
0.88 

P**  0.53 0.66  0.79 0.62  0.58 0.86  

Baseline density (%)*  

<45% 151 
-0.86 

(1.98) 

0 

(0,0) 
Ref - Ref - 35 

-0.86 

(1.91) 

0 

(0,0) 
Ref - Ref - 35 

-1.57 

(2.36) 

0 (-

5,0) 
Ref - Ref - 

≥45% 148 
-1.25 

(3.19) 

0 

(0,0) 
n/a n/a 

1.17 

(0.66,2.08) 
0.60 37 

-1.22 

(2.47) 

0 

(0,0) 
n/a n/a 

1.33 

(0.41,4.33) 
0.63 37 

-1.89 

(3.79) 

0 (-

5,0) 
n/a n/a 

0.92 

(0.34,2.52) 
0.88 

P**  0.21 0.51  0.50 0.60  0.67 0.93  

Age at first birth (yr)  

Nulliparous 44 
-0.91 

(2.23) 

0 

(0,0) 
Ref - Ref - 9 

-1.11 

(3.33) 

0 

(0,0) 
Ref - Ref - 9 

-1.11 

(3.33) 

0 

(0,0) 
Ref - Ref - 

>27 64 
-0.86 

(2.10) 

0 

(0,0) 
n/a n/a 

1.22 

(0.44,3.39) 
0.70 18 

-1.39 

(2.30) 

0 (-

5,0) 
n/a n/a 

3.08 

(0.30,31.33) 
0.34 18 

-2.22 

(2.56) 

0 (-

5,0) 
n/a n/a 

6.40 

(0.66,62.40) 
0.11 

21-27 135 
-1.19 

(2.81) 

0 

(0,0) 

1.31 

(0.14,12.07) 
0.81 

1.26 

(0.51,3.15) 
0.62 35 

-0.86 

(1.91) 

0 

(0,0) 
n/a n/a 

1.66 

(0.17,15.82) 
0.66 35 

-1.43 

(3.55) 

0 

(0,0) 

0.48 

(0.04,6.04) 
0.57 

2.37 

(0.26,21.90) 
0.45 

≤20 52 
-0.77 

(2.50) 

0 

(0,0) 
n/a n/a 

1.26 

(0.44,3.64) 
0.67 10 

-1.00 

(2.11) 

0 

(0,0) 
n/a n/a 

2.00 

(0.15,26.73) 
0.60 10 

-2.50 

(2.64) 

-2.5 

(-5,0) 
n/a n/a 

8.00 

(0.71,90.00) 
0.09 

P**  0.71 0.76  0.88 0.93  0.65 0.52  

Oral contraception use  

Never 55 
-1.27 

(2.59) 

0 

(0,0) 
Ref - Ref - 10 

-1.00 

(2.11) 

0 

(0,0) 
Ref - Ref - 10 

0.00 

(2.36) 

0 

(0,0) 
Ref - Ref - 

Previously 236 
-0.95 

(2.54) 

0 

(0,0) 

0.34 

(0.06,2.09) 
0.25 

0.80 

(0.39,1.64) 
0.54 62 

-1.05 

(2.24) 

0 

(0,0) 

-0.05 

(-

1.56,1.46) 

0.95 n/a n/a 62 
-2.02 

(3.20) 

0 (-

5,0) 
n/a n/a 

4.61 

(0.55,38.86) 
0.16 

Currently 4 
0.00 

(0.00) 

0 

(0,0) 
n/a n/a n/a n/a 0 - - - - - - 0 - - - - - - 

P**  0.51 0.30  0.95 0.98  0.06 0.06  
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Table 5.7 continued 

 
HRT use up to 12 months 

before randomisation 
 

No 281 
-0.98 

(2.54) 

0 

(0,0) 
Ref - Ref - 67 

-0.97 

(2.17) 

0 

(0,0) 
Ref - Ref - 67 

-1.64 

(3.18) 

0 (-

5,0) 
Ref - Ref - 

Yes 14 
-1.43 

(2.34) 

0 (-

5,0) 
n/a n/a 

1.80 

(0.54,5.98) 
0.34 5 

-2.00 

(2.74) 

0 (-

5,0) 
n/a n/a 

3.06 

(0.46,20.33) 
0.25 5 

-3.00 

(2.74) 

0 (-

5,0) 
n/a n/a 

3.79 

(0.59,24.50) 
0.16 

P**  0.52 0.34  0.32 0.25  0.36 0.18  

Smoking status  

Never 161 
-1.02 

(2.80) 

0 

(0,0) 
Ref - Ref - 34 

-1.18 

(2.48) 

0 

(0,0) 
Ref - Ref - 34 

-1.47 

(2.89) 

0 (-

5,0) 
Ref - Ref - 

Former 41 
-0.61 

(1.66) 

0 

(0,0) 
n/a n/a 

0.58 

(0.21,1.61) 
0.30 14 

-1.07 

(2.13) 

0 

(0,0) 
n/a n/a 

1.05 

(0.23,4.83) 
0.95 14 

-2.14 

(3.23) 

0 (-

5,0) 

2.54 

(0.15,43.67) 
0.52 

1.33 

(0.36,4.99) 
0.67 

Current 92 
-1.14 

(2.36) 

0 

(0,0) 

1.17 

(0.19,7.14) 
0.87 

1.09 

(0.58,2.07) 
0.79 24 

-0.83 

(1.90) 

0 

(0,0) 
n/a n/a 

0.77 

(0.20,3.00) 
0.71 24 

-1.88 

(3.55) 

0 (-

5,0) 

1.43 

(0.09,24.13) 
0.80 

0.99 

(0.31,3.12) 
0.98 

P**  0.53 0.73  0.85 0.69  0.78 0.82  

History of Atypical 

Hyperplasia or LCIS 
 

No 270 
-0.94 

(2.50) 

0 

(0,0) 
Ref - Ref - 66 

-0.98 

(2.19) 

0 

(0,0) 
Ref - Ref - 66 

-1.74 

(3.22) 

0 (-

5,0) 
Ref - Ref - 

Yes 25 
-1.60 

(2.78) 

0 (-

5,0) 

2.77 

(0.30,25.79) 
0.37 

1.80 

(0.71,4.55) 
0.22 6 

-1.67 

(2.58) 

0 (-

5,0) 
n/a n/a 

2.25 

(0.37,13.73) 
0.38 6 

-1.67 

(2.58) 

0 (-

5,0) 
n/a n/a 

1.15 

(0.19,6.80) 
0.88 

P**  0.22 0.18  0.47 0.39  0.96 0.90  

Image type  

Film 107 
-0.89 

(2.82) 

0 

(0,0) 
Ref - Ref - 19 

-1.05 

(2.09) 

0 

(0,0) 
Ref - Ref - 19 

-1.58 

(4.10) 

0 (-

5,0) 
Ref - Ref - 

Digital 192 
-1.15 

(2.56) 

0 

(0,0) 

2.83 

(0.33,24.58) 
0.35 

1.26 

(0.68,2.33) 
0.46 53 

-1.04 

(2.27) 

0 

(0,0) 
n/a n/a 

0.87 

(0.24,3.20) 
0.84 53 

-1.79 

(2.79) 

0 (-

5,0) 

0.71 

(0.06,8.26) 
0.78 

1.32 

(0.41,4.27) 
0.64 

P**  0.42 0.40  0.98 0.87  0.80 0.51  
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Table 5.7 continued 

 
Time between baseline and first follow-

up mammogram (yr)* 
 

<2.1 years 151 
-1.03 

(2.73) 

0 

(0,0) 
Ref - Ref - 29 

-0.86 

(2.34) 

0 

(0,0) 
Ref - Ref - - - - - - - - 

≥2.1 years 148 
-1.08 

(2.58) 

0 

(0,0) 

0.50 

(0.09,2.79) 
0.43 

0.98 

(0.55,1.75) 
0.95 43 

-1.16 

(2.14) 

0 

(0,0) 
n/a n/a 

1.89 

(0.53,6.75) 
0.33 - - - - - - - 

P**  0.86 0.90  0.58 0.37  - -  

Time between baseline and final 

follow-up mammogram (yr)* 
 

<4.6 years - - - - - - - - - - - - - 40 
-2.13 

(3.38) 
Ref - Ref - 

≥4.6 years - - - - - - - - - - - - - 32 
-1.25 

(2.84) 

0.61 

(0.05,7.08) 
0.70 

0.62 

(0.22,1.74) 
0.36 

P**  - -  - -  0.25 0.28  

 

*Continuous variables dichotomised by their median (Table 5.1: median time between baseline and first follow-up mammogram=2.1 years, median time between baseline and  fina l  

follow-up mammogram=4.6 years); ** P-value from two-sample t-test (corresponding to mean column) or Wilcoxon rank sum test (corresponding to median column) for covaria tes 

with 2 subgroups, P-value from ANOVA F-test (corresponding to mean column) or Cuzick’s trend test (corresponding to median column) for covariates with >2 ordered su bgroups; 

# odds ratio (OR) represents odds of ≥10% density reduction relative to the reference category, adjusted for age at randomisation ( yr) (except for age at randomisation (yr)), 95% 

confidence interval (95% CI) and P-value from a Wald test; ## OR represents odds of ≥5% density reduction relative to the reference category, adjusted for age a t randomisation 

(yr) (except for age at randomisation (yr)), 95% CI and P-value from a Wald test; n/a represents no results since subgroups perfectly predicted dichotomous density change; 

interquartile range (IQR); standard deviation (SD). 
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5.3.7 Adjusted change in mammographic density – first follow-up mammogram 

(primary analysis) 

 
Results from the linear and logistic regression models examining the adjusted associations 

between treatment arm and change in breast density are given in Table 5.6. The more negative 

the coefficient for continuous density change, the greater the effect of anastrozole on decreasing 

breast density from baseline mammogram than placebo. The primary analysis at first follow-up 

mammogram found that anastrozole had a mean -0.17% (95% CI, -0.59% to 0.26%, p=0.43) 

decrease in density compared with placebo after adjustment for age at baseline. This changed to 

a mean -0.27% (95% CI, -0.69% to 0.13%, p=0.19) decrease in the fully adjusted linear model. 

Accounting for baseline density only slightly strengthened the effect in both adjusted models. 

Baseline density was only marginally (non-significantly) associated with density change (mean 

density change per 10% increase in baseline density: -0.06% (95% CI, -0.14 to 0.03), p=0.21). 

If anything, it was suggestive that women on anastrozole were less likely to see a reduction in 

density of at least 10% at first follow-up mammogram than women on placebo (OR for 

anastrozole relative to placebo=0.57, 95% CI, 0.18 to 1.77, p=0.33 (age-adjusted), OR for 

anastrozole relative to placebo=0.82, 95% CI, 0.25 to 2.73, p=0.75 (fully-adjusted)), although 

the number of women experiencing at least 10% density reduction was small. Secondary 

analyses also assessed density change when dichotomised by a 5% reduction. In the age-

adjusted model, there was some suggestion that women on anastrozole were more likely to see a 

density reduction of at least 5% at first follow-up mammogram than placebo (OR for 

anastrozole relative to placebo=1.33, 95% CI, 0.85 to 2.09, p=0.21). This changed to an OR of 

1.51 (95% CI, 0.95 to 2.40, p=0.08) for anastrozole relative to placebo when adjusted for other 

factors in the fully-adjusted model. 

 

The study was underpowered to find a difference in density change at first follow-up 

mammogram between anastrozole and placebo. With 575 women (22 cases, 553 controls), the 

power to detect a difference in density change (continuous) from baseline to first follow-up 

mammogram between the two treatment arms at the 5% type-I error level was only 8%. The 

power to detect a difference in density change (≥10% reduction and <10% reduction) from 

baseline to first follow-up mammogram between the two treatment arms at the 5% type-I error 

level was 11% (6.2.1). The power to detect a difference in density change (≥5% reduction and 

<5% reduction) from baseline to first follow-up mammogram between the two treatment arms at 

the 5% type-I error level was 32% (6.2.1). 
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5.3.8 Adjusted change in mammographic density – final follow-up mammogram 

 
At final follow-up mammogram, anastrozole had a mean 0.39% (95% CI, -0.71% to 1.46%, 

p=0.48) increase in density compared with placebo after adjustment for age at baseline, which 

changed to 0.27% (95% CI, -0.81% to 1.30%, p=0.61) in the fully adjusted linear model (Table 

5.6). Accounting for baseline density, again, had little effect. There was no clear difference in 

the odds of at least a 10% density reduction at final follow-up mammogram between placebo 

and anastrozole (OR for anastrozole relative to placebo=0.83, 95% CI, 0.18 to 3.91, p=0.82 

(age-adjusted), OR for anastrozole relative to placebo=1.06, 95% CI, 0.20 to 5.62, p=0.95 

(fully-adjusted)). When dichotomised by a 5% reduction and adjusted for age at baseline, 

women on anastrozole had an odds ratio of experiencing a density reduction of at least 5% at 

final follow-up mammogram (relative to placebo) of 0.75 (95% CI, 0.38 to 1.51, p=0.42). When 

adjusted for other covariates, the odds ratio relative to placebo changed to 0.87 (95% CI, 0.41 to 

1.82, p=0.71). 

 

5.3.9 Missing covariate data 

 
As a sensitivity analysis, the age-adjusted regression models (n=566) were run in the subgroup 

of women with non-missing data for all adjusting variables (i.e. the subgroup included in fully-

adjusted multivariable regression models, n=559), to test whether adjusted results were robust to 

missing data. There was only a small amount of missing data for adjusting covariates and the 

results of these sensitivity models were similar to those in the main analysis (results not 

reported); hence the analysis was robust to missing data. 

 

5.3.10 Subgroup analysis 

 
Table 5.7 shows the effect of anastrozole on density change by different subgroups of covariates 

in the anastrozole arm only. Continuous covariates were dichotomised by their medians in all 

women since there were no differences by treatment arm (Table 5.1). There was no discernible 

difference in the effect of anastrozole on density change compared to placebo in these 

subgroups. 

 

5.3.11 Potential impact of compliance 

 
To test the impact of compliance, Kaplan–Meier curves and log rank tests were conducted in 

cases (censored 3 months before cancer diagnosis) and controls, to assess the difference in time 

to stopping treatment between: anastrozole cases with ≥5% vs. <5% reduction in density (no 

cases had ≥10% reduction in density), placebo cases with ≥5% vs. <5% reduction in density (no 

cases had ≥10% reduction in density), anastrozole controls with ≥5% vs. <5% and ≥10% vs. 
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<10% reduction in density, and placebo controls with ≥5% vs. <5% and ≥10% vs. <10% 

reduction in density. Better compliance may have been associated with a decrease in density 

since more treatment would have been administered. Figure 5.5 shows the results for 

anastrozole cases (log-rank p=0.15), Figure 5.6 shows the results for placebo cases (log-rank 

p=0.53), Figure 5.7 (log-rank p=0.13) and Figure 5.8 (log-rank p= 0.43) show the results for 

anastrozole controls with 10% and 5% cut-points, respectively, and Figure 5.9 (log-rank p= 

0.75) and Figure 5.10 (log-rank p= 0.48) show the results for placebo controls with 10% and 5% 

cut-points, respectively. There did not appear to be a difference in compliance between the two 

treatment arms (by case-control status). 

 

 

Figure 5.5: Kaplan-Meier graph for anastrozole cases (5% cut-point). 

 

Figure 5.6: Kaplan-Meier graph for placebo cases (5% cut-point). 
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Figure 5.7: Kaplan-Meier graph for anastrozole controls (10% cut-point). 

 

Figure 5.8: Kaplan-Meier graph for anastrozole controls (5% cut-point). 

 

Figure 5.9: Kaplan-Meier graph for placebo controls (10% cut-point). 
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Figure 5.10: Kaplan-Meier graph for placebo controls (5% cut-point). 

 

5.3.12 Missing mammograms 

 
Since the sampling frame for this study is based on the availability of mammograms at the time 

of study design, the nested sample may not have truly represented the source population (IBIS-

II main cohort). To test this, comparisons were made between cases that were included in this 

study and those from the main IBIS-II study who were not included, and between controls that 

were included in this study and those from the main IBIS-II study who were not included (Table 

5.8). Included and non-included controls were similar in terms of age, Tyrer-Cuzick 10-year risk 

and HRT use, whilst included and non-included cases were similar in terms of age, BMI and 

HRT use. However, there was a significant difference in BMI between included and non-

included controls, with the latter being somewhat heavier (mean non-included=28.4kg/m2; mean 

included=27.0kg/m2, p<0.01). When this was separated by country, the difference in BMI 

appeared to be driven by the UK centres. There was also a marginally significant difference in 

Tyrer-Cuzick 10-year risk between included and non-included cases, with the latter having a 

lower risk (mean non-included=9.2%; mean included=11.5%, p=0.06). There was also some 

indication that non-included controls had a slightly lower risk than included controls for the UK 

centres (mean non-included=8.2%; mean included=8.6%, p=0.05). The difference in HRT use 

between included and non-included controls in Ireland was driven by only 1 woman, and there 

did not appear to be a difference in any other country. 
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Table 5.8: Comparison of main confounding variables between women included in this study and women in the main IBIS-II study who were not included, overall and by country o f 

the included women 

Country of included 

controls 

Controls 

N Age at randomisation (yr) Body Mass Index (kg/m2) Tyrer-Cuzick 10-year risk (%) 
HRT use up to 12 months 

before randomisation 

Include

d 

Not 

included 
Statistic 

Include

d 

Not 

included 
Statistic 

Include

d 

Not 

included 
Statistic 

Include

d 

Not 

included 

Statisti

c 

Include

d 

Not 

included 

All 553 3165 

Mean 

(SD) 

58.9 

(5.6) 
58.7 (5.8) 

Mean 

(SD) 

27.0 

(4.6) 
28.4 (5.8) 

Mean 

(SD) 
8.5 (4.1) 8.3 (4.2) no/yes 513/31 2870/237 

P* 0.38 P* <0.01 P* 0.41 P** 0.11 

Australia and New 

Zealand 
24 782 

Mean 

(SD) 

59.8 

(4.7) 
59.8 (5.7) 

Mean 

(SD) 

28.3 

(5.0) 
29.0 (5.7) 

Mean 

(SD) 
7.6 (5.0) 8.4 (3.4) no/yes 19/2 678/73 

P* 0.99 P* 0.58 P* 0.29 P** 1.00# 

Denmark 5 47 

Mean 

(SD) 

54.4 

(4.2) 
55.7 (6.2) 

Mean 

(SD) 

26.3 

(4.3) 
25.3 (4.2) 

Mean 

(SD) 

10.0 

(6.1) 
8.5 (4.6) no/yes 5/0 42/5 

P* 0.64 P* 0.62 P* 0.52 P** 1.00# 

Finland 24 100 

Mean 

(SD) 

61.9 

(5.8) 
60.3 (5.0) 

Mean 

(SD) 

28.1 

(4.1) 
27.9 (5.5) 

Mean 

(SD) 
7.0 (2.8) 7.7 (3.0) no/yes 23/1 89/11 

P* 0.18 P* 0.88 P* 0.32 P** 0.46# 

Ireland 1 63 

Mean 

(SD) 
52 (-) 56.8 (5.6) 

Mean 

(SD) 
27 (-) 29.3 (5.7) 

Mean 

(SD) 
5.6 (-) 9.3 (4.2) no/yes 0/1 60/1 

P* - P* - P* - P** 0.03# 

Italy 58 135 

Mean 

(SD) 

58.6 

(6.1) 
58.7 (5.5) 

Mean 

(SD) 

24.9 

(4.0) 
25.9 (4.7) 

Mean 

(SD) 
8.4 (4.1) 8.7 (5.7) no/yes 55/3 129/5 

P* 0.93 P* 0.15 P* 0.66 P** 0.70# 

UK 441 1663 

Mean 

(SD) 

58.8 

(5.5) 
58.7 (5.7) 

Mean 

(SD) 

27.2 

(4.6) 
28.6 (5.9) 

Mean 

(SD) 
8.6 (4.0) 8.2 (3.9) no/yes 411/24 1535/110 

P* 0.68 P* <0.01 P* 0.05 P** 0.38 
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Table 5.8 continued 

Country of included 

cases 

Cases 

N Age at randomisation (yr) Body Mass Index (kg/m2) Tyrer-Cuzick 10-year risk (%) 
HRT use up to 12 months 

before randomisation 

Include

d 

Not 

included 
Statistic 

Include

d 

Not 

included 
Statistic 

Include

d 

Not 

included 
Statistic 

Include

d 

Not 

included 

Statisti

c 

Include

d 

Not 

included 

All 22 225 

Mean 

(SD) 

57.8 

(4.5) 
58.9 (5.6) 

Mean 

(SD) 

28.6 

(5.1) 
29.5 (6.7) 

Mean 

(SD) 

11.5 

(5.5) 
9.2 (5.4) no/yes 21/1 206/18 

P* 0.36 P* 0.50 P* 0.06 P** 1.00# 

Australia and New 

Zealand 
1 43 

Mean 

(SD) 
61.0 (-) 59.8 (5.7) 

Mean 

(SD) 
31.8 (-) 29.6 (6.5) 

Mean 

(SD) 
15.4 (-) 8.4 (3.1) no/yes 1/0 38/5 

P* - P* - P* - P** 1.00# 

Denmark 1 3 

Mean 

(SD) 
59.0 (-) 54.3 (3.1) 

Mean 

(SD) 
26.8 (-) 28.5 (7.3) 

Mean 

(SD) 
12.7 (-) 13.9 (9.2) no/yes 1/0 3/0 

P* - P* - P* - P** - 

Finland 1 3 

Mean 

(SD) 
58.0 (-) 57.7 (7.4) 

Mean 

(SD) 
25.5 (-) 31.9 (1.9) 

Mean 

(SD) 
13.5 (-) 7.8 (4.5) no/yes 1/0 3/0 

P* - P* - P* - P** - 

Italy 1 17 

Mean 

(SD) 
49.0 (-) 60.7 (5.3) 

Mean 

(SD) 
22.9 (-) 27.8 (4.0) 

Mean 

(SD) 
20.1 (-) 11.3 (8.6) no/yes 1/0 17/0 

P* - P* - P* - P** - 

UK 18 132 

Mean 

(SD) 

58.0 

(4.4) 
58.9 (5.3) 

Mean 

(SD) 

29.0 

(5.4) 
30.2 (7.4) 

Mean 

(SD) 

10.7 

(5.5) 
9.4 (5.2) no/yes 17/1 121/10 

P* 0.52 P* 0.49 P* 0.32 P** 1.00# 

 

*P-value from two-sided t-test; **P-value from Pearson chi-squared test (#Fisher’s exact test if cell size <5); ‘-‘ indicates that value could not be calculated due to small numbers; 

standard deviation (SD). 
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5.4 Discussion 

 

In this study, breast density was shown to decrease with anastrozole in the first 2 years of 

therapy, but this effect was not significantly different from the density decreases seen in women 

on placebo. It might be that the early anastrozole-induced density reduction seen in this study 

was only attributable to aging; or perhaps it was a true but small effect, however there was 

limited power to detect it. Only 8% power was obtained to detect a continuous difference in 

density change between treatment arms, even with a reasonable number of women (n=575). 

This further suggests that the effect size of anastrozole-induced density reduction is very small. 

 

The results for this study are consistent with previous findings that show modest reductions in 

density with use of aromatase inhibitors (compared with a control group). In 2007, Vachon et al. 

(2007) conducted a study of 9-15 month change in Cumulus percent density with letrozole in 

women with early-onset breast cancer who had previously undergone 5 years of tamoxifen 

treatment (270). They found no difference in density reduction relative to placebo (mean percent 

density reduction of 0.8% in letrozole and 0.6% in placebo (p=0.76)). In the preventive setting, 

Ciglar et al. (2010) showed similar results in their analysis of healthy postmenopausal women 

with or without a history of breast cancer, but with a baseline density greater than 25% from the 

NCIC CTG MAP.1 trial. After 12 months, Cumulus percent density was similar between 

women treated with letrozole or placebo (mean percent density reduction of 1.74% on letrozole 

and 0.24% on placebo (p=0.67)) (268). A similar trial by Ciglar et al. in 2011 (the NCIC CTG 

MAP.2 trial) reported a mean Cumulus percent density increase of 0.56% on exemestane and 

0.58% on placebo (p=0.91) after 12 months of treatment (269). In both studies by Ciglar et al., 

density change was similar in both treatment arms even after 24 months of treatment. However, 

this potentially weak effect is not always seen. An aromatase inhibitor-induced density 

reduction was reported in a small cohort study by Mousa et al. who assessed density in 40 

women on either HRT alone or HRT plus AIs (415). However, it should be noted that the 

chosen method of density assessment (integrated pixel intensity) is not a common or verified 

density measurement technique. It could be that this method of assessment is measuring a 

mammographic feature other than density (for example, a textural feature) so these results 

would require validation with an established density measurement technique.  

 

One reason why these studies may not have seen an effect of AIs on density reduction is their 

lack of statistical power due to their small sample sizes. Density change after approximately 12 

months of treatment was assessed in only 68 women in Vachon et al. (2007), 49 women in 

Ciglar et al. (2010) and 65 women in Ciglar et al. (2011). A large amount of starting density is 

required to see a substantial absolute density reduction in postmenopausal women. Whilst 

studies such as Ciglar et al. (2010) included women with at least 25% starting density and still 
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found little effect, women were also eligible to enter the trial if they had taken tamoxifen up to 

3-months prior to recruitment, which has been shown to have anti-estrogenic effects for more 

than 10 years after treatment cessation (200). This may also extend to a prolonged effect on 

density, which would be particularly relevant if more placebo subjects were previously on 

tamoxifen, hence attenuating the effect of the AI. Most other studies looking into the effect of 

aromatase inhibitors on density do not have a placebo or ‘no treatment’ control group to assess 

its effect beyond that of aging (296). 

 

A recent study by Engmann et al. did find a difference in density change between women on 

AIs and women not on endocrine treatment. They showed that 403 breast cancer cases on AIs 

experienced, on average, 0.3% greater 2-3 year reduction in Volpara percent density and 0.6% 

greater 2-3 year reduction in Quantra percent density than 1,618 breast cancer-free controls. 

These results were also statistically significant (Volpara p=0.02, Quantra p=0.03) (271). This is 

one of only a few studies to assess the effect of aromatase inhibitors on density in a 

considerably large sample of women. Another study by Vachon et al. in 2013, investigated the 

difference in Cumulus percent density 10 month change between 369 early-stage 

postmenopausal breast cancer cases on adjuvant anastrozole and 369 matched breast cancer-free 

controls. Unlike Engmann et al., they found modest and non-significant results, with the cases 

experiencing a median density reduction that was only 0.1% lower than their matched controls 

(p=0.51) (267). In a more recent study in 355 postmenopausal breast cancer patients, Eriksson et 

al. again showed little association between AIs and density change (OR for a density reduction 

greater than 15% in women treated with an AI relative to those not treated with any endocrine 

therapy=0.91 (95% CI, 0.65 to 1.26)) (337). 

 

One explanation for these dissimilar findings could be the difference in measurement 

techniques. Vachon et al. measured 2-dimensional density using Cumulus and Eriksson 

measured 2-dimensional density using the ‘STRATUS’ tool which aligns mammograms to 

reduce measurement error between sequential mammograms (416); whereas Engmann used 3-

dimensional Volpara and Quantra. It may be that small changes in density with use of AIs are 

best measured using volumetric methods. 

 

Several strengths of this study are listed below: 

 This is the largest known study to date to assess the effect of an aromatase inhibitor on 

density in the preventive setting. 

 Inclusion of a placebo control group enabled a comparison between reductions in density 

whilst on treatment and reductions that would occur naturally with age. 

 Including a first and final follow-up mammogram allowed for assessment of density 

changes throughout the course of anastrozole treatment. 
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 The study is nested within a double-blind placebo-controlled randomised trial which is 

subject to minimal bias. 

 The multicentre aspect of the study enabled recruitment of women from different countries 

and ethnicities, increasing generalisability of results. 

 Exclusion of women with bilateral breast cancer, implants or preventive mastectomies, and 

assessment of the contralateral breast in cases ensured density estimates were not affected 

by these confounding factors. Since women were not allowed to take HRT during the trial, 

potential confounding from HRT was also reduced. 

 There was no switching of treatment throughout the trial, ensuring that the recorded effects 

were as a result of anastrozole treatment only. 

 Questionnaire data was collected for all women, allowing for adjustment of age and other 

density change confounding variables such as BMI, reproductive factors, HRT use and a 

history of benign disease. 

 There was a high inter-reader correlation between Dr Metaxa and the radiologist for IBIS-I 

(Dr Ruth Warren). 

 Dr Metaxa was blinded to treatment, case status and other risk factors, reducing bias from 

these factors in the measurement of density and density change. 

 

Several limitations of this study are listed below: 

 There was limited power to detect a change in density between treatment arms. However, 

the sample size in this study was similar to or larger than other studies assessing density 

change on AIs (as outlined in the discussion). 

 The multicentre aspect of the study resulted in different imaging modalities, imaging 

technologies and scanning techniques. This may have introduced variability in the density 

measurements, therefore making the signal of an anastrozole effect on density change 

harder to detect through added noise. 

 The measurement of covariates (such as BMI) would have been more reliable if measured 

using accurate measuring devices instead of questionnaires as used in this study. 

 Use of a volumetric measurement method such as Volpara or Quantra may have been better 

at detecting small changes in density than the 2-dimensional visual assessment method used 

in this study. However, since the study included both digital and film mammograms, not all 

images could be measured using these methods which require raw images from digital 

mammography. 
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5.5 Conclusion 

 

Findings of this study indicate that visually-assessed percent breast density may be marginally 

reduced by prophylactic anastrozole treatment, but that this reduction is likely to be minimal. 

However, use of different density measurement techniques that measure density change to a 

finer grain of detail (for instance, volumetric methods) may be useful for assessing the effect of 

anastrozole on density change, hence further examination is required on this topic. Nonetheless, 

these results suggest that the risk reduction from anastrozole observed in IBIS-II is unlikely to 

be fully mediated through density, as was suggested with tamoxifen in IBIS-I. 
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Chapter 6: Anastrozole-induced reduction in mammographic density and 

breast cancer risk reduction: a case-control study 

 

6.1 Introduction 

 

As described in Chapters 4 and 5, the SERM, tamoxifen, decreases risk (410) as well as density 

(203-206, 336). This reduction in density might be a marker of concurrent reduction in breast 

cancer risk, making endocrine therapy-induced density reduction a potential biomarker for risk 

reduction. It is not yet known whether anastrozole-induced density reduction can similarly be 

used as a biomarker for risk reduction, whereby an early anastrozole-induced density reduction 

of at least 10% would be associated with a lower risk of breast cancer compared with <10% 

anastrozole-induced density reduction. There is some suggestion of this biomarker effect with 

adjuvant aromatase inhibitors (264), but no study has so far examined the effect with preventive 

anastrozole therapy. Validation of aromatase inhibitor-induced density reduction would be 

useful as a biomarker for risk reduction in postmenopausal women whose risk may be lowered 

more than that with tamoxifen (349), and who may experience fewer adverse effects and better 

tolerance of symptoms than if treated with tamoxifen (348, 411). This study aims to assess early 

anastrozole-induced change in density as a biomarker for breast cancer risk reduction in patients 

from the IBIS-II Prevention trial. A detailed description of the primary and secondary 

hypotheses is described below: 

 

Primary hypothesis (Prognostic biomarker) 

 H0: There is no difference in age-adjusted risk of breast cancer between anastrozole-treated 

patients who experience a ≥10% reduction in density at first follow-up mammogram and 

anastrozole-treated patients who experience a <10% reduction in density at first follow-up 

mammogram 

 H1: Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a 

≥10% reduction in density at first follow-up mammogram is different to age-adjusted risk of 

breast cancer in anastrozole-treated patients who experience a <10% reduction in density at 

first follow-up mammogram 

 

Secondary hypothesis I (Prognostic biomarker) 

 H0: There is no difference in age-adjusted risk of breast cancer between anastrozole-treated 

patients who experience a ≥5% reduction in density at first follow-up mammogram and 

anastrozole-treated patients who experience a <5% reduction in density at first follow-up 

mammogram 
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 H1: Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a ≥5% 

reduction in density at first follow-up mammogram is different to age-adjusted risk of breast 

cancer in anastrozole-treated patients who experience a <5% reduction in density at first 

follow-up mammogram 

 

Secondary hypothesis II (Prognostic biomarker) 

 H0: There is no difference in risk of breast cancer between anastrozole-treated patients who 

experience a ≥10% reduction in density at first follow-up mammogram and anastrozole-

treated patients who experience a <10% reduction in density at first follow-up 

mammogram, after adjustment for age at randomisation, body mass index at randomisation, 

baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: Risk of breast cancer in anastrozole-treated patients who experience a ≥10% reduction 

in density at first follow-up mammogram is different to risk of breast cancer in anastrozole-

treated patients who experience a <10% reduction in density at first follow-up 

mammogram, after adjustment for age at randomisation, body mass index at randomisation, 

baseline density, and Tyrer-Cuzick 10-year risk. 

 

Secondary hypothesis III (Prognostic biomarker) 

 H0: There is no difference in risk of breast cancer between anastrozole-treated patients who 

experience a ≥5% reduction in density at first follow-up mammogram and anastrozole-

treated patients who experience a <5% reduction in density at first follow-up mammogram, 

after adjustment for age at randomisation, body mass index at randomisation, baseline 

density, and Tyrer-Cuzick 10-year risk. 

 H1: Risk of breast cancer in anastrozole-treated patients who experience a ≥5% reduction in 

density at first follow-up mammogram is different to risk of breast cancer in anastrozole-

treated patients who experience a <5% reduction in density at first follow-up mammogram, 

after adjustment for age at randomisation, body mass index at randomisation, baseline 

density, and Tyrer-Cuzick 10-year risk. 

 

Secondary hypothesis IV (Predictive biomarker I) 

 H0: (1) There is no difference in age-adjusted risk of breast cancer between anastrozole-

treated patients who experience a ≥10% reduction in density at first follow-up mammogram 

and placebo-treated patients, (2) there is no difference in age-adjusted risk of breast cancer 

between anastrozole-treated patients who experience a <10% reduction in density at first 

follow-up mammogram and placebo-treated patients. 

 H1: (1) Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a 

≥10% reduction in density at first follow-up mammogram is different to age-adjusted risk of 

breast cancer in placebo-treated patients, (2) age-adjusted risk of breast cancer in 
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anastrozole-treated patients who experience a <10% reduction in density at first follow-up 

mammogram is different to age-adjusted risk of breast cancer in placebo-treated patients. 

 

Secondary hypothesis V (Predictive biomarker I) 

 H0: (1) There is no difference in age-adjusted risk of breast cancer between anastrozole-

treated patients who experience a ≥5% reduction in density at first follow-up mammogram 

and placebo-treated patients, (2) there is no difference in age-adjusted risk of breast cancer 

between anastrozole-treated patients who experience a <5% reduction in density at first 

follow-up mammogram and placebo-treated patients 

 H1: (1) Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a 

≥5% reduction in density at first follow-up mammogram is different to age-adjusted risk of 

breast cancer in placebo-treated patients, (2) age-adjusted risk of breast cancer in 

anastrozole-treated patients who experience a <5% reduction in density at first follow-up 

mammogram is different to age-adjusted risk of breast cancer in placebo-treated patients. 

 

Secondary hypothesis VI (Predictive biomarker I) 

 H0: (1) There is no difference in risk of breast cancer between anastrozole-treated patients 

who experience a ≥10% reduction in density at first follow-up mammogram and placebo-

treated patients and (2) there is no difference in risk of breast cancer between anastrozole-

treated patients who experience a <10% reduction in density at first follow-up mammogram 

and placebo-treated patients, both after adjustment for age at randomisation, body mass 

index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: (1) Risk of breast cancer in anastrozole-treated patients who experience a ≥10% 

reduction in density at first follow-up mammogram is different to risk of breast cancer in 

placebo-treated patients and (2) risk of breast cancer in anastrozole-treated patients who 

experience a <10% reduction in density at first follow-up mammogram is different to risk of 

breast cancer in placebo-treated patients, both after adjustment for age at randomisation, 

body mass index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

Secondary hypothesis VII (Predictive biomarker I) 

 H0: (1) There is no difference in risk of breast cancer between anastrozole-treated patients 

who experience a ≥5% reduction in density at first follow-up mammogram and placebo-

treated patients and (2) there is no difference in risk of breast cancer between anastrozole-

treated patients who experience a <5% reduction in density at first follow-up mammogram 

and placebo-treated patients, both after adjustment for age at randomisation, body mass 

index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: (1) Risk of breast cancer in anastrozole-treated patients who experience a ≥5% 

reduction in density at first follow-up mammogram is different to risk of breast cancer in 
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placebo-treated patients and (2) risk of breast cancer in anastrozole-treated patients who 

experience a <5% reduction in density at first follow-up mammogram is different to risk of 

breast cancer in placebo-treated patients, both after adjustment for age at randomisation, 

body mass index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

Secondary hypothesis VIII (Predictive biomarker II) 

 H0: There is no difference in the age-adjusted effect of ≥10% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <10% reduction) between 

anastrozole-treated patients and placebo-treated patients (interaction between treatment and 

density change). 

 H1: The age-adjusted effect of ≥10% reduction in density at first follow-up mammogram on 

breast cancer risk (relative to <10% reduction) in anastrozole-treated patients is different to 

the age-adjusted effect of ≥10% reduction in density at first follow-up mammogram on 

breast cancer risk (relative to <10% reduction) in placebo-treated patients (interaction 

between treatment and density change). 

 

Secondary hypothesis IX (Predictive biomarker II) 

 H0: There is no difference in the age-adjusted effect of ≥5% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <5% reduction) between 

anastrozole-treated patients and placebo-treated patients (interaction between treatment and 

density change). 

 H1: The age-adjusted effect of ≥5% reduction in density at first follow-up mammogram on 

breast cancer risk (relative to <5% reduction) in anastrozole-treated patients is different to 

the age-adjusted effect of ≥5% reduction in density at first follow-up mammogram on breast 

cancer risk (relative to <5% reduction) in placebo-treated patients (interaction between 

treatment and density change). 

 

Secondary hypothesis X (Predictive biomarker II) 

 H0: There is no difference in the effect of ≥10% reduction in density at first follow-up 

mammogram on breast cancer risk (relative to <10% reduction) between anastrozole-treated 

patients and placebo-treated patients, after adjustment for age at randomisation, body mass 

index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk (interaction 

between treatment and density change). 

 H1: The effect of ≥10% reduction in density at first follow-up mammogram on breast cancer 

risk (relative to <10% reduction) in anastrozole-treated patients is different to the effect of 

≥10% reduction in density at first follow-up mammogram on breast cancer risk (relative to 

<10% reduction) in placebo-treated patients, after adjustment for age at randomisation, 
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body mass index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk 

(interaction between treatment and density change). 

 

Secondary hypothesis XI (Predictive biomarker II) 

 H0: There is no difference in the effect of ≥5% reduction in density at first follow-up 

mammogram on breast cancer risk (relative to <5% reduction) between anastrozole-treated 

patients and placebo-treated patients, after adjustment for age at randomisation, body mass 

index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk  (interaction 

between treatment and density change). 

 H1: The effect of ≥5% reduction in density at first follow-up mammogram on breast cancer 

risk (relative to <5% reduction) in anastrozole-treated patients is different to the effect of 

≥5% reduction in density at first follow-up mammogram on breast cancer risk (relative to 

<5% reduction) in placebo-treated patients, after adjustment for age at randomisation, body 

mass index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk (interaction 

between treatment and density change). 

 

Secondary hypothesis XII (Prognostic and Predictive biomarker I) 

 H0: There is no difference in age-adjusted breast cancer risk between subgroups of 

covariates (tumour ER status, age at randomisation, body mass index at randomisation, 

baseline density, history of atypical hyperplasia or LCIS, hormone replacement therapy use 

up to 12 months before randomisation, Tyrer-Cuzick 10-year risk, image type, and time 

between baseline mammogram and first follow-up mammogram) in women who experience 

an anastrozole-induced ≥10% reduction in density from baseline to first follow-up 

mammogram. 

 H1: Age-adjusted breast cancer risk in women who experience an anastrozole-induced 

≥10% reduction in density from baseline to first follow-up mammogram is different 

between subgroups of covariates (tumour ER status, age at randomisation, body mass index 

at randomisation, baseline density, history of atypical hyperplasia or LCIS, hormone 

replacement therapy use up to 12 months before randomisation, Tyrer-Cuzick 10-year risk, 

image type, and time between baseline mammogram and first follow-up mammogram). 

 

Secondary hypothesis XIII (Prognostic and Predictive biomarker I) 

 H0: There is no difference in age-adjusted breast cancer risk between subgroups of 

covariates (tumour ER status, age at randomisation, body mass index at randomisation, 

baseline density, history of atypical hyperplasia or LCIS, hormone replacement therapy use 

up to 12 months before randomisation, Tyrer-Cuzick 10-year risk, image type, and time 

between baseline mammogram and first follow-up mammogram) in women who experience 
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an anastrozole-induced ≥5% reduction in density from baseline to first follow-up 

mammogram. 

 H1: Age-adjusted breast cancer risk in women who experience an anastrozole-induced ≥5% 

reduction in density from baseline to first follow-up mammogram is different between 

subgroups of covariates (tumour ER status, age at randomisation, body mass index at 

randomisation, baseline density, history of atypical hyperplasia or LCIS, hormone 

replacement therapy use up to 12 months before randomisation, Tyrer-Cuzick 10-year risk, 

image type, and time between baseline mammogram and first follow-up mammogram). 

 

6.2 Methods 

 

The ‘Study design’, ‘Data collection’, ‘Updating the Standard Operating Procedures’, 

‘Exclusions’,  ‘Exclusions - quality control (1)’, ‘Batching’, ‘Mammographic density scoring’, 

‘Quality control (2)’ and ‘Baseline mammographic density at least 10%’ sections are described 

in Chapter 5 (5.2). 

 

6.2.1 Power calculation 

 

The estimated distribution of IBIS-II cases and controls with <10% and ≥10% density reduction 

per treatment arm was calculated by weighting the distributions that were observed in IBIS-I 

(19) with hazard ratios relative to placebo from IBIS-I (HR=0.7) (200) and IBIS-II (HR=0.5) 

(208). The numbers in the table below relate to the distribution of the 123 cases in IBIS-I, 

whereby 57 cases on placebo lost less than 10% density, 15 cases on placebo lost at least 10% 

density, 36 cases on tamoxifen lost less than 10% density and 15 cases on tamoxifen lost at least 

10% density. Since fewer women on anastrozole in IBIS-II developed breast cancer than women 

on tamoxifen in IBIS-I, some cases were removed from the anastrozole row. The parameters  𝑥1 

and 𝑥2 were the number of cases needed to add to the placebo row (from the anastrozole row) to 

ensure that the 2x2 table equalled 123 (total number of cases in IBIS-I density study). The 

expected case distribution was: 

 

 <10% reduction ≥10% reduction 

Placebo 57 + 𝑥1 15 + 𝑥2 

Anastrozole 
36 (

0.5

0.7
) 15 (

0.5

0.7
) 

 

There were therefore 36 (
0.2

0.7
)  + 15 (

0.2

0.7
)  fewer cases on anastrozole who needed to go into the 

placebo group. Thus, 𝑥1 =
57

(57+15)
 

(36+15) 0.2

0.7
  and 𝑥2 =

15

(57+15)
 

(36+15) 0.2

0.7
 .  
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The expected case distribution for anastrozole was therefore estimated to be: 

 

 <10% reduction ≥10% reduction  

Placebo 68 18  

Anastrozole 26 11 Ʃ = 123 

   

For 3 controls per 1 case, the number of controls needed was 3x123=369. In IBIS-I, there were 

361 controls on placebo who lost less than 10% density, 125 controls on placebo who lost at 

least 10% density, 239 controls on tamoxifen who lost less than 10% density and 217 controls 

on tamoxifen lost at least 10% density, totalling 942 controls. Reweighting this distribution to 

have a total of 369 gave an expected control distribution of:  

 

 <10% reduction ≥10% reduction  

Placebo 369 (
361

942
) = 141 369 (

125

942
) = 49  

Anastrozole 369 (
239

942
) = 94 369 (

217

942
) = 85 Ʃ = 369 

 

Therefore, the proportion of expected breast cancer events was: 

 

 <10% reduction ≥10% reduction 

Placebo 
68

68 + 141
= 0.33 

18

18 + 49
= 0.27 

Anastrozole 
26

26 + 94
= 0.22 

11

11 + 85
= 0.11 

 

These distributions were then weighted using chosen multipliers to obtain sample sizes for 50, 

100, 150 and 200 cases, with 3 controls per 1 case. A difference of proportions power 

calculation was then estimated (superiority test) (417). 

 

The power for different sample sizes (3 controls per 1 case) was therefore: 

 

Sample size 200 (50 cases) 400 (100 cases) 600 (150 cases) 800 (200 cases) 

Power 0.295 0.516 0.688 0.808 

 

As a result, there was 81% power with 247 cases and 1013 controls to show a difference in risk 

between anastrozole-treated patients experiencing ≥10% density change and anastrozole-treated 

patients experiencing <10% density change from baseline to first follow-up mammogram at the 

5% type-I error level. This number also accounted for exclusions with baseline density <10% 
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based on the number of postmenopausal women with baseline density <10% in IBIS-I. A 

sample size larger than this was impracticable given the resources, number of mammograms 

received and number of breast cancer cases in the entire IBIS-II trial (n=approximately 200 at 

the time of study design). Assuming anastrozole to be 1/2 or 3/4 the effect size of tamoxifen 

would have made the power smaller. There was therefore not enough power to complete the 

primary objective. However, Kim et al.’s suggestion of increased risk of recurrence in ER+ 

breast cancer cases on AIs who lost <5% density after 8-20 months of treatment relative to 

similarly treated women who lost ≥5% density (HR=7.11, 95% CI, 0.90 to 56.37, p=0.06) (264) 

indicated that this study possibly had adequate power. The number of recurrences on AIs was 

not reported in Kim et al. but it was estimated to be 13 from other numbers reported in the 

paper. Assuming 32% of the 35 cases in this study that were sent to Dr Metaxa were on 

anastrozole (40 anastrozole cases/125 cases in Cuzick et al. (208)) it was estimated that there 

would be approximately 11 anastrozole cases in this study. Therefore, there was potentially 

enough power to detect an effect if density change was dichotomised into <5% and ≥5% 

reduction (secondary objectives). 

 

6.2.2 Statistical methods 

 

As in Chapter 5, a statistical analysis plan was developed for the study (appendix C.XXV). All 

statistical analysis was conducted using Stata (316), and tests were two-sided with a 

significance level of 5%. Time on treatment was not included in adjustments (intention-to-treat 

analysis). A set of Stata code was sent to Dr Sestak to run on un-blinded data and a proforma 

was developed and sent to the IBIS-II Trial Steering committee, who approved the study 

(appendix C.XXVI). 

 

6.2.2.1 Baseline characteristics 

 
Baseline covariates were summarised using frequency tables (as described in 5.2.11.1) by 

treatment arm and case status.  

 

6.2.2.2 Change in mammographic density 

 
Density change was assessed as a dichotomous variable (<10% absolute reduction or ≥10% 

absolute reduction, and <5% absolute reduction or ≥5% absolute reduction), where cut-points 

were chosen to emulate previous studies reporting that dichotomous density change is a useful 

biomarker for breast cancer risk (Chapter 4).  
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6.2.2.3 Change in mammographic density – Boyd categories 

 
A cross tabulation of Boyd categories was used as in Chapter 5, but with the primary interest in 

case-control status and density change between baseline and first follow-up mammogram only. 

 

6.2.2.4 Change in mammographic density – unadjusted tests 

 
Two-sample t-tests, Wilcoxon rank sum tests and Pearson chi-squared tests (Fisher’s exact tests 

if cell size <5) were used as in 5.2.11.5, but with the primary interest in case-control status and 

density change between baseline and first follow-up mammogram only. 

 

6.2.2.5 Change in mammographic density – adjusted regression models 

 
Age at randomisation was retained in all regression models, regardless of significance, because 

age is a strong confounder of density change and breast cancer risk. Continuous adjusting 

variables were centred about their median in regression models. The adjusting covariates for 

regression models were chosen based on literature which suggests that they have a confounding 

effect on breast cancer risk and density change, including those shown to be significant in the 

IBIS-I trial (19).  

 

The primary analysis used logistic regression models to examine the association between risk of 

breast cancer and change in density from baseline mammogram to first follow-up mammogram 

(dichotomised into <10% absolute reduction and ≥10% absolute reduction, reference category: 

<10% absolute reduction), adjusted for age at randomisation (years), in anastrozole-treated 

patients only. The secondary analysis (I) repeated the primary analysis for density change 

dichotomised into <5% absolute reduction and ≥5% absolute reduction (reference category: 

<5% absolute reduction). The secondary analysis (II) repeated the primary analysis with 

adjustment for age at randomisation (years), body mass index at randomisation (kg/m2), baseline 

density (%) and Tyrer-Cuzick 10-year risk (%, version 7 excluding breast density). The 

secondary analysis (III) repeated the secondary analysis (II) for density change dichotomised 

into <5% absolute reduction and ≥5% absolute reduction (reference category: <5% absolute 

reduction). 

 

The secondary analysis (IV) used logistic regression models to examine the association between 

risk of breast cancer and a factor variable for change in density and treatment (categories: <10% 

anastrozole-induced absolute reduction in density from baseline mammogram to first follow-up 

mammogram, ≥10% anastrozole-induced absolute reduction in density from baseline 

mammogram to first follow-up mammogram, and placebo, reference category: placebo) in all 

women, adjusted for age at randomisation (years). The secondary analysis (V) repeated the 
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secondary analysis (IV) for density change dichotomised into <5% absolute reduction and ≥5% 

absolute reduction. The secondary analysis (VI) repeated the secondary analysis (IV) with 

adjustment for age at randomisation (years), body mass index at randomisation (kg/m2), baseline 

density (%) and Tyrer-Cuzick 10-year risk (%, version 7 excluding breast density). The 

secondary analysis (VII) repeated the secondary analysis (IV) for density change dichotomised 

into <5% absolute reduction and ≥5% absolute reduction, with adjustment for age at 

randomisation (years), body mass index at randomisation (kg/m2), baseline density (%) and 

Tyrer-Cuzick 10-year risk (%, version 7 excluding breast density). 

 

The secondary analysis (VIII) used logistic regression models to examine the association 

between risk of breast cancer and change in density from baseline mammogram to first follow-

up mammogram (dichotomised into <10% absolute reduction and ≥10% absolute reduction, 

reference category: <10% absolute reduction), treatment arm (placebo or anastrozole, reference 

category: placebo), and an interaction between density change and treatment, in all women, 

adjusted for age at randomisation (years). The secondary analysis (IX) repeated the secondary 

analysis (VIII) for density change dichotomised into <5% absolute reduction and ≥5% absolute 

reduction (reference category: <5% absolute reduction). The secondary analysis (X) repeated 

the secondary analysis (VIII) with adjustment for age at randomisation (years), body mass index 

at randomisation (kg/m2), baseline density (%) and Tyrer-Cuzick 10-year risk (%, version 7 

excluding breast density). The secondary analysis (XI) repeated the secondary analysis (VIII) 

for density change dichotomised into <5% absolute reduction and ≥5%  absolute reduction 

(reference category: <5% absolute reduction), with adjustment for age at randomisation (years), 

body mass index at randomisation (kg/m2), baseline density (%) and Tyrer-Cuzick 10-year risk 

(%, version 7 excluding breast density). 

 

6.2.2.6 Change in mammographic density – subgroup analyses 

 
The secondary analysis (XII) used logistic regression to examine the association between risk of 

breast cancer and change in density from baseline mammogram to first follow-up mammogram 

(dichotomised into <10% absolute reduction and ≥10% absolute reduction, reference category: 

<10% absolute reduction), adjusted for age at randomisation (years), in anastrozole-treated 

patients only, in different covariate subgroups. Logistic regression models were also used to 

examine the association between risk of breast cancer and a factor variable for change in density 

and treatment (categories: <10% absolute anastrozole-induced reduction in density from 

baseline mammogram to first follow-up mammogram, ≥10% absolute anastrozole-induced 

reduction in density from baseline mammogram to first follow-up mammogram, and placebo, 

reference category: placebo) in all women, adjusted for age at randomisation (years), in 

different covariate subgroups. The secondary analysis (XIII) repeated the secondary analysis 
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(XII) for density change dichotomised into <5% absolute reduction and ≥5% absolute reduction. 

Covariate subgroups were: tumour ER status (negative/positive), age at randomisation (years), 

body mass index (BMI) at randomisation (kg/m2), baseline density (%), history of atypical 

hyperplasia or LCIS (no/yes), hormone replacement therapy use up to 12 months before 

randomisation (no/yes), Tyrer-Cuzick 10-year risk (%, version 7 excluding breast density), 

image type (film/digital) and time between baseline mammogram and first follow-up 

mammogram (years). Continuous variables were separated into subgroups by their median 

value. 

 

6.3 Results 

 

6.3.1 Baseline characteristics 

 
The distribution of baseline characteristics differed between cases and controls (Table 6.1). 

There was a significant difference between cases and controls in terms of Tyrer-Cuzick 10-year 

risk and history of atypical hyperplasia or LCIS, which was only apparent in the placebo arm 

and not the anastrozole arm. 

 

Mean baseline density was 47% in cases and 43% in controls (mean difference cases minus 

controls=3.4%, 95% CI, -7.1% to 14.1%, two-sample t-test p=0.52); which was 47% in case 

subjects and 44% in control subjects of the placebo arm (mean difference cases minus 

controls=3.1%, 95% CI, -10.8% to 17.1%, two-sample t-test p=0.66), and 46% in case subjects 

and 43% in control subjects of the anastrozole arm (mean difference cases minus 

controls=3.5%, 95% CI, -13.1% to 20.0%, two-sample t-test p=0.68). The association between 

baseline density (continuous) and risk of developing breast cancer was not significant overall 

(OR=1.06 per 10% increase in baseline density (95% CI, 0.89 to 1.25), p=0.52). The suggested 

relative reduction in breast cancer risk associated with anastrozole in this study was 37% (OR 

relative to placebo=0.63 (95% CI, 0.26 to 1.49), p=0.29), which was consistent with the IBIS-II 

main study finding of 53% relative risk reduction (208). 
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Table 6.1: Baseline characteristics overall and by treatment, separated by case status 

 

Variable 

Overall Placebo Anastrozole 

Cases Controls Cases Controls Cases Controls 

n 
Mean 

(SD) 

Median 

(IQR) 
n 

Mean 

(SD) 

Median 

(IQR) 
n 

Mean 

(SD) 

Median 

(IQR) 
n 

Mean 

(SD) 

Median 

(IQR) 
n 

Mean 

(SD) 

Median 

(IQR) 
n 

Mean 

(SD) 

Median 

(IQR) 

Age at 

randomisation (yr) 
22 

57.8 

(4.5) 

58 (54-

61) 
544 

58.9 

(5.6) 

59 (55-

63) 
13 

57.8 

(4.6) 

58 (56-

61) 
258 

58.9 

(5.7) 

59 (55-

63) 
9 

57.8 

(4.5) 

59 (54-

60) 
286 

59.0 

(5.4) 

59 (54-

63) 

P* 0.33, 0.33 0.48, 0.40 0.52, 0.57 

Body Mass Index 
(kg/m2) 

22 
28.6 
(5.1) 

29.3 

(23.8-
32.0) 

540 
27.0 
(4.6) 

26.4 

(23.8-
29.5) 

13 
28.1 
(5.1) 

27.8 

(25.5-
31.8) 

255 
26.9 
(4.8) 

26.4 

(23.8-
29.4) 

9 
29.1 
(5.4) 

30.1 

(23.8-
34.2) 

285 
27.1 
(4.4) 

26.4 

(23.9-
29.7) 

P* 0.12, 0.11 0.38, 0.27 0.17, 0.23 

Age at menarche 

(yr) 
22 

12.8 

(1.8) 

13 (11-

14) 
540 

12.9 

(1.6) 

13 (12-

14) 
13 

12.4 

(1.7) 

12 (11-

13) 
256 

12.9 

(1.6) 

13 (12-

14) 
9 

13.3 

(1.9) 

13 (12-

14) 
284 

12.8 

(1.7) 

13 (12-

14) 

P* 0.79, 0.63 0.244, 0.202 0.38, 0.48 

Age at menopause 

(yr) 
22 

49.2 

(6.8) 

50 (48-

54) 
541 

48.3 

(6.2) 

50 (46-

52) 
13 

49.8 

(5.5) 

50 (48-

53) 
255 

48.3 

(6.1) 

50 (46-

52) 
9 

48.3 

(8.8) 

50 (42-

55) 
285 

48.4 

(5.6) 

50 (45-

52) 

P* 0.51, 0.31 0.39, 0.35 0.98, 0.67 

Tyrer-Cuzick 10-

year risk (%) 
22 

11.5 

(5.5) 

10.2 

(7.7-14.6) 
546 

8.5 

(4.1) 

7.7 

(6.0-10.0) 
13 

12.1 

(4.0) 

12.7 

(9.4-14.6) 
260 

8.5 

(3.7) 

7.8 

(6.2-10.5) 
9 

10.8 

(7.3) 

7.7 

(7.3-10.8) 
286 

8.5 

(4.4) 

7.5 

(5.9-9.7) 

P* <0.01, <0.01 <0.01, <0.01 0.14, 0.36 

Baseline density 

(%) 
22 

46.8 

(27.8) 

50 (20-

70) 
553 

43.4 

(24.7) 

45 (20-

65) 
13 

47.3 

(31.1) 

30 (20-

80) 
263 

44.2 

(24.6) 

45 (20-

65) 
9 

46.1 

(24.1) 

55 (30-

65) 
290 

42.6 

(24.9) 

40 (20-

65) 

P* 0.52, 0.58 0.66, 0.71 0.68, 0.70 
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Table 6.1 continued 

 

Variable 

Overall Placebo Anastrozole 

Cases Controls Cases Controls Cases Controls 

Total n % Total n % Total n % Total n % Total n % Total n % 

Age at first birth (yr)  

Nulliparous 

22 

2 9.1 

544 

96 17.7 

13 

2 15.4 

258 

52 20.2 

9 

0 0.0 

286 

44 15.4 

>27 7 31.8 114 21.0 4 30.8 53 20.5 3 33.3 61 21.3 

21-27 11 50.0 234 43.0 6 46.2 104 40.3 5 55.6 130 45.5 

≤20 2 9.1 100 18.4 1 7.7 49 19.0 1 11.1 51 17.8 

P** 0.40# 0.70# 0.60# 

Oral contraception use  

Never 

22 

4 18.2 

543 

116 21.4 

13 

3 23.1 

257 

62 24.1 

9 

1 11.1 

286 

54 18.9 

Previously 18 81.8 423 77.9 10 76.9 195 75.9 8 88.9 228 79.7 

Currently 0 0.0 4 0.7 0 0.0 0 0.0 0 0.0 4 1.4 

P** 1.00# 1.00# 1.00# 

HRT use up to 12 months before 

randomisation 
 

No 
22 

22 100.0 
544 

512 94.1 
13 

13 100.0 
258 

240 93.0 
9 

9 100.0 
286 

272 95.1 

Yes 0 0.0 32 5.9 0 0.0 18 7.0 0 0.0 14 4.9 

P** 0.63# 1.00# 1.00# 

Smoking status  

Never 

22 

11 50.0 

543 

306 56.4 

13 

6 46.2 

258 

150 58.1 

9 

5 55.6 

285 

156 54.7 

Former 2 9.1 71 13.1 2 15.4 30 11.6 0 0.0 41 14.4 

Current 9 40.9 166 30.6 5 38.5 78 30.2 4 44.4 88 30.9 

P** 0.64# 0.64# 0.51# 

History of Atypical Hyperplasia or LCIS   

No 
22 

15 68.2 
544 

504 92.7 
13 

8 61.5 
258 

241 93.4 
9 

7 77.8 
286 

263 92.0 

Yes 7 31.8 40 7.4 5 38.5 17 6.6 2 22.2 23 8.0 

P** <0.01 <0.01 0.17# 

Image type  

Film 
22 

11 50.0 
553 

179 32.4 
13 

6 46.2 
263 

77 29.3 
9 

5 55.6 
290 

102 35.2 

Digital 11 50.0 374 67.6 7 53.9 186 70.7 4 44.4 188 64.8 

P** 0.09 0.20 0.29# 

 

*P-value from two-sample t-test (for means) and Wilcoxon rank sum test (for medians), respectively, for continuous variables by case status; **P-value from Pearson chi-squared 

test (# Fisher’s exact test if cell size <5) for variable categories by case status; interquartile range (IQR), standard deviation (SD). 
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Table 6.2: Cross tabulation of number of women in each Boyd category at entry to the study with category at first follow -up, by case status 

 Number of women 

Boyd 

category at 

entry 

Boyd category at first follow-up: Cases Total Boyd category at first follow-up: Controls Total 

 0%  
1-

10%  

11-

25%  

26-

50%  

51-

75%  

76-

100%  
 0%  1-10%  11-25%  26-50%  51-75%  76-100%   

0%  - - - - - - 0(0/0) - - - - - - 0(0/0) 

1-10%  - 2(0/2) - - - - 2(0/2) - 47(22/25) 1(1/0) - - - 48(23/25) 

11-25%  - 1(1/0) 4(4/0) - - - 5(5/0) - 12(6/6) 143(61/82) - - - 155(67/88) 

26-50%  - - - 4(2/2) - - 4(2/2) - - 5(2/3) 130(67/63) 1(0/1) - 136(69/67) 

51-75%  - - - - 7(2/5) - 7(2/5) - - - 6(1/5) 146(76/70) - 152(77/75) 

76-100%  - - - - - 4(4/0) 4(4/0) - - - - 8(4/4) 54(23/31) 62(27/35) 

Total 0(0/0) 3(1/2) 4(4/0) 4(2/2) 7(2/5) 4(4/0) 22(13/9) 0(0/0) 59(28/31) 149(64/85) 136(68/68) 155(80/75) 54(23/31) 553(263/290) 

 

The first number in each cell is the total number of subjects. Numbers in parentheses are the placebo and anastrozole groups, respectively; ‘-‘ indicates no entries. 
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Table 6.3: First follow-up change in density overall and by treatment, separated by case status 

Change in 

breast 

density (% ) 

Overall Placebo Anastrozole P-value* 

Cases 

(n=22) 

Controls 

(n=553) 

Cases 

(n=13) 

Controls 

(n=263) 

Cases 

(n=9) 

Controls 

(n=290) 

Placebo vs. 

Anastrozole 

Cases vs. 

Controls 

Placebo Cases 

vs. 

Anastrozole 

Cases 

Placebo 

Controls vs. 

Anastrozole 

Controls 

Anastrozole 

Cases vs. 

Anastrozole 

Controls 

Placebo 

Cases vs.  

Placebo 

Controls 

Mean (SD) 
-0.91 

(1.97) 

-0.94 

(2.64) 

-1.15 

(2.19) 

-0.80 

(2.61) 

-0.56 

(1.67) 

-1.07 

(2.68) 
0.28 0.96 0.50 0.23 0.57 0.63 

Median 

(IQR) 
0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0.13 0.83 0.49 0.09 0.56 0.37 

<10%  

reduction: n 

(%  of 2x2) 

22 

(3.8) 

539 

(93.7) 

13 

(4.7) 

255 

(92.4) 

9 

(3.0) 

284 

(95.0) 
 

≥10%  

reduction:  

n (%  of 

2x2) 

0 

(0.0) 

14 

(2.4) 

0 

(0.0) 

8 

(2.9) 

0 

(0.0) 

6 

(2.0) 
0.49 1.00# n/a 0.47 1.00# 1.00# 

<5%  

reduction:  

n (%  of 

2x2) 

18 

(3.1) 

460 

(80.0) 

10 

(3.6) 

226 

(81.9) 

8 

(2.7) 

234 

(78.3) 
 

≥5%  

reduction:  

n (%  of 

2x2) 

4 

(0.7) 

93 

(16.2) 

3 

(1.1) 

37 

(13.4) 

1 

(0.3) 

56 

(18.7) 
0.14 0.78# 0.62# 0.10 1.00# 0.41# 

P trend** 0.96 0.63 0.56  

 
*P-value from two-sample t-test (corresponding to mean row) and Wilcoxon rank sum test (corresponding to median row) for continuous change in density, o r Pearson chi-squared  

(# Fisher’s exact test if cell size <5) for dichotomised density change (corresponding to ≥10% reduction row and ≥5% reduction row, as appropriate); **P-trend from a Wald test o f 

change in density (continuous) from separate unadjusted logistic regression models of breast cancer risk on change in density  (continuous), overall and in each treatment  arm; n /a  

represents no results since no cases lost  ≥10% density in placebo or anastrozole arm; interquartile range (IQR), standard deviation (SD). 
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6.3.2 Change in mammographic density – Boyd categories 

 

Change in density was shown in terms of the number of women in each treatment group by 

Boyd scale at baseline and first follow-up mammogram in cases and controls (Table 6.2). 

Movement between Boyd categories was minimal, and women who had a decrease in density 

moved by no more than one category below their baseline category. More controls moved to a 

lower Boyd category than cases, with only 1 (placebo) case moving downwards compared with 

31 controls; however in terms of percentages, these numbers were similar between cases and 

controls (1/22=5% of cases, 31/553=6% of controls). Out of the controls moving to a lower 

Boyd category, a similar percentage were on anastrozole (18/290=6%) as placebo (13/263=5%).  

 

6.3.3 Change in mammographic density – unadjusted tests 

 

In Table 6.3, cases and controls lost similar amounts of density overall (controls: mean change 

(%)= -0.94, ≥10% reduction=2.4%, ≥5% reduction=16.2%; cases: mean change (%)= -0.91, 

≥10% reduction=0.0%, ≥5% reduction=0.7%). This was similar in the anastrozole arm 

(controls: mean change (%)= -1.07, ≥5% reduction=18.7%; cases: mean change (%)= -0.56, 

≥5% reduction=0.3%) and placebo arm (controls: mean change (%)= -0.80, ≥5% 

reduction=13.4%; cases: mean change (%)= -1.15, ≥5% reduction=1.1%). The proportions were 

smaller for the 10% density reduction cut-point (anastrozole controls: ≥10% reduction=2.0%; 

anastrozole cases: ≥10% reduction=0.0%; placebo controls: ≥10% reduction=2.9%; placebo 

cases: ≥10% reduction=0.0%). 

 

6.3.4 Change in mammographic density – adjusted regression models 

 

Table 6.4, Table 6.5 and Table 6.6 show the effect of density change in the anastrozole arm only 

(prognostic biomarker), and in all women as a predictive biomarker (compared with the placebo 

arm as a whole and as an interaction effect, respectively). There was no consistent association 

between continuous density reduction and breast cancer risk reduction. There were no case 

subjects who lost ≥10% density in the placebo or anastrozole arm, therefore density change 

dichotomised by 5% reduction was assessed. Density reduction of at least 5% on anastrozole 

(relative to <5% reduction) had an OR of 0.53 (95% CI, 0.06 to 4.31, p=0.55) in the age-

adjusted model and 0.52 (95% CI, 0.06 to 4.26, p=0.54) in the fully-adjusted model (Table 6.4). 

Women in the anastrozole arm who experienced a 5% or greater reduction in breast density 

(relative to women in the placebo arm) had an OR of 0.36 (95% CI, 0.05 to 2.84, p=0.34) in the 

age-adjusted model and 0.34 (95% CI, 0.04 to 2.74, p=0.31) in the fully-adjusted model. 

Women who took anastrozole but experienced less than a 5% reduction in breast density 

(relative to women in the placebo arm) had an OR of 0.69 (95% CI, 0.28 to 1.69, p=0.42) in the 
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age-adjusted model and 0.68 (95% CI, 0.27 to 1.71, p=0.42) in the fully-adjusted model (Table 

6.5). The interaction effect between density reduction (≥5% reduction) and treatment 

(anastrozole) had an OR of 0.32 (95% CI, 0.03 to 3.91, p=0.37) in the age-adjusted model and 

0.23 (95% CI, 0.02 to 2.94, p=0.26) in the fully-adjusted model (Table 6.6). Only 3 women on 

placebo and 1 woman on anastrozole lost at least 5% density and went on to develop breast 

cancer. With 22 cases and 553 controls, the power to detect a difference in risk of breast cancer 

in anastrozole-treated patients who experienced a ≥5% reduction in density at first follow-up 

mammogram relative to anastrozole-treated patients who experienced a <5% reduction in 

density at first follow-up mammogram was only 7% at the 5% type-I error level. 

 

Table 6.4: (Prognostic biomarker): Odds ratios for relative risk of breast cancer on first follow-up 

reduction in density in the anastrozole arm only, from adjusted logistic regression models  

 

Variable 

Age-adjusted 

(n=295) 

Fully-adjusted# 

(n=292) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Density reduction  

Continuous reduction*1 0.92 (0.68,1.25) 0.59 0.92 (0.69,1.22) 0.55 

<10% reduction**2 Ref - Ref - 

≥10% reduction**2 n/a n/a n/a n/a 

<5% reduction**3 Ref - Ref - 

≥5% reduction**3 0.53 (0.06,4.31) 0.55 0.52 (0.06,4.26) 0.54 

 

1 Density reduction modelled as continuous reduction; 2 density reduction modelled as <10%/≥10% 

reduction; 3 density reduction modelled as <5%/≥5% reduction; density reduction adjusted for age at 

randomisation (yr) in age-adjusted models; #density reduction adjusted for age at randomisation (yr), 

body mass index at randomisation (kg/m2), baseline density (%) and Tyrer-Cuzick 10-year risk (%); 

*odds ratio (OR) represents odds of breast cancer per unit decrease in continuous density; **OR 

represents odds of breast cancer relative to the reference category (<10% reduction or <5% reduction, 

as appropriate); 95% confidence intervals (95% CIs) and P-values from Wald tests; n/a represents no 

results since no cases lost  ≥10% density in placebo or anastrozole arm. 
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Table 6.5: (Predictive biomarker I): Odds ratios for relative risk of breast cancer on first follow-up 

reduction in density for the anastrozole arm (relative to the placebo arm) in all women, from adjusted 

logistic regression models 

 

Variable 

Age-adjusted 

(n=566) 

Fully-adjusted# 

(n=560) 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Density reduction  

Continuous reduction*1 1.01 (0.85,1.19) 0.92 1.01 (0.86,1.18) 0.93 

<10% reduction**2 0.64 (0.27,1.52) 0.31 0.64 (0.26,1.55) 0.32 

≥10% reduction**2 n/a n/a n/a n/a 

<5% reduction**3 0.69 (0.28,1.69) 0.42 0.68 (0.27,1.71) 0.42 

≥5% reduction**3 0.36 (0.05,2.84) 0.34 0.34 (0.04,2.74) 0.31 

 

1 Density reduction modelled as continuous reduction; 2 density reduction modelled as a factor variable 

with 3 categories: <10% reduction anastrozole, ≥10% reduction anastrozole and placebo; 3 density 

reduction modelled as a factor variable with 3 categories: <5% reduction anastrozole, ≥5% reduction 

anastrozole and placebo; density reduction adjusted for age at randomisation ( yr) in age-adjusted 

models; # density reduction adjusted for age at randomisation (yr), body mass index at randomisation 

(kg/m2), baseline density (%) and Tyrer-Cuzick 10-year risk (%); *odds ratio (OR) represents odds of 

breast cancer per unit decrease in continuous density; **OR represents odds of breast cancer relative to 

all women in the placebo arm; 95% confidence intervals (CIs) and P-values from Wald tests; n/a 

represents no results since no cases lost  ≥10% density in placebo or anastrozole arm, therefore age -

adjusted model (2) drops 5 anastrozole controls who lost ≥10% density and had  non-missing age, hence 

n=561 and fully-adjusted model (2) drops 5 anastrozole controls who lost ≥10% density and had non -

missing full covariates, hence n=555. 
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Table 6.6: (Predictive biomarker II): Odds ratios for relative risk of breast cancer on first follow-up reduction in density, treatment, and an interaction between density reduction 

and treatment, in all women, from adjusted logistic regression models 

Variable 

Continuous1 <10% /≥10% reduction2 <5% /≥5%  reduction3 

Age-adjusted 

(n=566) 

Fully-adjusted# 

(n=560) 

Age-adjusted 

(n=566) 

Fully-adjusted# 

(n=560) 

Age-adjusted 

(n=566) 

Fully-adjusted# 

(n=560) 

OR 

(95%  CI) 

P-

value 

OR 

(95%  CI) 

P-

value 

OR 

(95%  

CI) 

P-

value 

OR 

(95%  

CI) 

P-

value 

OR 

(95%  CI) 

P-

value 

OR 

(95%  CI) 

P-

value 

Density reduction  

 

 

Continuous 

reduction*1 

1.03 

(0.85,1.25) 
0.73 

1.08 

(0.89,1.30) 
0.44 

<10%  reduction**2 

 

Ref - Ref - 

≥10%  reduction**2 n/a n/a n/a n/a 

<5%  reduction**3 

 

Ref - Ref - 

≥5%  reduction**3 
1.64 

(0.42,6.34) 
0.47 

2.15 

(0.54,8.58) 
0.28 

Treatment  

Placebo*** Ref - Ref - Ref - Ref - Ref - Ref - 

Anastrozole*** 
0.69 

(0.28,1.72) 
0.43 

0.71 

(0.28,1.80) 
0.48 n/a n/a n/a n/a 

0.76 

(0.29,1.95) 
0.56 

0.78 

(0.30,2.05) 
0.61 

Interaction+ 
0.88 

(0.62,1.28) 
0.52 

0.84 

(0.59,1.19) 
0.32 n/a n/a n/a n/a 

0.32 

(0.03,3.91) 
0.37 

0.23 

(0.02,2.94) 
0.26 

1 Density reduction modelled as continuous reduction; 2 density reduction modelled as <10%/≥10% reduction; 3 density reduction modelled as <5%/≥5% reduction; density 

reduction adjusted for age at randomisation (yr) in age-adjusted models; # density reduction adjusted for age at randomisation (yr), body mass index at randomisation (kg/m2), 

baseline density (%) and Tyrer-Cuzick 10-year risk (%); *odds ratio (OR) represents odds of breast cancer per unit decrease in continuous density; **OR represents odds of breast  

cancer relative to the reference category (<10% reduction or <5% reduction, as appropriate); ***OR represents odds of breast cancer relative to placebo; + OR represents odds o f 

an interaction effect between density reduction and treatment arm; 95% confidence intervals (CIs) and P-values from Wald tests; n/a represents no results since no cases lost  ≥10% 

density in placebo or anastrozole arm. 
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Table 6.7: Odds ratios for relative risk of breast cancer on anastrozole-induced first follow-up reduction in density (≥10% reduction and ≥5% reduction) by subgroups of covariates, 

from adjusted logistic regression models 

 
 
 

Variable 

Anastrozole, density 
reduction ≥10% (anastrozole 

arm only) 
P 

Anastrozole, density 
reduction ≥5% 

(anastrozole arm only) 
P 

Anastrozole, density 
reduction ≥10% 

(all women) 
P 

Anastrozole, density 
reduction ≥5% 

(all women) 
P 

No. of anastrozole 

case subjects/total 

number in model 

OR# 

(95% 

CI) 

No. of anastrozole 

case subjects/total 

number in model 

OR## 

(95% CI) 

No. of anastrozole 

case subjects/total 

number in model 

OR+ 

(95% 

CI) 

No. of anastrozole 

case subjects/total 

number in model 

OR++ 

(95% CI) 

Overall 

 

1/295 
0.53 

(0.06,4.31) 
0.55 

 

1/566 
0.36 

(0.05,2.84) 
0.34 

Tumour ER status   

Negative 0/240 n/a n/a 0/271 n/a n/a 

Positive 1/240 n/a n/a 1/271 n/a n/a 

Age at randomisation 

(yr)* 
  

<59 yr 0/265 n/a n/a 0/536 n/a n/a 

≥59 yr 1/265 
1.73 

(0.18,16.61) 
0.64 1/536 

1.13 
(0.13,9.60) 

0.91 

Body Mass Index 

(kg/m2)* 
  

<26.5 kg/m2 0/267 n/a n/a 0/537 n/a n/a 

≥26.5 kg/m2 1/267 
1.15 

(0.14,9.56) 
0.90 1/537 

0.79 

(0.10,6.27) 
0.82 

Baseline density (%)*   

<45% 0/269 n/a n/a 0/540 n/a n/a 

≥45% 1/269 
1.00 

(0.12,8.31) 
1.00 1/540 

0.69 

(0.09,5.49) 
0.73 

History of atypical 

hyperplasia or LCIS  
  

No 1/288 
0.60 

(0.07,4.95) 
0.64 1/559 

0.42 

(0.05,3.27) 
0.41 

Yes 0/288 n/a n/a 0/559 n/a n/a 
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Table 6.7 continued 

 

 
*Continuous variables dichotomised by their median (Table 5.1: overall column, median time between baseline and first follow-up mammogram=2.1 years); #odds ratio (OR) 

represents odds of breast cancer for women with ≥10% density reduction relative to women with<10% density reduction, in diffe rent subgroups, in the anastrozole arm on ly; ##OR 

represents odds of breast cancer for women with ≥5% density reduction relative to women with <5% density reduction, in different subgroups, in the anastrozole arm only; +OR 

represents odds of breast cancer for women with ≥10% density reduction relative to all women in the placebo arm, in different  subgroups; ++OR represents odds of breast cancer 

for women with ≥5% density reduction relative to all women in the placebo arm, in different subgroups; density reduction adju sted for age at randomisation (yr); 95% confidence 

intervals (95% CIs) and P-values from Wald tests; no results for ≥10% reduction since no cases lost  ≥10% density in placebo or anastrozole arm; n/a represents no results since 

subgroup numbers were small and perfectly predicted breast cancer. 

HRT use up to 12 

months before 

randomisation 

 

 

 

 

No 1/291 
0.57 

(0.07, 4.66) 
0.60 1/552 

0.39 

(0.05,3.08) 
0.37 

Yes 0/291 n/a n/a 0/552 n/a n/a 

Tyrer-Cuzick 10-year 

risk (%)* 
  

<7.8% 1/267 
1.07 

(0.13,8.94) 
0.95 1/537 

0.74 

(0.09,5.88) 
0.77 

≥7.8% 0/267 n/a n/a 0/537 n/a n/a 

Image type   

Film 1/258 
1.63 

(0.19,13.87) 
0.66 1/529 

1.13 

(0.14,9.17) 
0.91 

Digital 0/258 n/a n/a 0/529 n/a n/a 

Time between baseline 

mammogram and first 

follow-up 

mammogram (yr)* 

  

<2.1 yr 1/268 
1.07 

(0.13,8.90) 
0.95 1/539 

0.74 
(0.09,5.87) 

0.77 

≥2.1 yr 0/268 n/a n/a 0/539 n/a n/a 
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6.3.5 Subgroup analyses 

 
Table 6.7 shows the estimated effect of anastrozole-induced density reduction as a prognostic 

biomarker (≥10% or ≥5% reduction relative to <10% or <5% reduction, respectively, in the 

anastrozole arm) and a predictive biomarker (≥10% or ≥5% anastrozole-induced density 

reduction relative to placebo in all women), in different subgroups of covariates. Continuous 

covariates were dichotomised by their medians in all women, because there were no differences 

by treatment arm (Table 5.1). There was too little data for the primary analysis, which was even 

smaller when conducting the subgroup analyses. Since there were no case subjects who lost 

≥10% density in the placebo or anastrozole arm, only density change dichotomised by 5% 

reduction could be assessed. However, the number of women in each subgroup for the 5% cut-

point was too small to obtain any useful results since there was only 1 anastrozole case who lost 

at least 5% density, thus the subgroup(s) that she did not belong to contained no anastrozole 

cases with ≥5% reduction and the odds ratios could not be calculated.  

 

6.3.6 Impact of length of time between the baseline and first follow-up mammogram on 

breast cancer risk 

 
The length of time between the baseline and first follow-up mammogram was not associated 

with breast cancer risk (OR per year=1.02 (95% CI, 0.96 to 1.07), p=0.56), and there was no 

statistically significant difference between cases and controls in relation to length of time 

between the baseline and first follow-up mammogram (mean difference cases minus controls = -

1.0 months (95% CI, -4.3 months to 2.4 months), two-sample t-test p=0.56, Wilcoxon rank sum 

test p=0.52). In summary, length of time between baseline and first follow-up mammogram did 

not appear to be associated with risk of breast cancer. 

 

6.3.7 Missing covariate data 

 
As a sensitivity analysis, the age-adjusted regression models (n=295 and n=566) were run in the 

subgroup of women with non-missing data for all adjusting variables (i.e. the subgroup included 

in fully-adjusted multivariable regression models: n=292 and n=560, respectively), to test 

whether adjusted results were robust to missing data. There was only a small amount of missing 

data for adjusting covariates and the results of these sensitivity models were similar to those in 

the main analysis (results not reported); hence the analysis was robust to missing data. 
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6.4 Discussion 

 

The sample size of this study was too small to determine whether anastrozole-induced density 

reduction is a prognostic and predictive biomarker of breast cancer risk reduction, therefore 

results could not be inferred. A larger study with more case subjects is needed to truly test this 

hypothesis. However, given there was little effect of prophylactic anastrozole on density change 

observed in Chapter 5, these data suggest that density change might not be an effective 

prognostic or predictive marker of breast cancer risk reduction with prophylactic anastrozole. 

 

IBIS-I was the first trial to suggest that change in density might be a biomarker of the beneficial 

effect of endocrine therapy. Cuzick et al. found that women who had at least a 10% reduction in 

visually-assessed density in the first 12-18 months of prophylactic tamoxifen treatment had an 

approximate 63% reduction in breast cancer risk compared with women on placebo, whilst 

women who experienced <10% density reduction on tamoxifen had no difference in risk 

compared with women on placebo (19). It was suggested that women who experience the 

greatest density reductions after 12-18 months of tamoxifen may be responding to the drug and 

would perhaps benefit from continuing with their 5 year course of treatment (418). Women who 

see a more modest reduction or increase in density might not be responding to treatment and 

may benefit from alternative therapies such as exercise and dietary interventions to reduce 

weight, or chemoprevention with other SERMs or AIs.  

 

Other studies have since tested Cuzick et al.’s results and provided evidence for density change 

to be used as a biomarker for tamoxifen treatment also in the adjuvant setting (Chapter 4). With 

respect to aromatase inhibitors, a study by Kim et al. found that the hazard ratio for risk of 

recurrence in AI-treated women who lost <5% density compared with women who lost ≥5% 

density after 8-20 months of treatment was 7.11 (95% CI, 0.90 to 56.37, p=0.06). However, as 

discussed in Chapter 4, there were some quality issues with this study, and one should bear this 

in mind when interpreting the results. It is therefore still unclear whether density reduction as a 

result of treatment with aromatase inhibitors can similarly be used as a biomarker for treatment 

efficacy. 

 

As discussed in Chapter 4, low compliance (as a result of side effects of endocrine therapy) in 

the treatment arm might be a marker of treatment efficacy. A test of compliance between 

treatment arms by case-control status was completed in Chapter 5 (5.3.11). This suggested that 

the lower rate of breast cancers in women with larger density reductions was not due to better 

compliance because cases on either anastrozole or placebo had similar compliance regardless of 

density reduction. Nonetheless, the question still remains as to whether the joint association 

between compliance, side effects and density can be used as a biomarker for individual response 
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to treatment. In the Kaplan Meier graphs from Chapter 5 (5.3.11), anastrozole controls who lost 

at least 5% or 10% density were more likely to stop treatment earlier than women who lost less 

than 5% or 10% density, respectively (although log-rank tests were not significant). This effect 

was reversed in cases and placebo controls. This could potentially be a marker that treatment 

was working in these women, causing side effects and hence lower compliance, higher density 

reduction and breast cancer-free ‘control’ status. However, this hypothesis is purely speculative 

and requires validation and further assessment in another study.  

 

There were several strengths of this study. Most of the strengths were outlined in Chapter 5, but 

some additional points relevant to this case-control study are listed below: 

 This is the first known study to examine anastrozole-induced density reduction as a 

biomarker for breast cancer risk reduction in the preventive setting. 

 The inclusion of a placebo arm enabled assessment of density reduction as a predictive 

biomarker. 

 Exclusion of cases with a breast cancer diagnosis before or at first follow-up mammogram 

ensured that timings were appropriate and that the predictor occurred before the event. 

 Measuring density change as both a continuous and dichotomous variable allowed for 

assessment of multiple density change predictors, which found that the 5% cut-point for 

dichotomised density change might be a better threshold than the 10% cut-point for smaller 

density reductions occurring with anastrozole. 

 

There were several limitations of this study. Again, most of the limitations were outlined in 

Chapter 5, but some additional points relevant to this case-control study are listed below: 

 The major limitation of the study is the small number of cases and hence limited power to 

detect an effect of treatment-induced density change on breast cancer risk. The main 

analysis included just one woman from the anastrozole case group who lost at least 5% 

density. Clearly, more women are required to see if this is an effect that may be 

representative of the population. 

 Using an intention to treat analysis has the disadvantage that treatment administered does 

not necessarily mean treatment consumed. However, assessments of compliance showed no 

difference in adherence between cases or controls who did or did not lose density, therefore 

it is unlikely that compliance was a confounding factor. 
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6.5 Conclusion 

 

The sample size of this study was too small to effectively test for an association between 

anastrozole-induced density reduction and breast cancer risk reduction, and therefore 

conclusions could not be drawn. Further assessment in a large sample of women with many 

breast cancer events is essential to investigate this hypothesis with enough statistical power. 

Nonetheless, given there was little effect of anastrozole on density change observed in Chapter 

5, one would not expect density change to be an effective prognostic or predictive biomarker of 

breast cancer risk reduction with prophylactic anastrozole therapy. 
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Chapter 7: Conclusions 

 

7.1 Conclusion of findings 

 

This thesis investigated the association between breast cancer risk and changes in 

mammographic density. The central thesis hypothesis was that repeated measures of 

mammographic density would be valuable for personalised breast cancer prevention. This 

hypothesis was tested over five chapters; each assessing individual study aims centred on the 

evaluation of changes in mammographic density in the assessment of breast cancer risk. An 

introduction and description of study aims, methods, results, discussions and conclusions were 

presented separately for each chapter. In this final chapter, the combined thesis findings are 

summarised and ideas for future research on changes in mammographic density are discussed, 

along with the overall impact of the thesis findings. 

 

Chapter 1 introduced mammographic density and gave an overview of the relevant literature 

relating to changes in mammographic density. The rationale for the thesis was also described as 

well as the study aims for each chapter. 

 

Chapter 2 assessed whether changes in BMI were associated with changes in breast density 

during a one year dietary weight-loss intervention study. The aim was to evaluate whether 

mammographic density acts as a potential mediator for reduction in risk of postmenopausal 

breast cancer with premenopausal weight-loss. Overall, as women lost weight, their breast fat 

decreased but little change was seen in their dense tissue, leading to a higher percentage density. 

This negated the idea that density reduction may be a biomarker for risk reduction with weight-

loss. It is likely that weight-loss-induced reductions in postmenopausal risk are driven by lower 

levels of adipose tissue, which reduce the amount of oestrogen production through 

aromatisation and hence breast cancer risk; but that this pathway is somewhat independent of 

fibroglandular dense tissue. There have been only a few studies to assess the effect of weight-

loss on dense tissue in premenopausal women, with most investigating the effect of bariatric 

surgery and reporting mixed results (252, 253). However, a reduction in dense tissue in 

premenopausal women has been seen previously with a 2 year low-fat, high-carbohydrate diet 

(251), suggesting that certain weight-loss interventions that lower blood levels of estradiol and 

estrone may be required to see such a reduction in dense tissue (296). Density was measured 

using three methods (visual/Cumulus/volumetric ‘Stepwedge’), which allowed for the 

assessment of percentage and absolute density as well as area-based and volumetric density. 

Area and volumetric measures gave similar results for the short-term association between BMI 
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and density: positive relationship with breast fat, inverse relationship with percent density and 

little relationship with dense tissue. 

 

Chapter 3 aimed to assess the benefit of using a woman’s longitudinal history of (BI-RADS) 

density to improve breast cancer risk estimation beyond using a single density measure. 

Longitudinal density was shown to have greater predictive ability and discriminatory accuracy 

than a single measure of most recent density. A quarter more statistical information was gained 

and a small proportion more women were correctly classified as having breast cancer when 

using longitudinal density instead of most recent density. Longitudinal density also predicted a 

six-fold increased risk of breast cancer for women in the highest vs. lowest longitudinal density 

categories, but only a four-fold increased risk was seen between baseline or most recent BI-

RADS density categories 4 and 1. These findings supported the only other known study to 

evaluate predictive ability when using more than one density measure compared with a single 

measure (262). Kerlikowske et al.’s large cohort study reported an AUC for the two-measure 

BI-RADS predictor that was 0.005 units higher than the one-measure predictor, whereas this 

thesis found a slightly greater improvement when including an unlimited number of BI-RADS 

measures (concordance index 0.008 units higher than the most recent BI-RADS density 

measure). The benefit of longitudinal density was driven by shrinkage estimation and a 

reduction in measurement error. There was only a small amount of information gained when 

assessing individual density trajectories, supporting the idea that density has a high amount of 

tracking through time (325, 326). Longitudinal density was also shown to have several potential 

uses in the clinical setting. Predictive accuracy of breast cancer risk models may be improved 

with the addition of longitudinal density; which would be particularly useful for breast cancer 

prevention strategies that aim to stratify screening and standards of care based on risk. 

Additionally, longitudinal density could be easily applied to a screening environment where 

mammography examinations occur at arbitrary points in time. Since longitudinal density is 

predicted using only current and previous density values, its value can be continually updated at 

each woman’s screening appointment. Moreover, risk assessed with longitudinal density would 

lead to more conservative changes between risk groups than most recent BI-RADS density, 

reducing the possibility of a woman receiving a radically different standard of care as a result of 

her moving into a different risk group.  

 

Chapter 4 was a Cochrane systematic review investigating the association between endocrine 

therapy-induced density reduction and breast cancer risk and mortality. Density reduction was 

assessed as both a prognostic and a predictive biomarker, and within each of these, the 

preventive and treatment settings were considered separately, as were the effects of SERMs and 

AIs. A literature search identified 888 potential studies to include in the review. After 

assessment of the titles and abstracts of potential studies, 87 full texts were obtained for further 
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examination. Of these, 8 studies were identified as eligible for the review according to the 

inclusion criteria. One study (19) tested density reduction as a prognostic and predictive 

biomarker for prevention of breast cancer, whilst five studies tested density reduction as a 

prognostic biomarker for the treatment of breast cancer (263-266, 373). One study tested density 

reduction in a sample of women diagnosed with breast cancer, but the analysis adjusted for 

endocrine therapy; hence it could not be classified as either a prognostic or predictive biomarker 

(372). Another study did not report any results that could be extracted so it could not be 

included in the prognostic review (374). The different classes of drugs, outcomes, 

mammographic density measures and effect measures (for instance, the cut-points used) of the 

studies were deemed too heterogeneous to be able to conduct a meaningful meta-analysis. 

Instead, the results of each study were reported in ‘Summary of findings’ tables. In the 

prognostic biomarker review (prevention), one study reported a 68% reduction in breast cancer 

risk with prophylactic tamoxifen for women who had a 12-18 month visually-assessed percent 

density reduction ≥10% compared with no change (OR=0.32 (95% CI, 0.14 to 0.72)) (19). For 

the prognostic biomarker review in the treatment setting, one study indicated an HR of 0.66 

(95% CI, 0.40 to 1.09) for risk of recurrence with an 8-20 month Cumulus-assessed percent 

density reduction ≥5% compared with <5% whilst on tamoxifen (264). For AIs, the HR was 

0.14 (95% CI, 0.02 to 1.11) using the same biomarker (264). Another prognostic biomarker 

review study (treatment) reported a 65% reduction in risk of recurrence for women with a 10-34 

month tamoxifen-induced reduction in BI-RADS density compared with no reduction (HR=0.35 

(95% CI, 0.17 to 0.68)) (263). In terms of mortality, for the prognostic biomarker review 

(treatment), one study reported a 50% reduction in risk of breast cancer death with 6-36 month 

tamoxifen-induced relative reduction in dense area (machine-learned area-based method) >20% 

compared with little change (≤9% increase to ≤10% reduction) (HR=0.50 (95% CI, 0.27 to 

0.93)) (265). Another prognostic biomarker review study (treatment) reported a 56% decreased 

risk of breast cancer death with a 3-26 month tamoxifen-induced reduction in Cumulus-assessed 

percent density of >8.7% compared with <0.5% (OR=0.44 (95% CI, 0.22 to 0.88)) (266). The 

final prognostic biomarker study (treatment) reported an OR of 0.52 (95% CI, 0.18 to 1.51) for 

risk of contralateral breast cancer with a 1-5 year reduction in percent density (machine-learned 

area-based method) of ≥10% compared with little change (<10% reduction to <10% increase) 

whilst on endocrine therapy (373). In the predictive biomarker review (prevention), an 

interaction between prophylactic tamoxifen and 12-18 month visually-assessed percent density 

reduction (≥10% or <10%) had an OR for risk of breast cancer of 0.53 (95% CI, 0.21 to 1.32) 

(19). Overall, there was some evidence to suggest that density reduction may be a prognostic 

and predictive biomarker for reduction in breast cancer risk, and prognostic biomarker for 

reduction in breast cancer risk of recurrence, mortality and contralateral breast cancer with 

tamoxifen. However, the level of evidence for this biomarker was limited by several study 

quality issues. The suggestion of density reduction as a prognostic biomarker for reduction in 
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risk of recurrence whilst on AIs was also limited by study quality issues and requires further 

investigation. 

 

Chapter 5 aimed to assess the effect of prophylactic anastrozole on visually-assessed density 

reduction during the IBIS-II trial. After 2 years of anastrozole treatment, breast density 

decreased by an average of 1.05%, but this was not significantly different from the 0.82% mean 

density reduction on placebo. It is likely that prophylactic anastrozole treatment reduces breast 

density by only a small amount and this was not captured by the study due to limited power. 

However, this is the largest known study to assess the effect of a preventive AI on density, and 

the lack of a significant effect even with a considerable sample size (n=575) further suggests 

only a marginal effect of anastrozole on density. These results were in concordance with 

previous studies reporting a null or very minimal effect of AIs in both the preventive (268-270) 

and adjuvant (267, 337) settings. Whilst a study by Engmann et al. reported a significant 

reduction in volumetric density with adjuvant AIs, the effect was again small with only a 0.3% 

greater reduction in Volpara percent density and 0.6% greater reduction in Quantra percent 

density for breast cancer cases on 2-3 years of AIs compared with breast cancer-free controls on 

no treatment. To see such small changes in density with AI treatment, it may be necessary to use 

volumetric measures that account for overlapping dense tissue within the breast. Use of 

volumetric methods to test the effect of AIs on density requires further exploration. 

 

Chapter 6 aimed to investigate visually-assessed density reduction with prophylactic anastrozole 

as a biomarker for concurrent breast cancer risk reduction using a case-control study from the 

IBIS-II trial. Unfortunately, the number of breast cancer cases was not large enough for the 

study to be adequately powered (n=22), and the number of cases who lost at least 10% or 5% 

density was minimal. Therefore, the sample size was too small to infer an effect and no 

definitive conclusions could be drawn. 

 

Overall, changes in mammographic density were shown to be useful for the assessment of 

breast cancer risk. Repeated measures of density have great potential for use in personalised 

breast cancer prevention. Their use in improving the accuracy of breast cancer risk estimation 

and in indicating response to endocrine treatment could prove to be extremely valuable for 

breast cancer prevention strategies. 
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7.2 Future research: use of changes in mammographic density for breast 

cancer prevention 

 

This thesis revealed two main avenues for further research: (a) further development and 

validation of the longitudinal density measure with the ultimate aim of incorporating it into 

established breast cancer risk models, (b) expanding evidence on mammographic density 

reduction as a biomarker for reduction in risk and mortality with endocrine therapy.  

 

Several approaches can be used to further develop the longitudinal density measure. Firstly, it 

would be useful to test the benefit of applying different weightings to historical density values. 

For instance, more recent values may require up-weighting, whereas earlier mammograms may 

be less informative and require application of ‘forgetting factors’. Secondly, including 

additional confounders of density in the linear mixed model or modelling the mixed effects in a 

multinomial or ordinal logit model may improve the prediction of the longitudinal density 

measure. Thirdly, the ability of longitudinal density to stratify breast cancer risk might be 

improved with the addition of other classical risk factors or a longitudinal measure of BMI in 

the proportional-hazards Cox model. Additionally, estimation of breast cancer risk with 

longitudinal density may be improved with a joint longitudinal-survival model that maximises 

likelihood in both models simultaneously (330, 331). It would then be important to validate the 

longitudinal density measure in other cohorts of women and using different density measures, as 

well as testing the benefit of this measure in established breast cancer risk models such as the 

Tyrer-Cuzick, Gail or BCSC model.  

 

Establishing whether a reduction in density can be used as a biomarker for response to 

endocrine therapy is another priority for future research on changes in mammographic density. 

A meta-analysis of individual participant-level data from the best quality studies identified in 

the Cochrane systematic review would help to overcome some of the quality issues identified as 

well as account for heterogeneity between studies. Gathering further evidence to support this 

biomarker is essential if it is to be implemented into clinical practice. Additionally, in the 

Cochrane review, there was little evidence for other endocrine therapies besides tamoxifen. 

With AIs, it is important to first determine whether density reductions truly occur whilst on the 

drug. Only then can AI-induced density reduction be tested as a biomarker for breast cancer 

incidence or death. It is therefore important to continue to test the effect of AIs on density 

change, for instance using volumetric methods that may capture changing breast phenotypes 

that area-based methods have so far failed to do. 

 

Another possible future study for consideration combines these two avenues of research. Whilst 

the addition of random slopes showed little benefit in estimating breast cancer risk in Chapter 3, 
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it should be noted that women in this cohort study were part of a population-based screening 

programme with a mixture of underlying baseline risks. Random slopes may in fact be more 

useful in high-risk populations of women undergoing active treatment to reduce their risk, or 

breast cancer patients on a course of adjuvant treatment. As seen in Chapter 4, multiple cut-

points are currently used to assess endocrine therapy-induced density reduction and breast 

cancer outcomes. It may be more useful to assess within-women changes in density across the 

course of endocrine therapy to assess whether they differ from individual random slopes 

predicted from a linear mixed model using data from before treatment commencement. A 

density decline greater than a woman’s predicted trajectory might signify a response to 

treatment, and it would be useful to investigate this hypothesis in a future study. 

 

7.3 Impact of the thesis findings 

 

The findings of this thesis have the potential to be useful for breast cancer prevention in several 

ways. Optimising the longitudinal density measure to better predict risk of breast cancer could 

help to identify women at low- and high-risk of developing breast cancer who would benefit 

from more tailored prevention regimes. For instance, risk-stratified screening would allow those 

at a higher risk of developing breast cancer to be screened more frequently, and those at a lower 

risk to be screened less frequently than the current practice of inviting all women for the same 

frequency of screening regardless of risk (134, 419). High-risk women may also benefit from 

supplemental imaging using modalities such as MRI or ultrasound (134), and having a greater 

amount of information on their risk of breast cancer could be useful for helping women to make 

more informed decisions about lifestyle choices that may be influencing their risk of developing 

the disease, such as diet, exercise and alcohol intake (420, 421). Alternatively, high-risk women 

may benefit from a course of treatment with a chemo-preventive drug to lower their risk (134, 

421). Recommendations for chemoprevention are already outlined in NICE guidelines, whereby 

a 5-year course of tamoxifen or raloxifene is advised for women at high or moderate familial 

risk (422, 423), and in 2017, these guidelines were updated to include a 5-year course of 

anastrozole for postmenopausal women at high or moderate familial risk, without severe 

osteoporosis (422). 

 

Chemoprevention highlights another potential use for the findings of this thesis. Chapter 4 

suggested that endocrine therapy-induced density reduction is a promising biomarker for 

reduction in breast cancer risk and mortality. If this biomarker were to be implemented in 

practice, it would act as a quick and cost-effective tool for assessing response to treatment that 

would be less invasive than the alternative tissue and blood sample biomarkers. Additionally, 

density change is an early biomarker that can be measured approximately a year after the start of 

treatment. In theory, this biomarker should therefore result in fewer diagnoses of breast cancer if 
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non-responders are given the chance to try alternative risk-reducing treatments early on when 

there is time to prevent the development of a potential tumour. This would also be relevant in 

the adjuvant setting whereby changing the treatment of non-responders and intervening at an 

early stage would be an improvement on the current “wait-and-see” approach whereby a lack of 

treatment response is often only revealed at the point of breast cancer recurrence or death. This 

makes density change a particularly useful biomarker with the potential to save a number of 

lives. 

 

To conclude, this thesis showed that changes in mammographic density were useful for the 

study of breast cancer risk and should be considered for personalised breast cancer prevention 

strategies. Future research into the area of changes in mammographic is a priority. It is 

important that health practitioners, policy makers and patients benefit from the findings of this 

thesis and make use of the great potential that changes in mammographic density have for breast 

cancer prevention. 
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Appendix A:  Supplementary material for Chapter 3 

A.I Histogram of body mass index 

 

 

Before imputation, before winsorising. 

47,390 women had one or more mammograms with missing body mass index (BMI): 

 

 3,409 women had only baseline mammogram with missing BMI (only baseline imputed) 

 2,638 women had baseline mammogram with missing BMI (baseline imputed) and at least 

one follow-up mammogram with missing BMI (carried forward) 

 41,343 women had only follow-up mammograms with missing BMI (carried forward) 
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A.II Table for number and frequency of mammograms per woman (by age 

at baseline group) 

 

Age at baseline 

(yr) 
Measure 

Median (IQR) 

Time (yr) 

0-5 5-10 10-15 15+ 

All 

Number of mammograms 

(except baseline) per woman 
1 (0-2) 2 (1-3) 2 (2-3) 2 (1-2) 

Frequency of mammograms 

(per yr) per woman 

0.4  

(0-0.6) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.9) 

40-44 

Number of mammograms 

(except baseline) per woman 
1 (0-2) 2 (1-3) 2 (2-3) 2 (1-2) 

Frequency of mammograms 

(per yr) per woman 

0.4  

(0-0.6) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.8) 

0.6 

(0.5-0.9) 

45-49 

Number of mammograms 

(except baseline) per woman 
1 (0-2) 2 (2-3) 3 (2-4) 2 (1-2) 

Frequency of mammograms 

(per yr) per woman 

0.4  

(0-0.6) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.9) 

50-54 

Number of mammograms 

(except baseline) per woman 
2 (1-2) 2 (2-3) 2 (2-4) 2 (1-2) 

Frequency of mammograms 

(per yr) per woman 

0.4 

(0.2-0.6) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.9) 

55-59 

Number of mammograms 

(except baseline) per woman 
2 (0-2) 2 (2-3) 2 (2-3) 1 (1-2) 

Frequency of mammograms 

(per yr) per woman 

0.4 

 (0-0.6) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.9) 

60-64 

Number of mammograms 

(except baseline) per woman 
2 (0-2) 3 (2-3) 1 (1-2) - 

Frequency of mammograms 

(per yr) per woman 

0.4  

(0-0.6) 

0.6 

(0.4-0.8) 

0.6 

(0.4-0.9) 
- 

65+ 

Number of mammograms 

(except baseline) per woman 
2 (1-2) 2 (1-2) - - 

Frequency of mammograms 

(per yr) per woman 

0.4 

(0.2-0.6) 

0.6 

(0.5-0.9) 
- - 

 

Frequency of mammograms is measured over the time at-risk for each woman in each time period. 
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A.III Plots of predicted density against age at baseline for a woman with 

body mass index 25kg/m2 

Likelihood ratio tests for model compared with previous model: 

Linear age 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗 + 𝑒𝑖𝑗   

 

Quadratic age 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽3𝑎𝑔𝑒𝑖𝑗

2 + 𝑒𝑖𝑗   

-> ΔLR-χ2(1)=140.9, p=1.7x10-32 

 

Cubic age 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽3𝑎𝑔𝑒𝑖𝑗

2  + 𝛽4𝑎𝑔𝑒𝑖𝑗
3 + 𝑒𝑖𝑗   

-> ΔLR-χ2(1)=1050.4, p=2.0x10-230 
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Quartic age 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽3𝑎𝑔𝑒𝑖𝑗

2  + 𝛽4𝑎𝑔𝑒𝑖𝑗
3   + 𝛽5𝑎𝑔𝑒𝑖𝑗

4 + 𝑒𝑖𝑗   

-> ΔLR-χ2(1)=77.1, p=1.6x10-18 

 

Age to the power of 5 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽3𝑎𝑔𝑒𝑖𝑗

2  + 𝛽4𝑎𝑔𝑒𝑖𝑗
3   + 𝛽5𝑎𝑔𝑒𝑖𝑗

4   + 𝛽6𝑎𝑔𝑒𝑖𝑗
5 + 𝑒𝑖𝑗     

-> ΔLR-χ2(1)=9.6, p=0.002 

 

Age to the power of 6 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽3𝑎𝑔𝑒𝑖𝑗

2  + 𝛽4𝑎𝑔𝑒𝑖𝑗
3   + 𝛽5𝑎𝑔𝑒𝑖𝑗

4   + 𝛽6𝑎𝑔𝑒𝑖𝑗
5   + 𝛽7𝑎𝑔𝑒𝑖𝑗

6 +

 𝑒𝑖𝑗    

-> ΔLR-χ2(1)=33.3, p=8.1x10-09 
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Age to the power of 7 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 +

𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽3𝑎𝑔𝑒𝑖𝑗

2  + 𝛽4𝑎𝑔𝑒𝑖𝑗
3   + 𝛽5𝑎𝑔𝑒𝑖𝑗

4   + 𝛽6𝑎𝑔𝑒𝑖𝑗
5  + 𝛽7𝑎𝑔𝑒𝑖𝑗

6  + 𝛽8𝑎𝑔𝑒𝑖𝑗
7 + 𝑒𝑖𝑗     

-> ΔLR-χ2(1)=31.9, p=1.6x10-08 

 

Age to the power of 8 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+𝛽1𝐵𝑀𝐼𝑖𝑗 + (𝛽2 +

𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽3𝑎𝑔𝑒𝑖𝑗

2  + 𝛽4𝑎𝑔𝑒𝑖𝑗
3   + 𝛽5𝑎𝑔𝑒𝑖𝑗

4   + 𝛽6𝑎𝑔𝑒𝑖𝑗
5  + 𝛽7𝑎𝑔𝑒𝑖𝑗

6  + 𝛽8𝑎𝑔𝑒𝑖𝑗
7  + 𝛽9𝑎𝑔𝑒𝑖𝑗

8 + 𝑒𝑖𝑗     

-> ΔLR-χ2(1)=0.6, p=0.43 
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A.IV Plots of predicted density against body mass index for a woman 40 

years old at baseline 

Likelihood ratio tests for model compared with previous model: 

Linear BMI 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝑒𝑖𝑗   

 

Quadratic BMI 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2 + 𝑒𝑖𝑗   

-> ΔLR-χ2(1)=3.6, p=0.06 

 

Cubic BMI 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3 + 𝑒𝑖𝑗    

-> ΔLR-χ2(1)=43.1, p=5.1x10-11 
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Quartic BMI 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4 + 𝑒𝑖𝑗     

-> ΔLR-χ2(1)=655.5, p=1.4x10-144 

 

BMI to the power of 5 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4  + 𝛽6𝐵𝑀𝐼𝑖𝑗
5 + 𝑒𝑖𝑗    

-> ΔLR-χ2(1)=15.7, p=7.3x10-05 

 

BMI to the power of 6 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 + 𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4  + 𝛽6𝐵𝑀𝐼𝑖𝑗
5  + 𝛽7𝐵𝑀𝐼𝑖𝑗

6 +

𝑒𝑖𝑗   

-> ΔLR-χ2(1)=171.4, p=3.7x10-39 
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BMI to the power of 7 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 +

𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4 + 𝛽6𝐵𝑀𝐼𝑖𝑗
5  + 𝛽7𝐵𝑀𝐼𝑖𝑗

6  + 𝛽8𝐵𝑀𝐼𝑖𝑗
7 + 𝑒𝑖𝑗  

-> ΔLR-χ2(1)=18.3, p=1.9x10-05 

 

BMI to the power of 8 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 +

𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4 + 𝛽6𝐵𝑀𝐼𝑖𝑗
5  + 𝛽7𝐵𝑀𝐼𝑖𝑗

6  + 𝛽8𝐵𝑀𝐼𝑖𝑗
7 +

 + 𝛽9𝐵𝑀𝐼𝑖𝑗
8 + 𝑒𝑖𝑗  

-> ΔLR-χ2(1)=26.1, p= 3.2x10-07 
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BMI to the power of 9 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 +

𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4 + 𝛽6𝐵𝑀𝐼𝑖𝑗
5  + 𝛽7𝐵𝑀𝐼𝑖𝑗

6  + 𝛽8𝐵𝑀𝐼𝑖𝑗
7  + 𝛽9𝐵𝑀𝐼𝑖𝑗

8 +

 + 𝛽10𝐵𝑀𝐼𝑖𝑗
9 + 𝑒𝑖𝑗   

-> ΔLR-χ2(1)=9.5, p= 0.002 

 

BMI to the power of 10 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 +

𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4 + 𝛽6𝐵𝑀𝐼𝑖𝑗
5  + 𝛽7𝐵𝑀𝐼𝑖𝑗

6  + 𝛽8𝐵𝑀𝐼𝑖𝑗
7  + 𝛽9𝐵𝑀𝐼𝑖𝑗

8 +

 + 𝛽10𝐵𝑀𝐼𝑖𝑗
9  + 𝛽11𝐵𝑀𝐼𝑖𝑗

10 + 𝑒𝑖𝑗  

-> ΔLR-χ2(1)=19.0, p= 1.3x10-05 
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BMI to the power of 11 

 𝑦𝑖𝑗 = 𝛽0 + 𝑢0𝑖+(𝛽1 +

𝑢1𝑖
)𝑎𝑔𝑒𝑖𝑗  + 𝛽2𝐵𝑀𝐼𝑖𝑗 + 𝛽3𝐵𝑀𝐼𝑖𝑗

2  + 𝛽4𝐵𝑀𝐼𝑖𝑗
3  + 𝛽5𝐵𝑀𝐼𝑖𝑗

4 + 𝛽6𝐵𝑀𝐼𝑖𝑗
5  + 𝛽7𝐵𝑀𝐼𝑖𝑗

6  + 𝛽8𝐵𝑀𝐼𝑖𝑗
7  + 𝛽9𝐵𝑀𝐼𝑖𝑗

8 +

 + 𝛽10𝐵𝑀𝐼𝑖𝑗
9  + 𝛽11𝐵𝑀𝐼𝑖𝑗

10 + 𝛽12𝐵𝑀𝐼𝑖𝑗
11 + 𝑒𝑖𝑗   

-> ΔLR-χ2(1)=1.9, p=0.17 
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A.V Comparison of observed relative risk distributions for most recent density and longitudinal density (40-50yr) 

 

 (a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr, 10yr and 15yr (HRs relative to the average HR at 0.5yr for 45y/o for each 

model); (b) Graph showing the percentage of women in the lowest (<1/2 relative HR) and highest (2+ relative HR) risk groups a t each 6 month period. 
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A.VI Comparison of observed relative risk distributions for most recent density and longitudi nal density (50-60yr) 

 

(a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr, 10yr and 15yr (HRs relative to the average HR at 0.5yr for 55y/o for each 

model); (b) Graph showing the percentage of women in the lowest (<1/2 relative HR) and highest (2+ relative HR) risk groups at each 6 month period. 
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A.VII Comparison of observed relative risk distributions for most recent density and longitudinal density (60yr+)  

 

(a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr and 10yr (HRs relative to the average HR at 0.5yr for 65y/o for each model); (b)  

Graph showing the percentage of women in the lowest (<1/2 relative HR) and highest (2+ relative HR) risk groups at each 6 mon th period. 
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A.VIII  Comparison of statistical information (proportional -hazards Cox 

model fit) in different breast density measures (body mass index not 

imputed) 

Model BMI Density df 
LR-χ2 

(model) 

AIC 

(model) 
df 

ΔLR-χ2 

(density) 

ΔAIC 

(density) 

1 Baseline Baseline 5 601.8 57,503.4 3 294.4 288.4 

2 
Most 

recent 
Most recent 5 604.8 57,500.5 3 291.8 285.8 

3 
Most 

recent 
Longitudinal 4 692.3 57,410.9 2 379.3 375.3 

 

Body mass index (BMI) windsorised; clock starts at new baseline mammogram; ΔLR-χ2 represents the 

difference in likelihood ratio statistics (LR-χ2) between a model fit to age at baseline and most recent BMI 

and a model additionally incorporating the density term(s); ΔAIC represents the difference in Akaike 

Information Criterion (AIC) between a model fit to age and BMI and a model additionally incorpora t ing  

the density term(s); n=129,748 women. 

 

A.IX Comparison of statistical information (proportional -hazards Cox 

model fit) in different breast density measures (no screen-detected 

mammograms) 

Model BMI Density df 
LR-χ2 

(model) 

AIC 

(model) 
df 

ΔLR-χ2 

(density) 

ΔAIC 

(density) 

1 Baseline Baseline 5 604.8 58,394.3 3 296.0 290.0 

2 
Most 

recent 
Most recent 5 628.0 58,371.1 3 314.5 308.5 

3 
Most 

recent 
Longitudinal 4 701.0 58,296.1 2 387.6 383.6 

 

Mammograms removed if up to 6 months before event; clock starts at new baseline mammogram; ΔLR-χ2 

represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at baseline and 

most recent body mass index (BMI) and a model additionally incorporating the density term(s); ΔAIC 

represents the difference in Akaike Information Criterion (AIC) between a model fit to age and BMI and a 

model additionally incorporating the density term(s); includes all women since everyone had at least a 

baseline mammogram and there were no screen-detected baseline mammograms (women excluded if 

breast cancer event occurred <0.5yr after start of follow-up). 
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A.X Comparison of statistical information (proportional -hazards Cox model 

fit) in different breast density measures (by age at baseline group) 

 

Age at baseline (yr) Density measure 

ΔLR-χ2 (density) 

Time (yr) 

All 0-5 5-10 10-15 15+ 

All 

Baseline 296.2 170.4 106.9 39.6 10.1 

Most recent 307.7 187.2 98.7 31.1 13.9 

Longitudinal 379.6 221.7 133.6 43.6 8.3 

40-44 

Baseline 50.0 14.4 18.0 8.5 2.6 

Most recent 36.9 13.6 12.6 12.3 2.1 

Longitudinal 45.4 13.3 21.9 10.4 1.2 

45-49 

Baseline 62.9 24.2 21.0 14.7 4.9 

Most recent 65.2 31.2 27.3 11.0 5.6 

Longitudinal 77.4 37.4 31.6 20.6 3.1 

50-54 

Baseline 50.5 27.6 18.8 10.0 5.4 

Most recent 59.5 36.1 24.2 11.3 4.1 

Longitudinal 71.5 39.0 28.3 11.0 2.8 

55-59 

Baseline 54.6 51.5 16.3 5.7 3.3 

Most recent 55.9 39.0 20.6 2.7 8.0 

Longitudinal 64.7 57.3 21.8 2.9 3.5 

60-64 

Baseline 39.6 23.6 23.8 10.0 - 

Most recent 56.2 32.6 22.9 6.8 - 

Longitudinal 70.1 39.1 24.5 10.9 - 

65+ 

Baseline 43.9 39.4 13.5 - - 

Most recent 49.8 47.2 8.1 - - 

Longitudinal 61.1 51.7 10.8 - - 

 

ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at 

baseline and most recent body mass index (BMI) and a model additionally incorporating the density 

term(s); age at baseline fitted in the model is the age at the start of each time period. 
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A.XI Comparison of statistical information (proportional-hazards Cox 

model fit) in different breast density measures (by menopausal status 

at baseline) 

Menopausal status Density measure 

ΔLR-χ2 (density) 

Time (yr) 

All 0-5 5-10 10-15 15+ 

Premenopausal 

Baseline 87.9 25.3 43.6 18.1 8.5 

Most recent 95.6 33.7 44.8 16.7 10.9 

Longitudinal 108.0 33.3 59.0 21.0 6.1 

Postmenopausal 

Baseline 173.6 122.4 49.7 21.7 3.6 

Most recent 166.8 130.4 41.4 10.1 6.7 

Longitudinal 222.5 160.8 62.3 19.6 3.1 

ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at 

baseline and most recent body mass index (BMI) and a model additionally incorporating the density 

term(s). 

A.XII Comparison of statistical information (proportional -hazards Cox 

model fit) in different breast density measures (in women with the 

longest follow-up (<60yr at baseline and before 2000)) 

Subgroup Density measure 

ΔLR-χ2 (density) 

Time (yr) 

All 0-5 5-10 10-15 15+ 

All 

Baseline 172.9 80.6 61.6 29.9 10.1 

Most recent 160.0 86.7 61.8 21.3 13.9 

Longitudinal 199.2 100.6 87.2 33.1 8.3 

ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at 

baseline and most recent body mass index (BMI) and a model additionally incorporating the density 

term(s). 
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A.XIII  Comparison of statistical information (proportional -hazards Cox 

model fit) in different breast density measures (by menopausal status 

at baseline, in women with the longest follow-up (<60yr at baseline 

and before 2000)) 

Menopausal status Density measure 

ΔLR-χ2 (density) 

Time (yr) 

All 0-5 5-10 10-15 15+ 

Premenopausal 

Baseline 69.7 18.0 32.9 13.4 8.5 

Most recent 63.2 20.4 31.4 10.9 10.9 

Longitudinal 72.0 21.2 45.4 14.6 6.1 

Postmenopausal 

Baseline 92.8 53.0 31.7 18.5 3.6 

Most recent 80.2 60.1 27.0 7.0 6.7 

Longitudinal 112.6 73.9 45.6 14.5 3.1 

ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at 

baseline and most recent body mass index (BMI) and a model additionally incorporating the density 

term(s). 

A.XIV Comparison of statistical information (proportional -hazards Cox 

model fit) in different breast density measures (by film/digital at 

baseline) 

Mammogram type Density measure 

ΔLR-χ2 (density) 

Time (yr) 

0-5 

Film 

Baseline 161.9 

Most recent 171.3 

Longitudinal 211.0 

Digital 

Baseline 14.3 

Most recent 21.3 

Longitudinal 24.5 

ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at 

baseline and most recent body mass index (BMI) and a model additionally incorporating the density 

term(s); Film=baseline year <2007, digital= baseline year ≥2007; only assessing 0 -5yr to reduce 

overlap of follow-up from film to digital. 
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A.XV Comparison of statistical information (proportional-hazards Cox 

model fit) in different breast density measures (by BI-RADS 3rd/4th at 

baseline) 

Lexicon Density measure 

ΔLR-χ2 (density) 

Time (yr) 

0-5 

BI-RADS 3rd 

Baseline 143.9 

Most recent 147.3 

Longitudinal 183.3 

BI-RADS 4th 

Baseline 52.7 

Most recent 56.4 

Longitudinal 69.3 

 

ΔLR-χ2 represents the difference in likelihood ratio statistics (LR-χ2) between a model fit to age at 

baseline and most recent body mass index (BMI) and a model additionally incorporating the density 

term(s); BI-RADS 3rd lexicon=baseline year <2003, BI-RADS 4th lexicon=baseline year ≥2003; only 

assessing 0-5yr to reduce overlap of follow-up from BI-RADS 3rd lexicon to BI-RADS 4th lexicon. 
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A.XVI Comparison of observed relative risk distributions for most recent density and longitudinal density (women with at least 3 

mammograms, 40-50yr) 

 

(a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr, 10yr and 15yr (HRs relative to the average HR at 0.5yr for 45y/o for each 

model); (b) Graph showing the percentage of women in the lowest (<1/2 relative HR) and highest (2+ relative HR) risk groups a t each 6 month period. 
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A.XVII Comparison of observed relative risk distributions for most recent density and longitudinal density (women with at least 3 

mammograms, 50-60yr) 

 

(a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr, 10yr and 15yr (HRs relative to the average HR at 0.5yr for 55y/o for each 

model); (b) Graph showing the percentage of women in the lowest (<1/2 relative HR) and highest (2+ relative HR) risk groups a t each 6 month period. 
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A.XVIII Comparison of observed relative risk distributions for most recent density and longitudi nal density (women with at least 3 

mammograms, 60yr+) 

 

(a) Histograms showing the distribution of relative hazard ratios (HRs) for each model at 0.5yr, 5yr and 10yr (HRs relative to the average HR at 0.5yr for 65y/o for each model); (b)  

Graph showing the percentage of women in the lowest (<1/2 relative HR) and highest (2+ relative HR) risk groups at each 6 month period.  
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Appendix B: Supplementary material for Chapter 4 

B.I Search: CENTRAL 

#1 MeSH descriptor: [Selective Estrogen Receptor Modulators] explode all trees 

#2 MeSH descriptor: [Aromatase Inhibitors] explode all trees 

#3 MeSH descriptor: [Tamoxifen] explode all trees 

#4 tamoxifen 

#5 MeSH descriptor: [Raloxifene Hydrochloride] explode all trees 

#6 raloxifene or lasofoxifene or arzoxifene or droloxifene or bazedoxifene or fulvestrant or 

anastrozole or letrozole or exemestane 

#7 #1 or #2 or #3 or #4 or #5 or #6 

#8 MeSH descriptor: [Breast Density] explode all trees 

#9 (mammogr* or breast or mammary) near dens* 

#10 MeSH descriptor: [Mammography] explode all trees 

#11 MeSH descriptor: [Mammary Glands, Human] explode all trees 

#12 dens* 

#13 (#10 or #11) and #12 

#14 #8 or #9 or #13 

#15 #7 and #14 

 

B.II Search: MEDLINE via OvidSP 

1. exp Selective Estrogen Receptor Modulators/ 

2. exp Aromatase Inhibitors/ 

3. exp TAMOXIFEN/ 

4. tamoxifen.mp. 

5. exp Raloxifene Hydrochloride/ 

6. raloxifene.mp. 

7. lasofoxifene.mp. 

8. arzoxifene.mp. 

9. droloxifene.mp. 

10. bazedoxifene.mp. 

11. fulvestrant.mp. 

12. anastrozole.mp. 

13. letrozole.mp. 

14. exemestane.mp. 

15. or/1-14 

16. exp Breast Density/ 
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17. exp MAMMOGRAPHY/ 

18. exp Mammary Glands, Human/ 

19. ((mammogr* or breast or mammary) adj6 dens*).tw. 

20. dens*.tw. 

21. (17 or 18) and 20 

22. 16 or 19 or 21 

23. 15 and 22 

24. Animals/ not Humans/ 

25. 23 not 24 

26. limit 25 to yr=“1996 -Current” 

 

B.III Search: Embase via OvidSP 

1. exp selective estrogen receptor modulator/ 

2. exp aromatase inhibitor/ 

3. exp tamoxifen/ 

4. tamoxifen.ti,ab. 

5. exp raloxifene/ 

6. raloxifene.ti,ab. 

7. exp lasofoxifene/ 

8. lasofoxifene.ti,ab. 

9. exp arzoxifene/ 

10. arzoxifene.ti,ab. 

11. exp droloxifene/ 

12. droloxifene.ti,ab. 

13. exp bazedoxifene/ 

14. bazedoxifene.ti,ab. 

15. exp fulvestrant/ 

16. fulvestrant.ti,ab. 

17. exp anastrozole/ 

18. anastrozole.ti,ab. 

19. exp letrozole/ 

20. letrozole.ti,ab. 

21. exp exemestane/ 

22. exemestane.ti,ab. 

23. or/1-22 

24. exp breast density/ 

25. ((mammogr$ or breast or mammary) adj6 dens$).ti,ab. 

26. dens$.ti,ab. 
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27. exp mammography/ 

28. exp mammary gland/ 

29. 26 and (27 or 28) 

30. 24 or 25 or 29 

31. 23 and 30 

32. limit 31 to (human and (conference abstracts or embase) and yr=“1996 -Current”) 

 

B.IV Search: WHO ICTRP 

Basic search: 

1. breast density OR mammographic density 

Advanced search: 

Title: density 

Condition: breast cancer 

Intervention: selective oestrogen receptor modulator OR serm OR aromatase inhibitor OR 

tamoxifen OR raloxifene OR lasofoxifene OR arzoxifene OR droloxifene OR bazedoxifene OR 

fulvestrant OR anastrozole OR letrozole OR exemestane 

Recruitment status: ALL 

 

B.V Search: ClinicalTrials.gov 

Advanced search: 

Condition or disease: breast cancer 

Other terms: breast density OR mammographic density 

Study type: All studies 

Study results: All studies 

Sex: All 

Intervention/treatment: selective oestrogen receptor modulator OR serm OR aromatase inhibitor 

OR tamoxifen OR raloxifene OR lasofoxifene OR arzoxifene OR droloxifene OR bazedoxifene 

OR fulvestrant OR anastrozole OR letrozole OR exemestane 
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B.VI Data capture forms 

B.VI.i Data capture forms – Options 

 
New blocks can be added for any of the below (or just enter one as appropriate) 

 Subgroup 

By DCIS/Invasive 

By stage 

By chemotherapy 

By targeted therapy 

By HRT 

By pre/peri/post menopausal 

By age group (e.g. <50/≥50y r) 

By BMI group (e.g. <25, 25 to <30, 30 to <35,  ≥35kg/m2) 

By baseline density 

 Endpoint 

Treatment 

Breast cancer mortality (time to death caused by breast cancer)  

Rate of all serious adverse events 

Recurrence 

Incidence of a secondary primary breast cancer (e.g. in the contralateral breast)  

Any recurrence or any death (disease-free survival)  

Distant metastases  

Death from all causes (all-cause mortality)  

Recurrence of invasive cancer only 

Recurrence of DCIS cancer only  

Troublesome but not serious side effects observed for SERMs and AIs 

Prevention 

Incidence of invasive breast cancer and DCIS  

Rate of all serious adverse events 

Incidence of invasive cancer only  

Incidence of DCIS cancer only  

Troublesome but not serious side effects observed for SERMs and AIs 
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B.VI.ii Data capture form - Cuzick 2011 

Area Field Data 

Study design Type of study Nested case-control within a randomised trial 

 
Matching None 

 

Prognostic, predictive 

or both 
Both (prognostic phase II) 

 
Control group 558 randomised to receive placebo 

 
Prevention or treatment Prevention 

 
Intervention(s) Tamoxifen 20 mg/day 

 
Follow-up time period 

96 months mentioned for follow-up of whole IBIS-I trial but no 

detail given for this sub-study 

Setting Country Controls from UK, cases from UK and Finland 

 
High-risk clinic? No 

 
Treatment clinic? No 

 
Time period 

Diagnosis before October 1, 2007. Recruitment April 1992 – March 

2001. 

 
Urban/rural Not stated 

Participants 

(and 

characteristics 

at baseline) 

No. of participants 

7152 in trial, 126/224 with breast cancer to October 2007, 942 + 123 

= 1065 in this study, Tamoxifen cases=51, Tamoxifen controls=456, 

Placebo cases=72, Placebo controls=486 

 
Age (yr) 

Mean(SD)/Median(IQR): Tamoxifen cases=52(6)/51(48-54), 

Tamoxifen controls=51(6)/50(42-46), Placebo cases=51(6)/50(46-

56), Placebo controls=51(6)/49(46-54) 

 
Age <50 or ≥50 (yr) 

<50/≥50: Tamoxifen cases=26(51%)/25(49%), Tamoxifen 

controls=269(59%)/187(41%), Placebo cases=40(56%)/32(44%), 

Placebo controls=283(58%)/203(42%) 

 
BMI (kg/m2) 

Mean(SD)/Median(IQR): Tamoxifen cases=27(5)/26(24–31), 

Tamoxifen controls=27(5)/ 26(23–30), Placebo cases=27(5)/26(24–

28), Placebo controls=27(5)/26(23–29) 

 

BMI < 25, 25 to < 30, 30 

to < 35,  ≥35 (kg/m2) 

≤25/26 to ≤30/≥30: Tamoxifen cases=20(39%)/15(29%)/13(25%) 3 

missing, Tamoxifen controls=203(45%)/137(30%)/109(24%) 7 

missing, Placebo cases=26(36%)/32(44%)/14(19%) 0 missing, 

Placebo controls=207(43%)/171(35%)/102(21%) 6 missing 

 
Ethnicity Not stated 

 
Education Not stated 

 
Baseline risk (%) Approximately twice population risk 

 

Post/peri/pre-

menopausal 
Pre/Post: cases=58/62, controls=496/433 

 

Distribution of density 

at baseline 

Mean(SD)/Median(IQR): Tamoxifen cases=47(32)/45(20-80), 

Tamoxifen controls=44(30)/40(17-70), Placebo cases=53(30)/63(25-

80), Placebo controls=44(30)/43(15-70). Categories: 0%/1-10%/11-

25%/26-50%/51-75%/76-100%: Tamoxifen 

cases=5(10%)/5(10%)/7(14%)/10(20%)/11(21%)/13(25%), 

Tamoxifen 

controls=53(12%)/40(9%)/55(12%)/116(25%)/103(23%)/89(19%), 

Placebo cases=3(4%)/5(7%)/10(14%)/13(18%)/19(26%)/22(31%), 

Placebo 

controls=53(11%)/53(11%)/61(13%)/109(22%)/111(23%)/99(20%). 

 

Invasive/DCIS at 

baseline 
NA 

 

Stage (percentage 

regional spread) at 

baseline 

NA 

Cointerventions HRT use 

Never/Previous/Current: Tamoxifen 

cases=27(53%)/10(20%)/14(27%), Tamoxifen 

controls=398(65%)/63(14%)/95(21%), Placebo 
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cases=46(64%)/12(17%)/14(19%), Placebo 

controls=316(65%)/62(13%)/108(22%) 

 
Chemotherapy? NA 

 
Targeted therapy? NA 

 
Radiotherapy? NA 

 

Neoadjuvant endocrine 

therapy? 
NA 

Timing 

Time between baseline 

mammogram and 

diagnosis 

NA 

 

Time between diagnosis 

and start of endocrine 

therapy (or study entry) 

NA 

 

Time between start of 

endocrine therapy (or 

study entry) and the 

follow-up mammogram 

At least 12m after randomisation, median=18m, IQR=16-19m 

 

Time between baseline 

mammogram and start 

of endocrine therapy 

(or study entry) 

At or up to 12m before randomisation 

 

Time between baseline 

mammogram and the 

follow-up mammogram 

Median=19m, IQR=18-23m 

Biomarker 
Film (digitised for 

density or not)/FFDM 

Film (Finnish mammograms were digitised films, UK mammograms 

were original films) 

 

Pre-processing for 

quality control of 

mammographic 

density? 

None stated (but original film used) 

 
Density measure(s) 

Percentage (i) visual assessment to nearest 5% by expert, 

contralateral MLO 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR 

 
n total in analysis 507 

 

n events / cases in 

analysis 
51 

 
Data 

Change density: increase, no change, reduction 5%, reduction ≥10%: 

cases: 4, 20, 12, 15; controls 16, 141, 82, 217 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate 2.13, REF, 0.90, 0.32 

 
SD - 

 
SE - 

 
95% CI (0.64 to 7.20), REF, (0.40 to 2.04), (0.14 to 0.72) 

 
p-value P trend=0.001 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Placebo arm 
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Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR 

 
n total in analysis 558 

 

n events / cases in 

analysis 
72 

 
Data 

Change density: increase, no change, reduction 5%, reduction ≥10%: 

cases: 9, 27, 21, 15; controls 57, 206, 98, 125 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate 1.23, REF, 1.35, 0.69 

 
SD - 

 
SE - 

 
95% CI (0.54 to 2.81), REF, (0.71 to 2.58), (0.34 to 1.41) 

 
p-value P trend=0.51 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Tamoxifen arm (prognostic marker) - worked out from raw data 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR 

 
n total in analysis 497 

 

n events / cases in 

analysis 
48 

 
Data <10% reduction, ≥10% reduction: cases: 35, 13; controls: 234, 215 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate REF, 0.32 

 
SD - 

 
SE - 

 
95% CI REF, (0.15 to 0.66) 

 
p-value REF, 0.002 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All (predictive marker) - worked out from paper 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR interaction 

 
n total in analysis 1065 

 

n events / cases in 

analysis 
123 

 
Data <10% reduction, ≥10% reduction: cases: 93, 30; controls: 600, 342 

 
Adjustment 

None – this test was not reported in the original paper – conducted 

post hoc based on available data 

 
Point estimate 0.60 

 
SD - 

 
SE - 

 
95% CI (0.25 to 1.45) 

 
p-value 0.74 (DLR=1.28) 

 

Comment on statistical 

method 

Only unadjusted possible from the data reported in the paper. 

Logistic regression using the reported data. 

 
Other Other point estimates: tamoxifen vs. placebo 0.95, density change 
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0.76 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All (predictive marker) - worked out from raw data 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR interaction 

 
n total in analysis 1049 

 

n events / cases in 

analysis 
120 

 
Data <10% reduction, ≥10% reduction: cases: 92, 28; controls: 591, 338 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate 0.53 

 
SD - 

 
SE - 

 
95% CI (0.21 to 1.32) 

 
p-value 0.17 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 1049 

 

n events / cases in 

analysis 
120 

 
Data 35 cases <10% reduction, 13 cases ≥10% 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate <10% 1.13, ≥10% 0.37 

 
SD - 

 
SE - 

 
95% CI (0.72 to 1.77), (0.20 to 0.69) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline breast density ≤10%, Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 218 

 

n events / cases in 

analysis 
18 

 
Data 10 cases <10% reduction, 0 cases ≥10% reduction 

 
Adjustment 

Age at entry, history of atypical hyperplasia or lobular carcinoma in 

situ, and body mass index 

 
Point estimate All 1.36, <10% 1.45, ≥10% NA 

 
SD - 

 
SE - 
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95% CI (0.51 to 3.66), (0.54 to 3.88) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline breast density 11-50%, Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 377 

 

n events / cases in 

analysis 
37 

 
Data 11 cases <10% reduction, 3 cases ≥10% reduction 

 
Adjustment 

Age at entry, history of atypical hyperplasia or lobular carcinoma in 

situ, and body mass index 

 
Point estimate All 0.55, <10% 0.97, ≥10% 0.21 

 
SD - 

 
SE - 

 
95% CI (0.27 to 1.13), (0.43 to 2.14), (0.06 to 0.75) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline breast density 51-100%, Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 454 

 

n events / cases in 

analysis 
65 

 
Data 14 cases <10% reduction, 10 cases ≥10% reduction 

 
Adjustment 

Age at entry, history of atypical hyperplasia or lobular carcinoma in 

situ, and body mass index 

 
Point estimate All 0.68, <10% 1.09, ≥10% 0.44 

 
SD - 

 
SE - 

 
95% CI (0.39 to 1.18), (0.55 to 2.15), (0.21 to 0.93) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Premenopausal, Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 554 

 

n events / cases in 

analysis 
58 

 
Data 14 cases <10% reduction, 6 cases ≥10% reduction 

 
Adjustment Age at entry, breast density at baseline, history of atypical 
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hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate All 0.59, <10% 1.18, ≥10% 0.27 

 
SD - 

 
SE - 

 
95% CI (0.33 to 1.06), (0.60 to 2.32), (0.11 to 0.66) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Postmenopausal, Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 495 

 

n events / cases in 

analysis 
62 

 
Data 21 cases <10%reduction, 7 cases ≥10% reduction 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate All 0.87, <10% 1.10, ≥10% 0.53 

 
SD - 

 
SE - 

 
95% CI (0.51 to 1.50), (0.61 to 2.01), (0.22 to 1.28) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup HRT use – never, Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 731 

 

n events / cases in 

analysis 
83 

 
Data 21 cases <10% reduction, 9 cases ≥10% reduction 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate All 0.60, <10% 0.97, ≥10% 0.31 

 
SD - 

 
SE - 

 
95% CI (0.37 to 0.98), (0.55 to 1.71), (0.15 to 0.67) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup HRT use – ever, Tamoxifen arm 

 
Endpoint Incidence of invasive breast cancer and DCIS 

 
Measure OR compared with placebo 

 
n total in analysis 318 
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n events / cases in 

analysis 
37 

 
Data 14 cases <10% reduction, 4 cases ≥10% reduction 

 
Adjustment 

Age at entry, breast density at baseline, history of atypical 

hyperplasia or lobular carcinoma in situ, and body mass index 

 
Point estimate All 1.08, <10% 1.54, ≥10% 0.53 

 
SD - 

 
SE - 

 
95% CI (0.54 to 2.18), (0.72 to 3.23), (0.17 to 1.66) 

 
p-value Not stated 

 

Comment on statistical 

method 
Logistic regression 

 
Other 

 
Sources of 

funding and 

stated conflicts 

of interest 

Funding 
Cancer Research UK program grant (C569/A10404 to J.C.) for 

research on the prevention of hormonally related cancers. 

 
Conflict of interest 

J. Cuzick and A. Howell have served as occasional consultants to 

and advisory board members for AstraZeneca, the maker of 

tamoxifen. J. F. Forbes received honorarium payments for 

educational lectures from Astra Zeneca. J. Cuzick is the principal 

investigator for trials for which his institution (Queen Mary 

University of London) receives funding from AstraZeneca. The 

study sponsor had no role in the study design, collection of the data, 

interpretation of the results, preparation of the manuscript, or the 

decision to submit the manuscript for publication. 
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B.VI.iii Data capture form - Kim 2012 

Area Field Data 

Study design Type of study Retrospective cohort 

 
Matching None 

 

Prognostic, predictive or 

both 
Prognostic (phase II) 

 
Control group None 

 
Prevention or treatment Treatment 

 
Intervention(s) 

Tamoxifen for up to 5yr, anastrozole and/or letrozole for up to 5yr, 

anastrozole and/or letrozole for up to 5yr after 2-3yr tamoxifen, 

tamoxifen for 5yr then an AI but no mention of duration on AI. No 

dose information or intake frequency. All women had at least 2yr 

treatment (however, duration of treatment in table 1: min=0.9yr, 

max=7.9yr). 

 
Follow-up time period Abstract says median follow-up 68.8m (text says 67.7m). 

Setting Country South Korea 

 
High-risk clinic? No 

 
Treatment clinic? Yes 

 
Time period Initial diagnosis October 2003-December 2006 

 
Urban/rural Seoul National University Hospital 

Participants 

(and 

characteristics 

at baseline) 

No. of participants 

Total 1065: Tamoxifen 5yr = 657, Tamoxifen 2-3yr + AI (total 

5yr) = 41, Tamoxifen 5yr + AI (unknown total time) = 192, no 

mention of AI 5yr but by deduction = 175 

 
Age (yr) Mean = 49.0 (40.1 in text), SD = 9.3, min = 24, max = 77 

 
Age <50 or ≥50 (yr) ≤50yr/>50yr = 680(64%)/385(36%) 

 
BMI (kg/m2) Not stated 

 

BMI < 25, 25 to < 30, 30 

to < 35,  ≥35 (kg/m2) 
Not stated 

 
Ethnicity  South Korean institution, otherwise not reported 

 
Education  Not stated 

 
Baseline risk (%) NA 

 
Post/peri/pre-menopausal Not stated 

 

Distribution of density at 

baseline 

Mean = 35.8%, (SD = 14.0%), min = 5.4%, max = 82.2%. 

Categories <10%/10-25%/25-50%/≥50%: 

26(2.4%)/223(20.9%)/641(60.2%)/175(16.4%). 

 
Invasive/DCIS at baseline 127 (12%) DCIS, 938 (88%) invasive 

 

Stage (percentage 

regional spread) at 

baseline 

Stage not reported, but lymph node+/-: 359(34%)/706(66%); 

>2cm/≤2cm: 427(40%)/638(60%) 

Cointerventions HRT use Not stated 

 
Chemotherapy? 

Neoadjuvant: No=1017(96%), Yes=48(5%), adjuvant: 

No=247(23%), Yes=818(77%) 

 
Targeted therapy? Not stated 

 
Radiotherapy? Yes 657 (62%), No 408 (38%) 

 

Neoadjuvant endocrine 

therapy? 
Not stated 

Timing 

Time between baseline 

mammogram and 

diagnosis 

2 weeks pre-surgery 

 

Time between diagnosis 

and start of endocrine 

therapy (or study entry)  

Not stated 

 

Time between start of 

endocrine therapy (or 

study entry) and the 

follow-up mammogram  

‘Average’ 13.1m, range 8-20m 

 

Time between baseline 

mammogram and start of 
Not stated 
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endocrine therapy (or 

study entry)  

 

Time between baseline 

mammogram and the 

follow-up mammogram  

Not stated 

Biomarker 
Film (digitised for density 

or not)/FFDM 
Digital mammograms 

 

Pre-processing for quality 

control of 

mammographic density? 

Not stated 

 
Density measure(s) 

Percentage (iv) semi-automated thresholding software 

(CUMULUS) by one experienced reader, contralateral CC 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio, continuous density reduction, per 1%? 

 
n total in analysis 1065 

 
n events / cases in analysis 80 

 
Data No data presented on recurrence vs. density change 

 
Adjustment Age, Size, LN, Grade, Chemotherapy, Ki-67 

 
Point estimate 0.95 

 
SD - 

 
SE - 

 
95% CI (0.92 to 0.99) 

 
 p-value 0.005 

 

Comment on statistical 

method 

Cox regression, not clear when clock starts, nor reasons for 

censoring, loss to follow-up etc. 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis 1065, MDR: <5%, ≥5%: 505(47%), 560(53%) 

 
n events / cases in analysis 80 

 
Data No data presented on recurrence vs. density change 

 
Adjustment Size, LN, Ki67 (Forward stepwise selection) 

 
Point estimate 1.67 (equivalently 0.60 for ≥5% density reduction) 

 
SD - 

 
SE - 

 
95% CI (1.07 to 2.63) 

 
 p-value 0.025 

 

Comment on statistical 

method 

Cox regression, not clear when clock starts, nor reasons for 

censoring, loss to follow-up etc. 

 
Other 

Sup table 4: Size, LN, Ki67 (Forward stepwise selection), but in 

text: "adjusted for age and preMD by forward selection stepwise 

analysis" 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio, <0%, 0-5%, 5-10%, ≥10% 
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n total in analysis 

1065, MDR: <0%, 0-5%, 5-10%, ≥10%: 190(18%), 314(30%), 

276(26%), 285(27%) 

 
n events / cases in analysis 80 

 
Data No data presented on recurrence vs. density change 

 
Adjustment Size, LN, Grade, Chemotherapy, Ki67 

 
Point estimate ≥10% (REF), 5-10% 1.33, 0-5% 1.92, <0% 2.26 

 
SD - 

 
SE - 

 
95% CI REF, (0.67 to 2.65), (1.01 to 3.64), (1.10 to 4.64) 

 
 p-value REF, 0.413, 0.048, 0.027 

 

Comment on statistical 

method 

Cox regression, not clear when clock starts, nor reasons for 

censoring, loss to follow-up etc. 

 
Other Table 4: Also adjusted for age? 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Age ≤50yr 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis 680 

 
n events / cases in analysis not stated 

 
Data not stated 

 
Adjustment not stated 

 
Point estimate 1.13 

 
SD - 

 
SE - 

 
95% CI (0.62 to 2.04) 

 
 p-value 0.7 

 

Comment on statistical 

method 

A lot not reported, Cox regression, not clear when clock starts, nor 

reasons for censoring, loss to follow-up etc. 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Age >50yr 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis 385 

 
n events / cases in analysis not stated 

 
Data not stated 

 
Adjustment not stated 

 
Point estimate 3.11 

 
SD - 

 
SE - 

 
95% CI (1.19 to 8.14) 

 
 p-value 0.02 

 

Comment on statistical 

method 

A lot not reported, Cox regression, not clear when clock starts, nor 

reasons for censoring, loss to follow-up etc. 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Tamoxifen at entry 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis 890 (assumed) 
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n events / cases in analysis not stated 

 
Data not stated 

 
Adjustment not stated 

 
Point estimate 1.52 

 
SD - 

 
SE - 

 
95% CI (0.92 to 2.51) 

 
 p-value 0.11 

 

Comment on statistical 

method 

A lot not reported, Cox regression, not clear when clock starts, nor 

reasons for censoring, loss to follow-up etc.  

 
Other 

Tamoxifen 5yr = 657, Tamoxifen 2-3yr + AI (total 5yr) = 41, 

Tamoxifen 5yr + AI (unknown total time) = 192, no mention of AI 

5yr but by deduction = 175. Unclear which groups are reported in 

the subgroup analysis. 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup AI at entry 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis 175 (assumed) 

 
n events / cases in analysis not stated 

 
Data not stated 

 
Adjustment not stated 

 
Point estimate 7.11 

 
SD - 

 
SE - 

 
95% CI (0.90 to 56.37) 

 
 p-value 0.06 

 

Comment on statistical 

method 

A lot not reported, Cox regression, not clear when clock starts, nor 

reasons for censoring, loss to follow-up etc.  

 
Other 

Tamoxifen 5yr = 657, Tamoxifen 2-3yr + AI (total 5yr) = 41, 

Tamoxifen 5yr + AI (unknown total time) = 192, no mention of AI 

5yr but by deduction = 175. Unclear which groups are reported in 

the subgroup analysis. 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Chemotherapy - no 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis Unclear if neoadjuvant, adjuvant or both 

 
n events / cases in analysis not stated 

 
Data not stated 

 
Adjustment not stated 

 
Point estimate 2.20 

 
SD - 

 
SE - 

 
95% CI (0.54 to 8.88) 

 
 p-value 0.27 

 

Comment on statistical 

method 

A lot not reported, Cox regression, not clear when clock starts, nor 

reasons for censoring, loss to follow-up etc.  

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

Subgroup Chemotherapy - yes 
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combo) 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis Unclear if neoadjuvant, adjuvant or both 

 
n events / cases in analysis not stated 

 
Data not stated 

 
Adjustment not stated 

 
Point estimate 1.69 

 
SD - 

 
SE - 

 
95% CI (1.02 to 2.80) 

 
 p-value 0.04 

 

Comment on statistical 

method 

A lot not reported, Cox regression, not clear when clock starts, nor 

reasons for censoring, loss to follow-up etc.  

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio,  <5% vs. ≥5% density reduction 

 
n total in analysis Unclear 

 
n events / cases in analysis not stated 

 
Data not stated 

 
Adjustment not stated 

 
Point estimate 1.74 

 
SD - 

 
SE - 

 
95% CI (1.09-2.78) 

 
 p-value 0.02 

 

Comment on statistical 

method 

A lot not reported, Cox regression, not clear when clock starts, nor 

reasons for censoring, loss to follow-up etc.  

 
Other Different from earlier result 

  

N.B. Also reported results for relative mammographic density 

reduction 

Sources of 

funding and 

stated conflicts 

of interest 

Funding 

This work was supported by a National Research Foundation of 

Korea (NRF) Grant funded by the Korean Government 

(20110005753 and 20110031417) 

 
Conflict of interest The authors declare that they have no competing interests 
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B.VI.iv Data capture form - Knight 2018 

Area Field Data 

Study design Type of study Case-control 

 
Matching 

Cases were diagnosed with a second primary invasive CBC at least 2 

years later with no intervening cancer diagnosis, other than a non-

melanoma skin cancer or cervical carcinoma in situ. UBC controls 

had no history of subsequent cancer diagnosis except for 

nonmelanoma skin cancer or cervical carcinoma in situ up  to their 

reference date. Matched 1:1 on follow-up time, living in the same 

study area from first breast cancer to reference date, year of birth 

(5yr strata), year diagnosis (4yr strata), race / ethnicity  

 

Prognostic, predictive 

or both 

Prognostic (phase II) (although analysis not specific to any 

endocrine treatment i.e. ORs are adjusted for tamoxifen use) 

 
Control group N/A 

 

Prevention or 

treatment 
Treatment 

 
Intervention(s) 

Mainly tamoxifen and "study time period and age distribution means 

that few women received aromatase inhibitors", but specific 

treatments, doses and intake frequency not reported 

 
Follow-up time period Mean (SD): Cases=7.9yr (3.8), Controls=8.0yr (4.0) 

Setting Country 

3 US sites (Northern California (179 (49%) cases, 213 (53%) 

controls), Seattle (82 (23%) cases, 80 (20%) controls), Iowa (49 

(14%) cases, 46 (11%) controls), one Canada (Ontario (52 (14%) 

cases, 64 (16%) controls))). 

 
High-risk clinic? No 

 
Treatment clinic? Yes 

 
Time period 

First diagnosis 1990-2008. Only women in WECARE2 included 

(second stage of WECARE, recruited 2009-2012). 

 
Urban/rural Not stated 

Participants 

(and 

characteristics 

at baseline) 

No. of participants 
Mammograms at both time points = 467 women (224 out of 362 

cases, 243 out of 403 controls) 

 
Age (yr) 

Mean (SD) age at mammogram before/at 1st diagnosis: Cases=46 

(6), Controls=46 (6). Mean (SD) age at mammogram after 1st 

diagnosis: Cases=47 (6), Controls=47 (6). Diagnosis <55y r for all. 

 
Age <50 or ≥50 (yr) 

Baseline <45/45-<50/50-54: Cases=90(36%)/82(32%)/81(32%), 

Controls=100(37%)/93(35%)/76(28%). Follow-up <45/45-<50/50-

54: Cases=123(37%)/110(33%)/100(30%), 

Controls=137(36%)/127(34%)/113(30%). 

 
BMI (kg/m2) 

Mean (SD) BMI at 1st diagnosis: Cases=25.2 (5.5), Controls=25.2 

(5.7). 

Mean (SD) BMI at mammogram after 1st diagnosis: Cases=25.2 

(5.4), Controls=25.8 (5.7). 

 

BMI < 25, 25 to < 30, 30 

to < 35,  ≥35 (kg/m2) 
Not stated 

 
Ethnicity  

Non-Hispanic white/Other: Cases=295 (83%)/67 (17%), 

Controls=334 (81%)/69 (19%) 

 
Education  Not stated 

 
Baseline risk (%) 

Family history: yes/no/adopted or missing: 

cases=123(34%)/234(65%)/5(1%), 

controls=89(22%)/306(76%)/8(2%) 

 

Post/peri/pre-

menopausal 

Baseline Pre/Post: Case=184 (73%)/68 (27%), Control=211 

(79%)/57 (21%). Follow-up Pre/Post: Case=130 (39%)/202(61%), 

Control=147 (39%)/228 (61%) 

 

Distribution of density 

at baseline 

Mean (SD) Percent mammographic density before/at 1st diagnosis: 

Cases=37.6% (18.1)/Controls=35.8% (18.3%); <25%/25% to 

<50%/≥50%: Cases=67 (26%)/125 (49%)/61 (24%), Controls=81 

(30%), 130 (48%), 58 (22%). 
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Invasive/DCIS at 

baseline 
100% invasive 

 

Stage (percentage 

regional spread) at 

baseline 

Local/Regional/Missing: Cases=251 (69%)/106 (29%)/ 5(1%), 

Controls=254 (63%)/143 (35%)/6 (1%); ER+/ER-/Missing: 

Cases=213(59%)/129(36%)/20(6%), 

Controls=273(68%)/105(26%)/25(6%) 

Cointerventions HRT use Not stated 

 
Chemotherapy? 

Yes/No: Cases=236 (65%)/126 (35%), Controls=272 (67%)/131 

(33%) 

 
Targeted therapy? Tamoxifen cases=158 (44%), UNK=221 (55%) 

 
Radiotherapy? 

Yes/No: Cases=251 (69%)/111 (31%), Controls=179 (69%)/124 

(31%) 

 

Neoadjuvant endocrine 

therapy? 
Not stated 

Timing 

Time between baseline 

mammogram and 

diagnosis 

Prior to/at diagnosis mammogram (3yr prior to diagnosis - 1 month 

post diagnosis (as close as possible to 12 months prior to diagnosis - 

1 month post diagnosis)) 

 

Time between diagnosis 

and start of endocrine 

therapy (or study entry)  

Not stated 

 

Time between start of 

endocrine therapy (or 

study entry) and the 

follow-up mammogram  

Not stated, but diagnosis to follow-up mammogram (>6 months - 

4yr (as close as possible to >6 months - 18 months)) 

 

Time between baseline 

mammogram and start 

of endocrine therapy 

(or study entry)  

Not stated 

 

Time between baseline 

mammogram and the 

follow-up mammogram  

Median=1yr 

Biomarker 
Film (digitised for 

density or not)/FFDM 

Digitised film – digital mammograms excluded (5 cases, 6 controls 

prior to diagnosis, 39 cases and 41 controls post diagnosis) 

 

Pre-processing for 

quality control of 

mammographic 

density? 

Excluded when visually assessed to be poor image quality (4 cases 

and 4 controls prior to diagnosis, 11 cases and 6 controls post 

diagnosis) 

 
Density measure(s) 

Percentage (iv) semi-automated thresholding software (CUMULUS) 

by experienced reader, contralateral CC 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint 

Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast)  

 
Measure OR, ≥10% vs. <10% density reduction 

 
n total in analysis 435 

 

n events / cases in 

analysis 
210 

 
Data 

<10%/≥10% reduction: Cases=150 (71%)/60 (29%), Controls=144 

(64%)/81 (36%) 

 
Adjustment 

Change in age, estimated body mass index, and menopausal status 

between prior to/at first diagnosis and post-diagnosis mammograms, 

and for initial %MD, study centre, race (non-Hispanic white vs. 

other), age at first diagnosis, age at menarche, number of full-term 

pregnancies, histologic type, stage, and oestrogen receptor status of 

first diagnosis, chemotherapy, 

radiation, and tamoxifen use after first diagnosis. 

 
Point estimate 0.63 
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SD - 

 
SE - 

 
95% CI (0.40 to 1.01) 

 
 p-value Not reported (but p>0.05) 

 

Comment on statistical 

method 

Unconditional logistic regression, Excluding those with missing 

menopausal status information and those with an increase ≥10%, 

note the adjustment for tamoxifen. 

 
Other 

Note that the analysis group did not all receive tamoxifen, not all 

were ER+ at first diagnosis. 

Sources of 

funding and 

stated conflicts 

of interest 

Funding 

This research was supported by the US National Institutes of Health 

(grant numbers U01 CA83178, R01 CA97397, R01 CA129639, R01 

CA114236, P30 CA008748, and R01 CA168339). The funding body 

had no role in the design of the study, the collection, analysis, and 

interpretation of the data, or in writing the manuscript. 

 
Conflict of interest The authors declare that they have no competing interests. 
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B.VI.v Data capture form - Ko 2013 

Area Field Data 

Study design Type of study Retrospective cohort 

 
Matching None 

 

Prognostic, predictive 

or both 
Prognostic (phase II) 

 
Control group None 

 

Prevention or 

treatment 
Treatment 

 
Intervention(s) 

Tamoxifen. All women had at least 2yr treatment. No dose 

information or intake frequency. 

 
Follow-up time period 

Mean follow-up 59m (SD=17.6), range (26–114m), but text says 

mean follow-up 61 months. 

Setting Country South Korea 

 
High-risk clinic? No 

 
Treatment clinic? Yes 

 
Time period January 2003 – December 2008 

 
Urban/rural National Cancer Center, Goyang 

Participants 

(and 

characteristics 

at baseline) 

No. of participants 
n=1066, 67 with total recurrence: 48 systemic, 16(17 also mentioned) 

loco-regional, 4 contralateral (numbers do not add up) 

 
Age (yr) 

Total: mean (SD)=45.3 (7.6), range=25-78. MDR+: mean (SD)=44 

(5.9), range=28-68. MDR-: mean (SD)=46 (8.1), range=25-78 

 
Age <50 or ≥50 (yr) 

Total: ≤50yr/>50yr = 888(83%)/178(17%). MDR+: ≤50yr/>50yr = 

308(91%)/30(9%). MDR-: ≤50yr/>50yr = 580(80%)/148(20%) 

 
BMI (kg/m2) 

Total: mean (SD)=23.4(3.2), range=15.6-50.2. MDR+: mean 

(SD)=22.9(3.1), range=17.5-35.5. MDR-: mean (SD)=23.1(3.2), 

range=15.6-50.2. 

 

BMI < 25, 25 to < 30, 

30 to < 35,  ≥35  

(kg/m2) 

Not stated 

 
Ethnicity  South Korean institution, otherwise not reported 

 
Education  Not stated 

 
Baseline risk (%) NA 

 

Post/peri/pre-

menopausal 

Unclear, title says premenopausal women but age range 25-78 and 

subgroup analysis of ≤50yr/>50yr used as a proxy for menopausal 

status and postmenopausal women mentioned in results 

 

Distribution of density 

at baseline 
BIRAD 1&2 n=141, BIRAD 3 n=503, BIRAD 4 n=422 

 

Invasive/DCIS at 

baseline 
134 (13%) DCIS, 932 (87%) invasive (implied) 

 

Stage (percentage 

regional spread) at 

baseline 

Histologic grade (1/2 vs. 3) = 840(78.8%)/226(21.2%). Lymph node-

/+ = 666(61.5%)/410(38.5%).  

Cointerventions HRT use Not stated 

 
Chemotherapy? 

No=303(28.4%), Yes (adjuvant)=588(55.5%), Yes 

(neoadjuvant)=175(16.4%) 

 
Targeted therapy? Not stated 

 
Radiotherapy? No=173, Yes=893 

 

Neoadjuvant 

endocrine therapy? 
Not stated 

Timing 

Time between baseline 

mammogram and 

diagnosis 

Before surgery but no mention of timeframe. 

 

Time between 

diagnosis and start of 

endocrine therapy (or 

study entry)  

Not stated 
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Time between start of 

endocrine therapy (or 

study entry) and the 

follow-up 

mammogram  

Range=10–34 months in text (10-36 months in results), median=19 

months 

 

Time between baseline 

mammogram and 

start of endocrine 

therapy (or study 

entry)  

Not stated 

 

Time between baseline 

mammogram and the 

follow-up 

mammogram  

Not stated 

Biomarker 
Film (digitised for 

density or not)/FFDM 
Digital mammograms 

 

Pre-processing for 

quality control of 

mammographic 

density? 

Exclusion of women if digital mammogram not appropriate for 

evaluation, but no explanation as to what this means. Reliability not 

assessed (“We relied on a single radiologist who is a specialist in 

breast imaging studies, thereby eliminating interobserver variability. 

We did not seek to measure reproducibility as the BI-RADS density 

classifications are standardized.”). 

 
Density measure(s) 

Categorical (i) BI-RADS (qualitative & quantitative version) by 

experienced reader, no mention if contralateral or view 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio (MDR+ vs. MDR-) 

 
n total in analysis 1066 

 

n events / cases in 

analysis 
67 

 
Data MDR+=10/338, MDR-=57/728 

 
Adjustment 

Age, BMI, tumor size, lymph node positivity, high histologic grade, 

HER2 positivity and Ki-67≥14% 

 
Point estimate 0.35 

 
SD - 

 
SE - 

 
95% CI (0.17 to 0.68) 

 
 p-value 0.002 

 

Comment on statistical 

method 
Age, BMI, tumour size continuous variables 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio (MDR+ vs. MDR-) 

 
n total in analysis 1066 

 

n events / cases in 

analysis 
67 

 
Data MDR+=10/338, MDR-=57/728 

 
Adjustment 

Age, BMI, tumor size, lymph node status, high ER score, high PgR 

score and HER2 positivity  

 
Point estimate 0.36 
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SD 

 

 
SE 

 

 
95% CI (0.18 to 0.70) 

 
 p-value 0.003 

 

Comment on statistical 

method 
Age, BMI, tumour size continuous variables 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival): systemic recurrence 

 
Measure Hazard ratio (MDR+ vs. MDR-) 

 
n total in analysis 1046 

 

n events / cases in 

analysis 
48 

 
Data MDR+=9/337, MDR-=39/709 

 
Adjustment 

Age, BMI, tumor size, lymph node status, high ER score, high PgR 

score and HER2 positivity  

 
Point estimate 0.48 

 
SD - 

 
SE - 

 
95% CI (0.23 to 0.99) 

 
 p-value 0.048 

 

Comment on statistical 

method 
Age, BMI, tumour size continuous variables 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Recurrence (Recurrence-free survival): loco-regional recurrence 

 
Measure Hazard ratio (MDR+ vs. MDR-) 

 
n total in analysis 1014 

 

n events / cases in 

analysis 
16 (17 also mentioned in text) 

 
Data MDR+=1/329, MDR-=15/685 

 
Adjustment 

Age, BMI, tumor size, lymph node status, high ER score, high PgR 

score and HER2 positivity  

 
Point estimate 0.13 

 
SD - 

 
SE - 

 
95% CI (0.02 to 0.96) 

 
 p-value 0.045 

 

Comment on statistical 

method 
Age, BMI, tumour size continuous variables 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup ≤50 years 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio (MDR+ vs. MDR-) 

 
n total in analysis 888 

 

n events / cases in 

analysis 
Not stated 
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Data Not stated 

 
Adjustment 

Age, BMI, tumor size, lymph node status, high ER score, high PgR 

score and HER2 positivity  

 
Point estimate 0.37 

 
SD - 

 
SE - 

 
95% CI (0.18 to 0.76) 

 
 p-value 0.007 

 

Comment on statistical 

method 
Age, BMI, tumour size continuous variables 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup >50 years 

 
Endpoint Recurrence (Recurrence-free survival) 

 
Measure Hazard ratio (MDR+ vs. MDR-) 

 
n total in analysis 178 

 

n events / cases in 

analysis 
Not stated 

 
Data Not stated 

 
Adjustment 

Age, BMI, tumor size, lymph node status, high ER score, high PgR 

score and HER2 positivity  

 
Point estimate 0.41 

 
SD - 

 
SE - 

 
95% CI (0.52 to 3.20) 

 
 p-value 0.4 

 

Comment on statistical 

method 
Age, BMI, tumour size continuous variables 

 
Other 

 
Sources of 

funding and 

stated conflicts 

of interest 

Funding 
This work was supported by grant from the National Cancer Center 

Korea (1211200-1). 

 
Conflict of interest Authors declare none. 
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B.VI.vi Data capture form - Li 2013 

Area Field Data 

Study design Type of study Cohort study  

 
Matching None 

 

Prognostic, predictive 

or both 
Prognostic (phase II) 

 
Control group 

Group of women not treated with tamoxifen included (might be on 

other endocrine treatment), no interaction tested in paper (could ask 

them to do this). 

 

Prevention or 

treatment 
Treatment 

 
Intervention(s) 

Daily tamoxifen: 231 on 20mg, 123 on 40mg, 108 on 20+40mg, 12 

on another dose. "Further adjustment for surgery (i.e., lumpectomy or 

mastectomy) and tamoxifen dosage, which ranged between 20 and 40 

mg per day, did not appreciably change the results". 

 
Follow-up time period Median 14.2 yr (range=1.0 to 15.3 yr) 

Setting Country Sweden 

 
High-risk clinic? No  

 
Treatment clinic? Yes 

 
Time period Breast cancer 1993-1995, follow-up to December 31, 2008 

 
Urban/rural Not stated 

Participants 

(and 

characteristics 

at baseline) 

No. of participants 
No tamoxifen censored=454 (90.8%), no tamoxifen event=46(9.2%), 

tamoxifen censored=399(84.2%), tamoxifen event=75(15.8%) 

 
Age (yr) 

At diagnosis: 50-59/60-69/≥70: no 

tamoxifen=207(41.4%)/227(45.4%)/66(13.2%) median 

(IQR)=62(10), tamoxifen=179(37.8%)/219(46.2%)/76(16.0%) 

median (IQR)=63(11). Censored median (IQR)=62(10), event 

median (IQR)=61(10). At baseline: 49-59/60-69/≥70: no 

tamoxifen=207(41.4%)/230(46%)/63(12.6%) median (IQR)=61(10), 

tamoxifen=181(38.2)/223(47%)/70(14.8%) median (IQR)=63(10). 

Censored median (IQR)=62(10), event median (IQR)=62(11). 

 
Age <50 or ≥50 (yr) All ≥50 years at diagnosis 

 
BMI (kg/m2) 

At diagnosis: <25/25-29.9/30-34.9/≥35: no 

tamoxifen=251(50.2%)/197(39.4%)/45(9%)/7(1.4%) median 

(IQR)=25(4.6), 

tamoxifen=246(51.9%)/168(35.4%)/51(10.8%)/9(1.9%) median 

(IQR)=24.8(5). Censored median (IQR)=24.8(4.8), event median 

(IQR)=26(4.8). 

 

BMI < 25, 25 to < 30, 

30 to < 35,  ≥35 (kg/m2) 

At diagnosis: <25/25-29.9/30-34.9/≥35: no 

tamoxifen=251(50.2%)/197(39.4%)/45(9%)/7(1.4%), 

tamoxifen=246(51.9%)/168(35.4%)/51(10.8%)/9(1.9%). 

 
Ethnicity  Not stated 

 
Education  Not stated 

 
Baseline risk (%) NA 

 

Post/peri/pre-

menopausal 
All postmenopausal 

 

Distribution of density 

at baseline 

0-10/11-25/26-50/51-75/>75: no 

tamoxifen=0(0%)/229(45.8%)/189(37.8%)/59(11.8%)/23(4.6%) 

median (IQR)=26.4cm2(22), 

tamoxifen=0(0%)/198(41.8%)/192(40.5%)/64(13.5%)/20(4.2%) 

median (IQR)=28.4cm2(23.4). Censored median 

(IQR)=27.3cm2(22.9), event median (IQR)=27.7cm2(24.1). DA on 

the baseline mammogram ranged from 10.8 to 135.4 cm2 with a 

median of 27.4 cm2. 

 

Invasive/DCIS at 

baseline 
All invasive 

 
Stage (percentage Metastatic nodes: none/1-3/4-9/>9: no 
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regional spread) at 

baseline 

tamoxifen=471(94.2%)/18(3.6%)/6(1.2%)/5(1%), 

tamoxifen=247(52.1%)/170(35.9%)/45(9.5%)/12(2.5%), 

censored=667(78.2%)/148(17.4%)/33(3.9%)/5(0.6%), 

event=51(42.1%)/40(33.1%)/18(14.9%)/12(9.9%). 

Cointerventions HRT use 

No/Yes: no tamoxifen=230(46%)/270(54%), 

tamoxifen=235(49.6%)/239(50.4%), 

censored=393(46.1%)/460(53.9%), event=72(59.5%)/49(40.5%). 

 
Chemotherapy? 

No/Yes: no tamoxifen=471(94.2%)/29(5.8%), 

tamoxifen=440(92.8%)/34(7.2%), censored=810(95%)/43(5%), 

event=101(83.5%)/20(16.5%). 

 
Targeted therapy? Not stated  

 
Radiotherapy? 

No/Yes: no tamoxifen=207(41.4%)/293(58.6%), 

tamoxifen=296(62.4%)/178(37.6%), 

censored=419(49.1%)/434(50.9%), event=84(69.4%)/37(30.6%). 

 

Neoadjuvant endocrine 

therapy? 
Not stated 

Timing 

Time between baseline 

mammogram and 

diagnosis 

At most 1yr before start of treatment or diagnosis date (no tamoxifen 

group) 

 

Time between 

diagnosis and start of 

endocrine therapy (or 

study entry)  

Median 45 days after diagnosis 

 

Time between start of 

endocrine therapy (or 

study entry) and the 

follow-up 

mammogram  

6-36 months after start of treatment or diagnosis date (no tamoxifen 

group) 

 

Time between baseline 

mammogram and start 

of endocrine therapy 

(or study entry)  

At most 1yr before start of treatment or diagnosis date (no tamoxifen 

group) 

 

Time between baseline 

mammogram and the 

follow-up 

mammogram  

No tamoxifen mean(SD)=1.39yr (0.48), tamoxifen mean(SD)=1.42yr 

(0.48). No more than 3yr. 

Biomarker 
Film (digitised for 

density or not)/FFDM 
Digitised film 

 

Pre-processing for 

quality control of 

mammographic 

density? 

Deleted bad quality mammograms (Li 2012: High-throughput 

mammographic-density measurement: a tool for risk prediction of 

breast cancer). 

 
Density measure(s) 

Absolute (ii) automated area-based method (ImageJ), contralateral 

MLO 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All (tamoxifen treated) 

 
Endpoint Breast cancer mortality (time to death caused by breast cancer)  

 
Measure 

Hazard ratio for breast density change (relative change in absolute 

area) 

 
n total in analysis 474 

 

n events / cases in 

analysis 
75 

 
Data 

HR for ≥10% change (n=113), no change (-10% to 9%; n=89); 11-

20% reduction (n=55), >20% reduction (n=217) 

 
Adjustment Unadjusted 

 
Point estimate 0.66, REF, 0.73, 0.48 

 
SD - 
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SE - 

 
95% CI (0.35 to 1.24), (REF), (0.35 to 1.56), (0.27 to 0.85) 

 
 p-value 0.110 (trend: density change treated as an ordinal variable) 

 

Comment on statistical 

method 
Delayed-entry Cox proportional-hazards model 

 
Other 

The prognostic value of DA assessed from the baseline and follow-up 

mammogram is informative up to 15 years past diagnosis. 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All (tamoxifen treated) 

 
Endpoint Breast cancer mortality (time to death caused by breast cancer)  

 
Measure 

Hazard ratio for breast density change (relative change in absolute 

area) 

 
n total in analysis 474 

 

n events / cases in 

analysis 
75 

 
Data 

HR for ≥10% change (n=113), no change (-10% to 9%; n=89); 11-

20% reduction (n=55), >20% reduction (n=217) 

 
Adjustment 

Time interval between baseline and follow-up mammograms (years), 

age at baseline mammogram (years), ever hormone replacement 

therapy use (yes/no), body mass index at interview (quartiles), time 

since menopause at baseline mammogram (years), oestrogen receptor 

status (positive, negative, or missing), tumour size (<10, 10-19, 20-

29, 30-39, 40-49 or ≥50 mm), number of metastatic nodes (none, 1-3, 

4-9 or >9), grade (well differentiated, moderately differentiated, 

poorly differentiated, or missing), radiotherapy treatment (yes/no), 

chemotherapy treatment (yes/no), change in absolute non-dense area 

(quartiles) and duration of tamoxifen treatment (months). 

 
Point estimate 0.99, REF, 0.90, 0.50 

 
SD - 

 
SE - 

 
95% CI (0.50 to 1.94), (REF), (0.40 to 2.04), (0.27 to 0.93) 

 
 p-value 0.017 (trend: density change treated as an ordinal variable) 

 

Comment on statistical 

method 
Delayed-entry Cox proportional-hazards model 

 
Other 

Further adjustment for surgery (i.e., lumpectomy or mastectomy) and 

tamoxifen dosage, which ranged between 20 and 40 mg per day, did 

not appreciably change the results. The prognostic value of DA 

assessed from the baseline and follow-up mammogram is informative 

up to 15 years past diagnosis. 

  

N.B. these results are also presented graphically. Also, there are 

more data on absolute dense area (absolute and relative density 

change measure, by quartiles) and percent density (absolute and 

relative density change measure, by quartiles) in supplement not 

included here, could be extracted. 

Sources of 

funding and 

stated conflicts 

of interest 

Funding 

Supported by Marit and Hans Rausing’s Initiative Against Breast 

Cancer, and by the Agency for Science, Technology and Research, 

Singapore (J.L.); by Grants No. W81XWH-05-1-0314 (Innovator 

award) from the US Department of Defense Breast Cancer Research 

Program, No. 523-2006-972 from the Swedish Research Council and 

the Swedish E-Science Research Centre (K.H.), No. 5128-B07-

01PAF from the Swedish Cancer Society (K.C.), and by a 

postdoctoral grant from Svenska Sällskapet för Medicinsk Forskning 

(G.E.). 

 
Conflict of interest The author(s) indicated no potential conflicts of interest  
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B.VI.vii Data capture form - Nyante 2015 

Area Field Data 

Study design Type of study Case-control (nested design – from larger cohort) 

 
Matching 

Cases died of breast cancer, control patients were selected from 

breast cancer patients who were alive at the last tumour registry 

follow-up or who died from causes other than breast cancer (had at 

least as much follow-up time as matched cases). Matched 2:1 on 

age at diagnosis (≤50, 51-60, 61-70, >70years), year of diagnosis 

(1990-1993, 1994-1998, 1999-2002, 2003-2008) and disease stage 

(localised/regional spread). Mammograms were available for 61 

additional controls that were matched to cases without available 

mammograms. To increase statistical power, these controls were 

rematched to eligible cases. 

 

Prognostic, predictive or 

both 
Prognostic (phase II) 

 
Control group None 

 
Prevention or treatment Treatment 

 
Intervention(s) 

Tamoxifen, not stated explicitly what dose but should be standard 

20mg daily. At least 1 tamoxifen prescription started within 1yr of 

diagnosis. 

 
Follow-up time period Not stated 

Setting Country 
USA, Kaiser Permanente Northwest health plan (Portland, 

Oregon) 

 
High-risk clinic? No 

 
Treatment clinic? Yes 

 
Time period 

Primary invasive breast cancer (study entry) between 1990 and 

2008. Recruitment (follow-up) between January 1, 1991 and 

December 31, 2010. Checking for mammograms between January 

1, 1988 and December 31, 2010. Prescription records checked 

between 1986 and 2010. 

 
Urban/rural Kaiser Permanente Northwest health plan 

Participants 

(and 

characteristics 

at baseline) 

No. of participants n=349 (97 who died from breast cancer, 252 controls) 

 
Age (yr) 

Age at diagnosis: mean=59yr. Range: 32-87yr. ≤50/51-60/61-

70/>70: cases: 29(29.9%)/22(22.7%)/28(28.9%)/18(18.6%), 

controls: 73(29.0%)/66(26.2%)/77(30.6%)/36(14.3%). 

 
Age <50 or ≥50 (yr) 

≤50yr/>50yr: cases: 29(29.9%)/68(70.1%), controls: 

73(29.0%)/179(71%) 

 
BMI (kg/m2) 

At baseline: <25/25-29/30-34/≥35/missing: cases: 

22(26.2%)/29(34.5%)/17(20.2%)/16(19.1%)/13, controls: 

76(33.6%)/76(33.6%)/44(19.5%)/30(13.3%)/26 

 

BMI < 25, 25 to < 30, 30 

to < 35,  ≥35 (kg/m2) 

At baseline: <25/25-29/30-34/≥35/missing: cases: 

22(26.2%)/29(34.5%)/17(20.2%)/16(19.1%)/13, controls: 

76(33.6%)/76(33.6%)/44(19.5%)/30(13.3%)/26 

 
Ethnicity  

White/Non-white/missing: cases: 96(99%)/1(1%)/0, controls: 

244(97.2%)/7(2.8%)/1 

 
Education  Not stated 

 
Baseline risk (%) NA 

 
Post/peri/pre-menopausal Lacked information on menopausal status 

 

Distribution of density at 

baseline 

Percent density (%): Cases: mean (SD)=26.2 (16.3), median=23.7, 

range=3.4-80.8, ≤15/>15to23/>23to31/>31to43/>43: 

29(29.9%)/19(19.6%)/16(16.5%)/19(19.6%)/14(14.4%). Controls: 

mean (SD)=30.0 (17.4), median 27.7, range=0.8-79.4, 

≤15/>15to23/>23to31/>31to43/>43: 

51(20.2%)/50(19.8%)/51(20.2%)/47(18.7%)/53(21.0%). Absolute 

dense area (cm2): Cases: mean (SD)=36.5 (21.5), median 34.1, 

range=4.6-106.9, ≤21/>21to30/>30to42/>42to57/>57: 
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29(29.9%)/17(17.5%)/18(18.6%)/19(19.6%)/14(14.4%).Controls: 

mean (SD)=41.0 (27.9), median 35.2, range=2.0-

236.5,≤21/>21to30/>30to42/>42to57/>57: 

50(19.8%)/51(20.2%)/50(19.8%)/51(20.2%)/50(19.8%). 

 
Invasive/DCIS at baseline Invasive only (and ER-positive) 

 

Stage (percentage 

regional spread) at 

baseline 

Localised/regional spread: cases: 41(42.3%)/56(57.7%), controls: 

112(44.4%)/140(55.6%) 

Cointerventions HRT use 
Nonuser/former/current: cases: 47(48.5%)/17(17.5%)/33(34.0%), 

controls: 104(41.3%)/37(14.7%)/111(44.1%) 

 
Chemotherapy? 

No/Yes/missing: cases: 41(42.3%)/56(57.7%)/0, controls: 

121(48.2%)/130(51.8%)/1 

 
Targeted therapy? Not stated 

 
Radiotherapy? 

No/Yes: cases: 37(38.1%)/60(61.9%), controls: 

88(34.9%)/164(65.1%). 

 

Neoadjuvant endocrine 

therapy? 
Not stated 

Timing 

Time between baseline 

mammogram and 

diagnosis 

Baseline mammogram ≤720 days before diagnosis 

 

Time between diagnosis 

and start of endocrine 

therapy (or study entry)  

Tamoxifen started ≤1yr after diagnosis 

 

Time between start of 

endocrine therapy (or 

study entry) and the 

follow-up mammogram  

Follow-up mammogram 90 - 820 days after start of tamoxifen 

(and within 90 days of a current tamoxifen prescription, closest to 

365 days if multiple mammograms obtained), mean=12 months, 

range=3-26 months 

 

Time between baseline 

mammogram and start of 

endocrine therapy (or 

study entry)  

Baseline mammogram before start of treatment (or study entry for 

controls), mean=6 months, range=9-47 months 

 

Time between baseline 

mammogram and the 

follow-up mammogram  

Mean 18 months, 23 (24%) cases and 58 (23%) controls more than 

24 months; 40 (41%) cases and 115 (46%) controls within 12 

months 

Biomarker 
Film (digitised for density 

or not)/FFDM 
Digitised film 

 

Pre-processing for quality 

control of 

mammographic density? 

Not stated 

 
Density measure(s) 

Percentage (iv) semi-automated thresholding software 

(CUMULUS) by a single reader, contralateral CC 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 349 

 
n events / cases in analysis 97 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors 

 
Point estimate REF, 1.36, 0.44 

 
SD - 

 
SE - 

 
95% CI REF, (0.79 to 2.34), (0.22 to 0.88) 

 
 p-value 0.005 (heterogeneity test, df=2) 

 
Comment on statistical Conditional logistic regression 
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method 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density <20% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 124 

 
n events / cases in analysis 38 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors 

 
Point estimate REF, 2.23, NA (0 cases, 11 control) 

 
SD - 

 
SE - 

 
95% CI REF, (0.99 to 5.03), NA 

 
 p-value NA 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density 20% to <37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 121 

 
n events / cases in analysis 37 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors 

 
Point estimate REF, 0.69, 0.35 

 
SD - 

 
SE - 

 
95% CI REF, (0.28 to 1.71), (0.12 to 1.02) 

 
 p-value 0.16 (heterogeneity test, df=2) 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density ≥37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density 

 
n total in analysis 104 

 
n events / cases in analysis 22 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors 

 
Point estimate REF, 1.32,0.60 

 
SD - 

 
SE - 

 
95% CI REF, (0.35 to 4.94), (0.17 to 2.12) 

 
 p-value 0.38 (heterogeneity test, df=2) 
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Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density 

 
n total in analysis 349 

 
n events / cases in analysis 97  

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density  

 
Point estimate REF, 1.38, 0.49 

 
SD - 

 
SE - 

 
95% CI REF, (0.80 to 2.40), (0.23 to 1.02) 

 
 p-value 0.01 (heterogeneity test, df=2) 

 

Comment on statistical 

method 
Conditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density <20% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 124 

 
n events / cases in analysis 38 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density 

 
Point estimate REF, 2.82, NA (0 cases, 11 control) 

 
SD - 

 
SE - 

 
95% CI REF, (1.17 to 6.76), NA 

 
 p-value NA 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density 20% to <37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 121 

 
n events / cases in analysis 37 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density  

 
Point estimate REF, 0.70, 0.35 

 
SD - 

 
SE - 

 
95% CI REF, (0.28 to 1.72), (0.12 to 1.02) 
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 p-value 0.16 (heterogeneity test, df=2) 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density ≥37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 104 

 
n events / cases in analysis 22 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density  

 
Point estimate REF, 1.34,0.59 

 
SD - 

 
SE - 

 
95% CI REF, (0.36 to 5.02), (0.17 to 2.11) 

 
 p-value 0.38 (heterogeneity test, df=2) 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 349 

 
n events / cases in analysis 97  

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density plus tamoxifen duration 

 
Point estimate REF, 1.27, 0.47 

 
SD - 

 
SE - 

 
95% CI REF, (0.71 to 2.25), (0.21 to 1.03) 

 
 p-value 0.04 (heterogeneity test, df=2) 

 

Comment on statistical 

method 
Conditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density <20% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 124 

 
n events / cases in analysis 38 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density plus tamoxifen duration 

 
Point estimate REF, 2.22, NA (0 cases, 11 control) 

 
SD - 

 
SE - 
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95% CI REF, (0.88 to 5.62), NA 

 
 p-value NA 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density 20% to <37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 121 

 
n events / cases in analysis 37 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density plus tamoxifen duration 

 
Point estimate REF, 0.78, 0.38 

 
SD - 

 
SE - 

 
95% CI REF, (0.31 to 1.96), (0.13 to 1.15) 

 
 p-value 0.23 (heterogeneity test, df=2) 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density ≥37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 104 

 
n events / cases in analysis 22 

 
Data 

OR in tertiles (controls). T1: > -0.5 (REF), T2: -8.7 to -0.5, T3: < -

8.7 

 
Adjustment Matching factors plus baseline density plus tamoxifen duration 

 
Point estimate REF, 1.31, 0.57 

 
SD - 

 
SE - 

 
95% CI REF, (0.30 to 5.68), (0.14 to 2.38) 

 
 p-value 0.43 (heterogeneity test, df=2) 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 349 

 
n events / cases in analysis 97  

 
Data 

OR by 10% cut-off: <10% reduction, ≥10% reduction. 14 cases 

and 70 controls with ≥10% reduction 

 
Adjustment Matching factors 

 
Point estimate REF, 0.42  

 
SD - 
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SE - 

 
95% CI REF, (0.22 to 0.80) 

 
 p-value 0.009 

 

Comment on statistical 

method 

Conditional logistic regression, relatively small numbers in ≥10% 

group 

 
Other 

Reported in supplementary material, tertiles was primary analysis 

(but this is cut-point used by others) 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup All 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 349 

 
n events / cases in analysis 97  

 
Data 

OR by 10% cut-off: <10% reduction, ≥10% reduction. 14 cases 

and 70 controls with ≥10% reduction 

 
Adjustment Matching factors plus baseline density  

 
Point estimate REF, 0.47 

 
SD - 

 
SE - 

 
95% CI REF, (0.23 to 0.94) 

 
 p-value 0.03 

 

Comment on statistical 

method 

Conditional logistic regression, relatively small numbers in ≥10% 

group 

 
Other 

Reported in supplementary material, tertiles was primary analysis 

(but this is cut-point used by others) 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density <20% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 124 

 
n events / cases in analysis 38 

 
Data 

OR by 10% cut-off: <10% reduction, ≥10% reduction. 0 cases and 

6 controls with ≥10% reduction 

 
Adjustment Matching factors 

 
Point estimate REF, NA (0 cases 6 controls≥ 10% change) 

 
SD - 

 
SE - 

 
95% CI NA 

 
 p-value NA 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density <20% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 124 

 
n events / cases in analysis 38 

 
Data 

OR by 10% cut-off: <10% reduction, ≥10% reduction. 0 cases and 

6 controls with ≥10% reduction 



 

314 
 

 
Adjustment Matching factors plus baseline density 

 
Point estimate REF, NA (0 cases 6 controls≥ 10% change) 

 
SD - 

 
SE - 

 
95% CI NA 

 
 p-value NA 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density 20-37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 121 

 
n events / cases in analysis 37 

 
Data 

OR by 10% cut-off: <10% reduction, ≥10% reduction. 7 cases and 

23 controls with ≥10% reduction 

 
Adjustment Matching factors 

 
Point estimate REF, 0.60 

 
SD - 

 
SE - 

 
95% CI REF, (0.22 to 1.59) 

 
 p-value 0.3 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density 20-37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 121 

 
n events / cases in analysis 37 

 
Data 

OR by 10% cut-off: <10% reduction, ≥10% reduction. 7 cases and 

23 controls with ≥10% reduction 

 
Adjustment Matching factors plus baseline density  

 
Point estimate REF, 0.59 

 
SD - 

 
SE - 

 
95% CI REF, (0.21 to 1.60) 

 
 p-value 0.3 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density ≥37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 104 

 
n events / cases in analysis 22 

 
Data OR by 10% cut-off: <10% reduction, ≥10% reduction. 7 cases and 
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41 controls with ≥10% reduction 

 
Adjustment Matching factors 

 
Point estimate REF, 0.40 

 
SD - 

 
SE - 

 
95% CI REF, (0.14 to 1.14) 

 
 p-value 0.09 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 
Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Baseline density ≥37% 

 
Endpoint Breast cancer mortality 

 
Measure Change in percentage density  

 
n total in analysis 104 

 
n events / cases in analysis 22 

 
Data 

OR by 10% cut-off: <10% reduction, ≥10% reduction. 7 cases and 

41 controls with ≥10% reduction 

 
Adjustment Matching factors plus baseline density  

 
Point estimate REF, 0.39 

 
SD - 

 
SE - 

 
95% CI REF, (0.14 to 1.14) 

 
 p-value 0.09 

 

Comment on statistical 

method 
Unconditional logistic regression 

 
Other 

 

  

N.B there are more data on absolute dense area, relative percent 

density and relative absolute dense area in supplement not 

included here. Also age subgroup results and supplementary 

subgroups for treatment duration etc. presented graphically, could 

be extracted. 

Sources of 

funding and 

stated conflicts 

of interest 

Funding 
This work was supported by the Intramural Research Program of 

the National Cancer Institute at the National Institutes of Health. 

 
Conflict of interest None stated in paper (not present). 
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B.VI.viii Data capture form - Sandberg 2013 

Area Field Data 

Study design Type of study Case-control 

 
Matching 

Cases had invasive CBC diagnosed more than 1 year after the 

first invasive cancer and with an available mammogram close to 

the first diagnosis, controls had invasive unilateral breast cancer 

in the same register (no CBC). Calendar period (+/- 2yr) of first 

breast cancer diagnosis, age at diagnosis (+/- 2yr), adjuvant 

therapy, follow-up time (control survived without distant 

metastasis or CBC at least as long as time between first and 

subsequent cancer). 

 

Prognostic, predictive or 

both 
Prognostic (phase II) 

 
Control group None 

 
Prevention or treatment Treatment 

 
Intervention(s) 

None (radiotherapy, endocrine therapy and/or chemotherapy (or 

none) administered for breast cancer treatment). Specific 

treatments, doses and intake frequency not reported. 

 
Follow-up time period Mean 8.25yr in both cases and controls 

Setting Country Sweden 

 
High-risk clinic? No 

 
Treatment clinic? Yes 

 
Time period 1976 to 2005 

 
Urban/rural Stockholm-Gotland health-care region 

Participants 

(and 

characteristics 

at baseline) 

No. of participants n=422 (211 cases, 211 controls) 

 
Age (yr) 

≤45yr/45-55yr/55-65yr/≥65yr: Cases=37(18%) 

/68(32%)/56(27%)/50(24%), 

Controls=37(18%)/68(32%)/56(27%)/50(24%), same proportion 

in cases and controls by design 

 
Age <50 or ≥50 (yr) 

≤45yr/45-55yr/55-65yr/≥65yr: Cases=37(18%) 

/68(32%)/56(27%)/50(24%), 

Controls=37(18%)/68(32%)/56(27%)/50(24%), same proportion 

in cases and controls by design 

 
BMI (kg/m2) 

Not available, but fat area used as proxy: Q1(≤67cm2)/Q2(67-

93cm2)/Q3(93-127cm2)/Q4(≥127cm2): 

Cases=42(20%)/58(27%)/50(24%)/61(29%), 

Controls=60(28%)/43(20%)/55(26%)/53(25%) 

 

BMI < 25, 25 to < 30, 30 to 

< 35,  ≥35 (kg/m2) 
Not stated 

 
Ethnicity  Not stated 

 
Education  Not stated  

 
Baseline risk (%) NA 

 
Post/peri/pre-menopausal 

Pre/Post: Cases=89(42%)/119(56%), 

Controls=84(40%)/124(59%). Six patients had uncertain 

menopause status (for example, hysterectomy). 

 

Distribution of density at 

baseline 

Mean PDA at baseline=28%. PDA Q1(≤5%)/Q2(5-25%)/Q3(25-

50%)/Q4(≥50%): Cases=13(6%)/87(41%)/97(46%)/14(7%), 

Controls=11(5%)/87(41%)/87(41%)/26(12%). DA 

Q1(≤20cm2)/Q2(20-34cm2)/Q3(34-53cm2)/Q4(≥53cm2): 

Cases=55(26%)/44(21%)/56(27%)/56(27%), 

Controls=55(26%)/56(27%)/49(23%)/51(24%) 

 
Invasive/DCIS at baseline All invasive 

 

Stage (percentage regional 

spread) at baseline 

Tumour-node metastasis stage (cases and controls combined): 

1/2/3/unknown: 244/157/16/5. Note 53 ER-negative, 295 ER-

positive. 

Cointerventions HRT use Current use at diagnosis/no current use at 
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diagnosis/postmenopausal unknown HRT status: 

51(21%)/127(52%)/65(27%) 

 
Chemotherapy? 

(W/ or w/o radiotherapy and/or endocrine therapy): 

cases=28(13% of adjuvant therapies), controls=28(13%) 

 
Targeted therapy? Not stated  

 
Radiotherapy? 

(Radiotherapy only): cases=57(27% of adjuvant therapies), 

controls=57(27%) 

 

Neoadjuvant endocrine 

therapy? 
Not stated  

Timing 
Time between baseline 

mammogram and diagnosis 

First available mammogram up to 1yr prior to diagnosis, and up 

to 2 weeks 

after diagnosis 

 

Time between diagnosis 

and start of endocrine 

therapy (or study entry)  

Not stated  

 

Time between start of 

endocrine therapy (or 

study entry) and the follow-

up mammogram  

Not stated, but time from diagnosis to first available follow-up 

mammogram (1-5yr after diagnosis): mean=1.6yr, 90% between 

1 and 2.2yr (cases and controls combined), cases 

mean(SD)=1.56yr(0.59), controls mean(SD)=1.54yr(0.57) 

 

Time between baseline 

mammogram and start of 

endocrine therapy (or 

study entry)  

Not stated  

 

Time between baseline 

mammogram and the 

follow-up mammogram  

Not stated  

Biomarker 
Film (digitised for density 

or not)/FFDM 
Digitised film 

 

Pre-processing for quality 

control of mammographic 

density? 

Yes, poor-quality excluded (88 cases excluded for this reason) 

 
Density measure(s) 

Percentage (v) fully-automated (based on area of density) 

(ImageJ) and absolute (ii) automated area-based methods 

(ImageJ), 86% MLO & 14% CC (same view at baseline and 

follow-up mammograms and same view in matched cases and 

controls 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup 

Entire sample (minus 66 with percentage density <10% or >90% 

at baseline since they could not move into extreme density 

change groups) 

 
Endpoint 

Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast)  

 
Measure 

Percentage density (≥10% reduction/<10% reduction to <10% 

increase/increase ≥10%) 

 
n total in analysis 356 

 
n events / cases in analysis 178 

 
Data 

≥10% reduction/<10% reduction to <10% increase/increase 

≥10%: 96/243/17 

 
Adjustment Matching factors 

 
Point estimate ≥10% reduction OR=0.49, REF, increase ≥10% OR=0.74 

 
SD - 

 
SE - 

 
95% CI (0.28-0.85), REF, (0.23-2.40) 

 
 p-value 0.04 (P-trend) 

 

Comment on statistical 

method 
Conditional logistic regression 

 
Other 

This analysis does not focus on endocrine treated group, but is 

the main analysis in the paper, number of events not stated but 

calculated from 1:1 matching and use of conditional logistic 



 

318 
 

regression. 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup 

Entire sample (minus 84 with area density <10cm2 or 70cm2 at 

baseline since they could not move into extreme density change 

groups) 

 
Endpoint 

Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast)  

 
Measure 

Area density (≥10cm2 reduction/<10cm2 reduction to <10cm2 

increase/increase ≥10cm2) 

 
n total in analysis 338 

 
n events / cases in analysis 169 

 
Data 

≥10cm2 reduction/<10cm2 reduction to <10cm2 increase/increase 

≥10cm2: 108/197/33 

 
Adjustment Matching factors 

 
Point estimate ≥10cm2 reduction OR=0.67, REF, increase ≥10cm2 OR=0.79 

 
SD - 

 
SE - 

 
95% CI (0.38-1.16), REF, (0.35-1.78) 

 
 p-value 0.35 (P-trend) 

 

Comment on statistical 

method 
Conditional logistic regression 

 
Other 

This analysis does not focus on endocrine treated group, but is 

the main analysis in the paper, number of events not stated but 

calculated from 1:1 matching and use of conditional logistic 

regression. 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup 

Entire sample (minus 66 with percentage density <10% or >90% 

at baseline since they could not move into extreme density 

change groups) 

 
Endpoint 

Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast)  

 
Measure 

Percentage density (≥10% reduction/<10% reduction to <10% 

increase/increase ≥10%) 

 
n total in analysis 356 

 
n events / cases in analysis 178 

 
Data 

≥10% reduction/<10% reduction to <10% increase/increase 

≥10%: 96/243/17 

 
Adjustment 

Matching factors plus percentage density and non-dense area at 

first mammogram (both categorised in quartiles) 

 
Point estimate ≥10% reduction OR=0.45, REF, increase ≥10% OR=0.83 

 
SD - 

 
SE - 

 
95% CI (0.24-0.84), REF, (0.24-2.87) 

 
 p-value 0.04 (P-trend) 

 

Comment on statistical 

method 
Conditional logistic regression 

 
Other 

This analysis does not focus on endocrine treated group, but is 

the main analysis in the paper, number of events not stated but 

calculated from 1:1 matching and use of conditional logistic 

regression. 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup 

Entire sample (minus 84 with area density <10cm2 or 70cm2 at 

baseline since they could not move into extreme density change 

groups) 

 
Endpoint 

Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast)  
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Measure 

Area density (≥10cm2 reduction/<10cm2 reduction to <10cm2 

increase/increase ≥10cm2) 

 
n total in analysis 338 

 
n events / cases in analysis 169 

 
Data 

≥10cm2 reduction/<10cm2 reduction to <10cm2 increase/increase 

≥10cm2: 108/197/33 

 
Adjustment 

Matching factors plus non-dense area at first mammogram (and 

dense area since indicated in methods but not table legend?) 

(both categorised in quartiles) 

 
Point estimate ≥10cm2 reduction OR=0.54, REF, increase ≥10cm2 OR=0.71 

 
SD - 

 
SE - 

 
95% CI (0.30-0.99), REF, (0.30-1.69) 

 
 p-value 0.13 (P-trend) 

 

Comment on statistical 

method 
Conditional logistic regression 

 
Other 

This analysis does not focus on endocrine treated group, but is 

the main analysis in the paper, number of events not stated but 

calculated from 1:1 matching and use of conditional logistic 

regression. 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Endocrine therapy only (w/ or w/o radiotherapy) 

 
Endpoint 

Incidence of a secondary primary breast cancer (e.g. in the 

contralateral breast)  

 
Measure 

Percentage density (≥10% reduction/<10% reduction to <10% 

increase/increase ≥10%) 

 
n total in analysis 

Cases=87(41% were on endocrine therapy), controls=87(41% 

were on endocrine therapy) - but not clear if all of these women 

were included in the analysis 

 
n events / cases in analysis 

Cases=87(41% were on endocrine therapy), controls=87(41% 

were on endocrine therapy) - but not clear if all of these women 

were included in the analysis 

 
Data Not stated 

 
Adjustment 

Unclear - matched factors (plus percentage density and non-

dense area?) 

 
Point estimate ≥10% reduction OR=0.52, REF, increase ≥10% not stated 

 
SD - 

 
SE - 

 
95% CI (0.18-1.51), REF, not stated 

 
 p-value Not stated (but p>0.05) 

 

Comment on statistical 

method 

Conditional logistic regression. Numbers, adjustments and 

results unclear. 

 
Other This is relevant for the review. 

  

N.B. other results for the entire sample adjusted for HRT, and by 

menopausal status and mammographic view, but these are not in 

the endocrine therapy only group so are not relevant for this 

review. 

Sources of 

funding and 

stated conflicts 
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B.VI.ix Data capture form - van Nes 2015 

Area Field Data 

Study design Type of study Sub-cohort within a randomised trial 

 
Matching None 

 

Prognostic, predictive or 

both 
Prognostic (phase II) 

 
Control group None 

 
Prevention or treatment Treatment 

 
Intervention(s) 

Tamoxifen for 2–3 years followed by exemestane for 3–2 years 

(totalling five years) or exemestane alone for 5 years. Tamoxifen: 

20 mg once a day, orally; Exemestane: 25 mg once a day, orally. 

 
Follow-up time period Median 6yr (range 0-9yr) 

Setting Country Netherlands 

 
High-risk clinic? No 

 
Treatment clinic? Yes 

 
Time period 

Not stated - TEAM trial enrolment in 2001 but period of this 

study not reported 

 
Urban/rural 

13 hospitals out of 76 included in the TEAM trial (92 Dutch 

hospitals in total) 

Participants 

(and 

characteristics 

at baseline) 

No. of participants Exemestane n=197, sequential n=181 

 
Age (yr) 

Median (range): Sequential = 63 years (48–91), Exemestane = 62 

years (45–86). <50/50-59/60-69/≥70: Sequential = 

3(2%)/66(36%)/69(38%)/43(24%), Exemestane = 

8(4%)/67(34%)/66(34%)/56(28%). 

 
Age <50 or ≥50 (yr) 

<50/≥50: Sequential = 3(2%)/178(98%), Exemestane = 

8(4%)/189(96%). 

 
BMI (kg/m2) 

<25/25-30/≥30: Sequential = 61(36%)/68(40%)/39(23%), 

Exemestane = 79(42%)/70(37%)/38(20%) 

 

BMI < 25, 25 to < 30, 30 to 

< 35,  ≥35 (kg/m2) 

<25/25-30/≥30: Sequential = 61(36%)/68(40%)/39(23%), 

Exemestane = 79(42%)/70(37%)/38(20%) 

 
Ethnicity  Not stated 

 
Education  Not stated 

 
Baseline risk (%) NA 

 
Post/peri/pre-menopausal All postmenopausal 

 

Distribution of density at 

baseline 
Given as figure (by radiologists' scores), can be extracted 

 
Invasive/DCIS at baseline All invasive 

 

Stage (percentage regional 

spread) at baseline 

pT1/pT2/pT3 or 4: Sequential = 79(44%)/86(48%)/15(8%), 

Exemestane = 91(47%)/97(50%)/7(4%). Nodal status -/+: 

Sequential = 59(33%)/122(67%), Exemestane = 

61(31%)/136(69%) 

Cointerventions HRT use Not stated 

 
Chemotherapy? 

No/Yes: Sequential = 199(66%)/62(34%), Exemestane = 

142(72%)/55(28%) 

 
Targeted therapy? Not stated 

 
Radiotherapy? 

No/Yes: Sequential = 69(38%)/112(62%), Exemestane = 

70(36%)/126(64%) 

 

Neoadjuvant endocrine 

therapy? 
Not stated 

Timing 

Time between baseline 

mammogram and 

diagnosis 

(Baseline mammograms were preoperative) 

 

Time between diagnosis 

and start of endocrine 

therapy (or study entry)  

Not stated 

 
Time between start of T1 (range 6–18 months), T2 (range 18–30 months), and T3 
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endocrine therapy (or 

study entry) and the 

follow-up mammogram  

(range 30–42 months) 

 

Time between baseline 

mammogram and start of 

endocrine therapy (or 

study entry)  

Not stated 

 

Time between baseline 

mammogram and the 

follow-up mammogram  

Not stated 

Biomarker 
Film (digitised for density 

or not)/FFDM 
Film (FFDM excluded) 

 

Pre-processing for quality 

control of mammographic 

density? 

Not stated 

 
Density measure(s) 

Percentage (ii) visual assessment by  three experienced 

radiologists in 20% bands (Boyd categories), contralateral CC 

Results (add 

new rows each 

subgroup and 

endpoint 

combo) 

Subgroup Both treatment arms combined 

 
Endpoint 

Recurrence and Incidence of a secondary primary breast cancer 

(e.g. in the contralateral breast) combined (all of the study 

endpoints were included as the outcome: loco-regional 

recurrence, distance recurrence or contralateral breast cancer) 

 
Measure "Change in breast density" 

 
n total in analysis 

378 (Table IB: "Included in the current analysis" left-hand 

column is the column to use) 

 
n events / cases in analysis 

Loco-regional recurrence cases (4 in the sequential arm, 5 in the 

exemestane arm), distance recurrence cases (28 in the sequential 

arm, 20 in the exemestane arm), and contralateral breast cancer 

cases (4 in the sequential arm, 3 in the exemestane arm) 

 
Data Not stated 

 
Adjustment Not stated 

 
Point estimate 

“No association between change in breast density and the 

occurrence of an event” 

 
SD - 

 
SE - 

 
95% CI Not stated 

 
 p-value Not stated 

 

Comment on statistical 

method 
Cox regression? 

 
Other No analysis of change in density reported. 

Source of 

funding, 

conflicts 

Funding Pfizer, unrestricted research grant. 

 
Conflict of interest The authors report no conflicts of interest. 
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B.VII Risk of bias tables 

B.VII.i Risk of bias table - Cuzick 2011 

Biases 
Issues to consider for judging 

overall rating of risk of bias 
Study Methods & Comments 

Rating of 

reporting 
(adequacy 

of 

reporting: 

"yes", 

"partial", 
"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 

"Moderate", 

or "Low") 

Instructions to 

assess the risk 

of each 

potential bias 

These issues will guide your 

thinking and judgement about the 

overall risk of bias within each of 

the six domains. These issues are 

taken together to inform the overall 
judgement of potential bias for 

each of the six domains 

      

1. Study 

participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 

between density reductions and 

outcome is different for 

participants and eligible non-
participants) 

      

Source of 

target 

population 

The source population or 

population of interest is adequately 

described for: a) treatment: (i) 

proportion with DCIS, (ii) 
cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 

(stage, % regional spread); b) 

prevention: (i) level of risk in 
population, including whether 

some or all are BRCA1/2 mutation 

carriers, (ii) prior hormone 

replacement therapy use, (iii) 

cointerventions such as diet or 
exercise regimens, or both 

The source population is 

described, based on entry 

criteria to the IBIS-I trial. 

“To be eligible for IBIS-I, a 

woman had to be between 35 
and 70 years old and have at 

least twice the average risk of 

a 50-year-old woman of 

developing breast cancer 

(14). Typically, therefore, an 
IBIS-I participant would 

have either a history of 

benign proliferative breast 

disease or a strong family 

history of breast cancer (i.e., 
a mother or sister who 

developed breast cancer 

before age 50 years). The 

absolute observed 10-year 

risk of developing breast 
cancer in the placebo arm of 

the main study was 6.4% 

(15).”, although no mention 

of BRCA 1/2 mutation 

carriers. Prior hormone 
therapy use is included.  

There were no 

cointerventions in the trial. 

Yes   

Method used to 

identify 

population 

The sampling frame and 

recruitment are adequately 

described, including methods to 

identify the sample sufficient to 
limit potential bias 

The sampling frame is well 

described. “To minimize the 

administrative workload, 

control subjects were 
selected only from the major 

participating UK centers in 

Aberdeen, Bristol, Cardiff, 

Edinburgh, London, 

Manchester, Nottingham, and 
Southampton. We identified 

1064 potential control 

subjects (women who had 

completed 5 years of 

treatment with full 
compliance and had not 

Yes   
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developed breast cancer) and 

requested the mammograms 

for these women. A total of 

942 complete sets of 

mammograms (baseline and 
first follow-up) were 

recovered. The missing 

mammograms had either 

been lost or destroyed in 

accordance with the local 
archiving policy”. UK and 

Finnish cases. 

Recruitment 

period 

Period of recruitment is adequately 

described 

Well described (see data 

capture form). 
Yes   

Place of 

recruitment 

Place of recruitment (setting and 

geographic location) are 

adequately described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 

criteria 

Inclusion and exclusion criteria are 

adequately described 

Well described e.g. three 

cases who were diagnosed 

within the first 12 months of 
treatment were excluded 

from the analysis: “Three of 

these women had been 

diagnosed within the first 12 

months on study and were 
excluded from the analysis”. 

Yes   

Adequate study 

participation 

There is adequate participation in 

the study by eligible individuals 

942 of 1064 controls; 126 of 
224 cases from the centres. 

Films were obtainable for 

55% of the IBIS-I cases from 

the UK and Finland. No data 
to compare included and 

excluded samples, but 

reported that this was 

examined. “The control 

subjects who were selected 
for this case–control study 

did not differ with respect to 

demographic factors from the 

IBIS-I control subjects who 

were not selected (data not 
shown)” and “These women 

did not differ from the IBIS-I 

case subjects who were not 

selected for this case–control 

study with respect to 
demographic factors or tumor 

characteristics (data not 

shown)”. 

Yes   

Baseline 
characteristics 

The baseline study sample (i.e. 

individuals entering the study) is 

adequately described for (treatment 

and prevention) age, menopausal 
status, cointerventions; (treatment) 

% DCIS, disease severity; 

(prevention) breast cancer risk, 

prior hormone replacement therapy 

use 

Well described (see data 
capture form). 

Yes   

Summary study 

participation 

The study sample represents the 

population of interest on key 
characteristics, sufficient to limit 

potential bias of the observed 

relationship between density 

change and outcome 

    Low 

          

2. Study 

attrition 

Goal: to judge the risk of attrition 

bias (likelihood that relationship 

between density reductions and 
outcome are different for 
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completing and non-completing 

participants) 

Proportion of 

baseline sample 

available for 
analysis 

Response rate (i.e. proportion of 

study sample allocated treatment 

who received treatment) is 
adequate 

All controls complied over 

the full 5yr follow-up period 

and were not censored due to 

loss to follow-up: “women 

who had completed 5 years 
of treatment with full 

compliance and had not 

developed breast cancer”.  

Yes   

Attempts to 

collect 

information on 
participants 

who dropped 

out 

Attempts to collect information on 
participants who dropped out of 

the study are described 

Not described, but 

withdrawals only reported 

n=44 Australian women in 
Cuzick 2015; Lancet 

Oncology; 16(1): 67-75 (and 

not included in density sub-

study). 

Partial   

Reasons and 

potential 
impact of 

subjects lost to 

follow-up 

Reasons for loss to follow-up are 

provided 

Not described, but 

withdrawals only reported 

n=44 Australian women in 
Cuzick 2015; Lancet 

Oncology; 16(1): 67-75 (and 

not included in density sub-

study). 

Partial   

Outcome and 

prognostic 

factor 

information on 

those lost to 
follow-up 

Participants lost to follow-up are 

adequately described for age at 

entry and cointerventions (if any), 
and for a) treatment: (i) DCIS, (ii) 

disease severity; b) prevention: (i) 

risk of breast cancer including 

BRCA1/2 carriers and testing. 
Whether loss to follow-up or 

inability to retrieve mammograms, 

or both, was likely related to the 

study outcome 

NA Yes   

Study attrition 

summary 

There are no important differences 

between these characteristics in 

participants who completed the 
study and those who did not. Loss 

to follow-up (from baseline sample 

to study population analysed) is 

not associated with key 

characteristics (i.e. the study data 
adequately represent the sample) 

sufficient to limit potential bias to 

the observed relationship between 

density change and outcome 

    Low 

          

3. Prognostic 
factor 

measurement 

Goal: to judge the risk of 

measurement bias related to how 

mammographic density was 
measured (differential 

measurement of mammographic 

density related to the level of 

outcome) 

      

Definition of 

the prognostic 
factor 

A clear definition or description of 

mammographic density is provided 

(e.g. including the method of 

measurement, if subjective then 
who undertook it, if treatment then 

whether contralateral breast 

assessed) 

Clear description provided: 

“visually estimated the 

proportion of the total breast 
area that 

was composed of dense 

tissue (to the nearest 5%)”, 

expert radiologist: 

“Mammographic density was 
assessed visually by one 

radiologist (R. M. L. 

Warren)”, contralateral 

breast: “The assessment of 

mammographic density for 
both case subjects and 

Yes   
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control subjects was based on 

a composite assessment of 

both the left and right 

mediolateral-oblique views, 

except for the 13 case 
subjects who were diagnosed 

at the first follow-up 

mammogram; those 

assessments were made using 

only the film for the 
contralateral breast”. 

Valid and 
reliable 

measurement 

of prognostic 

factor 

Method of mammographic density 

change measurement is adequately 

valid and reliable to limit 
misclassification bias (e.g. may 

include relevant outside sources of 

information on measurement 

properties; also characteristics, 

such as measurement blinded to 
case status) 

High inter and intra-reader 
correlation: “correlation 

between the original and 

repeat mammographic breast 

density assessment readings 

was very high: the Pearson 
correlation coefficient for the 

baseline mammograms was 

0.98 (95% CI = 0.96 to 0.99), 

for the follow-up 

mammograms was 0.97 (95% 
CI = 0.97 to 0.99), and for 

the density change over 12–

18 months was 0.78 (95% CI 

= 0.63 to 0.87)” and 

“correlation between the 
original mammographic 

breast density assessment by 

R.M. L. Warren and the 

subsequent mammographic 
breast density assessments by 

the other four readers was 

also very high for the 

baseline mammograms (r 

ranged from 0.86 to 0.90) 
and for the follow-up 

mammograms (r ranged from 

0.87 to 0.91) but was only 

moderate for breast density 

change over 12–18 months (r 
ranged from 0.48 to 0.67)”, 

blinded: “original reader was 

blinded with regard to 

treatment allocation 

(tamoxifen or placebo) but 
not with regard to case–

control status. However, the 

fully blinded rereading of the 

original films for 40 control 

subjects and eight case 
subjects indicated high 

reproducibility of the original 

breast density assessment”. 

Partial   

  

Continuous variables are reported 

or appropriate cut-points (i.e. not 

data-dependent (except for 

percentiles)) are used 

“The 10% cut point was 

chosen because it was the 

minimum change that could 

be reproducibly detected”. 

Partial   

Method and 

setting of 

prognostic 

factor 

measurement 

The method and setting of 

measurement of mammographic 
density is the same for all study 

participants. The same 

mammogram type (film/digital) is 

used for both baseline and follow-

up. The time at which baseline and 
follow-up mammograms have low 

variability between participants 

Method and setting same 

(“Mammographic density 
was assessed visually by one 

radiologist (R. M. L. 

Warren)”), same 

mammogram type (film). 

Median (IQR) baseline to 
follow-up=19 (18-23) 

months. 

Yes   

Proportion of 

data on 

Adequate proportion of the study 

sample has complete data for the 

All have complete data by 

definition of study design. 
Yes   
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prognostic 

factor available 

for analysis 

change in mammographic density 

variable 

Method used 

for missing 

data 

Appropriate methods of imputation 

are used for missing 

mammographic density data 

NA Yes   

Summary 

Prognostic factor is adequately 

measured in study participants to 
sufficiently limit potential bias 

    Moderate 

          

4. Outcome 

measurement 

Goal: to judge the risk of bias 

related to the measurement of 
outcome (differential measurement 

of outcome related to the density 

reductions) 

      

Definition of 
the outcome 

A clear definition of outcome is 

provided, including duration of 
follow-up and level and extent of 

the outcome construct 

Clear definition, outcome is 

breast cancer diagnosis: “to 

examine associations 
between change in 

mammographic density and 

the risk of breast cancer”. 

Yes   

Valid and 

reliable 

measurement 

of outcome 

The method of outcome 

measurement used is adequately 

valid and reliable to limit 

misclassification bias 

From IBIS-I trial database. Yes   

Method and 

setting of 
outcome 

measurement 

The method and setting of outcome 

measurement is the same for all 
study participants, including by 

age and obesity groups 

Yes. Yes   

Outcome 

measurement 

summary 

Outcome of interest is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Low 

          

5. Study 
confounding 

Goal: to judge the risk of bias due 

to confounding (i.e. the effect of 

density reductions is distorted by 
another factor that is related to 

density reductions and the 

outcome) 

      

Important 

confounders 

measured 

Age, BMI, or another measure of 

adiposity are measured 
Age and BMI measured. Yes   

Definition of 

the 

confounding 
factor 

Clear definitions are provided 

“Age […] at entry to IBIS-I, 

body mass index (as a 
continuous variable)”. 

Yes   

Valid and 

reliable 

measurement 

of confounders 

Measurement of all important 

confounders is adequately valid 

and reliable 

Measurement is adequately 

valid. 
Yes   

Method and 

setting of 

confounding 
measurement 

The method and setting of 

confounding measurement are the 

same for all study participants 

Yes. Yes   

Method used 
for missing 

data 

Appropriate methods are used if 
imputation is used for missing 

confounder data 

1065 women, 1049 in main 
result (16 missing BMI) so 

no imputation used. 

Yes   

Appropriate 

accounting for 

confounding 

The primary analysis will be 

adjusted for at least age, either 

through the study design and 

analysis, or through adjustment in 
the analysis only; and other 

prognostic factors 

Yes, although no adjustment 

for change in BMI. 
Yes   

Study 

confounding 

summary 

Important potential confounders 

are appropriately accounted for, 

limiting potential bias with respect 

to the relationship between 

prognostic factor and outcome 

    Low 
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6. Statistical 
analysis and 

reporting 

Goal: to judge the risk of bias 
related to the statistical analysis 

and presentation of results 

      

Presentation of 

analytical 

strategy, model 

development 
strategy 

There is sufficient presentation of 

data to assess the adequacy of the 

analysis 

Yes. Yes   

Model 

development 

strategy 

The strategy for model building 

(i.e. inclusion of variables in the 

statistical model) is appropriate 

and is based on a conceptual 

framework or model 

Conceptual framework – 
adjusted density change 

analysis for other prognostic 

factors or those associated 

with density. Does not appear 

to be variable selection. 

Yes   

Reporting of 
results 

The selected statistical model is 

adequate for the design of the 
study. There is no selective 

reporting of results 

Yes, adequate. However, an 

interaction test between 
density change and treatment 

arm was not reported. 

Partial   

Statistical 

analysis and 

presentation 

summary 

The statistical analysis is 

appropriate for the design of the 

study, limiting potential for 

presentation of invalid or spurious 
results 

    Low 
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B.VII.ii Risk of bias table - Kim 2012 

Biases 
Issues to consider for judging 
overall rating of risk of bias 

Study Methods & 
Comments 

Rating of 

reporting 

(adequacy 

of 

reporting: 
"yes", 

"partial", 

"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 
"Moderate", 

or "Low") 

Instructions to 
assess the risk 

of each 

potential bias 

These issues will guide your 

thinking and judgement about the 
overall risk of bias within each of 

the six domains. These issues are 

taken together to inform the overall 

judgement of potential bias for 

each of the six domains 

      

1. Study 

participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 
between density reductions and 

outcome is different for 

participants and eligible non-

participants) 

      

Source of 
target 

population 

The source population or 

population of interest is adequately 

described for: a) treatment: (i) 
proportion with DCIS, (ii) 

cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 
(stage, % regional spread); b) 

prevention: (i) level of risk in 

population, including whether 

some or all are BRCA1/2 mutation 

carriers, (ii) prior hormone 
replacement therapy use, (iii) 

cointerventions such as diet or 

exercise regimens, or both 

Source population is not 
described, only analysis 

population. 

No   

Method used to 

identify 
population 

The sampling frame and 

recruitment are adequately 

described, including methods to 
identify the sample sufficient to 

limit potential bias 

Well described: "1,542 ER-

positive breast cancer 

patients who underwent 

curative surgery at Seoul 
National University 

Hospital between October 

2003 and December 2006". 

Yes   

Recruitment 

period 

Period of recruitment is adequately 

described 

Well described (see data 

capture form). 
Yes   

Place of 

recruitment 

Place of recruitment (setting and 

geographic location) are adequately 

described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 

criteria 

Inclusion and exclusion criteria are 

adequately described 

Adequately described: 

"Patients were excluded if: 
1) they did not receive 

adjuvant endocrine 

treatment, such as 

tamoxifen or an aromatase 

inhibitor, or were treated 
for less than 2 years; 2) 

their digital mammogram 

images were not available; 

3) they had bilateral breast 

cancer, or 4) distant 
metastasis was observed 

before the start of 

endocrine therapy", but no 

information on number of 

exclusions based on each 
exclusion criteria. 

Partial   



 

329 
 

Adequate study 

participation 

There is adequate participation in 

the study by eligible individuals 

1065 of 1542 women 

included. No information 

on participation based on 

consent. No information on 

eligible participants vs. 
those not eligible (in source 

population or in 1542 

women). 

Partial   

Baseline 

characteristics 

The baseline study sample (i.e. 

individuals entering the study) is 

adequately described for (treatment 

and prevention) age, menopausal 
status, cointerventions; (treatment) 

% DCIS, disease severity; 

(prevention) breast cancer risk, 

prior hormone replacement therapy 

use 

Well described (see data 

capture form). 
Yes   

Summary study 

participation 

The study sample represents the 
population of interest on key 

characteristics, sufficient to limit 

potential bias of the observed 

relationship between density 

change and outcome 

    Moderate 

          

2. Study 
attrition 

Goal: to judge the risk of attrition 

bias (likelihood that relationship 

between density reductions and 
outcome are different for 

completing and non-completing 

participants) 

      

Proportion of 

baseline sample 
available for 

analysis 

Response rate (i.e. proportion of 

study sample allocated treatment 
who received treatment) is 

adequate 

Only included patients with 

at least 2yr of endocrine 

treatment but discrepancy 
since "mean duration of 

overall endocrine therapy 

was 5.1 years (range, 0.9 to 

7.9 years)". 

Partial   

Attempts to 

collect 

information on 
participants 

who dropped 

out 

Attempts to collect information on 
participants who dropped out of the 

study are described 

No information found on 
drop out or reasons for 

censoring. 

No   

Reasons and 

potential 

impact of 
subjects lost to 

follow-up 

Reasons for loss to follow-up are 

provided 

No information found on 

loss to follow-up or reasons 
for censoring. 

No   

Outcome and 

prognostic 

factor 
information on 

those lost to 

follow-up 

Participants lost to follow-up are 

adequately described for age at 

entry and cointerventions (if any), 

and for a) treatment: (i) DCIS, (ii) 

disease severity; b) prevention: (i) 
risk of breast cancer including 

BRCA1/2 carriers and testing. 

Whether loss to follow-up or 

inability to retrieve mammograms, 

or both, was likely related to the 
study outcome 

No information found on 
loss to follow-up or reasons 

for censoring. 

No   

Study attrition 

summary 

There are no important differences 
between these characteristics in 

participants who completed the 

study and those who did not. Loss 

to follow-up (from baseline sample 

to study population analysed) is not 
associated with key characteristics 

(i.e. the study data adequately 

represent the sample) sufficient to 

limit potential bias to the observed 

    Moderate 
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relationship between density 

change and outcome 

          

3. Prognostic 

factor 

measurement 

Goal: to judge the risk of 

measurement bias related to how 

mammographic density was 

measured (differential 

measurement of mammographic 
density related to the level of 

outcome) 

      

Definition of 

the prognostic 

factor 

A clear definition or description of 

mammographic density is provided 

(e.g. including the method of 

measurement, if subjective then 

who undertook it, if treatment then 
whether contralateral breast 

assessed) 

Clear definition: “Cumulus 

software 4.0 (University of 

Toronto, Toronto, Canada) 

by a single investigator 
(JK)”. Contralateral breast 

used. 

Yes   

Valid and 
reliable 

measurement 

of prognostic 

factor 

Method of mammographic density 

change measurement is adequately 

valid and reliable to limit 
misclassification bias (e.g. may 

include relevant outside sources of 

information on measurement 

properties; also characteristics, 

such as measurement blinded to 
case status) 

Valid and reliable method, 

with estimate of 

reproducibility - 

“Intraobserver 

reproducibility, tested for 
10% of randomly selected 

images (213/2,130), was 

0.93 (Pearson correlation 

coefficient)”. Blinded: 

“blinded to treatment 
outcome”, but no mention 

of blinding to treatment 

used. 

Partial   

  

Continuous variables are reported 

or appropriate cut-points (i.e. not 

data-dependent (except for 

percentiles)) are used 

MDR cut-points: "the 5% 

and 10% absolute reduction 

cut-offs based on previous 
findings [5]", but MDR 

also analysed as a 

continuous variable. No 

mention of why cut-points 

used for MDRR (selective 
reporting?), and why 

0/10/25% used in main text 

but 15% used in 

supplementary analysis. 

Partial   

Method and 
setting of 

prognostic 

factor 

measurement 

The method and setting of 

measurement of mammographic 

density is the same for all study 
participants. The same 

mammogram type (film/digital) is 

used for both baseline and follow-

up. The time at which baseline and 

follow-up mammograms have low 
variability between participants 

Method and setting are the 

same. "All evaluated 

images were digital 
mammograms performed at 

our institution" and read by 

a single investigator. No 

mention of time between 

baseline and follow-up 
mammogram. 

Partial   

Proportion of 

data on 

prognostic 

factor available 

for analysis 

Adequate proportion of the study 

sample has complete data for the 

change in mammographic density 

variable 

All have complete data by 

definition of study design. 
Yes   

Method used 

for missing 
data 

Appropriate methods of imputation 

are used for missing 
mammographic density data 

NA Yes   

Summary 
Prognostic factor is adequately 
measured in study participants to 

sufficiently limit potential bias 

    Moderate 

          

4. Outcome 

measurement 

Goal: to judge the risk of bias 

related to the measurement of 

outcome (differential measurement 

of outcome related to the density 

reductions) 

      

Definition of A clear definition of outcome is Adequate definition "All Partial   
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the outcome provided, including duration of 

follow-up and level and extent of 

the outcome construct 

loco-regional or distant 

disease recurrences were 

regarded as recurrence 

events in recurrence-free 

survival analysis", but no 
information on start of 

follow-up or reasons for 

censoring. Duration of 

follow-up given (although 

discrepancy between 
abstract and text, see data 

capture form). 

Valid and 

reliable 

measurement 

of outcome 

The method of outcome 

measurement used is adequately 

valid and reliable to limit 

misclassification bias 

"Clinical and pathologic 

information on the 1,065 

subjects was obtained from 

the database". Single 

institution. 

Yes   

Method and 
setting of 

outcome 

measurement 

The method and setting of outcome 
measurement is the same for all 

study participants, including by age 

and obesity groups 

Yes. Yes   

Outcome 

measurement 

summary 

Outcome of interest is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Moderate 

          

5. Study 
confounding 

Goal: to judge the risk of bias due 

to confounding (i.e. the effect of 

density reductions is distorted by 
another factor that is related to 

density reductions and the 

outcome) 

      

Important 

confounders 

measured 

Age, BMI, or another measure of 

adiposity are measured 

Age measured but not 

BMI. 
Partial   

Definition of 

the 
confounding 

factor 

Clear definitions are provided 

Timing of age not fully 

described - is age at 
diagnosis, start of 

treatment, baseline or 

follow-up mammogram? 

No   

Valid and 

reliable 

measurement 

of confounders 

Measurement of all important 

confounders is adequately valid 

and reliable 

From institution’s 

prospectively maintained 

web based database? 

Yes   

Method and 

setting of 
confounding 

measurement 

The method and setting of 
confounding measurement are the 

same for all study participants 

From institution’s 
prospectively maintained 

web based database? 

Yes   

Method used 

for missing 

data 

Appropriate methods are used if 

imputation is used for missing 

confounder data 

No mention of missing data 

or imputation. Age appears 

to be non-missing (Table 

1). 

Partial   

Appropriate 

accounting for 

confounding 

The primary analysis will be 
adjusted for at least age, either 

through the study design and 

analysis, or through adjustment in 

the analysis only; and other 

prognostic factors 

Unclear which analyses 

were adjusted for age. For 
example, supplementary 

table 4: Size, LN, Ki67 

included (Fwd stepwise 

selection), but in text: 

"adjusted for age and 
preMD by forward 

selection stepwise 

analysis". Unclear of 

adjustments (if any) when 

analysis separated by 
tamoxifen and AIs: "When 

adjusted by age and ET 

regimen the findings were 

consistent, showing low 

MDR as a significant risk 
factor for recurrence in 

Partial   
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patients who had 

undergone chemotherapy 

(HR 1.70, 95% CI 1.04 to 

2.77, P = 0.033)", but only 

mentioned for 
chemotherapy. No 

adjustment for BMI or 

change in BMI. 

Study 

confounding 

summary 

Important potential confounders are 

appropriately accounted for, 

limiting potential bias with respect 

to the relationship between 
prognostic factor and outcome 

    High 

          

6. Statistical 
analysis and 

reporting 

Goal: to judge the risk of bias 
related to the statistical analysis 

and presentation of results 

      

Presentation of 

analytical 

strategy, model 

development 
strategy 

There is sufficient presentation of 

data to assess the adequacy of the 

analysis 

Details of methods not 

reported e.g. start of 

follow-up and censoring, 

women with <2yr treatment 

excluded but minimum 
duration of treatment 

reported is 0.9yr, errors in 

tables (e.g. no number of 

women on AIs in Table 1), 

mismatching information 
between text and figures 

e.g. adjustments used. 

Description of women in 

endocrine treatment 
subgroups and number of 

women in subgroups not 

reported (unclear if 

subgroups are tamoxifen 

only, AI only or women 
who switched), therefore 

we can't separate out 

treatments - some women 

might have had cross-over 

of treatments between 
mammograms hence 

affecting density change. 

No   

Model 

development 

strategy 

The strategy for model building 
(i.e. inclusion of variables in the 

statistical model) is appropriate and 

is based on a conceptual framework 

or model 

Partially: "factors with P < 

0.05 were considered 

statistically significant", 

but unclear which 

confounders were initially 
considered for stepwise 

regression and which (if 

any were used for the 

endocrine therapy 

subgroups relevant for this 
review). Adjusting factors 

included in some models 

and not others with no 

consistency. 

Partial   

Reporting of 

results 

The selected statistical model is 

adequate for the design of the 

study. There is no selective 

reporting of results 

Cox model appropriate but 

delayed-entry perhaps 

better (taking into account 
time between 

mammograms where 

women would not be at-

risk). Unsure of follow-up 

and results in subgroups 
relevant for this review. 

Some selective reporting of 

results – no consistency 

with adjustments. 

No   



 

333 
 

Statistical 

analysis and 

presentation 

summary 

The statistical analysis is 

appropriate for the design of the 

study, limiting potential for 

presentation of invalid or spurious 

results 

    High 
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B.VII.iii Risk of bias table - Knight 2018 

Biases 
Issues to consider for judging 
overall rating of risk of bias 

Study Methods & 
Comments 

Rating of 

reporting 

(adequacy 

of 

reporting: 
"yes", 

"partial", 

"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 
"Moderate", 

or "Low") 

Instructions to 
assess the risk 

of each 

potential bias 

These issues will guide your 

thinking and judgement about the 
overall risk of bias within each of 

the six domains. These issues are 

taken together to inform the overall 

judgement of potential bias for 

each of the six domains 

      

1. Study 

participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 
between density reductions and 

outcome is different for 

participants and eligible non-

participants) 

      

Source of 
target 

population 

The source population or 

population of interest is adequately 

described for: a) treatment: (i) 
proportion with DCIS, (ii) 

cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 
(stage, % regional spread); b) 

prevention: (i) level of risk in 

population, including whether 

some or all are BRCA1/2 mutation 

carriers, (ii) prior hormone 
replacement therapy use, (iii) 

cointerventions such as diet or 

exercise regimens, or both 

Source population is not 

described, only analysis 

population, but information 
on WECARE can be found 

elsewhere e.g. Memorial 

Sloan Kettering website. 

Partial   

Method used to 
identify 

population 

The sampling frame and 

recruitment are adequately 
described, including methods to 

identify the sample sufficient to 

limit potential bias 

Well described: "Each 

study center identified 

eligible women through 

one or more population-
based cancer registries". 

"WECARE study 

participants were diagnosed 

prior to age 55 years, 

between 1990 and 2008, 
with a first primary local or 

regional-stage invasive 

breast cancer. Cases were 

also diagnosed with a 

second primary invasive 
CBC at least 2 years later 

with no intervening cancer 

diagnosis, other than a non-

melanoma skin cancer or 

cervical carcinoma in situ". 
Matched "UBC controls 

had no history of 

subsequent cancer 

diagnosis except for 

nonmelanoma skin cancer 
or cervical carcinoma in 

situ up to their reference 

date". UBC "controls must 

not have undergone 

prophylactic mastectomy of 
the contralateral breast. All 

Yes   
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women had to be alive at 

the time of contact for 

interview". 

Recruitment 

period 

Period of recruitment is adequately 

described 

Well described (see data 

capture form). 
Yes   

Place of 

recruitment 

Place of recruitment (setting and 

geographic location) are adequately 

described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 

criteria 

Inclusion and exclusion criteria are 

adequately described 

Well described: "excluded 

the few mammograms that 
were digital from the 

analysis (5 CBC cases and 

6 UBC controls prior to/at 

first diagnosis, 39 CBC 

cases and 41 UBC controls 
post diagnosis)", "excluded 

a small number of films in 

which MD could not be 

read because of poor image 

quality (4 CBC cases and 4 
UBC controls prior to/at 

first diagnosis, 11 CBC 

cases and 6 UBC controls 

post diagnosis)", "excluded 

mammograms taken more 
than 36 months prior to or 

48 months following first 

diagnosis", excluded 6% of 

CBC cases and 7% of UBC 

controls with a density 
change of 10% or more 

(unsure why), and excluded 

women with missing 

menopausal status 

information in the density 
change analysis. 

Yes   

Adequate study 

participation 

There is adequate participation in 

the study by eligible individuals 

The uptake rate is not 

reported. This is a 

retrospective design, so 

requires individuals to still 

be alive at time of 
recruitment. This may lead 

to some selection bias – 

those who died before this 

date would not be included, 

particularly those 
diagnosed at the start of the 

period. Could bias against 

density change. “Women in 

whom we could not obtain 

a mammogram in an 
appropriate time window 

(see below) were more 

likely to have an earlier 

year of first breast cancer 

diagnosis (65% diagnosed 
in 1990–1996 vs. 40% in 

1990–1996) and to be 

missing ER status (14% vs. 

6%), and were slightly 

younger (mean age 45 
years vs. mean age 46 

years). Both groups had 

similar distributions of 

histologic type (10% and 

13% lobular), stage (68% 
and 66% local), and, after 

excluding those with 

missing status, ER status 

Yes   
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(65% and 68% positive). 

There were also no 

differences in first-degree 

family history (27% and 

28%)”. However, women 
with mammograms outside 

final selected timeframe 

had similar risks as those 

with mammograms inside 

timeframe (supplementary 
tables). 

Baseline 

characteristics 

The baseline study sample (i.e. 
individuals entering the study) is 

adequately described for (treatment 

and prevention) age, menopausal 

status, cointerventions; (treatment) 

% DCIS, disease severity; 
(prevention) breast cancer risk, 

prior hormone replacement therapy 

use 

These are given, but not for 

sample where density 

change analysed. 

Partial   

Summary study 
participation 

The study sample represents the 

population of interest on key 

characteristics, sufficient to limit 
potential bias of the observed 

relationship between density 

change and outcome 

    Moderate 

          

2. Study 

attrition 

Goal: to judge the risk of attrition 

bias (likelihood that relationship 

between density reductions and 

outcome are different for 
completing and non-completing 

participants) 

      

Proportion of 

baseline sample 

available for 

analysis 

Response rate (i.e. proportion of 

study sample allocated treatment 

who received treatment) is 

adequate 

No information found on 

response rate (i.e. 

compliance). 

No   

Attempts to 

collect 

information on 
participants 

who dropped 

out 

Attempts to collect information on 
participants who dropped out of the 

study are described 

No information found on 
drop out. Registry linkage – 

no drop out?  

No   

Reasons and 

potential 

impact of 

subjects lost to 

follow-up 

Reasons for loss to follow-up are 

provided 

Retrospective study, no 

information on loss to 

follow-up (does not include 
women who died and could 

not consent / provide 

questionnaire e.g. "women 

in whom we could not 

obtain a mammogram in an 
appropriate time window 

(see below) were more 

likely to have an earlier 

year of first breast cancer 

diagnosis (65% diagnosed 
in 1990–1996 vs. 40% in 

1990–1996)" - survival bias 

whereby women included 

more likely to have 

survived at time of 
interview than wider 

cohort, we don't know 

about women who died 

before the study). 

No   

Outcome and 

prognostic 

factor 
information on 

Participants lost to follow-up are 

adequately described for age at 

entry and cointerventions (if any), 
and for a) treatment: (i) DCIS, (ii) 

No information. No   



 

337 
 

those lost to 

follow-up 

disease severity; b) prevention: (i) 

risk of breast cancer including 

BRCA1/2 carriers and testing. 

Whether loss to follow-up or 

inability to retrieve mammograms, 
or both, was likely related to the 

study outcome 

Study attrition 

summary 

There are no important differences 

between these characteristics in 

participants who completed the 

study and those who did not. Loss 

to follow-up (from baseline sample 
to study population analysed) is not 

associated with key characteristics 

(i.e. the study data adequately 

represent the sample) sufficient to 

limit potential bias to the observed 
relationship between density 

change and outcome 

    High 

          

3. Prognostic 

factor 

measurement 

Goal: to judge the risk of 

measurement bias related to how 

mammographic density was 

measured (differential 

measurement of mammographic 
density related to the level of 

outcome) 

      

Definition of 

the prognostic 
factor 

A clear definition or description of 

mammographic density is provided 

(e.g. including the method of 

measurement, if subjective then 
who undertook it, if treatment then 

whether contralateral breast 

assessed) 

Clear definition: "MD 

measurements were all 

done in Toronto by one 

experienced reader (KB) 
using Cumulus". 

Contralateral breast used. 

Yes   

Valid and 

reliable 

measurement 

of prognostic 
factor 

Method of mammographic density 
change measurement is adequately 

valid and reliable to limit 

misclassification bias (e.g. may 

include relevant outside sources of 

information on measurement 
properties; also characteristics, 

such as measurement blinded to 

case status) 

Valid and reliable method, 

with estimate of 

reproducibility - "We 

randomly selected 10% of 
each batch for repeat 

readings within and 

between batches. The 

Pearson correlation was 

0.94 for both intra- and 
inter batch repeats". 

Blinded: "the reader was 

blinded to case control 

status and time sequence of 

the mammogram", but not 
reported if blinded to 

treatment. 

Yes   

  

Continuous variables are reported 

or appropriate cut-points (i.e. not 

data-dependent (except for 

percentiles)) are used 

10% percentage change 

cut-point used, not justified 

in text. But noted to be 

used in other prior studies 

(particularly Sandbery et al, 
their ref [12]). 

Partial   

Method and 
setting of 

prognostic 

factor 

measurement 

The method and setting of 

measurement of mammographic 

density is the same for all study 
participants. The same 

mammogram type (film/digital) is 

used for both baseline and follow-

up. The time at which baseline and 

follow-up mammograms have low 
variability between participants 

Method and setting are the 

same (KB read all 

mammograms), 

"Mammograms were read 

in batches with both 
mammograms from the 

same woman read in the 

same batch. Mammogram 

order within each batch 

was randomized prior to 
reading" and "The film 

mammograms were 

digitized at two locations, 

Yes   
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Seattle (all US 

mammograms) and 

Toronto (Ontario 

mammograms), both using 

a Kodak Lumisys Digital 
Scanner". Median baseline 

to follow-up=1yr. 

Proportion of 
data on 

prognostic 

factor available 

for analysis 

Adequate proportion of the study 
sample has complete data for the 

change in mammographic density 

variable 

812 CBC and 812 UBC 

recruited from WECARE II 

and at least one 

mammogram obtained 

from 464 CBC and 500 
UBC (potential for bias if 

ended up with fewer CBC 

than UBC, so not having 

mammogram available a 

risk factor for CBC?). 
224/362 CBC and 243/403 

UBC with mammograms at 

both time points but 210 

CBC and 225 UBC used in 

the density change analysis 
(reason for difference not 

given explicitly, but could 

be digital mammogram or 

quality of image or other 

exclusions broadly 
discussed or missing 

adjusting factors). 

Partial   

Method used 

for missing 

data 

Appropriate methods of imputation 

are used for missing 

mammographic density data 

Complete case analysis. Yes   

Summary 

Prognostic factor is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Moderate 

          

4. Outcome 
measurement 

Goal: to judge the risk of bias 

related to the measurement of 
outcome (differential measurement 

of outcome related to the density 

reductions) 

      

Definition of 

the outcome 

A clear definition of outcome is 

provided, including duration of 

follow-up and level and extent of 

the outcome construct 

Clear definition: "We 

assessed whether change in 

%MD (defined as the 

difference between 
measurements of %MD 

between the two time 

points) was associated with 

CBC in the subset of 

women who had 
mammograms at both time 

points". Date of search of 

cancer registries (i.e. 

follow-up) not given. 

Partial   

Valid and 

reliable 
measurement 

of outcome 

The method of outcome 

measurement used is adequately 
valid and reliable to limit 

misclassification bias 

Yes – population registry. Yes   

Method and 

setting of 

outcome 

measurement 

The method and setting of outcome 

measurement is the same for all 

study participants, including by age 

and obesity groups 

Yes. Yes   

Outcome 

measurement 

summary 

Outcome of interest is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Low 

          

5. Study 
confounding 

Goal: to judge the risk of bias due 

to confounding (i.e. the effect of 
density reductions is distorted by 
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another factor that is related to 

density reductions and the 

outcome) 

Important 

confounders 

measured 

Age, BMI, or another measure of 

adiposity are measured 

Age, change in age, BMI, 

change in estimated BMI 

measured. 

Yes   

Definition of 

the 

confounding 

factor 

Clear definitions are provided 

Age at first diagnosis, 

change in age between 
prior to/at first diagnosis 

and post-diagnosis 

mammograms, BMI at first 

diagnosis, change in 

estimated BMI between 
prior to/at first diagnosis 

and post-diagnosis 

mammograms (BMI at 

post-diagnostic 

mammogram was 
estimated from the BMI 

reported at first breast 

cancer diagnosis and at 

reference date, using linear 

interpolation - same for 
BMI at prior to/at first 

diagnosis mammogram?) 

Yes   

Valid and 

reliable 

measurement 

of confounders 

Measurement of all important 

confounders is adequately valid 

and reliable 

Risk factors for breast 

cancer were obtained 

retrospectively by 

telephone survey - potential 

for recall bias. 

Yes   

Method and 
setting of 

confounding 

measurement 

The method and setting of 
confounding measurement are the 

same for all study participants 

Yes. Yes   

Method used 

for missing 

data 

Appropriate methods are used if 

imputation is used for missing 

confounder data 

Not explicit, but 210/224 

CBC and 225/243 UBC 

used in the density change 

analysis (could be due to 
missing adjusting factors). 

Partial   

Appropriate 

accounting for 

confounding 

The primary analysis will be 
adjusted for at least age, either 

through the study design and 

analysis, or through adjustment in 

the analysis only; and other 

prognostic factors 

Adjusted for age, change in 
age, and change in 

estimated BMI (why not 

BMI at diagnosis as well 

since between-women BMI 

also associated with risk?). 

Yes   

Study 

confounding 

summary 

Important potential confounders 
are appropriately accounted for, 

limiting potential bias with respect 

to the relationship between 

prognostic factor and outcome 

    Moderate 

          

6. Statistical 

analysis and 

reporting 

Goal: to judge the risk of bias 

related to the statistical analysis 

and presentation of results 

      

Presentation of 

analytical 

strategy, model 

development 
strategy 

There is sufficient presentation of 

data to assess the adequacy of the 

analysis 

Characteristics of a wider 

sample given in Table 1, 
but not of the sample 

analysed for density 

change. "Note that other 

types of hormonal therapies 

(e.g., aromatase inhibitors) 
were not common in this 

population", but unable to 

separate effects for this 

review. 

Partial   

Model 

development 
strategy 

The strategy for model building 

(i.e. inclusion of variables in the 

statistical model) is appropriate and 
is based on a conceptual 

Reason for choosing the 

breast cancer risk factors 

used not included. Model 
adjusted for tamoxifen 

Partial   
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framework or model treatment instead of 

assessing density change in 

only women on treatment, 

therefore model does not 

estimate this review's 
primary measure. The 

model includes women 

who did not receive 

tamoxifen (but no 

predictive analysis was 
done, instead an adjustment 

was made for tamoxifen 

use), and ER-negative 

disease (different 

prognosis, adjusted for in 
model instead of separated 

out).         

Reporting of 

results 

The selected statistical model is 
adequate for the design of the 

study. There is no selective 

reporting of results 

Model appears adequate for 

design of study, but not for 

this review's analysis. Full 

model fit not given. Focus 

of paper was on prognostic 
ability of mammographic 

density, change is a 

secondary aim. Not clear if 

this is selective reporting. 

Also not clear why 
appropriate to exclude 10% 

or more density increase. 

Partial   

Statistical 

analysis and 

presentation 

summary 

The statistical analysis is 

appropriate for the design of the 

study, limiting potential for 

presentation of invalid or spurious 
results 

    High 
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B.VII.iv Risk of bias table - Ko 2013 

Biases 
Issues to consider for judging 
overall rating of risk of bias 

Study Methods & 
Comments 

Rating of 

reporting 

(adequacy 

of 

reporting: 
"yes", 

"partial", 

"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 
"Moderate", 

or "Low") 

Instructions to 
assess the risk 

of each 

potential bias 

These issues will guide your 

thinking and judgement about the 
overall risk of bias within each of 

the six domains. These issues are 

taken together to inform the 

overall judgement of potential bias 

for each of the six domains 

      

1. Study 

participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 
between density reductions and 

outcome is different for 

participants and eligible non-

participants) 

      

Source of 
target 

population 

The source population or 

population of interest is 

adequately described for: a) 
treatment: (i) proportion with 

DCIS, (ii) cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 
(stage, % regional spread); b) 

prevention: (i) level of risk in 

population, including whether 

some or all are BRCA1/2 mutation 

carriers, (ii) prior hormone 
replacement therapy use, (iii) 

cointerventions such as diet or 

exercise regimens, or both 

Source population is not 
described, only analysis 

population. 

No   

Method used to 

identify 

population 

The sampling frame and 
recruitment are adequately 

described, including methods to 

identify the sample sufficient to 

limit potential bias 

Well described: "A total of 

2,402 ER-positive breast 

cancer patients who were 

enrolled in this study 
underwent curative surgery 

at our institution between 

January 2003 and December 

2008". 1,526/2,402 women 

who received adjuvant 
tamoxifen for at least 2 

years. 

Yes   

Recruitment 

period 

Period of recruitment is 

adequately described 

Well described (see data 

capture form). 
Yes   

Place of 

recruitment 

Place of recruitment (setting and 

geographic location) are 

adequately described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 
criteria 

Inclusion and exclusion criteria 

are adequately described 

Adequately described: 

1336/2402 women excluded 

"if their digital 
mammograms were not 

available or not appropriate 

for evaluation or if they had 

bilateral breast cancer or 

occult breast cancer" 
(n=1066), but no 

information on number of 

exclusions based on each 

exclusion criteria. Women 

not on tamoxifen should be 
included in 1336 excluded 

Partial   
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women but this is not 

detailed. 

Adequate study 

participation 

There is adequate participation in 

the study by eligible individuals 

1066 of 1526 tamoxifen-

treated patients included.  

No information on 

participation based on 

consent. No information on 
eligible participants vs. 

those not eligible (in source 

population or 1526 women). 

Partial   

Baseline 

characteristics 

The baseline study sample (i.e. 

individuals entering the study) is 

adequately described for 
(treatment and prevention) age, 

menopausal status, 

cointerventions; (treatment) % 

DCIS, disease severity; 

(prevention) breast cancer risk, 
prior hormone replacement 

therapy use 

Well described (see data 

capture form). 
Yes   

Summary study 

participation 

The study sample represents the 

population of interest on key 

characteristics, sufficient to limit 

potential bias of the observed 

relationship between density 
change and outcome 

    Moderate 

          

2. Study 

attrition 

Goal: to judge the risk of attrition 
bias (likelihood that relationship 

between density reductions and 

outcome are different for 

completing and non-completing 

participants) 

      

Proportion of 

baseline 
sample 

available for 

analysis 

Response rate (i.e. proportion of 
study sample allocated treatment 

who received treatment) is 

adequate 

Only included patients with 
at least 2yr of endocrine 

treatment. 

Yes   

Attempts to 

collect 

information on 
participants 

who dropped 

out 

Attempts to collect information on 

participants who dropped out of 
the study are described 

No information found on 

drop out or reasons for 
censoring. 

No   

Reasons and 

potential 

impact of 

subjects lost to 
follow-up 

Reasons for loss to follow-up are 

provided 

No information found on 

loss to follow-up or reasons 

for censoring. 

No   

Outcome and 

prognostic 

factor 
information on 

those lost to 

follow-up 

Participants lost to follow-up are 
adequately described for age at 

entry and cointerventions (if any), 

and for a) treatment: (i) DCIS, (ii) 

disease severity; b) prevention: (i) 

risk of breast cancer including 
BRCA1/2 carriers and testing. 

Whether loss to follow-up or 

inability to retrieve mammograms, 

or both, was likely related to the 

study outcome 

No information found on 

loss to follow-up or reasons 
for censoring. 

No   

Study attrition 

summary 

There are no important differences 
between these characteristics in 

participants who completed the 

study and those who did not. Loss 

to follow-up (from baseline 

sample to study population 
analysed) is not associated with 

key characteristics (i.e. the study 

data adequately represent the 

    Moderate 
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sample) sufficient to limit 

potential bias to the observed 

relationship between density 

change and outcome 

          

3. Prognostic 
factor 

measurement 

Goal: to judge the risk of 

measurement bias related to how 

mammographic density was 
measured (differential 

measurement of mammographic 

density related to the level of 

outcome) 

      

Definition of 

the prognostic 

factor 

A clear definition or description of 
mammographic density is 

provided (e.g. including the 

method of measurement, if 

subjective then who undertook it, 

if treatment then whether 
contralateral breast assessed) 

Method of measurement not 

completely clear: what is the 

"computerized system"? 
Also, "a single radiologist 

(K. Ko: 10 years of 

experience in interpreting 

mammograms) reviewed 

2,132 preoperative and 
postoperative mammograms 

classified breast density 

patterns according to 

BIRADS". No restriction to 

contralateral breast? E.g. 
each woman had 2 

mammograms (2132 

mammograms for 1066 

women) so perhaps both 

breasts were examined in 1 
view or one breast was 

examined in 2 views?  

No   

Valid and 

reliable 

measurement 

of prognostic 
factor 

Method of mammographic density 
change measurement is adequately 

valid and reliable to limit 

misclassification bias (e.g. may 

include relevant outside sources of 

information on measurement 
properties; also characteristics, 

such as measurement blinded to 

case status) 

No test of reliability: "We 

relied on a single radiologist 

who is a specialist in breast 

imaging studies, thereby 
eliminating interobserver 

variability. We did not seek 

to measure reproducibility 

as the BI-RADS density 

classifications are 
standardized", although BI-

RADS measures can still 

have intra-reader variability. 

Not stated if blinded to 

patient’s identity or breast 
cancer event status etc. 

No   

  

Continuous variables are reported 

or appropriate cut-points (i.e. not 

data-dependent (except for 
percentiles)) are used 

BI-RADS cut-points, 
although combining BI-

RADS 1 & 2 means that BI-

RADS 2 can no longer 

move down a category so 

losing information about 
density change (better to just 

exclude BI-RADS 1 at 

baseline as they cannot 

move down a category?). 

Partial   

Method and 
setting of 

prognostic 

factor 

measurement 

The method and setting of 

measurement of mammographic 

density is the same for all study 
participants. The same 

mammogram type (film/digital) is 

used for both baseline and follow-

up. The time at which baseline and 

follow-up mammograms have low 
variability between participants 

Method and setting are the 

same: read by a single 
radiologist, all women and 

mammograms from the 

same institution. No 

mention of time between 

baseline and follow-up 
mammogram. 

Partial   

Proportion of 

data on 

prognostic 

Adequate proportion of the study 

sample has complete data for the 

change in mammographic density 

All have complete data by 

definition of study design. 
Yes   
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factor available 

for analysis 

variable 

Method used 

for missing 

data 

Appropriate methods of 

imputation are used for missing 

mammographic density data 

NA Yes   

Summary 

Prognostic factor is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Moderate 

          

4. Outcome 
measurement 

Goal: to judge the risk of bias 

related to the measurement of 

outcome (differential 
measurement of outcome related 

to the density reductions) 

 
    

Definition of 
the outcome 

A clear definition of outcome is 

provided, including duration of 
follow-up and level and extent of 

the outcome construct 

Adequate definition: 

outcome is loco-regional or 

systemic recurrence, or 

contralateral breast cancer, 
but discrepancy with 

numbers (48+16+4=68, not 

67 as stated). "The 

association of MDR with 

disease-free survival 
according to patterns of 

recurrent disease (loco-

regional, systemic, and 

contralateral recurrence) 

was analyzed", but no 
information on start of 

follow-up or reasons for 

censoring. Duration of 

follow-up given (mean 61 

months). 

Partial   

Valid and 

reliable 

measurement 

of outcome 

The method of outcome 

measurement used is adequately 

valid and reliable to limit 

misclassification bias 

 Single institution: "we 

collected the 
clinicopathologic 

information on 1,066 

patients by reviewing the 

prospective database of our 

institution and the data of 
disease recurrence by 

additional medical record 

review". 

Yes   

Method and 

setting of 

outcome 
measurement 

The method and setting of 

outcome measurement is the same 

for all study participants, including 
by age and obesity groups 

Yes. Yes   

Outcome 
measurement 

summary 

Outcome of interest is adequately 
measured in study participants to 

sufficiently limit potential bias 

    Moderate 

          

5. Study 

confounding 

Goal: to judge the risk of bias due 

to confounding (i.e. the effect of 

density reductions is distorted by 

another factor that is related to 

density reductions and the 
outcome) 

      

Important 
confounders 

measured 

Age, BMI, or another measure of 

adiposity are measured 
Age and BMI measured. Yes   

Definition of 

the 

confounding 
factor 

Clear definitions are provided 

Body mass index (BMI) was 

calculated as weight/height2 

(kg/m2), but timing of age 

and BMI not fully described 

- are they at diagnosis, start 
of treatment, baseline or 

follow-up mammogram? 

Partial   

Valid and 

reliable 

Measurement of all important 

confounders is adequately valid 

From institution’s 

prospective database? 
Yes   
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measurement 

of confounders 

and reliable 

Method and 

setting of 

confounding 

measurement 

The method and setting of 

confounding measurement are the 

same for all study participants 

From institution’s 

prospective database? 
Yes   

Method used 

for missing 
data 

Appropriate methods are used if 

imputation is used for missing 
confounder data 

No mention of missing data 

or imputation. Age appears 
to be non-missing (Table 1: 

≤50yr vs. >50yr).  

Partial   

Appropriate 

accounting for 
confounding 

The primary analysis will be 

adjusted for at least age, either 

through the study design and 

analysis, or through adjustment in 
the analysis only; and other 

prognostic factors 

Analysis reported with 

adjustment for age and BMI, 

also other prognostic 

factors. However, no 

adjustment for 
chemotherapy although this 

was associated with 

mammographic density 

reduction. So not clear if 

tamoxifen-induced, or 
chemotherapy-induced 

differences in survival. Also 

no adjustment for breast 

density at entry, which is 

strongly associated with 
density change in the data. 

No adjustment for change in 

BMI. 

Partial   

Study 

confounding 
summary 

Important potential confounders 

are appropriately accounted for, 

limiting potential bias with respect 
to the relationship between 

prognostic factor and outcome 

    Moderate 

          

6. Statistical 
analysis and 

reporting 

Goal: to judge the risk of bias 
related to the statistical analysis 

and presentation of results 

      

Presentation of 

analytical 

strategy, model 

development 
strategy 

There is sufficient presentation of 

data to assess the adequacy of the 

analysis 

Details of methods not 

reported e.g. start of follow-

up and censoring, errors e.g. 

total number of events do 
not add up, unclear 

adjustments e.g. results from 

Fig 3 don't match table 6 

(are these unadjusted?), title 

says premenopausal women 
but age range 25-78 and 

subgroup analysis of 

≤50yr/>50yr used as a proxy 

for menopausal status and 

postmenopausal women 
mentioned in results. "Our 

institution’s guidelines 

recommend aromatase 

inhibitors as the first choice 

endocrine therapy for ER-
positive postmenopausal 

breast cancer patients" - 

does this mean the 

postmenopausal women 

could have been on AIs 
before their tamoxifen 

treatment?  

No   

Model 

development 

strategy 

The strategy for model building 

(i.e. inclusion of variables in the 

statistical model) is appropriate 

and is based on a conceptual 
framework or model 

Adjustment for some 

prognostic factors, but not 

others that are also 

associated with 

mammographic density 
change (baseline density, 

Partial   
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chemotherapy). Not clear 

how model developed / 

criteria for building. 

Reporting of 

results 

The selected statistical model is 
adequate for the design of the 

study. There is no selective 

reporting of results 

Cox model appropriate but 

delayed-entry perhaps better 

(taking into account time 

between mammograms 
where women would not be 

at-risk). Unsure of follow-up 

and may be some selective 

reporting of results – why 

were other adjustments not 
considered / included? 

No   

Statistical 

analysis and 

presentation 

summary 

The statistical analysis is 

appropriate for the design of the 

study, limiting potential for 

presentation of invalid or spurious 

results 

    High 
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B.VII.v Risk of bias table - Li 2013 

Biases 
Issues to consider for judging 
overall rating of risk of bias 

Study Methods & 
Comments 

Rating of 

reporting 

(adequacy 

of 

reporting: 
"yes", 

"partial", 

"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 
"Moderate", 

or "Low") 

Instructions to 
assess the risk 

of each 

potential bias 

These issues will guide your 

thinking and judgement about the 
overall risk of bias within each of 

the six domains. These issues are 

taken together to inform the overall 

judgement of potential bias for 

each of the six domains 

      

1. Study 

participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 
between density reductions and 

outcome is different for 

participants and eligible non-

participants) 

      

Source of 
target 

population 

The source population or 

population of interest is adequately 

described for: a) treatment: (i) 
proportion with DCIS, (ii) 

cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 
(stage, % regional spread); b) 

prevention: (i) level of risk in 

population, including whether 

some or all are BRCA1/2 mutation 

carriers, (ii) prior hormone 
replacement therapy use, (iii) 

cointerventions such as diet or 

exercise regimens, or both 

Source population is not 

described, only analysis 

population, but indication 

of size given: "all women 

born in Sweden who were 
age 50 to 74 years old at 

first diagnosis of invasive 

breast cancer in the 

Swedish Cancer Register 

were eligible (n=3,979)". 

Partial   

Method used to 

identify 

population 

The sampling frame and 

recruitment are adequately 

described, including methods to 

identify the sample sufficient to 
limit potential bias 

Adequately described 

e.g."84% (n=3,345) 

participated by answering a 

mailed questionnaire". 

Yes   

Recruitment 
period 

Period of recruitment is adequately 
described 

Well described (see data 
capture form). 

Yes   

Place of 

recruitment 

Place of recruitment (setting and 

geographic location) are adequately 

described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 

criteria 

Inclusion and exclusion criteria are 

adequately described 

Well described e.g. Figure 

1 & exclusions based on 

questionnaire data, 

previous cancer, 
premenopausal or unknown 

menopausal status, medical 

records or registers,  non-

invasive breast cancer, 

duplicate records, breast 
cancer diagnosis before or 

after study period, non-

breast-cancer, no informed 

consent, mammogram data, 

no mammograms, no 
follow-up mammogram, 

follow-up mammogram 

>3yr after baseline, 

baseline density, quintile 

with smallest dense area, 
and incomplete covariate 

Yes   
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information. 

Adequate study 

participation 

There is adequate participation in 

the study by eligible individuals 

634 women declined 
participation, 701 were 

excluded for sensible 

reasons (including previous 

cancer, duplicate records, 

non-invasive breast 
cancer), 1603 excluded due 

to mammograms (including 

243 in quintile with 

smallest dense area), 67 

incomplete covariates, 974 
in analysis. No information 

on eligible participants vs. 

those not eligible. 

Partial   

Baseline 

characteristics 

The baseline study sample (i.e. 

individuals entering the study) is 

adequately described for (treatment 
and prevention) age, menopausal 

status, cointerventions; (treatment) 

% DCIS, disease severity; 

(prevention) breast cancer risk, 

prior hormone replacement therapy 
use 

Well described (see data 

capture form). 
Yes   

Summary study 

participation 

The study sample represents the 
population of interest on key 

characteristics, sufficient to limit 

potential bias of the observed 

relationship between density 

change and outcome 

    Moderate 

          

2. Study 

attrition 

Goal: to judge the risk of attrition 

bias (likelihood that relationship 
between density reductions and 

outcome are different for 

completing and non-completing 

participants) 

      

Proportion of 

baseline sample 

available for 
analysis 

Response rate (i.e. proportion of 

study sample allocated treatment 

who received treatment) is 
adequate 

37 (7.8%) received 

tamoxifen for <12 months. 
Yes   

Attempts to 

collect 

information on 

participants 

who dropped 
out 

Attempts to collect information on 

participants who dropped out of the 

study are described 

Registry based, some 

censoring due to emigration 

but not stated what amount 

(but in this population & 

age group it is likely to be 
small). 

Partial   

Reasons and 
potential 

impact of 

subjects lost to 

follow-up 

Reasons for loss to follow-up are 

provided 

Censored due to: "death, 
emigration, or end of 

follow-up (December 31, 

2008)". 

Yes   

Outcome and 

prognostic 

factor 

information on 

those lost to 
follow-up 

Participants lost to follow-up are 

adequately described for age at 

entry and cointerventions (if any), 
and for a) treatment: (i) DCIS, (ii) 

disease severity; b) prevention: (i) 

risk of breast cancer including 

BRCA1/2 carriers and testing. 

Whether loss to follow-up or 
inability to retrieve mammograms, 

or both, was likely related to the 

study outcome 

Only reason for loss to 

follow-up is emigration and 

these are not described, but 

likely to be small.  

Partial   

Study attrition 
summary 

There are no important differences 

between these characteristics in 

participants who completed the 
study and those who did not. Loss 

to follow-up (from baseline sample 

to study population analysed) is not 

    Low 
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associated with key characteristics 

(i.e. the study data adequately 

represent the sample) sufficient to 

limit potential bias to the observed 

relationship between density 
change and outcome 

          

3. Prognostic 

factor 

measurement 

Goal: to judge the risk of 
measurement bias related to how 

mammographic density was 

measured (differential 

measurement of mammographic 

density related to the level of 
outcome) 

      

Definition of 

the prognostic 

factor 

A clear definition or description of 
mammographic density is provided 

(e.g. including the method of 

measurement, if subjective then 

who undertook it, if treatment then 

whether contralateral breast 
assessed) 

Clear definition: "All 
density measurements were 

obtained by using an 

automated thresholding 

method previously 

described in Li et al.(17). 
The machine learning 

method incorporates the 

knowledge of a trained 

reader (L.E.) by using 

segmentations obtained by 
Cumulus (19) as training 

data". Contralateral breast: 

"Only mediolateral oblique 

views of the breast 

unaffected by breast cancer 
were used". 

Yes   

Valid and 

reliable 

measurement 
of prognostic 

factor 

Method of mammographic density 

change measurement is adequately 

valid and reliable to limit 

misclassification bias (e.g. may 

include relevant outside sources of 
information on measurement 

properties; also characteristics, 

such as measurement blinded to 

case status) 

Appears adequately valid: 

"Externally validated 

results showed a high 

correspondence between 

the automated method and 
the user-assisted threshold 

method (Pearson’s 

correlation coefficient   

0.872 for DA)". 

Yes   

  

Continuous variables are reported 

or appropriate cut-points (i.e. not 
data-dependent (except for 

percentiles)) are used 

Categories used were 

chosen "a priori", but no 

reference of evidence to 
support this e.g. prior 

publication using same cut-

points or SAP. 

Partial   

Method and 

setting of 

prognostic 

factor 

measurement 

The method and setting of 

measurement of mammographic 
density is the same for all study 

participants. The same 

mammogram type (film/digital) is 

used for both baseline and follow-

up. The time at which baseline and 
follow-up mammograms have low 

variability between participants 

Method and setting are the 

same. All film 

mammograms scanned on 

same scanner: "Film 
mammograms were 

digitized by using an Array 

2905HD Laser Film 

Digitizer (Array Corp, 

Tokyo, Japan)". Mean 
1.4yr (SD 0.5) between 

mammogram, maximum 

3yr. 

Yes   

Proportion of 

data on 

prognostic 
factor available 

for analysis 

Adequate proportion of the study 

sample has complete data for the 

change in mammographic density 
variable 

All have complete data by 

definition of study design. 
Yes   

Method used 

for missing 

data 

Appropriate methods of imputation 

are used for missing 

mammographic density data 

NA Yes   

Summary 

Prognostic factor is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Moderate 
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4. Outcome 

measurement 

Goal: to judge the risk of bias 
related to the measurement of 

outcome (differential measurement 

of outcome related to the density 

reductions) 

      

Definition of 

the outcome 

A clear definition of outcome is 

provided, including duration of 

follow-up and level and extent of 
the outcome construct 

Clear definition: "Women 

were observed from the 
date of breast cancer 

diagnosis until death" and 

"Cause-specific deaths as a 

result of breast cancer were 

ascertained by using the 
cause of death register", 

duration of follow-up given 

(see data capture form), 

extent of outcome construct 

given from wider eligible 
population. 

Yes   

Valid and 
reliable 

measurement 

of outcome 

The method of outcome 
measurement used is adequately 

valid and reliable to limit 

misclassification bias 

Yes – population registry. Yes   

Method and 

setting of 

outcome 

measurement 

The method and setting of outcome 

measurement is the same for all 

study participants, including by age 

and obesity groups 

Yes. Yes   

Outcome 
measurement 

summary 

Outcome of interest is adequately 
measured in study participants to 

sufficiently limit potential bias 

    Low 

          

5. Study 

confounding 

Goal: to judge the risk of bias due 

to confounding (i.e. the effect of 

density reductions is distorted by 

another factor that is related to 

density reductions and the 
outcome) 

      

Important 
confounders 

measured 

Age, BMI, or another measure of 
adiposity are measured 

Age, BMI and change in 
non-dense area (proxy for 

BMI) measured. 

Yes   

Definition of 

the 

confounding 
factor 

Clear definitions are provided 

Age at baseline 

mammogram (years), body 

mass index (BMI) at 

interview (quartiles), 

quartile of percentage 
change in non-dense area 

was used as a proxy for 

BMI. 

Yes   

Valid and 

reliable 

measurement 
of confounders 

Measurement of all important 

confounders is adequately valid 

and reliable 

Measurement is adequately 

valid. 
Yes   

Method and 
setting of 

confounding 

measurement 

The method and setting of 
confounding measurement are the 

same for all study participants 

Yes. Yes   

Method used 

for missing 
data 

Appropriate methods are used if 

imputation is used for missing 
confounder data 

67 excluded from analysis 

due to missing covariate 

data so no imputation used. 

Grade and ER status 
unknown were coded as 

such. 

Yes   

Appropriate 

accounting for 
confounding 

The primary analysis will be 

adjusted for at least age, either 

through the study design and 

analysis, or through adjustment in 
the analysis only; and other 

prognostic factors 

Yes, including adjustments 

for age, BMI, change in 

non-dense area and 

chemotherapy. Adjustment 
for baseline density 

included in the relative 

density change measure. 

Yes   
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Study 

confounding 

summary 

Important potential confounders 

are appropriately accounted for, 

limiting potential bias with respect 

to the relationship between 

prognostic factor and outcome 

    Low 

          

6. Statistical 

analysis and 
reporting 

Goal: to judge the risk of bias 

related to the statistical analysis 
and presentation of results 

      

Presentation of 
analytical 

strategy, model 

development 

strategy 

There is sufficient presentation of 

data to assess the adequacy of the 

analysis 

Yes. Yes   

Model 
development 

strategy 

The strategy for model building 

(i.e. inclusion of variables in the 
statistical model) is appropriate and 

is based on a conceptual 

framework or model 

Conceptual framework – 

adjusted for other 

prognostic factors or those 
associated with density. 

Does not appear to be 

variable selection. 

Yes   

Reporting of 
results 

The selected statistical model is 

adequate for the design of the 
study. There is no selective 

reporting of results 

Appears adequate. Not 

clear though, why 

appropriate to exclude low 
density up front – might 

have been a subgroup 

analysis chosen as a 

primary analysis. 

Partial   

Statistical 

analysis and 
presentation 

summary 

The statistical analysis is 

appropriate for the design of the 

study, limiting potential for 
presentation of invalid or spurious 

results 

    Low 
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B.VII.vi Risk of bias table - Nyante 2015 

Biases 
Issues to consider for judging 
overall rating of risk of bias 

Study Methods & 
Comments 

Rating of 

reporting 

(adequacy 

of 

reporting: 
"yes", 

"partial", 

"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 
"Moderate", 

or "Low") 

Instructions to 
assess the risk 

of each 

potential bias 

These issues will guide your 

thinking and judgement about the 
overall risk of bias within each of 

the six domains. These issues are 

taken together to inform the overall 

judgement of potential bias for 

each of the six domains 

      

1. Study 

participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 
between density reductions and 

outcome is different for 

participants and eligible non-

participants) 

      

Source of 
target 

population 

The source population or 

population of interest is adequately 

described for: a) treatment: (i) 
proportion with DCIS, (ii) 

cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 
(stage, % regional spread); b) 

prevention: (i) level of risk in 

population, including whether 

some or all are BRCA1/2 mutation 

carriers, (ii) prior hormone 
replacement therapy use, (iii) 

cointerventions such as diet or 

exercise regimens, or both 

Source population is not 
described, only analysis 

population, but indication 

of size given: "Patients 

were selected from a cohort 
of 2315 KPNW members 

diagnosed with ER-positive 

primary invasive breast 

cancer between 1990 and 

2008 and treated with 
adjuvant tamoxifen". 

Partial   

Method used to 

identify 

population 

The sampling frame and 

recruitment are adequately 

described, including methods to 

identify the sample sufficient to 
limit potential bias 

Well described e.g. "Two 

control patients were 

matched to each case 

patient (Figure  1) and 
sampled to have at least as 

much follow-up time as the 

matched case patient" and 

61 controls matched to 

cases without 
mammograms were "re-

matched [...] to eligible 

cases", 401 women were 

not included in the 

sampling due to lack of 
mammograms. 

Yes   

Recruitment 
period 

Period of recruitment is adequately 
described 

Well described (see data 
capture form). 

Yes   

Place of 

recruitment 

Place of recruitment (setting and 

geographic location) are adequately 

described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 

criteria 

Inclusion and exclusion criteria are 

adequately described 

Well described e.g. after 

exclusions for bilateral 

disease (or laterality 

unknown), prophylactic 
mastectomy of contralateral 

breast, death or recurrence 

within 1yr of initial 

diagnosis, distant 

metastases or unstaged 
diagnosis, never disease-

Yes   
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free, first course of 

treatment outside KPNW 

system (n=2142), after 

exclusions for 

mammograms not 
identified (n=1741): cases 

identified (n=134) of which 

had mammograms 

obtainable for digitisation 

(n=97), and 252 matched 
controls with 

mammograms obtainable 

for digitisation. 

Adequate study 
participation 

There is adequate participation in 
the study by eligible individuals 

37/134 (28%) of cases not 

included due to lack of 

mammograms obtainable 

for digitisation. No 
information on eligible 

participants vs. those not 

eligible. 

Partial   

Baseline 

characteristics 

The baseline study sample (i.e. 

individuals entering the study) is 

adequately described for (treatment 
and prevention) age, menopausal 

status, cointerventions; (treatment) 

% DCIS, disease severity; 

(prevention) breast cancer risk, 

prior hormone replacement therapy 
use 

Well described (see data 

capture form). 
Yes   

Summary study 

participation 

The study sample represents the 
population of interest on key 

characteristics, sufficient to limit 

potential bias of the observed 

relationship between density 

change and outcome 

    Moderate 

          

2. Study 

attrition 

Goal: to judge the risk of attrition 

bias (likelihood that relationship 
between density reductions and 

outcome are different for 

completing and non-completing 

participants) 

      

Proportion of 

baseline sample 
available for 

analysis 

Response rate (i.e. proportion of 

study sample allocated treatment 
who received treatment) is 

adequate 

34% cases and 68% 

controls received tamoxifen 

>52 months, follow-up 
mammogram within 90 

days of prescription. 

Yes   

Attempts to 

collect 

information on 

participants 
who dropped 

out 

Attempts to collect information on 

participants who dropped out of the 

study are described 

Registry linkage to death, 

so no drop out. 
Yes   

Reasons and 

potential 

impact of 
subjects lost to 

follow-up 

Reasons for loss to follow-up are 
provided 

"Follow-up time was 

calculated as the time 

between the first tamoxifen 

prescription and the earliest 

of the following: breast 
cancer death, death from 

another cause, last tumor 

registry follow-up, or 

December 31, 2010". 

Yes   

Outcome and 

prognostic 
factor 

information on 

those lost to 

follow-up 

Participants lost to follow-up are 

adequately described for age at 

entry and cointerventions (if any), 
and for a) treatment: (i) DCIS, (ii) 

disease severity; b) prevention: (i) 

risk of breast cancer including 

BRCA1/2 carriers and testing. 

No information on density 

change vs. death from other 

causes in controls – those 
who could be censored 

before being included as a 

control. Expect very few 

but some older women. 

Partial   
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Whether loss to follow-up or 

inability to retrieve mammograms, 

or both, was likely related to the 

study outcome 

Study attrition 

summary 

There are no important differences 

between these characteristics in 

participants who completed the 
study and those who did not. Loss 

to follow-up (from baseline sample 

to study population analysed) is not 

associated with key characteristics 

(i.e. the study data adequately 
represent the sample) sufficient to 

limit potential bias to the observed 

relationship between density 

change and outcome 

    Low 

          

3. Prognostic 
factor 

measurement 

Goal: to judge the risk of 

measurement bias related to how 

mammographic density was 
measured (differential 

measurement of mammographic 

density related to the level of 

outcome) 

      

Definition of 
the prognostic 

factor 

A clear definition or description of 

mammographic density is provided 

(e.g. including the method of 
measurement, if subjective then 

who undertook it, if treatment then 

whether contralateral breast 

assessed) 

Clear definition: "Absolute 

dense area (cm2) and total 
breast area (cm2) were 

measured using Cumulus 

[…] by a single reader". 

Contralateral breast used. 

Partial   

Valid and 

reliable 
measurement 

of prognostic 

factor 

Method of mammographic density 

change measurement is adequately 

valid and reliable to limit 

misclassification bias (e.g. may 
include relevant outside sources of 

information on measurement 

properties; also characteristics, 

such as measurement blinded to 

case status) 

Valid and reliable method, 

with estimate of 
reproducibility - 

“Reevaluation of 50 

randomly selected films 

yielded intraclass 

correlation coefficients and 
coefficients of variation of 

0.95 and 8.5% for dense 

area, 0.99 and 0.5% for 

total breast area, and 0.96 

and 8.5% for percent 
density“. Blinded: "Masked 

baseline and follow up 

mammograms from each 

patient". 

Yes   

  

Continuous variables are reported 
or appropriate cut-points (i.e. not 

data-dependent (except for 

percentiles)) are used 

Tertiles are used as primary 

analysis, but "assessed 

absolute change in percent 
density using the 10% or 

greater cut-point to assess a 

comparable level of change 

as reported in the 

IBIS-1 study". 

Yes   

Method and 

setting of 
prognostic 

factor 

measurement 

The method and setting of 

measurement of mammographic 

density is the same for all study 

participants. The same 
mammogram type (film/digital) is 

used for both baseline and follow-

up. The time at which baseline and 

follow-up mammograms have low 

variability between participants 

Method and setting are the 
same. All film 

mammograms scanned on 

same scanner: "digitized 

using an Array Corporation 

2095 Laser 
Film Digitizer (Roden, the 

Netherlands; optical 

density  =  4.0)". Time 

between mammograms 

mean 18 months, 75% with 
<24 months – relatively 

low variability. 

Yes   

Proportion of Adequate proportion of the study All have complete data by Yes   
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data on 

prognostic 

factor available 

for analysis 

sample has complete data for the 

change in mammographic density 

variable 

definition of study design. 

Method used 

for missing 

data 

Appropriate methods of imputation 

are used for missing 

mammographic density data 

NA Yes   

Summary 
Prognostic factor is adequately 
measured in study participants to 

sufficiently limit potential bias 

    Low 

          

4. Outcome 

measurement 

Goal: to judge the risk of bias 
related to the measurement of 

outcome (differential measurement 

of outcome related to the density 

reductions) 

      

Definition of 

the outcome 

A clear definition of outcome is 

provided, including duration of 

follow-up and level and extent of 

the outcome construct 

Clear definition: "Case 

patients were defined as 
patients who died of breast 

cancer between January 1, 

1991 and December 31, 

2010", duration of follow-

up given (see data capture 
form). Not clear how 

extensive in the wider 

database (including women 

with mammograms).  

Partial   

Valid and 

reliable 

measurement 
of outcome 

The method of outcome 

measurement used is adequately 

valid and reliable to limit 
misclassification bias 

Yes – population registry. Yes   

Method and 

setting of 

outcome 

measurement 

The method and setting of outcome 

measurement is the same for all 

study participants, including by age 

and obesity groups 

Yes. Yes   

Outcome 

measurement 

summary 

Outcome of interest is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Low 

          

5. Study 

confounding 

Goal: to judge the risk of bias due 

to confounding (i.e. the effect of 
density reductions is distorted by 

another factor that is related to 

density reductions and the 

outcome) 

      

Important 

confounders 

measured 

Age, BMI, or another measure of 

adiposity are measured 
Age and BMI measured. Yes   

Definition of 

the 
confounding 

factor 

Clear definitions are provided 
"Age […] at diagnosis" and 
"Body mass index (BMI) 

was calculated as kg/m2". 

Yes   

Valid and 
reliable 

measurement 

of confounders 

Measurement of all important 
confounders is adequately valid 

and reliable 

Self-reported height and 

weight from clinical 

records, obtained within 3 

months of both 
mammograms. 13/97 cases 

and 26/252 controls 

missing baseline BMI; 

25/97 cases and 59/252 

controls missing BMI 
change. 

Yes   

Method and 
setting of 

confounding 

measurement 

The method and setting of 

confounding measurement are the 

same for all study participants 

Yes. Yes   

Method used 

for missing 

Appropriate methods are used if 

imputation is used for missing 

Missing weight or height 

values used to calculate 
Yes   
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data confounder data BMI were multiply-

imputed using IVEWare. 

Appropriate 

accounting for 

confounding 

The primary analysis will be 

adjusted for at least age, either 
through the study design and 

analysis, or through adjustment in 

the analysis only; and other 

prognostic factors 

It is adjusted for age 

through design, also for 

baseline density in 

additional model. Not 

adjusted for BMI or change 
in BMI (but "neither 

baseline BMI nor change in 

BMI altered the 

associations"). No evidence 

of interaction (between 
density change?) and 

chemotherapy. 

Yes   

Study 

confounding 

summary 

Important potential confounders 

are appropriately accounted for, 

limiting potential bias with respect 

to the relationship between 
prognostic factor and outcome 

    Low 

          

6. Statistical 

analysis and 
reporting 

Goal: to judge the risk of bias 

related to the statistical analysis 
and presentation of results 

      

Presentation of 

analytical 

strategy, model 
development 

strategy 

There is sufficient presentation of 

data to assess the adequacy of the 
analysis 

Yes, except for the multiple 

imputation where little 

detail is provided. Multiple 

imputation not used for the 

main analysis however. 6 
women on AIs but 

"Associations were also 

similar after excluding […] 

women treated with 

aromatase inhibitors".  

Partial   

Model 

development 

strategy 

The strategy for model building 

(i.e. inclusion of variables in the 

statistical model) is appropriate and 

is based on a conceptual 
framework or model 

Yes. "Multivariable models 

were constructed to assess 
confounding. Smoking 

status, tumor size, 

antidepressant use, and 

baseline percent density 

were identified as potential 
confounders based on 

literature review and 

covariable associations 

with breast cancer death 

and change in percent 
density among control 

patients and included in a 

preliminary model. Only 

baseline density was 

retained in final models 
after removing variables 

sequentially and retaining 

those where removal 

altered the change in 

density regression 
parameter by more than 

10%. Tumor size and 

baseline dense area were 

assessed similarly in 

multivariable models for 
absolute change in dense 

area, and both were 

retained". 

Yes   

Reporting of 

results 

The selected statistical model is 

adequate for the design of the 

study. There is no selective 
reporting of results 

Yes adequate. No selective 

reporting apparent. 
Yes   

Statistical 
analysis and 

The statistical analysis is 
appropriate for the design of the 

    Low 
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presentation 

summary 

study, limiting potential for 

presentation of invalid or spurious 

results 
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B.VII.vii Risk of bias table - Sandberg 2013 

Biases 
Issues to consider for judging 
overall rating of risk of bias 

Study Methods & Comments 

Rating of 

reporting 

(adequacy 

of 

reporting: 
"yes", 

"partial", 

"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 
"Moderate", 

or "Low") 

Instructions to 
assess the risk 

of each 

potential bias 

These issues will guide your 

thinking and judgement about the 
overall risk of bias within each of 

the six domains. These issues are 

taken together to inform the 

overall judgement of potential 

bias for each of the six domains 

      

1. Study 

participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 
between density reductions and 

outcome is different for 

participants and eligible non-

participants) 

      

Source of 
target 

population 

The source population or 

population of interest is 

adequately described for: a) 
treatment: (i) proportion with 

DCIS, (ii) cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 
(stage, % regional spread); b) 

prevention: (i) level of risk in 

population, including whether 

some or all are BRCA1/2 

mutation carriers, (ii) prior 
hormone replacement therapy use, 

(iii) cointerventions such as diet 

or exercise regimens, or both 

Source population is not 

described, only analysis 

population, but indication of 

size given: "Stockholm 

Breast Cancer Register, a 
population based register of 

all breast cancer patients 

diagnosed since 1976 in the 

Stockholm-Gotland health-

care region (n>30,000)". 

Partial   

Method used to 

identify 

population 

The sampling frame and 

recruitment are adequately 

described, including methods to 

identify the sample sufficient to 
limit potential bias 

Well described: "Women 

with invasive CBC 

diagnosed more than one 

year after the first invasive 
cancer and with an available 

mammogram close to the 

first diagnosis (N=458) were 

identified as potential cases. 

Patients with invasive 
unilateral breast cancer in the 

same register were identified 

as potential controls". No 

metastasis or second primary 

ipsilateral breast cancer to 
limit bias of 

misclassification of outcome. 

Yes   

Recruitment 

period 

Period of recruitment is 

adequately described 

Well described (see data 

capture form). 
Yes   

Place of 

recruitment 

Place of recruitment (setting and 

geographic location) are 

adequately described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 

criteria 

Inclusion and exclusion criteria 

are adequately described 

Well described: "Women 

with a first primary cancer 

other than breast cancer and 
women with distant 

metastasis at the first or 

second breast cancer 

diagnosis were excluded in 

order to minimize the risk of 
the CBC being a 

Yes   
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misclassified metastasis" and 

second primary breast cancer 

in the ipsilateral breast 

excluded. Women with 

<10% or >90% PDA (N = 
66), or <10 cm2 or >70 cm2 

DA (N = 84) at baseline 

were excluded (can't undergo 

defined changes - why 

70cm2?) 

Adequate study 

participation 

There is adequate participation in 

the study by eligible individuals 

187 (41%) of cases 

excluded: "For 99 of the 458 
eligible CBC-cases we could 

not locate any follow-up 

mammogram and for 88 of 

the CBC-cases either the 

baseline or the follow-up 
mammogram could not be 

used (for example, due to 

low quality of the 

mammogram)", therefore 

"for 271 patients (59%) both 
the baseline and at least one 

follow-up mammogram of 

the unaffected breast from 

the same view was 

assessable and could be 
used". 211 controls with 

correct side and view so 211 

matched case-control pairs. 

Availability of 
mammograms "driven by 

archiving policies, rather 

than patients not having 

mammograms taken". 

Patients excluded due to lack 
of eligible mammograms did 

not differ from those 

included in relation to age at 

first diagnosis (P-value: 

0.23) and calendar period of 
first diagnosis (P-value: 

0.12). More patients 

included received 

radiotherapy and endocrine 

therapy than excluded 
patients (radiotherapy; 29% 

vs. 23%, endocrine therapy; 

39% vs. 29%, 

(chemotherapy?)). 

Yes   

Baseline 

characteristics 

The baseline study sample (i.e. 

individuals entering the study) is 

adequately described for 
(treatment and prevention) age, 

menopausal status, 

cointerventions; (treatment) % 

DCIS, disease severity; 

(prevention) breast cancer risk, 
prior hormone replacement 

therapy use 

Adequately described in 
Table 1. No breakdown by 

type of endocrine therapy, 

but most likely to be 

tamoxifen according to time 

frame. 

Yes   

Summary study 

participation 

The study sample represents the 

population of interest on key 

characteristics, sufficient to limit 

potential bias of the observed 

relationship between density 
change and outcome 

    Moderate 

          

2. Study 
attrition 

Goal: to judge the risk of attrition 
bias (likelihood that relationship 
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between density reductions and 

outcome are different for 

completing and non-completing 

participants) 

Proportion of 

baseline 
sample 

available for 

analysis 

Response rate (i.e. proportion of 

study sample allocated treatment 
who received treatment) is 

adequate 

41% of cases and 41% of 

controls (minority of 

women) on endocrine 
treatment, but no information 

found on response rate (i.e. 

compliance). 

No   

Attempts to 

collect 

information on 
participants 

who dropped 

out 

Attempts to collect information on 

participants who dropped out of 
the study are described 

No information found on 

drop out. Registry linkage – 
no drop out? Exception of 

informed consent. 

No   

Reasons and 

potential 

impact of 

subjects lost to 
follow-up 

Reasons for loss to follow-up are 

provided 

No information found on 

loss to follow-up. 
No   

Outcome and 

prognostic 

factor 
information on 

those lost to 

follow-up 

Participants lost to follow-up are 
adequately described for age at 

entry and cointerventions (if any), 

and for a) treatment: (i) DCIS, (ii) 

disease severity; b) prevention: (i) 

risk of breast cancer including 
BRCA1/2 carriers and testing. 

Whether loss to follow-up or 

inability to retrieve 

mammograms, or both, was likely 
related to the study outcome 

No information found on 
loss to follow-up. 

No   

Study attrition 
summary 

There are no important 
differences between these 

characteristics in participants who 

completed the study and those 

who did not. Loss to follow-up 

(from baseline sample to study 
population analysed) is not 

associated with key characteristics 

(i.e. the study data adequately 

represent the sample) sufficient to 

limit potential bias to the observed 
relationship between density 

change and outcome 

    Moderate 

          

3. Prognostic 

factor 

measurement 

Goal: to judge the risk of 

measurement bias related to how 

mammographic density was 

measured (differential 

measurement of mammographic 
density related to the level of 

outcome) 

      

Definition of 

the prognostic 

factor 

A clear definition or description 

of mammographic density is 
provided (e.g. including the 

method of measurement, if 

subjective then who undertook it, 

if treatment then whether 

contralateral breast assessed) 

Clear definition: 

"Mammographic density was 

measured using our 

automated thresholding 

method [24], which 
incorporates the knowledge 

of a trained observer by 

using measurements 

obtained by an established 

user-assisted 
threshold method - Cumulus 

[25] - as training data". 

Contralateral breast used. 

Yes   

Valid and 

reliable 

measurement 

Method of mammographic density 

change measurement is 

adequately valid and reliable to 

Appears adequately valid: 

"The externally validated 

results showed a high 

Yes   
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of prognostic 

factor 

limit misclassification bias (e.g. 

may include relevant outside 

sources of information on 

measurement properties; also 

characteristics, such as 
measurement blinded to case 

status) 

correspondence between our 

automated method and the 

established user-assisted 

thresholding method 

Cumulus (r percent 
mammographic density) = 

0.88 (95% CI: 0.87 to 0.89)". 

  

Continuous variables are reported 
or appropriate cut-points (i.e. not 

data-dependent (except for 

percentiles)) are used 

Cut-point for percentage 

density (10%) chosen 

following IBIS-I: "absolute 

decrease ≥10%, stable (-10% 

to +10%, reference level) 
and absolute increase ≥10%, 

in agreement with previous 

literature [20]". Cut-point for 

area density not stated, but 

similar proportion to percent 
measure in different 

categories (Table 1). 

Partial   

Method and 

setting of 

prognostic 
factor 

measurement 

The method and setting of 
measurement of mammographic 

density is the same for all study 

participants. The same 

mammogram type (film/digital) is 

used for both baseline and follow-
up. The time at which baseline 

and follow-up mammograms have 

low variability between 

participants 

Method and setting are the 

same. "The mammograms 

were digitized using an 

Array 2905HD Laser Film 
Digitizer (Array 

Corporation, Tokyo, Japan), 

which covers a range of 0 to 

4.7 optical density. The 

density resolution was set at 
12-bit spatial resolution". 

"90% of the follow-up 

mammograms were taken 

between 1 and 2.2 years after 

diagnosis of the first breast 
cancer and there was no 

difference between cases and 

controls"; some up to 5yr. 

Yes   

Proportion of 
data on 

prognostic 

factor available 

for analysis 

Adequate proportion of the study 
sample has complete data for the 

change in mammographic density 

variable 

Women with <10% or >90% 

PDA (N = 66), or <10 cm2 or 

>70 cm2 DA (N = 84) at 

baseline were excluded (can't 
undergo defined changes - 

why 70cm2?). For the 

primary interest of this 

review (women who 

received endocrine therapy) 
numbers are not reported. 

Partial   

Method used 

for missing 

data 

Appropriate methods of 

imputation are used for missing 

mammographic density data 

NA for study sample, 

unclear for women who 

received endocrine therapy. 

Partial   

Summary 

Prognostic factor is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Moderate 

          

4. Outcome 

measurement 

Goal: to judge the risk of bias 

related to the measurement of 

outcome (differential 
measurement of outcome related 

to the density reductions) 

      

Definition of 
the outcome 

A clear definition of outcome is 

provided, including duration of 
follow-up and level and extent of 

the outcome construct 

Clear definition: "For our 

main analysis, conditional 

logistic regression was used 

for analyzing risk of CBC", 

duration of follow-up given. 
Extend of the outcome 

construct in the wider 

database not indicated (only 

number with mammogram). 

Partial   

Valid and 

reliable 

The method of outcome 

measurement used is adequately 
Yes – population registry. Yes   
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measurement 

of outcome 

valid and reliable to limit 

misclassification bias 

Method and 

setting of 

outcome 

measurement 

The method and setting of 

outcome measurement is the same 

for all study participants, 

including by age and obesity 

groups 

Yes. Yes   

Outcome 
measurement 

summary 

Outcome of interest is adequately 
measured in study participants to 

sufficiently limit potential bias 

    Low 

          

5. Study 

confounding 

Goal: to judge the risk of bias due 
to confounding (i.e. the effect of 

density reductions is distorted by 

another factor that is related to 

density reductions and the 

outcome) 

      

Important 

confounders 

measured 

Age, BMI, or another measure of 

adiposity are measured 

Age measured, FA at 
baseline used as a proxy for 

BMI at baseline (justified by 

Lokate 2011; Breast Cancer 

Res; 13:R103). 

Yes   

Definition of 

the 

confounding 
factor 

Clear definitions are provided 

Age at the first breast cancer 

diagnosis (+/- two years), FA 
categorized into quartiles. 

Yes   

Valid and 
reliable 

measurement 

of confounders 

Measurement of all important 

confounders is adequately valid 

and reliable 

Measurement is adequately 

valid. 
Yes   

Method and 

setting of 

confounding 
measurement 

The method and setting of 

confounding measurement are the 

same for all study participants 

Yes. Yes   

Method used 
for missing 

data 

Appropriate methods are used if 
imputation is used for missing 

confounder data 

Imputation not used. Yes   

Appropriate 

accounting for 

confounding 

The primary analysis will be 

adjusted for at least age, either 

through the study design and 

analysis, or through adjustment in 
the analysis only; and other 

prognostic factors 

Adjusted for age through 

matching. PDA change 

model additionally adjusted 

for FA and PDA baseline 
(was DA change model also 

adjusted for FA and DA 

baseline?). No adjustment 

for change in BMI (or FA) or 

chemotherapy-although this 
group is ‘under-represented’. 

Not clear if subgroup 

analysis of primary interest 

to this review (i.e. women on 

endocrine treatment) was 
adjusted for other factors 

besides matching factors. 

Partial   

Study 

confounding 

summary 

Important potential confounders 

are appropriately accounted for, 

limiting potential bias with 

respect to the relationship 

between prognostic factor and 
outcome 

    Moderate 

          

6. Statistical 
analysis and 

reporting 

Goal: to judge the risk of bias 
related to the statistical analysis 

and presentation of results 

      

Presentation of 

analytical 

strategy, model 

development 

strategy 

There is sufficient presentation of 

data to assess the adequacy of the 

analysis 

Partially. Odds ratios are 

presented but not number of 

cases and controls by density 

change group. Can't separate 

out endocrine treatments. 

Partial   
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Model 

development 

strategy 

The strategy for model building 

(i.e. inclusion of variables in the 

statistical model) is appropriate 

and is based on a conceptual 

framework or model 

Appropriate per the study 

design. Not clear if further 

adjustment for the primary 

analysis of interest to this 

review. 

Partial   

Reporting of 

results 

The selected statistical model is 
adequate for the design of the 

study. There is no selective 

reporting of results 

Appropriate. May be some 

selective reporting of results, 
but main focus was not on 

the comparison of interest 

for our review. 

Partial   

Statistical 

analysis and 

presentation 
summary 

The statistical analysis is 

appropriate for the design of the 

study, limiting potential for 
presentation of invalid or spurious 

results 

    Moderate 
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B.VII.viii Risk of bias table - van Nes 2015 

 

Biases 
Issues to consider for judging 

overall rating of risk of bias 

Study Methods & 

Comments 

Rating of 
reporting 

(adequacy 

of 

reporting: 

"yes", 
"partial", 

"no" or 

"unsure") 

Rating of 

Risk of bias 

("High", 

"Moderate", 
or "Low") 

Instructions to 

assess the risk 
of each 

potential bias 

These issues will guide your 

thinking and judgement about the 

overall risk of bias within each of 

the six domains. These issues are 
taken together to inform the overall 

judgement of potential bias for 

each of the six domains 

      

1. Study 
participation 

Goal: to judge the risk of selection 

bias (likelihood that relationship 

between density reductions and 
outcome is different for 

participants and eligible non-

participants) 

      

Source of 

target 

population 

The source population or 

population of interest is adequately 

described for: a) treatment: (i) 

proportion with DCIS, (ii) 
cointerventions 

(chemotherapy/targeted therapy), 

(iii) severity of cancer at baseline 

(stage, % regional spread); b) 

prevention: (i) level of risk in 
population, including whether 

some or all are BRCA1/2 mutation 

carriers, (ii) prior hormone 

replacement therapy use, (iii) 

cointerventions such as diet or 
exercise regimens, or both 

Source population is 

TEAM trial (n=2753), 

although not described, can 

be found in a referenced 
paper van de Velde 2011; 

Lancet; 377:321-31. 

Yes   

Method used to 

identify 
population 

The sampling frame and 

recruitment are adequately 

described, including methods to 
identify the sample sufficient to 

limit potential bias 

Sampling frame and 
recruitment adequately 

described: 13 hospitals 

contributing to the TEAM 

sub-study (supplementary 

material), "based on 
adequate inclusion rate, 

geographical distribution 

and availability of analogue 

mammograms over time" 

(n=774). 

Yes   

Recruitment 
period 

Period of recruitment is adequately 
described 

Not described. No   

Place of 

recruitment 

Place of recruitment (setting and 
geographic location) are 

adequately described 

Well described (see data 

capture form). 
Yes   

Inclusion and 

exclusion 

criteria 

Inclusion and exclusion criteria are 

adequately described 

Well described: (203/774 

considered ineligible 

because hospital switched 

to digital during study 
period or contralateral 

mastectomy (n=571 

eligible), 129/571 did not 

have available analogue 

mammograms (n=442). 219 
in sequential arm and 223 

in exemestane arm). "Of 

the 219 patients randomised 

Yes   
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to the sequential arm, 28 

stopped therapy within one 

year, five had no 

preoperative mammogram 

available, four had no 
(available) follow-up 

mammogram, and one did 

not start study medication, 

totalling 181 patients for 

the current analyses. Of the 
223 patients randomised to 

exemestane, 21 stopped 

therapy within one year, 

three had no preoperative  

mammogram available and 
two had  no follow-up 

mammogram available, 

leaving 197 patients for the 

current analyses". 

Adequate study 

participation 

There is adequate participation in 

the study by eligible individuals 

203/774 considered 

ineligible because hospital 

switched to digital during 
study period or 

contralateral mastectomy 

(n=571 eligible), 129/571 

did not have available 

analogue mammograms 
(n=442). 219 in sequential 

arm and 223 in exemestane 

arm. After exclusions, 

sequential n=181 and 
exemestane n=197. Total 

included sample (n=378) 

compared with sampling 

frame not included (n=774-

378=396) in Table IB. 

Yes   

Baseline 

characteristics 

The baseline study sample (i.e. 

individuals entering the study) is 
adequately described for (treatment 

and prevention) age, menopausal 

status, cointerventions; (treatment) 

% DCIS, disease severity; 

(prevention) breast cancer risk, 
prior hormone replacement therapy 

use 

Well described (see data 

capture form). 
Yes   

Summary study 

participation 

The study sample represents the 

population of interest on key 

characteristics, sufficient to limit 

potential bias of the observed 

relationship between density 
change and outcome 

    Low 

          

2. Study 

attrition 

Goal: to judge the risk of attrition 
bias (likelihood that relationship 

between density reductions and 

outcome are different for 

completing and non-completing 

participants) 

      

Proportion of 

baseline sample 

available for 

analysis 

Response rate (i.e. proportion of 

study sample allocated treatment 

who received treatment) is 

adequate 

"Of the 219 patients 

randomised to the 
sequential arm, 28 stopped 

therapy within one year [...] 

and one did not start study 

medication." and "Of the 

223 patients randomised to 
exemestane, 21 stopped 

therapy within one year". 

Yes   

Attempts to 

collect 

Attempts to collect information on 

participants who dropped out of the 

Not described (for 378 

women in study sample) 
No   
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information on 

participants 

who dropped 

out 

study are described but whole trial information 

should be available. 

Reasons and 

potential 

impact of 
subjects lost to 

follow-up 

Reasons for loss to follow-up are 
provided 

Not described (for 378 

women in study sample) 
but whole trial information 

should be available. 

No   

Outcome and 

prognostic 
factor 

information on 

those lost to 

follow-up 

Participants lost to follow-up are 

adequately described for age at 

entry and cointerventions (if any), 

and for a) treatment: (i) DCIS, (ii) 
disease severity; b) prevention: (i) 

risk of breast cancer including 

BRCA1/2 carriers and testing. 

Whether loss to follow-up or 

inability to retrieve mammograms, 
or both, was likely related to the 

study outcome 

Not described. No   

Study attrition 

summary 

There are no important differences 

between these characteristics in 

participants who completed the 

study and those who did not. Loss 

to follow-up (from baseline sample 
to study population analysed) is not 

associated with key characteristics 

(i.e. the study data adequately 

represent the sample) sufficient to 

limit potential bias to the observed 
relationship between density 

change and outcome 

    Moderate 

          

3. Prognostic 

factor 

measurement 

Goal: to judge the risk of 

measurement bias related to how 

mammographic density was 

measured (differential 

measurement of mammographic 
density related to the level of 

outcome) 

      

Definition of 

the prognostic 

factor 

A clear definition or description of 

mammographic density is provided 
(e.g. including the method of 

measurement, if subjective then 

who undertook it, if treatment then 

whether contralateral breast 

assessed) 

Clear definition: "visual 

estimation technique 

classifying the percentage 

of mammographic breast 

density into one of six 
categories: 0%, <10%, 10–

25%, 25–50%, 50–75%, 

and >75%" by "three 

independent radiologists 

being very experienced in 
reading mammograms". 

Contralateral breast used. 

Yes   

Valid and 

reliable 
measurement 

of prognostic 

factor 

Method of mammographic density 

change measurement is adequately 

valid and reliable to limit 

misclassification bias (e.g. may 
include relevant outside sources of 

information on measurement 

properties; also characteristics, 

such as measurement blinded to 

case status) 

"The interclass correlation 

coefficient between the 

three radiologists (raters) 

was satisfactory: 0.74". 
"The patient’s identity, date 

of mammogram and 

randomisation arm were 

blinded to the radiologists", 

but no mention if blinded to 
case status. 

Yes   

  

Continuous variables are reported 
or appropriate cut-points (i.e. not 

data-dependent (except for 

percentiles)) are used 

Boyd 6-category scale. Yes   

Method and 

setting of 

prognostic 

The method and setting of 

measurement of mammographic 

density is the same for all study 

Method and setting same 

(three radiologists read all 

mammograms, although 

Partial   
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factor 

measurement 

participants. The same 

mammogram type (film/digital) is 

used for both baseline and follow-

up. The time at which baseline and 

follow-up mammograms have low 
variability between participants 

whether each one read 

mammograms per woman 

etc. not mentioned), same 

mammogram type (film). 

Unknown time from 
baseline to follow-up 

mammograms. 

Proportion of 
data on 

prognostic 

factor available 

for analysis 

Adequate proportion of the study 

sample has complete data for the 

change in mammographic density 

variable 

8 had no preoperative 

mammogram and 6 had no 

follow-up mammogram 

(but not included in final 

study sample n=378). "Of 
the total group of 378 

patients, 359 mammograms 

(171 sequential arm, 188 

exemestane arm) were 

reviewed after one year of 
endocrine therapy, 292 

mammograms (123 

sequential arm, 169 

exemestane arm) after two 

years, and 116 
mammograms (17 of 

tamoxifen patients and 99 

of exemestane patients) 

after three years of 

endocrine therapy" - it is 
unclear which follow-up 

mammogram(s) were used 

to calculate density change. 

Partial   

Method used 

for missing 

data 

Appropriate methods of imputation 

are used for missing 

mammographic density data 

NA Yes   

Summary 

Prognostic factor is adequately 

measured in study participants to 
sufficiently limit potential bias 

    Low 

          

4. Outcome 

measurement 

Goal: to judge the risk of bias 
related to the measurement of 

outcome (differential measurement 

of outcome related to the density 

reductions) 

      

Definition of 

the outcome 

A clear definition of outcome is 

provided, including duration of 

follow-up and level and extent of 

the outcome construct 

Adequate definition "Time 

to LRR, DR or CBC was 

calculated from the start of 
endocrine therapy up to the 

date of a LRR, a DR or 

CBC, respectively", but no 

reasons for censoring (per 

protocol so censored when 
stopped treatment but no 

other reasons provided). 

Partial   

Valid and 

reliable 

measurement 

of outcome 

The method of outcome 

measurement used is adequately 

valid and reliable to limit 

misclassification bias 

From TEAM trial database. Yes   

Method and 

setting of 
outcome 

measurement 

The method and setting of outcome 

measurement is the same for all 
study participants, including by age 

and obesity groups 

Yes. Yes   

Outcome 

measurement 

summary 

Outcome of interest is adequately 

measured in study participants to 

sufficiently limit potential bias 

    Low 

          

5. Study 

confounding 

Goal: to judge the risk of bias due 

to confounding (i.e. the effect of 

density reductions is distorted by 

another factor that is related to 
density reductions and the 
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outcome) 

Important 
confounders 

measured 

Age, BMI, or another measure of 

adiposity are measured 
Age and BMI measured. Yes   

Definition of 

the 

confounding 

factor 

Clear definitions are provided 
No definition on how BMI 

measured. 
No   

Valid and 

reliable 
measurement 

of confounders 

Measurement of all important 
confounders is adequately valid 

and reliable 

Appears adequate (from 
trial). 

Yes   

Method and 

setting of 

confounding 

measurement 

The method and setting of 

confounding measurement are the 

same for all study participants 

Yes. Yes   

Method used 

for missing 
data 

Appropriate methods are used if 

imputation is used for missing 
confounder data 

23 missing BMI, not stated 

if imputed. 
No   

Appropriate 

accounting for 

confounding 

The primary analysis will be 
adjusted for at least age, either 

through the study design and 

analysis, or through adjustment in 

the analysis only; and other 

prognostic factors 

Does not appear to be 

adjusted. 
No   

Study 
confounding 

summary 

Important potential confounders 

are appropriately accounted for, 
limiting potential bias with respect 

to the relationship between 

prognostic factor and outcome 

    Moderate 

          

6. Statistical 

analysis and 

reporting 

Goal: to judge the risk of bias 

related to the statistical analysis 

and presentation of results 

      

Presentation of 

analytical 
strategy, model 

development 

strategy 

There is sufficient presentation of 
data to assess the adequacy of the 

analysis 

Not sufficient presentation 

of data. No data presented 
on density change. Both 

treatment arms combined. 

No   

Model 

development 

strategy 

The strategy for model building 

(i.e. inclusion of variables in the 

statistical model) is appropriate and 

is based on a conceptual 
framework or model 

No model building done. Yes   

Reporting of 

results 

The selected statistical model is 
adequate for the design of the 

study. There is no selective 

reporting of results 

Statistical model for density 
change analysis unclear, no 

results presented for density 

change. 

No   

Statistical 

analysis and 

presentation 
summary 

The statistical analysis is 

appropriate for the design of the 

study, limiting potential for 
presentation of invalid or spurious 

results 

    High 
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B.VII.ix ROBINS-I tool for Cuzick 2011 

ROBINS-I tool (Stage I): At protocol stage  

 

Specify the review question  

Participants See review ‘Types of participants’ section 

Experimental intervention See review ‘Interventions’ section 

Comparator See review ‘Comparators’ section 

Outcomes See review ‘Types of outcome measures’ section 

 

List the confounding domains relevant to all or most studies 

Age 

Menopausal status 

Body mass index 

Family history of disease 

Hormone replacement therapy use 

Benign breast disease 

Previous cancer other than breast cancer 

Ethnicity 

List co-interventions that could be different between intervention groups and that could impact on outcomes 

Hormone replacement therapy 

Risk-reducing surgery 

 

ROBINS-I tool (Stage II): For each study 

 

Specify a target randomized trial specific to the study  

Design Individually randomized/Cluster randomized/Matched (e.g. cross-over) (block randomisation (permuted block sizes of six, eight or ten)) 

Participants IBIS-I participants: 35 - 70 years old with at least twice the average risk of a 50-year-old woman of developing breast cancer 

Experimental intervention Oral Tamoxifen 20mg/daily 

Comparator Oral placebo/daily 

 

Is your aim for this study…? 

☐ to assess the effect of assignment to intervention 

☒ to assess the effect of starting and adhering to intervention 
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Specify the outcome 

Specify which outcome is being assessed for risk of bias (typically from among those earmarked for the Summary of Findings table). Specify whether this is a proposed benefit or harm of intervention. 

Proposed benefit of intervention - Prevention: incidence of invasive breast cancer and DCIS 

 

Specify the numerical result being assessed 

In case of multiple alternative analyses being presented, specify the numeric result (e.g. RR = 1.52 (95% CI 0.83 to 2.77) and/or a reference (e.g. to a table, figure or paragraph) that uniquely defines the 

result being assessed. 

Predictive biomarker worked out from raw data: OR=0.53 (95% CI, 0.21 to 1.32), p=0.17 

 

Preliminary consideration of confounders 

Complete a row for each important confounding domain (i) listed in the review protocol; and (ii) relevant to the setting of this particular study, or which the study authors identified as potentially 

important. 

“Important” confounding domains are those for which, in the context of this study, adjustment is expected to lead to a clinically important change in the estimated effect of the intervention. “Validity” 

refers to whether the confounding variable or variables fully measure the domain, while “reliability” refers to the precision of the measurement (more measurement error means less reliability). 

(i) Confounding domains listed in the review protocol 

Confounding domain Measured variable(s) Is there evidence that controlling for this 

variable was unnecessary?* 

Is the confounding domain 

measured validly and reliably by 

this variable (or these variables)? 

OPTIONAL: Is failure to adjust for this 

variable (alone) expected to favour the 

experimental intervention or the 

comparator? 

Age Age at entry (years) No Yes / No / No information 
Favour experimental / Favour 

comparator / No information 

Menopausal status 
Menopausal status at entry 

(Premenopausal/Postmenopausal) 
No Yes / No / No information  

Body mass index Body mass index at entry (kg/m2) No Yes / No / No information  

Family history of disease 

Extensive family history collected as 

part of Tyrer-Cuzick risk model at entry  

(%) 

No Yes / No / No information  

Hormone replacement therapy use 
Use of hormone replacement therapy 

during study (Never/Previous/Current) 
No Yes / No / No information  

Benign breast disease 
Atypical hyperplasia or LCIS at entry 

(No/Yes) 
No Yes / No / No information  

Previous cancer other than breast 

cancer 

Women with a history of any invasive 

cancer (excluding skin cancer) were 

excluded 

Yes - women with a history of any invasive 

cancer (excluding skin cancer) were 

excluded from the trial. 

Yes / No / No information  

Ethnicity Mixed No Yes / No / No information  
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* In the context of a particular study, variables can be demonstrated not to be confounders and so not included in the analysis: (a) if they are not predictive of the outcome; (b) if they are not predictive of 

intervention; or (c) because adjustment makes no or minimal difference to the estimated effect of the primary parameter. Note that “no statistically significant association” is not the same as “not 

predictive”. 

 

Preliminary consideration of co-interventions 

Complete a row for each important co-intervention (i) listed in the review protocol; and (ii) relevant to the setting of this particular study, or which the study  authors identified as important. 

“Important” co-interventions are those for which, in the context of this study, adjustment is expected to lead to a clinically important change in the estimated effect of the intervention. 

(i) Co-interventions listed in the review protocol 

Co-intervention Is there evidence that controlling for this co-intervention was 

unnecessary (e.g. because it was not administered)? 

Is presence of this co-intervention likely to favour outcomes 

in the experimental intervention or the comparator 

Hormone replacement therapy No Favour experimental / Favour comparator / No information 

Risk-reducing surgery No Favour experimental / Favour comparator / No information 

 

Risk of bias assessment  

Responses underlined in green are potential markers for low risk of bias, and responses in red are potential markers for a risk of bias. Where questions relate only to sign posts to other questions, no 

formatting is used. 

 Signalling questions Description Response options 

Bias due to confounding 

 1.1 Is there potential for confounding of the effect of 

intervention in this study? 

If N/PN to 1.1: the study can be considered to be at low risk of 

bias due to confounding and no further signalling questions 

need be considered 

 Analysis adjusted for age, body mass index, and benign breast disease. 

 Women with a history of any invasive cancer (excluding skin cancer) were 

excluded from the trial (Cuzick 2015; Lancet Oncology; 16(1): 67-75). 

 “Adjusting for HRT use had no material impact on the estimate of risk reduction 

associated with a reduction in breast density”. 

 Although not everyone had a family history of breast cancer, all women were “at 

least twice the average risk of a 50-year-old woman of developing breast cancer”. 

 Menopausal status: “Overall, tamoxifen was more effective in preventing 

estrogen receptor–positive breast cancer than it was in preventing estrogen 

receptor– negative breast cancer and was more effective in women who were 

premenopausal, had never taken HRT, or who had a previous diagnosis of 

atypical hyperplasia or LCIS, but there were no statistically significant 

differences in the odds ratios between the subgroup”. 

 There was no adjustment for ethnicity, but all women were living in the UK or 

Finland. 

Y / PY / PN / N 

Risk of bias judgement  Low 
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Bias in selection of participants into the study 

 2.1. Was selection of participants into the study (or into the 

analysis) based on participant characteristics observed after the 

start of intervention? 

If N/PN to 2.1: go to 2.4 

No: “To minimize the administrative workload, control subjects were selected only 

from the major participating UK centers in Aberdeen, Bristol, Cardiff, Edinburgh, 

London, Manchester, Nottingham, and Southampton”. Cases from the UK and 

Finland. 

Y / PY / PN / N / NI 

2.4. Do start of follow-up and start of intervention coincide for 

most participants? 

Yes: start of follow-up at start of treatment. Y / PY / PN / N / NI 

Risk of bias judgement  Low 

 

Bias in classification of interventions  

 3.1 Were intervention groups clearly defined?  Yes – randomised controlled trial. Y / PY / PN / N / NI 

3.2 Was the information used to define intervention groups 

recorded at the start of the intervention? 

Yes – randomised controlled trial. Y / PY / PN / N / NI 

3.3 Could classification of intervention status have been 

affected by knowledge of the outcome or risk of the outcome? 

No – double-blind randomised controlled trial whereby breast cancer event reported to 

trial by local co-ordinating centres and Office for National Statistics unaware of 

intervention allocation (Cuzick 2015; Lancet Oncology; 16(1): 67-75). 

Y / PY / PN / N / NI 

Risk of bias judgement  Low 

 

Bias due to deviations from intended interventions 

 4.3. Were important co-interventions balanced across 

intervention groups? 

Hormone replacement therapy – yes. 

Risk-reducing surgery – not described, although mammography required so ineligible. 

Y / PY / PN / N / NI 

4.4. Was the intervention implemented successfully for most 

participants? 

Yes – all women consented to the trial, withdrawals only reported n=44 Australian 

women in Cuzick 2015; Lancet Oncology; 16(1): 67-75 (and not included in density 

sub-study). 

Y / PY / PN / N / NI 

4.5. Did study participants adhere to the assigned intervention 

regimen? 

Yes – not described, but withdrawals only reported n=44 Australian women in Cuzick 

2015; Lancet Oncology; 16(1): 67-75 (and not included in density sub-study). Analysis 

of compliance in cases: “no statistically significant difference between subjects in the 

tamoxifen arm who experienced a reduction in mammographic density of less than 10% 

and subjects in the tamoxifen arm who experienced a greater reduction (P = .25)”. 

Y / PY / PN / N / NI 

Risk of bias judgement  Low 
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Bias due to missing data 

 5.1 Were outcome data available for all, or nearly all, 

participants? 

Yes, randomised controlled trial database of outcomes, Also, “In the UK, cancers and 

deaths are also reported to the IBIS-I central office by the Office for National Statistics” 

(Cuzick 2015; Lancet Oncology; 16(1): 67-75). 

Y / PY / PN / N / NI 

5.2 Were participants excluded due to missing data on 

intervention status? 

No, no missing data on intervention as randomised controlled trial  

Y / PY / PN / N / NI 

5.3 Were participants excluded due to missing data on other 

variables needed for the analysis? 

Yes, 1065-1049=16 women missing in main result due to missing BMI  

Y / PY / PN / N / NI 

5.4 If PN/N to 5.1, or Y/PY to 5.2 or 5.3: Are the proportion 

of participants and reasons for missing data similar across 

interventions? 

Not described but low number of women with missing BMI so unlikely to affect result 

(comparison between interventions). 

NA / Y / PY / PN / N / NI 

5.5 If PN/N to 5.1, or Y/PY to 5.2 or 5.3: Is there evidence 

that results were robust to the presence of missing data? 

Not described but low number of women with missing BMI so unlikely to affect result 

(comparison between interventions). 

NA / Y / PY / PN / N / NI 

Risk of bias judgement  Low 

 

Bias in measurement of outcomes  

 6.1 Could the outcome measure have been influenced by 

knowledge of the intervention received? 

No, randomised controlled trial database of outcomes. Also, “In the UK, cancers and 

deaths are also reported to the IBIS-I central office by the Office for National Statistics” 

(Cuzick 2015; Lancet Oncology; 16(1): 67-75). 

Y / PY / PN / N / NI 

6.2 Were outcome assessors aware of the intervention 

received by study participants? 

No, double-blind randomised controlled trial whereby breast cancer event reported to 

trial by local co-ordinating centres or Office for National Statistics who were unaware 

of intervention allocation. 

Y / PY / PN / N / NI 

6.3 Were the methods of outcome assessment comparable 

across intervention groups? 

Yes, randomised controlled trial database of outcomes. Also, “In the UK, cancers and 

deaths are also reported to the IBIS-I central office by the Office for National Statistics” 

(Cuzick 2015; Lancet Oncology; 16(1): 67-75). 

Y / PY / PN / N / NI 

6.4 Were any systematic errors in measurement of the 

outcome related to intervention received? 

No, double-blind randomised controlled trial whereby breast cancer event reported to 

trial by local co-ordinating centres or Office for National Statistics unaware of 

intervention allocation. 

Y / PY / PN / N / NI 

Risk of bias judgement  Low 
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Bias in selection of the reported result 

 Is the reported effect estimate likely to be selected, on the 

basis of the results, from... 

  

7.1. ... multiple outcome measurements within the outcome 

domain?  

No, one outcome of incidence of invasive breast cancer and DCIS. Y / PY / PN / N / NI 

7.2 ... multiple analyses of the intervention-outcome 

relationship? 

No, interaction effect not reported but is worked out from the paper (unadjusted) and from the 

raw data (adjusted). 

Y / PY / PN / N / NI 

7.3 ... different subgroups? No, effect estimate calculated in all women, no subgroups for interaction analysis. Y / PY / PN / N / NI 

Risk of bias judgement  Low 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overall bias 

Risk of bias judgement  Low 
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Appendix C:  Supplementary material for Chapters 5 and 6 

C.I Weighting IBIS-I postmenopausal density changes based on IBIS-II age structure (placebo cases). 

No. in IBIS-I stratified by density change category and age group (A)      
         -30 -25 -20 -15 -10 -5 0 5 10 15 Total % 

35-39 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 0.00% 

40-44 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 0.00% 

45-49 0 0 0 0 0 2 2 0 0 0 4 11.76% 

50-54 0 0 1 0 1 3 5 1 0 1 12 35.29% 

55-59 0 0 0 0 0 2 7 3 0 0 12 35.29% 

60-64 0 0 0 0 0 2 2 0 0 0 4 11.76% 
65-69 0 0 0 0 1 0 1 0 0 0 2 5.88% 

70-74 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 0.00% 

Total 0 0 1 0 2 9 17 4 0 1 34 100.00% 

Density Change Distribution % 0.00% 0.00% 2.94% 0.00% 5.88% 26.47% 50.00% 11.76% 0.00% 2.94% 100.00%   

      

 
Age groups 

      35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 Total 

   IBIS-II distribution % (B) 0.00% 0.35% 2.95% 19.23% 28.29% 29.51% 17.77% 1.90% 100.00% 
   IBIS-I distribution % (C) 0.00% 0.00% 11.76% 35.29% 35.29% 11.76% 5.88% 0.00% 100.00% 
   Weight = B/C (D) N/A N/A 0.25 0.54 0.80 2.51 3.02 N/A 7.13 
   No. in IBIS-I (E) 0 0 4 12 12 4 2 0 34 
   E*D N/A N/A 1.00 6.54 9.62 10.04 6.04 N/A 33.23 
   Reweighted IBIS-I distribution % (F) N/A N/A 3.02% 19.67% 28.94% 30.19% 18.18% N/A 100.00% 
                

A*D           
         -30 -25 -20 -15 -10 -5 0 5 10 15 Total % 

35-39 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.00 0.00% 

40-44 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.00 0.00% 

45-49 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 1.00 3.02% 

50-54 0.00 0.00 0.54 0.00 0.54 1.63 2.72 0.54 0.00 0.54 6.54 19.67% 
55-59 0.00 0.00 0.00 0.00 0.00 1.60 5.61 2.40 0.00 0.00 9.62 28.94% 

60-64 0.00 0.00 0.00 0.00 0.00 5.02 5.02 0.00 0.00 0.00 10.04 30.19% 

65-69 0.00 0.00 0.00 0.00 3.02 0.00 3.02 0.00 0.00 0.00 6.04 18.18% 

70-74 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.00 0.00% 

Total 0.00 0.00 0.54 0.00 3.57 8.76 16.87 2.95 0.00 0.54 33.23 100.00% 

Density Change Distribution % 0.00% 0.00% 1.64% 0.00% 10.73% 26.35% 50.77% 8.87% 0.00% 1.64% 100.00%   
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C.II Weighting IBIS-I postmenopausal density changes based on IBIS-II age structure (placebo controls). 

No. in IBIS-I stratified by density change category and age group (A)  
           -30 -25 -20 -15 -10 -5 0 5 10 15 Total % 

35-39 0 0 0 0 0 0 1 0 0 0 1 0.44% 

40-44 0 0 1 0 0 1 2 0 0 0 4 1.78% 

45-49 0 1 2 2 3 6 17 4 1 1 37 16.44% 

50-54 1 2 3 2 10 19 35 5 0 1 78 34.67% 

55-59 0 1 1 5 10 14 27 4 1 1 64 28.44% 

60-64 1 1 0 1 2 6 19 3 1 1 35 15.56% 

65-69 0 0 0 0 0 1 3 1 1 0 6 2.67% 

70-74 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0 0.00% 

Total 2 5 7 10 25 47 104 17 4 4 225 100.00% 

Density Change Distribution % 0.89% 2.22% 3.11% 4.44% 11.11% 20.89% 46.22% 7.56% 1.78% 1.78% 100.00%   

             

 

Age groups 

      35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 Total 

   IBIS-II distribution % (B) 0.00% 0.35% 2.95% 19.23% 28.29% 29.51% 17.77% 1.90% 100.00% 

   IBIS-I distribution % (C) 0.44% 1.78% 16.44% 34.67% 28.44% 15.56% 2.67% 0.00% 100.00% 

   Weight = B/C (D) 0.00 0.20 0.18 0.55 0.99 1.90 6.66 N/A 10.49 

   No. in IBIS-I (E) 1 4 37 78 64 35 6 0 225 

   E*D 0.00 0.79 6.64 43.26 63.65 66.41 39.98 N/A 220.73 

   Reweighted IBIS-I distribution % (F) 0.00% 0.36% 3.01% 19.60% 28.84% 30.09% 18.11% N/A 100.00% 

                A*D           

         -30 -25 -20 -15 -10 -5 0 5 10 15 Total % 

35-39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00% 

40-44 0.00 0.00 0.20 0.00 0.00 0.20 0.39 0.00 0.00 0.00 0.79 0.36% 

45-49 0.00 0.18 0.36 0.36 0.54 1.08 3.05 0.72 0.18 0.18 6.64 3.01% 

50-54 0.55 1.11 1.66 1.11 5.55 10.54 19.41 2.77 0.00 0.55 43.26 19.60% 

55-59 0.00 0.99 0.99 4.97 9.94 13.92 26.85 3.98 0.99 0.99 63.65 28.84% 

60-64 1.90 1.90 0.00 1.90 3.79 11.38 36.05 5.69 1.90 1.90 66.41 30.09% 

65-69 0.00 0.00 0.00 0.00 0.00 6.66 19.99 6.66 6.66 0.00 39.98 18.11% 

70-74 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.00 0.00% 

Total 2.45 4.18 3.21 8.34 19.82 43.78 105.75 19.82 9.73 3.63 220.73 100.00% 

Density Change Distribution % 1.11% 1.89% 1.46% 3.78% 8.98% 19.84% 47.91% 8.98% 4.41% 1.64% 100.00%   
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C.III Weighting IBIS-I postmenopausal density changes based on IBIS-II age structure (anastrozole cases). 

No. in IBIS-I stratified by density change category and age group (A)  
 

  
          -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 50 Total % 

40-44 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00% 

45-49 0 0 0 1 0 1 0 1 1 0 0 0 4 13.79% 

50-54 0 0 0 0 0 2 2 5 4 1 0 0 14 48.28% 

55-59 0 0 0 0 0 0 0 1 4 0 0 0 5 17.24% 

60-64 0 0 0 0 0 1 1 0 2 0 0 0 4 13.79% 

65-69 0 0 0 0 0 0 0 1 1 0 0 0 2 6.90% 

70-74 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00% 

Total 0 0 0 1 0 4 3 8 12 1 0 0 29 100.00% 

Density Change Distribution % 0.00% 0.00% 0.00% 3.45% 0.00% 13.79% 10.34% 27.59% 41.38% 3.45% 0.00% 0.00% 100.00%   

               

 
Age groups 

         40-44 45-49 50-54 55-59 60-64 65-69 70-74 Total 

      IBIS-II distribution % (B) 0.35% 2.95% 19.23% 28.29% 29.51% 17.77% 1.90% 100.00% 

      IBIS-I distribution % (C) 0.00% 13.79% 48.28% 17.24% 13.79% 6.90% 0.00% 100.00% 

      Weight = B/C (D) N/A 0.21 0.40 1.64 2.14 2.58 N/A 6.97 
      No. in IBIS-I (E) 0 4 14 5 4 2 0 29 
      E*D N/A 0.86 5.58 8.20 8.56 5.15 N/A 28.35 

      Reweighted IBIS-I distribution % (F) N/A 3.02% 19.67% 28.94% 30.19% 18.18% N/A 100.00% 

                     A*D             

          -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 50 Total % 

40-44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00% 

45-49 0.00 0.00 0.00 0.21 0.00 0.21 0.00 0.21 0.21 0.00 0.00 0.00 0.86 3.02% 

50-54 0.00 0.00 0.00 0.00 0.00 0.80 0.80 1.99 1.59 0.40 0.00 0.00 5.58 19.67% 

55-59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.64 6.56 0.00 0.00 0.00 8.20 28.94% 

60-64 0.00 0.00 0.00 0.00 0.00 2.14 2.14 0.00 4.28 0.00 0.00 0.00 8.56 30.19% 

65-69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.58 2.58 0.00 0.00 0.00 5.15 18.18% 

70-74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00% 

Total 0.00 0.00 0.00 0.21 0.00 3.15 2.94 6.42 15.23 0.40 0.00 0.00 28.35 100.00% 

Density Change Distribution % 0.00% 0.00% 0.00% 0.75% 0.00% 11.11% 10.36% 22.66% 53.71% 1.41% 0.00% 0.00% 100.00%   
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C.IV Weighting IBIS-I postmenopausal density changes based on IBIS-II age structure (anastrozole controls). 

No. in IBIS-I stratified by density change category and age group (A)      
          -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 50 Total % 

40-44 0 0 0 0 0 0 2 0 0 0 0 0 2 0.93% 

45-49 0 1 0 2 3 5 8 5 10 0 0 0 34 15.89% 

50-54 1 2 1 2 5 5 14 19 28 4 0 1 82 38.32% 

55-59 1 1 0 0 1 3 10 13 22 2 1 0 54 25.23% 

60-64 0 0 0 0 0 2 7 3 20 0 2 0 34 15.89% 

65-69 0 0 0 0 0 0 0 0 5 2 0 0 7 3.27% 

70-74 0 0 0 0 0 0 0 0 1 0 0 0 1 0.47% 

Total 2 4 1 4 9 15 41 40 86 8 3 1 214 100.00% 

Density Change Distribution % 0.93% 1.87% 0.47% 1.87% 4.21% 7.01% 19.16% 18.69% 40.19% 3.74% 1.40% 0.47% 100.00%   

               

 
Age groups 

         40-44 45-49 50-54 55-59 60-64 65-69 70-74 Total 

      IBIS-II distribution % (B) 0.35% 2.95% 19.23% 28.29% 29.51% 17.77% 1.90% 100.00% 

      IBIS-I distribution % (C) 0.93% 15.89% 38.32% 25.23% 15.89% 3.27% 0.47% 100.00% 

      Weight = B/C (D) 0.38 0.19 0.50 1.12 1.86 5.43 4.06 13.54 
      No. in IBIS-I (E) 2 34 82 54 34 7 1 214 
      E*D 0.75 6.32 41.15 60.54 63.16 38.02 4.06 214.00 

      Reweighted IBIS-I distribution % (F) 0.35% 2.95% 19.23% 28.29% 29.51% 17.77% 1.90% 100.00% 

                     A*D             

          -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 50 Total % 

40-44 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.75 0.35% 

45-49 0.00 0.19 0.00 0.37 0.56 0.93 1.49 0.93 1.86 0.00 0.00 0.00 6.32 2.95% 

50-54 0.50 1.00 0.50 1.00 2.51 2.51 7.03 9.53 14.05 2.01 0.00 0.50 41.15 19.23% 

55-59 1.12 1.12 0.00 0.00 1.12 3.36 11.21 14.57 24.66 2.24 1.12 0.00 60.54 28.29% 

60-64 0.00 0.00 0.00 0.00 0.00 3.72 13.00 5.57 37.15 0.00 3.72 0.00 63.16 29.51% 

65-69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 27.16 10.86 0.00 0.00 38.02 17.77% 

70-74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.06 0.00 0.00 0.00 4.06 1.90% 

Total 1.62 2.31 0.50 1.38 4.19 10.52 33.48 30.61 108.95 15.11 4.84 0.50 214.00 100.00% 

Density Change Distribution % 0.76% 1.08% 0.23% 0.64% 1.96% 4.91% 15.64% 14.30% 50.91% 7.06% 2.26% 0.23% 100.00%   
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C.V Distribution of density changes at different effect sizes of anastrozole. 

 

Cases 
     

Controls 

Density 

Change 

Placebo 

Distribution % 

1 effect size 

Distribution % 

3/4 effect size 

Distribution % 

1/2 effect size 

Distribution %  

Density 

Change 

Placebo 

Distribution % 

1 effect size 

Distribution % 

3/4 effect size 

Distribution % 

1/2 effect size 

Distribution % 

-40 0.00% 0.00% 0.00% 0.00% 
 

-40 0.00% 0.76% 0.57% 0.38% 

-35 0.00% 0.00% 0.00% 0.00% 
 

-35 0.00% 1.08% 0.81% 0.54% 

-30 0.00% 0.00% 0.00% 0.00% 
 

-30 1.11% 0.23% 0.45% 0.67% 

-25 0.00% 0.75% 0.57% 0.38% 
 

-25 1.89% 0.64% 0.96% 1.27% 

-20 1.64% 0.00% 0.41% 0.82% 
 

-20 1.46% 1.96% 1.83% 1.71% 

-15 0.00% 11.11% 8.34% 5.56% 
 

-15 3.78% 4.91% 4.63% 4.35% 

-10 10.73% 10.36% 10.45% 10.54% 
 

-10 8.98% 15.64% 13.98% 12.31% 

-5 26.35% 22.66% 23.58% 24.50% 
 

-5 19.84% 14.30% 15.69% 17.07% 

0 50.77% 53.71% 52.98% 52.24% 
 

0 47.91% 50.91% 50.16% 49.41% 

5 8.87% 1.41% 3.27% 5.14% 
 

5 8.98% 7.06% 7.54% 8.02% 

10 0.00% 0.00% 0.00% 0.00% 
 

10 4.41% 2.26% 2.80% 3.34% 

15 1.64% 0.00% 0.41% 0.82% 
 

15 1.64% 0.00% 0.41% 0.82% 

50 0.00% 0.00% 0.00% 0.00% 
 

50 0.00% 0.23% 0.18% 0.12% 

Total 100.00% 100.00% 100.00% 100.00% 
 

Total 100.00% 100.00% 100.00% 100.00% 
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C.VI Case/control weighted distribution of density changes at different effect sizes of anastrozole. 

Estimated distributions based on IBIS-I: placebo: cases=4%, controls=96%, anastrozole: cases=2%, controls=98%. 
 

Cases & Controls 

Density Change Placebo Distribution % 1 effect size Distribution % 3/4 effect size Distribution % 1/2 effect size Distribution % 

-40 0.00% 0.74% 0.56% 0.37% 

-35 0.00% 1.06% 0.79% 0.53% 

-30 1.06% 0.23% 0.44% 0.66% 

-25 1.81% 0.64% 0.95% 1.25% 

-20 1.46% 1.92% 1.80% 1.69% 

-15 3.61% 5.04% 4.71% 4.37% 

-10 9.06% 15.53% 13.90% 12.28% 

-5 20.12% 14.48% 15.85% 17.22% 

0 48.03% 50.97% 50.22% 49.47% 

5 8.98% 6.94% 7.45% 7.96% 

10 4.22% 2.21% 2.74% 3.27% 

15 1.64% 0.00% 0.41% 0.82% 

50 0.00% 0.23% 0.17% 0.11% 

Total 100.00% 100.00% 100.00% 100.00% 

 

 

C.VII Case/control weighted distribution of dichotomised density changes at different effect sizes of anastrozole . 

Estimated distributions based on IBIS-I: placebo: cases=4%, controls=96%, anastrozole: cases=2%, controls=98%. 
 

Density Change Placebo Distribution % 1 effect size Distribution % 3/4 effect size Distribution % 1/2 effect size Distribution % 

≥10% reduction 17.01% 25.17% 23.15% 21.14% 

<10% reduction 82.99% 74.83% 76.85% 78.86% 

Total 100.00% 100.00% 100.00% 100.00% 

 

 

 



 

381 
 

 

C.VIII Power calculation for different sample sizes and effect sizes of 

anastrozole. 

Continuous Effect size 

Sample size per arm 1  3/4  1/2 

400 0.616 0.400 0.214 

450 0.663 0.432 0.239 

500 0.720 0.487 0.257 

550 0.752 0.525 0.275 

600 0.791 0.552 0.295 

     <10% vs. ≥10% Effect size 

Sample size per arm 1  3/4  1/2 

400 0.810 0.583 0.308 

450 0.854 0.639 0.347 

500 0.890 0.677 0.380 

550 0.907 0.725 0.416 

600 0.937 0.763 0.446 

 

C.IX Case/control weighted distribution of 600 women per arm 

Estimated distributions based on IBIS-I: placebo: cases=4%, controls=96%, anastrozole: 
cases=2%, controls=98%. 
 

 

Cases Controls Total 

Placebo 4% of 600=24 96% of 600=576 600 

Anastrozole 2% of 600=12 98% of 600=588 600 

Total 36 1164 1200 

 

C.X Case/control weighted distribution of 600 women per arm, accounting 

for baseline density <10% in IBIS-I postmenopausal women. 

Estimated distributions based on IBIS-I: placebo: cases=4%, controls=96%, anastrozole: 

cases=2%, controls=98%. There were 81% of postmenopausal cases who had baseline density 

<10% and 79% of postmenopausal controls who had baseline density <10% in IBIS-I. 

 

 

Cases Controls Total 

Placebo 24/0.81=30 576/0.79=729 759 

Anastrozole 12/0.81=15 588/0.79=744 759 

Total 44 1473 1518 

Because the trial was randomised, there was no reason for variation in these proportions of density by 

treatment arm at baseline; there were some rounding errors for the total amounts. 
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C.XI Density change distribution in cases and controls: 1st follow-up vs. 2nd 

follow-up (all women and subgroup with available final follow-up) 

All women and subgroup with available final follow-up; left and right, respectively: 

 

C.XII Density change distribution in controls: 1st follow-up vs. 2nd follow-up 

(all women and subgroup with available final follow-up) 

All women and subgroup with available final follow-up; left and right, respectively: 
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C.XIII Density change distribution in cases: 1st follow-up vs. 2nd follow-up 

(all women and subgroup with available final follow-up) 

All women and subgroup with available final follow-up; left and right, respectively: 

 

C.XIV Density change distribution in placebo: 1st follow-up vs. 2nd follow-up 

(all placebo and subgroup with available final follow-up) 

All placebo and subgroup with available final follow-up; left and right, respectively: 
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C.XV  Density change distribution in anastrozole: 1st follow-up vs. 2nd 

follow-up (all anastrozole and subgroup with available final follow-

up) 

All anastrozole and subgroup with available final follow-up; left and right, respectively: 
 

 

C.XVI  Density change distribution in placebo vs. anastrozole (all women at 

first follow-up, subgroup with available final follow-up at first follow-

up and final follow-up) 

All women at first follow-up, subgroup with available final follow-up at first follow-up and 
final follow-up; top left, top right, bottom left, respectively: 
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C.XVII Density change distribution in placebo controls: 1st follow-up vs. 2nd 

follow-up (all placebo controls and subgroup with available final 

follow-up) 

All placebo controls and subgroup with available final follow-up; left and right, respectively: 
 

 

C.XVIII Density change distribution in anastrozole controls: 1st follow-up 

vs. 2nd follow-up (all anastrozole controls and subgroup with available 

final follow-up) 

All anastrozole controls and subgroup with available final follow-up; left and right, 
respectively: 
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C.XIX Density change distribution in placebo controls vs. anastrozole 

controls (all women at first follow-up, subgroup with available final 

follow-up at first follow-up and final follow-up) 

All women at first follow-up, subgroup with available final follow-up at first follow-up and 
final follow-up; top left, top right, bottom left, respectively: 
 

 

C.XX Density change distribution in placebo cases: 1st follow-up vs. 2nd 

follow-up (all placebo cases and subgroup with available final follow-

up) 

All placebo cases and subgroup with available final follow-up; left, right, respectively: 
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C.XXI Density change distribution in anastrozole cases: 1st follow-up vs. 2nd 

follow-up (all anastrozole cases and subgroup with available final 

follow-up) 

All anastrozole cases and subgroup with available final follow-up; left, right, respectively: 
 

 

C.XXII Density change distribution in placebo cases vs. anastrozole cases 

(all women at first follow-up, subgroup with available final follow-up 

at first follow-up and final follow-up) 

All women at first follow-up, subgroup with available final follow-up at first follow-up and 
final follow-up; top left, top right, bottom left, respectively: 
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C.XXIII Statistical Analysis Plan for Chapter 5 

1. INTRODUCTION  

This document describes the statistical analysis plan for the IBIS-II mammographic 

density study examining change in density between anastrozole and placebo-treated 

patients in the IBIS-II Prevention trial. 

 

2. OBJECTIVES OF THE ANALYSIS 

 

2.1 Primary objective 

To determine whether women on anastrozole experience different age-adjusted changes 

in density at first follow-up mammogram than women on placebo in the IBIS-II 

Prevention trial. 

 

2.2 Secondary objective I 

To determine whether women on anastrozole experience different changes in density at 

first follow-up mammogram than women on placebo in the IBIS-II Prevention trial, 

after adjustment for age at randomisation, body mass index at randomisation, hormone 

replacement therapy use up to 12 months before randomisation, age at menopause, 

image type and time between baseline and first follow-up mammogram. 

 

2.3 Secondary objective II 

To determine whether women on anastrozole experience different age-adjusted changes 

in density at final follow-up mammogram than women on placebo in the IBIS-II 

Prevention trial. 

 

2.4 Secondary objective III 

To determine whether women on anastrozole experience different changes in density at 

final follow-up mammogram than women on placebo in the IBIS-II Prevention trial, 

after adjustment for age at randomisation, body mass index at randomisation, hormone 

replacement therapy use up to 12 months before randomisation, age at menopause, 

image type and time between baseline and final follow-up mammogram. 

 

2.5 Secondary objective IV 

To examine the effect of anastrozole on first density change in subgroups of covariates 

in the IBIS-II Prevention trial (age at randomisation, body mass index at randomisation, 

age at menarche, age at menopause, Tyrer-Cuzick 10-year risk, baseline density, age at 

first birth, oral contraception use, hormone replacement therapy use up to 12 months 
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before randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram). 

 

2.6 Secondary objective V 

To examine the effect of anastrozole on final density change in subgroups of covariates 

in the IBIS-II Prevention trial (age at randomisation, body mass index at randomisation, 

age at menarche, age at menopause, Tyrer-Cuzick 10-year risk, baseline density, age at 

first birth, oral contraception use, hormone replacement therapy use up to 12 months 

before randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram). 

 

3. PERSONNEL  

The major statistical analysis will be undertaken by Emma Atakpa at the Centre for 

Cancer Prevention, Wolfson Institute, Queen Mary University of London, London UK. 

 

4. TIMING OF ANALYSIS  

The major statistical analysis will begin in October 2018 (approximate date). 

 

5. STUDY PARTICIPANTS 

 

5.1 Eligible participants 

 The primary and secondary (I, IV) statistical analyses will include all randomised 

women with an appropriate baseline and first follow-up mammogram (within specified 

timeframes - see below, good quality - as assessed by the experienced radiologist, MLO 

view only) who are breast cancer-free at the time of their first follow-up mammogram. 

 

 The secondary (II, III, V) statistical analyses will include all randomised women with 

an appropriate baseline, first follow-up and final follow-up mammogram (within 

specified timeframes - see below, good quality - as assessed by the experienced 

radiologist, MLO view only) who are breast cancer-free at the time of their final follow-

up mammogram. This will be a subgroup of participants from the primary analysis. 

 

 Baseline mammograms will range from ≥0 months prior to the date of randomisation to 

<12.5 months prior to the date of randomisation. First follow-up mammograms will 

range from ≥8.5 months after the date of randomisation to <38.5 months after the date 

of randomisation. Final follow-up mammograms will range from ≥47.5 months after the 

date of randomisation to <60.5 months after the date of randomisation. These time 
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frames are in accordance with analysis from IBIS-I (19) and standard operating 

procedures for IBIS-II co-ordinating centres. 

 

 Only women with all mammograms of the same image type (i.e. all film or all digital) 

will be included. 

 

 Only women with ≥10% baseline density will be included. 

 

 Breast cancer-free ‘controls’ are defined as women who had not been diagnosed with 

breast cancer at the time of study design. ‘Cases’ are defined as women who had been 

clinically diagnosed with breast cancer at the time of study design. Cases will be 

included if they are diagnosed with breast cancer after their first follow-up 

mammogram. Final follow-up mammograms for cases will be included if they occur 

before the breast cancer diagnosis.  

 

 Contralateral mammograms will be used for cases and mammograms from a randomly 

selected breast side will be used for breast cancer-free controls. 

 

5.2 Sample size calculation 

Density change for postmenopausal women in IBIS-I was weighted based on age at 

randomisation of the IBIS-II cohort, to estimate the expected density change in a cohort 

with the same age structure as IBIS-II. This was done separately for controls on 

placebo, controls on tamoxifen, cases on placebo and cases on tamoxifen. By weighting 

the density change distribution according to the distribution of cases and controls by 

treatment arm in IBIS-II, an overall density change distribution was formulated. 

Simulations (10,000 repeats) were conducted to count the number of times there was a 

significant difference in density change between arms using a Wilcoxon rank sum test 

and a Pearson chi-squared test (of density change dichotomised into ≥10% reduction 

and <10% reduction). Simulations were repeated for chosen sample sizes between 400 

and 500 women per arm. Different effect sizes (1/2 and 3/4) for tamoxifen were also 

tested by taking a weighting of the placebo and tamoxifen density change distributions 

corresponding to the proposed effect size. This was done to allow anastrozole to have a 

weaker effect on density change than tamoxifen. With 80% power and 3/4 the effect 

size of tamoxifen, 450 women per arm are required to show a difference in density 

change from baseline to first follow-up mammogram between the two treatment arms at 

the 5% type-I error level. In total, 569 anastrozole and 569 placebo-treated women are 

required, after accounting for exclusions with baseline density <10% based on the 

number of postmenopausal women with baseline density <10% in IBIS-I. This equates 
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to approximately 1105 breast cancer-free women and 33 breast-cancer cases. A sample 

size larger than this is currently impracticable given the resources and number of 

mammograms received (suitable mammograms, which meet the criteria outlined in 

section 5.1, have been received for 35 breast-cancer cases and 938 breast cancer-free 

controls, providing power to detect a difference in density change from baseline to first 

follow-up mammogram between the two treatment arms at the 5% type-I error level of 

85%). 

 

6. OUTCOMES 

 

6.1 Primary outcome 

 The primary outcome is defined as the change in density from baseline mammogram to 

first follow-up mammogram (9-38 months post randomisation). Density will be 

visually-assessed by an experienced reader (Linda Metaxa) using 5% intervals, 

following the same method as in IBIS-I. Randomisation of mammograms will be per 

woman (so that mammograms for each woman will be read in comparison with the 

other mammograms for that woman), and mammograms will be ordered sequentially. 

For each woman, density at baseline will be read first, followed by first follow-up 

mammogram (compared with baseline mammogram) and finally, final follow-up 

mammogram (compared with both baseline and first follow-up mammogram). First 

density change will therefore be defined as the difference between baseline density and 

first follow-up mammogram density; semi-continuously, and dichotomised into <10% 

or ≥10% absolute reduction. The reader will be blinded to treatment group, case status 

and risk factors, and images will be appropriately anonymised. 

 

6.2 Secondary outcome 

 The secondary outcome is defined as the change in density from baseline mammogram 

to final follow-up mammogram (48-60 months post randomisation). Density will be 

visually-assessed by an experienced reader (Linda Metaxa) using 5% intervals, 

following the same method as in IBIS-I. Randomisation of mammograms will be per 

woman (so that mammograms for each woman will be read in comparison with the 

other mammograms for that woman), and mammograms will be ordered sequentially. 

For each woman, density at baseline will be read first, followed by first follow-up 

mammogram (compared with baseline mammogram) and finally, final follow-up 

mammogram (compared with both baseline and first follow-up mammogram). Final 

density change will therefore be defined as the difference between baseline density and 

final follow-up mammogram density; semi-continuously, and dichotomised into <10% 
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or ≥10% absolute reduction. The reader will be blinded to treatment group, case status 

and risk factors, and images will be appropriately anonymised. 

 

7. STATISTICAL METHODS  

 

7.1 Hypotheses to be tested 

 

7.1.1 Primary hypothesis 

 H0: There is no difference in age-adjusted change in density from baseline to first 

follow-up mammogram between patients in the anastrozole arm and patients in the 

placebo arm. 

 H1: Age-adjusted change in density from baseline to first follow-up mammogram is 

different between patients in the anastrozole arm and patients in the placebo arm. 

 

7.1.2 Secondary hypothesis I 

 H0: There is no difference in change in density from baseline to first follow-up 

mammogram between patients in the anastrozole arm and patients in the placebo arm, 

after adjustment for age at randomisation, body mass index at randomisation, hormone 

replacement therapy use up to 12 months before randomisation, age at menopause, 

image type, and time between baseline and first follow-up mammogram. 

 H1: Change in density from baseline to first follow-up mammogram is different between 

patients in the anastrozole arm and patients in the placebo arm, after adjustment for age 

at randomisation, body mass index at randomisation, hormone replacement therapy use 

up to 12 months before randomisation, age at menopause, image type, and time between 

baseline and first follow-up mammogram. 

 

7.1.3 Secondary hypothesis II 

 H0: There is no difference in age-adjusted change in density from baseline to final 

follow-up mammogram between patients in the anastrozole arm and patients in the 

placebo arm. 

 H1: Age-adjusted change in density from baseline to final follow-up mammogram is 

different between patients in the anastrozole arm and patients in the placebo arm. 

 

7.1.4 Secondary hypothesis III 

 H0: There is no difference in change in density from baseline to final follow-up 

mammogram between patients in the anastrozole arm and patients in the placebo arm, 

after adjustment for age at randomisation, body mass index at randomisation, hormone 
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replacement therapy use up to 12 months before randomisation, age at menopause, 

image type, and time between baseline and first follow-up mammogram. 

 H1: Change in density from baseline to final follow-up mammogram is different 

between patients in the anastrozole arm and patients in the placebo arm, after 

adjustment for age at randomisation, body mass index at randomisation, hormone 

replacement therapy use up to 12 months before randomisation, age at menopause, 

image type, and time between baseline and first follow-up mammogram. 

 

7.1.5 Secondary hypothesis IV 

 H0: There is no difference in anastrozole-induced change in density from baseline to 

first follow-up mammogram between subgroups of covariates (age at randomisation, 

body mass index at randomisation, age at menarche, age at menopause, Tyrer-Cuzick 

10-year risk, baseline density, age at first birth, oral contraception use, hormone 

replacement therapy use up to 12 months before randomisation, smoking status, history 

of atypical hyperplasia or LCIS, image type, and time between baseline mammogram 

and follow-up mammogram). 

 H1: Anastrozole-induced change in density from baseline to first follow-up 

mammogram is different between subgroups of covariates (age at randomisation, body 

mass index at randomisation, age at menarche, age at menopause, Tyrer-Cuzick 10-year 

risk, baseline density, age at first birth, oral contraception use, hormone replacement 

therapy use up to 12 months before randomisation, smoking status, history of atypical 

hyperplasia or LCIS, image type, and time between baseline mammogram and follow-

up mammogram). 

 

7.1.6 Secondary hypothesis V 

 H0: There is no difference in anastrozole-induced change in density from baseline to 

final follow-up mammogram between subgroups of covariates (age at randomisation, 

body mass index at randomisation, age at menarche, age at menopause, Tyrer-Cuzick 

10-year risk, baseline density, age at first birth, oral contraception use, hormone 

replacement therapy use up to 12 months before randomisation, smoking status, history 

of atypical hyperplasia or LCIS, image type, and time between baseline mammogram 

and follow-up mammogram). 

 H1: Anastrozole-induced change in density from baseline to final follow-up 

mammogram is different between subgroups of covariates (age at randomisation, body 

mass index at randomisation, age at menarche, age at menopause, Tyrer-Cuzick 10-year 

risk, baseline density, age at first birth, oral contraception use, hormone replacement 

therapy use up to 12 months before randomisation, smoking status, history of atypical 



 

394 
 

hyperplasia or LCIS, image type, and time between baseline mammogram and follow-

up mammogram). 

 

7.2 Analysis methods 

All statistical analysis will be conducted in STATA 13. All tests (see below) will be 

two-sided with a significance level of 5%. Results will be omitted if subgroup numbers 

are small enough in order to un-blind the statistician. 

 

7.2.1 Baseline characteristics 

The following baseline characteristics will be summarised in a frequency table, overall 

and by treatment. Frequency counts & percentages will be provided for categorical data 

and means (standard deviation, SD) and medians (interquartile range, IQR) will be 

provided for continuous data. Two-sample t-tests (STATA’s “ttest” command) and 

Wilcoxon rank sum tests (STATA’s “ranksum” command) will test differences between 

treatment arms in continuous data and Pearson chi-squared tests (STATA’s “tab, chi2” 

command) will test differences between treatment arms in categorical data: 

 

 Age at randomisation (mean (SD), median (IQR)) 

 Body Mass Index (BMI) at randomisation (mean (SD), median (IQR)) 

 Age at menarche (mean (SD), median (IQR)) 

 Age at menopause (mean (SD), median (IQR)) 

 Tyrer-Cuzick 10-year risk (mean (SD), median (IQR)) 

 Baseline density (mean (SD), median (IQR)) 

 Age at first birth (nulliparous/>27/21-27/≤20) 

 Oral contraception use (never/previously/currently) 

 Hormone Replacement Therapy (HRT) use up to 12 months before randomisation 

(no/yes) 

 Smoking status (never/former/current) 

 History of atypical hyperplasia or LCIS (no/yes) 

 Image type (film/digital) 

 

7.2.2 Baseline characteristics and baseline density 

 Univariate bootstrap linear regression models of baseline density on baseline covariates 

(excluding baseline density), adjusted for age at randomisation (except age at 

randomisation): n, β-coefficient, 95% confidence interval, P-value. 

STATA’s “regress” command 
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 Multivariable bootstrap linear regression models of baseline density on baseline 

covariates (excluding baseline density). All covariates will be included in the 

multivariable model: n, β-coefficient, 95% confidence interval, P-value. 

STATA’s “bootstrap”, “estat bootstrap, all” & “regress” commands 

 Univariate logistic regression models of baseline density (dichotomised into <50% or 

≥50%) on baseline covariates (excluding baseline density), adjusted for age at 

randomisation (except age at randomisation): n, odds ratio, 95% confidence interval, P-

value. 

STATA’s “logistic” command 

 Multivariable logistic regression models of baseline density (dichotomised into <50% 

or ≥50%) on baseline covariates (excluding baseline density). All covariates will be 

included in the multivariable model: n, odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

7.2.3 Primary analysis  

 Wilcoxon rank sum test comparing density change in the anastrozole and placebo arms: 

P-value. 

STATA’s “summarize, detail” command 

STATA’s “tabstat, statistics(iqr)” command 

STATA’s “ranksum, by(treatment)” command 

 Pearson chi-squared test comparing density change in the anastrozole and placebo arms 

(density change dichotomised into <10% absolute reduction and ≥10% absolute 

reduction): P-value. 

STATA’s “tabulate, chi2” command 

 Bootstrap linear regression model of change in density on treatment arm and age at 

randomisation: n, β-coefficient, 95% confidence interval, P-value. 

STATA’s “bootstrap”, “estat bootstrap, all” & “regress” commands 

 Logistic regression model of change in density (dichotomised into <10% absolute 

reduction and ≥10% absolute reduction) on treatment arm and age at randomisation: n, 

odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

7.2.4 Secondary analysis I 

 Bootstrap linear regression model of change in density on treatment arm, adjusted for 

covariates. All covariates will be included in the multivariable model: n, β-coefficient, 

95% confidence interval, P-value. 

STATA’s “bootstrap”, “estat bootstrap, all” & “regress” commands 
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 Logistic regression model of change in density (dichotomised into <10% absolute 

reduction and ≥10% absolute reduction) on treatment arm, adjusted for covariates. All 

covariates will be included in the multivariable model: n, odds ratio, 95% confidence 

interval, P-value. 

STATA’s “logistic” command 

 

7.2.5 Secondary analysis II 

 Wilcoxon rank sum test comparing density change in the anastrozole and placebo arms: 

P-value. 

STATA’s “summarize, detail” command 

STATA’s “tabstat, statistics(iqr)” command 

STATA’s “ranksum, by(treatment)” command 

 Pearson chi-squared test comparing density change in the anastrozole and placebo arms 

(density change dichotomised into <10% absolute reduction and ≥10% absolute 

reduction): P-value. 

STATA’s “tabulate, chi2” command 

 Bootstrap linear regression model of change in density on treatment arm and age at 

randomisation: n, β-coefficient, 95% confidence interval, P-value. 

STATA’s “bootstrap”, “estat bootstrap, all” & “regress” commands 

 Logistic regression model of change in density (dichotomised into <10% absolute 

reduction and ≥10% absolute reduction) on treatment arm and age at randomisation: n, 

odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

7.2.6 Secondary analysis III 

 Bootstrap linear regression model of change in density on treatment arm, adjusted for 

covariates. All covariates will be included in the multivariable model: n, β-coefficient, 

95% confidence interval, P-value. 

STATA’s “bootstrap”, “estat bootstrap, all” & “regress” commands 

 Logistic regression model of change in density (dichotomised into <10% absolute 

reduction and ≥10% absolute reduction) on treatment arm, adjusted for covariates. All 

covariates will be included in the multivariable model: n, odds ratio, 95% confidence 

interval, P-value. 

STATA’s “logistic” command 

 

7.2.7 Secondary analysis IV 

 Wilcoxon rank-sum test comparing first density change between subgroups of 

covariates in the anastrozole arm only (for covariates with 2 subgroups): P-value. 
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STATA’s “ranksum, by(subgroup)” command 

 Cuzick’s trend test comparing first density change between subgroups of covariates in 

the anastrozole arm only (for covariates with >2 ordered subgroups): P-value. 

STATA’s “nptrend, by(subgroup)” command 

 Logistic regression to assess the odds of a higher first density reduction (≥10% absolute 

reduction) in one subgroup compared to the reference subgroup in the anastrozole arm 

only: Odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

7.2.8 Secondary analysis V 

 Wilcoxon rank-sum test comparing final density change between subgroups of 

covariates in the anastrozole arm only (for covariates with 2 subgroups): P-value. 

STATA’s “ranksum, by(subgroup)” command 

 Cuzick’s trend test comparing final density change between subgroups of covariates in 

the anastrozole arm only (for covariates with >2 ordered subgroups): P-value. 

STATA’s “nptrend, by(subgroup)” command 

 Logistic regression to assess the odds of a higher final density reduction (≥10% absolute 

reduction) in one subgroup compared to the reference subgroup in the anastrozole arm 

only: Odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

7.2.9 Adjustment covariates 

The following covariates are chosen as potential confounders for density change based 

on previous literature and significant covariates in the analysis from IBIS-I (203) 

(Cuzick 2004) and hence will be included in adjusted regression models (7.2.4 & 7.2.6): 

 

 Age at randomisation (continuous) 

 BMI at randomisation (continuous) 

 Age at menopause (continuous) 

 HRT use up to 12 months before randomisation (no/yes) 

 Image type (film/digital) 

 Time between baseline mammogram and follow-up mammogram (continuous) 

 

A separate model will be conducted, including an adjustment for baseline density 

(continuous) and age at randomisation only (7.2.4 & 7.2.6). 

 

A separate model will be conducted, including an adjustment for baseline density 

(continuous) and the covariates above (7.2.4 & 7.2.6). 
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Time on treatment will not be included in adjustments because an intention-to-treat 

analysis will be conducted. 

 

7.2.10 Subgroup covariates 

The following covariates will be considered in subgroup analyses (7.2.7 & 7.2.8): 

 

 Age at randomisation (<median age, ≥median age) 

 BMI at randomisation (<median BMI, ≥median BMI) 

 Age at menarche (<median age at menarche, ≥median age at menarche) 

 Age at menopause (<median age at menopause, ≥median age at menopause) 

 Tyrer-Cuzick 10-year risk (<median risk, ≥median risk) 

 Baseline density (<median baseline density, ≥median baseline density) 

 Age at first birth (nulliparous/>27/21-27/≤20) 

 Oral contraception use (never/previously/currently) 

 HRT use up to 12 months before randomisation (no/yes) 

 Smoking status (never/former/current) 

 History of atypical hyperplasia or LCIS (no/yes) 

 Image type (film/digital) 

 Time between baseline mammogram and follow-up mammogram (<median time 

between baseline mammogram and follow-up mammogram, ≥median time between 

baseline mammogram and follow-up mammogram) 
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7.3 Tables 

 

Table 1: Baseline characteristics overall and by treatment. *P-value from two-sample t-test 
(corresponding to mean column) and Wilcoxon rank sum test (corresponding to median 
column), **p-value from Pearson chi-squared test of association.  
 

Variable 
Overall Placebo Anastrozole 

Mean 
(SD) 

Median 
(IQR) 

Mean 
(SD) 

Median 
(IQR) 

Mean 
(SD) 

Median 
(IQR) 

Age at randomisation (yr)       

P*       
Body Mass Index (kg/m2)       

P*       
Age at menarche (yr)       

P*       
Age at menopause (yr)       

P*       
Tyrer-Cuzick 10-year risk 
(%) 

      

P*       
Baseline density (%)       

P*       
 N % N % N % 

Age at first birth (yr)       
Nulliparous       

>27       
21-27       

≤20       

P**       
Oral contraception use       

Never       
Previously       

Currently       
P**       

HRT use up to 12 months 
before randomisation 

      

No       

Yes       
P**       

Smoking status       
Never       

Former       
Current       

P**       
History of Atypical 
Hyperplasia or LCIS 

      

No       
Yes       

P**       
Image type       

Film       
Digital       

P**       
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 Univariate 
Linear (bootstrap) 

regression 

Multivariable 
Linear (bootstrap) 

regression1 

Univariate 
Logistic 

regression 

Multivariable 
Logistic 

regression1 

Variable β-
coefficien

t 
(95% 

CI)*** 

Bootstra
p SE 

β-
coefficien

t 
(95% 

CI)*** 

Bootstra
p SE 

OR 
(95
% 

CI)# 

P-
value

# 

OR 
(95
% 

CI)# 

P-
value

# 

Age at 
randomisation 
(yr)* 

        

Body Mass 
Index (kg/m2)* 

        

Age at 
menarche (yr)* 

        

Age at 
menopause 
(yr)* 

        

Tyrer-Cuzick 
10-year risk 
(%)* 

        

Age at first 
birth (yr)** 

        

Nulliparous Ref  Ref  Ref  Ref  
>27         

21-27         
≤20         

Oral 
contraception 
use** 

        

Never Ref  Ref  Ref  Ref  

Previously         
Currently         

HRT use up to 
12 months 
before 
randomisation*
* 

        

No Ref  Ref  Ref  Ref  
Yes         

Smoking 
status** 

        

Never Ref  Ref  Ref  Ref  

Former         
Current         

History of 
Atypical 
Hyperplasia or 
LCIS** 

        

No Ref  Ref  Ref  Ref  
Yes         

Image type**         
Film Ref  Ref  Ref  Ref  

Digital         
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Table 2: Association between baseline covariates and baseline breast density (semi-continuous 
and dichotomised ≥50% and <50%) in univariate and multivariable models. All covariates 
adjusted for age at randomisation in univariate models (except for age at randomisation). * β-
coefficient represents effect on baseline density per unit increase in covariate, OR represents 
odds of having ≥50% baseline density per unit increase in covariate. ** β-coefficient represents 
difference in baseline density from reference category, OR represents odds of having ≥50% 
baseline density relative to the reference category. *** Percentile 95% CI. # 95% CI and p-
value from a Wald test. 1Model includes all covariates. N=. 

 

Boyd 
catego
ry at 
entry 

Number of women 
Boyd category at first follow-up 

Tot
al 

Boyd category at final follow-up 
Tot
al 

0
% 

1-
10
% 

11-
25
% 

26-
50
% 

51-
75
% 

76-
100
% 

0
% 

1-
10
% 

11-
25
% 

26-
50
% 

51-
75
% 

76-
100
% 

0%               
1-10%               

11-
25% 

              

26-
50% 

              

51-
75% 

              

76-
100% 

              

Total               
 
Table 3: Cross tabulation of number of women in each Boyd category at entry to the study with 
category at first and final follow-up. The first number in each cell is the total number of 
subjects. Numbers in parentheses are the placebo and anastrozole groups, respectively. 
 

 N  Median IQR P-value 
First Follow-up     

Placebo    
Anastrozole    

Final Follow-up     
Placebo    

Anastrozole    
Table 4: Semi-continuous density change by treatment arm. P-value from Wilcoxon rank sum 
test. 
 

 N (% of follow-up) χ2 
P-value 

 <10% reduction ≥10% reduction 

First Follow-up     

Placebo   
Anastrozole   

Final Follow-up     
Placebo   

Anastrozole   

Table 5: Dichotomised density change by treatment arm. P-value from Pearson chi-squared test. 
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 Univariate Adjusted1 Adjusted2 Adjusted3 
 β-

coeffici
ent 

(95% 
CI)*** 

Bootstr
ap SE 

β-
coeffici

ent 
(95% 

CI)*** 

Bootstr
ap SE 

β-
coeffici

ent 
(95% 

CI)*** 

Bootstr
ap SE 

β-
coeffici

ent 
(95% 

CI)*** 

Bootstr
ap SE 

 First follow-up 

Treatment**
# 

        

Placebo Ref  Ref  Ref  Ref  

Anastrozole         
Age at 
randomisatio
n (yr)* 

        

Body Mass 
Index 
(kg/m2)* 

    - -   

Age at 
menopause 
(yr)* 

    - -   

Baseline 
density (%)* 

  - -     

HRT use up 
to 12 months 
before 
randomisatio
n** 

        

No Ref  Ref  - - Ref  

Yes     - -   

Image 
type** 

        

Film Ref  Ref  - - Ref  
Digital     - -   

Time 
between 
baseline 
mammogra
m and first 
follow-up 
mammogra
m (yr)* 

    - -   

 Final follow-up 
Treatment**
# 

        

Placebo Ref  Ref  Ref  Ref  
Anastrozole         

Age at 
randomisatio
n (yr)* 

        

Body Mass 
Index 
(kg/m2)* 

    - -   

Age at 
menopause 

    - -   
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(yr)* 

Baseline 
density (%)* 

  - -     

HRT use up 
to 12 months 
before 
randomisatio
n** 

        

No Ref  Ref  - - Ref  

Yes     - -   
Image 
type** 

        

Film Ref  Ref  - - Ref  
Digital     - -   

Time 
between 
baseline 
mammogra
m and final 
follow-up 
mammogra
m (yr)* 

    - -   

Table 6: Bootstrap linear regression results for change in density on treatment arm in univariate 
and adjusted models. * β-coefficient represents effect on density change per unit increase in 
covariate, ** β-coefficient represents difference in density change from reference category. *** 
Percentile 95% CI. #Additionally adjusted for age at randomisation in univariate model. 1Model 
includes all variables except for baseline density, 2Model includes treatment, age at 
randomisation and baseline density, 3Model includes all covariates. N= for first follow-up, N= 
for final follow-up. 

 Univariate Adjusted1 Adjusted2 Adjusted3 

 OR 
(95% 
CI) 

P-
value 

OR 
(95% 
CI) 

P-
value 

OR 
(95% 
CI) 

P-
value 

OR 
(95% 
CI) 

P-
value 

 First follow-up 

Treatment**#         
Placebo Ref  Ref  Ref  Ref  

Anastrozole         
Age at randomisation 
(yr)* 

        

Body Mass Index 
(kg/m2)* 

    - -   

Age at menopause (yr)*     - -   
Baseline density (%)*   - -     

HRT use up to 12 
months before 
randomisation** 

        

No Ref  Ref  - - Ref  

Yes     - -   
Image type**         

Film Ref  Ref  - - Ref  
Digital     - -   

Time between baseline 
mammogram and first 
follow-up mammogram 
(yr)* 

    - -   
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 Final follow-up 

Treatment**#         
Placebo Ref  Ref  Ref  Ref  

Anastrozole         
Age at randomisation 
(yr)* 

        

Body Mass Index 
(kg/m2)* 

    - -   

Age at menopause (yr)*     - -   

Baseline density (%)*   - -     
HRT use up to 12 
months before 
randomisation** 

        

No Ref  Ref  - - Ref  

Yes     - -   
Image type**         

Film Ref  Ref  - - Ref  

Digital     - -   
Time between baseline 
mammogram and final 
follow-up mammogram 
(yr)* 

    - -   

Table 7: Logistic regression results for change in density (dichotomised into <10% absolute 
reduction and ≥10% absolute reduction) on treatment arm in univariate and adjusted models. * 
OR represents odds of ≥10% density reduction per unit increase in covariate, ** OR represents 
odds of ≥10% density reduction relative to the reference category. #Additionally adjusted for 
age at randomisation in univariate model. P-values from logistic regression model Wald test of 
covariate. 1Model includes all variables except for baseline density, 2Model includes treatment, 
age at randomisation and baseline density, 3Model includes all covariates. N= for first follow-
up, N= for final follow-up. 

 

 First follow-up Final follow-up 
 N Media

n 
(IQR) 

P-
value

# 

OR 
(95
% 
CI) 
## 

P-
value##

# 

N Media
n 

(IQR) 

P-
value

# 

OR 
(95
% 
CI) 
## 

P-
value##

# 

Age at 
randomisatio
n (yr)* 

          

Younger age 
at 

randomisatio
n 

   Ref     Ref  

Older age at 
randomisatio

n 

          

Body Mass 
Index 
(kg/m2)* 

          

Lower Body 
Mass Index 

   Ref     Ref  

Higher Body 
Mass Index 
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Age at 
menarche 
(yr)* 

          

Younger age 
at menarche 

   Ref     Ref  

Older age at 
menarche 

          

Age at 
menopause 
(yr)* 

          

Younger age 
at 

menopause 

   Ref     Ref  

Older age at 
menopause 

          

Tyrer-Cuzick 
10-year risk 
(%)* 

          

Lower Tyrer-
Cuzick 10-

year risk 

   Ref     Ref  

Higher 
Tyrer-Cuzick 

10-year risk 

          

Baseline 
density (%)* 

          

Lower 
baseline 
density 

   Ref     Ref  

Higher 
baseline 
density 

          

Age at first 
birth (yr) 

          

Nulliparous    Ref     Ref  

>27           
21-27           

≤20           
Oral 
contraception 
use 

          

Never    Ref     Ref  
Previously           

Currently           
HRT use up 
to 12 months 
before 
randomisatio
n 

          

No    Ref     Ref  

Yes           
Smoking 
status 

          

Never    Ref     Ref  
Former           

Current           
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History of 
Atypical 
Hyperplasia 
or LCIS 

          

No    Ref     Ref  

Yes           
Image type           

Film    Ref     Ref  
Digital           

Time 
between 
baseline 
mammogram 
and follow-
up 
mammogram 
(yr)* 

          

Shorter time 
between 

mammogram
s 

   Ref     Ref  

Longer time 
between 

mammogram
s 

          

 

Table 8: First and final change in density by subgroups of covariates in the anastrozole arm 
only. *Continuous variables dichotomised by median of variable in all women. #P-value from 
Wilcoxon rank-sum test for covariates with 2 subgroups, P-value from Cuzick’s trend test for 
covariates with >2 subgroups. ## OR represents odds of ≥10% density reduction relative to the 
reference category. ###P-value of odds ratio from a univariate logistic regression model Wald 
test of covariate. 
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C.XXIV Proforma for Chapter 5 

Request 

Originator: 

 

Ms Emma Atakpa 

PhD student, Centre for Cancer Prevention, Wolfson Institute 

 

Supervisors: 

Professor Jack Cuzick 

Dr Adam Brentnall 

Reason for 

request: 

To complete an analysis comparing mammographic density change between the 

placebo and anastrozole arms of the IBIS-II Prevention trial. 

Background: Mammographic density (herein referred to as ‘density’) is one of the strongest 

known risk factors for breast cancer. Women in the highest density category 

(≥75%) are at a 4 to 6-fold increased risk of developing breast cancer relative to 

those with little or no density (79). 

 

Whilst postmenopausal hormone replacement therapy (HRT) is associated with 

an increase in risk of breast cancer (424) and density (188, 193); selective 

oestrogen receptor modulators (SERMs), such as tamoxifen, decrease risk (198, 

199, 425) and density (203-205). Most importantly, high-risk women who 

experienced ≥10% density reduction after approximately 18 months of 

prophylactic tamoxifen were shown to be at approximately 68% lower risk of 

developing breast cancer compared with women who experienced <10% density 

reduction after the same treatment in the IBIS-I trial (19). 

 

Similar to SERMs, aromatase inhibitors (AIs) are an anti-oestrogenic drug given 

to women in the treatment of breast cancer. In 2014, analysis from IBIS-II 

showed that anastrozole (an AI) reduced the risk of breast cancer in high-risk 

postmenopausal women (208). However, studies looking into the relationship 

between AIs and density have so far shown modest or insignificant results (267-

269, 426). Many of these studies lack statistical power due to their small sample 

size (12 month density change was assessed in only 43 women in Prowell et al. 

(426), 49 women in Ciglar et al. (268), and 65 women in Ciglar et al. (269)), 

whilst larger studies such as Vachon et al. (267) are based on adjuvant AI 

treatment only. It is still unknown whether preventive anastrozole treatment 

reduces density more than the natural decline which tends to occur with age. 

Aims: 

 

 

Primary objective: To determine whether women on anastrozole experience 

different age-adjusted changes in density at first follow-up mammogram than 

women on placebo in the IBIS-II Prevention trial. 

Primary hypothesis: Age-adjusted change in density from baseline to first 

follow-up mammogram is different between patients in the anastrozole arm and 

patients in the placebo arm. 

 

Secondary objective I: To determine whether women on anastrozole experience 

different changes in density at first follow-up mammogram than women on 

placebo in the IBIS-II Prevention trial, after adjustment for age at randomisation, 

body mass index at randomisation, hormone replacement therapy use up to 12 

months before randomisation, age at menopause, image type and time between 

baseline and first follow-up mammogram. 

Secondary hypothesis I: Change in density from baseline to first follow-up 

mammogram is different between patients in the anastrozole arm and patients in 
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the placebo arm, after adjustment for age at randomisation, body mass index at 

randomisation, hormone replacement therapy use up to 12 months before 

randomisation, age at menopause, image type, and time between baseline and 

first follow-up mammogram. 

 

Secondary objective II: To determine whether women on anastrozole experience 

different age-adjusted changes in density at final follow-up mammogram than 

women on placebo in the IBIS-II Prevention trial. 

Secondary hypothesis II: Age-adjusted change in density from baseline to final 

follow-up mammogram is different between patients in the anastrozole arm and 

patients in the placebo arm. 

 

Secondary objective III: To determine whether women on anastrozole 

experience different changes in density at final follow-up mammogram than 

women on placebo in the IBIS-II Prevention trial, after adjustment for age at 

randomisation, body mass index at randomisation, hormone replacement therapy 

use up to 12 months before randomisation, age at menopause, image type and 

time between baseline and final follow-up mammogram. 

Secondary hypothesis III: Change in density from baseline to final follow-up 

mammogram is different between patients in the anastrozole arm and patients in 

the placebo arm, after adjustment for age at randomisation, body mass index at 

randomisation, hormone replacement therapy use up to 12 months before 

randomisation, age at menopause, image type, and time between baseline and 

first follow-up mammogram. 

 

Secondary objective IV: To examine the effect of anastrozole on first density 

change in subgroups of covariates in the IBIS-II Prevention trial (age at 

randomisation, body mass index at randomisation, age at menarche, age at 

menopause, Tyrer-Cuzick 10-year risk, baseline density, age at first birth, oral 

contraception use, hormone replacement therapy use up to 12 months before 

randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram). 

Secondary hypothesis IV: Anastrozole-induced change in density from baseline 

to first follow-up mammogram is different between subgroups of covariates (age 

at randomisation, body mass index at randomisation, age at menarche, age at 

menopause, Tyrer-Cuzick 10-year risk, baseline density, age at first birth, oral 

contraception use, hormone replacement therapy use up to 12 months before 

randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram). 

 

Secondary objective V: To examine the effect of anastrozole on final density 

change in subgroups of covariates in the IBIS-II Prevention trial (age at 

randomisation, body mass index at randomisation, age at menarche, age at 

menopause, Tyrer-Cuzick 10-year risk, baseline density, age at first birth, oral 

contraception use, hormone replacement therapy use up to 12 months before 

randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram). 

Secondary hypothesis V: Anastrozole-induced change in density from baseline to 

final follow-up mammogram is different between subgroups of covariates (age at 

randomisation, body mass index at randomisation, age at menarche, age at 
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menopause, Tyrer-Cuzick 10-year risk, baseline density, age at first birth, oral 

contraception use, hormone replacement therapy use up to 12 months before 

randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram). 

Data 

required: 

 

 

Suitable mammograms (within the following specified timeframes, before breast 

cancer diagnosis, MLO view, deemed to be good quality) have been received for 

35 breast-cancer cases and 938 breast cancer-free controls. Baseline (up to 12 

months before randomisation) and first follow-up (9-38 months post 

randomisation) mammograms for these 973 women were batched and sent to a 

radiologist at St Bartholomew’s hospital for density scoring. A final (48-60 

months post randomisation) follow-up mammogram was also sent for scoring if 

it was available. 

 

With 973 women, the power to detect a difference in density change from 

baseline to first follow-up mammogram between the two treatment arms at the 

5% type-I error level is 85%. This calculation allows for a weaker effect of 

anastrozole on density change than tamoxifen (3/4 the effect size observed in 

IBIS-I with tamoxifen). 

 

Since the requestor is blinded to treatment allocation, a set of STATA code will 

be sent to Dr Sestak to run on the un-blinded data for these 973 women. 

Describe the 

specific 

analyses or 

tables 

requested: 

Methods: 

 

Mammograms were visually assessed by a radiologist (Dr Metaxa) at St 

Bartholomew’s hospital. 

Each mammogram was scored in 5% increments, following the same method as 

in IBIS-I. 

Contralateral mammograms were used for cases and mammograms from a 

randomly selected breast side were used for breast cancer-free controls. 

Density change will be defined as the difference between baseline and first 

follow-up mammogram as well as baseline and final follow-up mammogram. 

Only women with ≥10% baseline density will be included. 

Only women with all mammograms of the same image type (i.e. all film or all 

digital) will be included. 

 

Statistical analysis: 

 

Baseline characteristics will be summarised by treatment arm using frequency 

tables with age at randomisation, body mass index at randomisation, age at 

menarche, age at menopause, Tyrer-Cuzick 10-year risk, baseline density, age at 

first birth, oral contraception use, hormone replacement therapy use up to 12 

months before randomisation, smoking status, history of atypical hyperplasia or 

LCIS, and image type. An exploratory analysis will also assess the association 

between baseline covariates and baseline density using univariate (adjusted for 

age at randomisation) and multivariable linear regression and univariate 

(adjusted for age at randomisation) and multivariable logistic regression. 

 

The primary analysis will compare the density change at first follow-up in 

anastrozole-treated patients with placebo-treated patients in the IBIS-II 
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Prevention trial. A linear regression model will examine the association between 

treatment arm and change in density, adjusted for age at randomisation. A 

logistic regression model will also be used to examine the association between 

treatment arm and change in density (dichotomised into <10% absolute 

reduction and ≥10% absolute reduction), adjusted for age at randomisation. 

 

The secondary analysis (I) will repeat the primary analysis, adjusted for age at 

randomisation, body mass index at randomisation, hormone replacement therapy 

use up to 12 months before randomisation, age at menopause, image type and 

time between baseline and first follow-up mammogram. 

 

The secondary analysis (II) will repeat the primary analysis but for final follow-

up density change, in a subgroup of women who have an available final 

mammogram density score. 

 

The secondary analysis (III) will repeat the primary analysis but for final follow-

up density change, in a subgroup of women who have an available final 

mammogram density score, adjusted for age at randomisation, body mass index 

at randomisation, hormone replacement therapy use up to 12 months before 

randomisation, age at menopause, image type and time between baseline and 

final follow-up mammogram. 

 

The secondary analysis (IV) will use Wilcoxon rank-sum or Cuzick trend tests to 

assess whether the effect of anastrozole on first density change varies between 

different covariate subgroups, and logistic regression to assess the odds of a high 

density reduction (≥10% absolute reduction) in one subgroup relative to another 

subgroup, in anastrozole treated patients. Covariates to be split into subgroups 

are: age at randomisation, body mass index at randomisation, age at menarche, 

age at menopause, Tyrer-Cuzick 10-year risk, baseline density, age at first birth, 

oral contraception use, hormone replacement therapy use up to 12 months before 

randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram. 

 

The secondary analysis (V) will use Wilcoxon rank-sum or Cuzick trend tests to 

assess whether the effect of anastrozole on final density change varies between 

different covariate subgroups, and logistic regression to assess the odds of a high 

density reduction (≥10% absolute reduction) in one subgroup relative to another 

subgroup, in anastrozole treated patients. Covariates to be split into subgroups 

are: age at randomisation, body mass index at randomisation, age at menarche, 

age at menopause, Tyrer-Cuzick 10-year risk, baseline density, age at first birth, 

oral contraception use, hormone replacement therapy use up to 12 months before 

randomisation, smoking status, history of atypical hyperplasia or LCIS, image 

type, and time between baseline mammogram and follow-up mammogram. 

 

All statistical analysis will be conducted in STATA 13. All tests will be two-

sided with a significance level of 5%. 

 

Results will be omitted if subgroup numbers are small enough to un-blind the 

requestor. 
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What will 

the data be 

used for?  

The results of the analysis will form a chapter in Ms Emma Atakpa’s PhD thesis.  

 

The results will also be prepared for publication in a peer-reviewed journal 

(dependent on results and TSC permitting). 

Date 

required by: 

 

Analysis will begin as soon as possible after responses from the TSC. 

Other 

comments: 

 

Proposed 

authorship: 

E. Atakpa, A. Brentnall, L. Metaxa, I. Sestak, J.F. Forbes, A. Howell, J. Cuzick 

This section to be completed by IBIS-II Trial Steering Committee 

Does the Request 

have Executive 

Committee 

Approval? 

Please place a X 

in appropriate 

box 

  Yes                No 

If no, reason for 

rejection: 

 

Date received by IBIS-II CCO: 

Date decision sent to applicant: 
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C.XXV Statistical Analysis Plan for Chapter 6 

 

1. INTRODUCTION  

This document describes the statistical analysis plan for the IBIS-II mammographic 

density study examining anastrozole-induced change in density and risk of breast cancer 

in patients from the IBIS-II Prevention trial. 

 

2. OBJECTIVES OF THE ANALYSIS 

 

2.1 Primary objective 

To determine whether women on anastrozole who experience a ≥10% reduction in 

density at first follow-up mammogram have a different level of age-adjusted risk of 

breast cancer than women on anastrozole who experience a <10% reduction in density 

at first follow-up mammogram in the IBIS-II Prevention trial. 

 

2.2 Secondary objective I 

To determine whether women on anastrozole who experience a ≥5% reduction in 

density at first follow-up mammogram have a different level of age-adjusted risk of 

breast cancer than women on anastrozole who experience a <5% reduction in density at 

first follow-up mammogram in the IBIS-II Prevention trial. 

 

2.3 Secondary objective II 

To determine whether women on anastrozole who experience a ≥10% reduction in 

density at first follow-up mammogram have a different level of risk of breast cancer 

than women on anastrozole who experience a <10% reduction in density at first follow-

up mammogram in the IBIS-II Prevention trial, after adjustment for age at 

randomisation, body mass index at randomisation, baseline density, and Tyrer-Cuzick 

10-year risk. 

 

2.4 Secondary objective III 

To determine whether women on anastrozole who experience a ≥5% reduction in 

density at first follow-up mammogram have a different level of risk of breast cancer 

than women on anastrozole who experience a <5% reduction in density at first follow-

up mammogram in the IBIS-II Prevention trial, after adjustment for age at 

randomisation, body mass index at randomisation, baseline density, and Tyrer-Cuzick 

10-year risk. 
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2.5 Secondary objective IV 

To determine whether the age-adjusted effect of ≥10% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <10% reduction) is different 

between anastrozole-treated and placebo-treated patients (interaction test for 

anastrozole-induced density change as a predictive biomarker for breast cancer risk 

reduction). 

 

2.6 Secondary objective V 

To determine whether the age-adjusted effect of ≥5% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <5% reduction) is different 

between anastrozole-treated and placebo-treated patients (interaction test for 

anastrozole-induced density change as a predictive biomarker for breast cancer risk 

reduction). 

 

2.5 Secondary objective VI 

To determine whether the effect of ≥10% reduction in density at first follow-up 

mammogram on breast cancer risk (relative to <10% reduction) is different between 

anastrozole-treated and placebo-treated patients (interaction test for anastrozole-induced 

density change as a predictive biomarker for breast cancer risk reduction), after 

adjustment for age at randomisation, body mass index at randomisation, baseline 

density, and Tyrer-Cuzick 10-year risk. 

 

2.6 Secondary objective VII 

To determine whether the effect of ≥5% reduction in density at first follow-up 

mammogram on breast cancer risk (relative to <5% reduction) is different between 

anastrozole-treated and placebo-treated patients (interaction test for anastrozole-induced 

density change as a predictive biomarker for breast cancer risk reduction), after 

adjustment for age at randomisation, body mass index at randomisation, baseline 

density, and Tyrer-Cuzick 10-year risk. 

 

2.7 Secondary objective VIII 

To determine whether women on anastrozole who experience a ≥10% reduction in 

density at first follow-up mammogram have a different level of age-adjusted risk of 

breast cancer than women on placebo, and whether women on anastrozole who 

experience a <10% reduction in density at first follow-up mammogram have a different 

level of age-adjusted risk of breast cancer than women on placebo in the IBIS-II 

Prevention trial (test for anastrozole-induced density change as a predictive biomarker 

for breast cancer risk reduction). 
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2.8 Secondary objective IX 

To determine whether women on anastrozole who experience a ≥5% reduction in 

density at first follow-up mammogram have a different level of age-adjusted risk of 

breast cancer than women on placebo, and whether women on anastrozole who 

experience a <5% reduction in density at first follow-up mammogram have a different 

level of age-adjusted risk of breast cancer than women on placebo in the IBIS-II 

Prevention trial (test for anastrozole-induced density change as a predictive biomarker 

for breast cancer risk reduction). 

 

2.9 Secondary objective X 

To determine whether women on anastrozole who experience a ≥10% reduction in 

density at first follow-up mammogram have a different level of risk of breast cancer 

than women on placebo, and whether women on anastrozole who experience a <10% 

reduction in density at first follow-up mammogram have a different level of risk of 

breast cancer than women on placebo in the IBIS-II Prevention trial (test for 

anastrozole-induced density change as a predictive biomarker for breast cancer risk 

reduction), after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

2.10 Secondary objective XI 

To determine whether women on anastrozole who experience a ≥5% reduction in 

density at first follow-up mammogram have a different level of risk of breast cancer 

than women on placebo, and whether women on anastrozole who experience a <5% 

reduction in density at first follow-up mammogram have a different level of risk of 

breast cancer than women on placebo in the IBIS-II Prevention trial (test for 

anastrozole-induced density change as a predictive biomarker for breast cancer risk 

reduction), after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

2.11 Secondary objective XII 

To examine the effect of anastrozole-induced first density reduction of ≥10% on breast 

cancer risk in different subgroups of covariates in the IBIS-II Prevention trial 

(subgroups: tumour ER status, age at randomisation, body mass index at randomisation, 

baseline density, history of atypical hyperplasia or LCIS, hormone replacement use up 

to 12 months before randomisation, Tyrer-Cuzick 10-year risk, image type, and time 

between baseline mammogram and first follow-up mammogram). 

 

2.12 Secondary objective XIII 
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To examine the effect of anastrozole-induced first density reduction of ≥5% on breast 

cancer risk in different subgroups of covariates in the IBIS-II Prevention trial 

(subgroups: tumour ER status, age at randomisation, body mass index at randomisation, 

baseline density, history of atypical hyperplasia or LCIS, hormone replacement use up 

to 12 months before randomisation, Tyrer-Cuzick 10-year risk, image type, and time 

between baseline mammogram and first follow-up mammogram). 

 

3. PERSONNEL  

The major statistical analysis will be undertaken by Emma Atakpa at the Centre for 

Cancer Prevention, Wolfson Institute, Queen Mary University of London, London UK. 

 

4. TIMING OF ANALYSIS  

The major statistical analysis will begin in October 2018 (approximate date). 

 

5. STUDY PARTICIPANTS 

 

5.1 Eligible participants 

 The primary and secondary statistical analyses will include all randomised women with 

an appropriate baseline and first follow-up mammogram (within specified timeframes - 

see below, good quality - as assessed by the experienced radiologist, MLO view only) 

who are breast cancer-free at the time of their first follow-up mammogram. 

 

 Baseline mammograms will range from ≥0 months prior to the date of randomisation to 

<12.5 months prior to the date of randomisation. First follow-up mammograms will 

range from ≥8.5 months after the date of randomisation to <38.5 months after the date 

of randomisation. These time frames are in accordance with analysis from IBIS-I (19) 

and standard operating procedures for IBIS-II co-ordinating centres. 

 

 Only women with all mammograms of the same image type (i.e. all film or all digital) 

will be included. 

 

 Only women with ≥10% baseline density will be included. 

 

 Breast cancer-free ‘controls’ are defined as women who had not been diagnosed with 

breast cancer at the time of study design. ‘Cases’ are defined as women who had been 

clinically diagnosed with breast cancer at the time of study design. Cases will be 

included if they are diagnosed with breast cancer after their first follow-up 

mammogram. 
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 Contralateral mammograms will be used for cases and mammograms from a randomly 

selected breast side will be used for breast cancer-free controls. 

 

5.2 Sample size calculation 

The estimated distribution of IBIS-II cases and controls with <10% and ≥10% density 

reduction per treatment arm was calculated by weighting these distributions observed in 

IBIS-I (19) with hazard ratios from IBIS-I (200) and IBIS-II (208). The sample size 

from IBIS-I (19) was then weighted using chosen multipliers to obtain a variety of 

distributions for different sample sizes. The chosen sample sizes were 50, 100, 150 and 

200 cases, with 3 controls per 1 case. Using a difference of proportions sample size 

calculation, 247 cases and 1013 controls are required to show a difference in risk 

between anastrozole-treated patients experiencing ≥10% density change and 

anastrozole-treated patients experiencing <10% density change from baseline to first 

follow-up mammogram at the 5% type-I error level and with 80% power. This number 

also accounts for exclusions with baseline density <10% based on the number of 

postmenopausal women with baseline density <10% in IBIS-I. The study is currently 

underpowered since suitable mammograms (meeting the criteria outlined in section 5.1) 

have been received for only 35 breast-cancer cases and 938 breast cancer-free controls. 

With 35 cases and 105 controls (1:3 ratio of cases to controls), the power to detect a 

difference in risk of breast cancer in anastrozole-treated patients who experience a 

≥10% reduction in density at first follow-up mammogram relative to anastrozole-treated 

patients who experience a <10% reduction in density at first follow-up mammogram is 

22% at the 5% type-I error level. A sample size larger than this is currently 

impracticable given the resources and number of mammograms received. 

 

6. COVARIATES OF INTEREST 

 

6.1 Primary covariate of interest 

The primary covariate of interest is defined as the change in density from baseline 

mammogram to first follow-up mammogram (9-38 months post randomisation). 

Density will be visually-assessed by an experienced reader (Linda Metaxa) using 5% 

intervals, following the same method as in IBIS-I. Randomisation of mammograms will 

be per woman (so that mammograms for each woman will be read in comparison with 

the other mammograms for that woman), and mammograms will be ordered 

sequentially. For each woman, density at baseline will be read first, followed by first 

follow-up mammogram (compared with baseline mammogram). Density change will 

therefore be defined as the difference between baseline density and first follow-up 
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mammogram density; semi-continuously, dichotomised into <10% or ≥10% absolute 

reduction and <5% or ≥5% absolute reduction. The reader will be blinded to treatment 

group, case status and risk factors, and images will be appropriately anonymised. 

 

7. OUTCOMES 

 

7.1 Primary outcome 

The primary outcome is defined as the risk of developing breast cancer. 

 

8. STATISTICAL METHODS  

 

8.1 Hypotheses to be tested 

 

8.1.1 Primary hypothesis 

 H0: There is no difference in age-adjusted risk of breast cancer between anastrozole-treated 

patients who experience a ≥10% reduction in density at first follow-up mammogram and 

anastrozole-treated patients who experience a <10% reduction in density at first follow-up 

mammogram 

 H1: Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a 

≥10% reduction in density at first follow-up mammogram is different to age-adjusted risk of 

breast cancer in anastrozole-treated patients who experience a <10% reduction in density at 

first follow-up mammogram 

 

8.1.2 Secondary hypothesis I 

 H0: There is no difference in age-adjusted risk of breast cancer between anastrozole-treated 

patients who experience a ≥5% reduction in density at first follow-up mammogram and 

anastrozole-treated patients who experience a <5% reduction in density at first follow-up 

mammogram 

 H1: Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a ≥5% 

reduction in density at first follow-up mammogram is different to age-adjusted risk of breast 

cancer in anastrozole-treated patients who experience a <5% reduction in density at first 

follow-up mammogram 

 

8.1.3 Secondary hypothesis II 

 H0: There is no difference in risk of breast cancer between anastrozole-treated patients who 

experience a ≥10% reduction in density at first follow-up mammogram and anastrozole-

treated patients who experience a <10% reduction in density at first follow-up 



 

418 
 

mammogram, after adjustment for age at randomisation, body mass index at randomisation, 

baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: Risk of breast cancer in anastrozole-treated patients who experience a ≥10% reduction 

in density at first follow-up mammogram is different to risk of breast cancer in anastrozole-

treated patients who experience a <10% reduction in density at first follow-up 

mammogram, after adjustment for age at randomisation, body mass index at randomisation, 

baseline density, and Tyrer-Cuzick 10-year risk. 

 

8.1.4 Secondary hypothesis III 

 H0: There is no difference in risk of breast cancer between anastrozole-treated patients who 

experience a ≥5% reduction in density at first follow-up mammogram and anastrozole-

treated patients who experience a <5% reduction in density at first follow-up mammogram, 

after adjustment for age at randomisation, body mass index at randomisation, baseline 

density, and Tyrer-Cuzick 10-year risk. 

 H1: Risk of breast cancer in anastrozole-treated patients who experience a ≥5% reduction in 

density at first follow-up mammogram is different to risk of breast cancer in anastrozole-

treated patients who experience a <5% reduction in density at first follow-up mammogram, 

after adjustment for age at randomisation, body mass index at randomisation, baseline 

density, and Tyrer-Cuzick 10-year risk. 

 

8.1.5 Secondary hypothesis IV 

 H0: There is no difference in the age-adjusted effect of ≥10% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <10% reduction) between 

anastrozole-treated patients and placebo-treated patients. 

 H1: The age-adjusted effect of ≥10% reduction in density at first follow-up mammogram on 

breast cancer risk (relative to <10% reduction) in anastrozole-treated patients is different to 

the age-adjusted effect of ≥10% reduction in density at first follow-up mammogram on 

breast cancer risk (relative to <10% reduction) in placebo-treated patients. 

 

8.1.6 Secondary hypothesis V 

 H0: There is no difference in the age-adjusted effect of ≥5% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <5% reduction) between 

anastrozole-treated patients and placebo-treated patients. 

 H1: The age-adjusted effect of ≥5% reduction in density at first follow-up mammogram on 

breast cancer risk (relative to <5% reduction) in anastrozole-treated patients is different to 

the age-adjusted effect of ≥5% reduction in density at first follow-up mammogram on 

breast cancer risk (relative to <5% reduction) in placebo-treated patients. 
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8.1.7 Secondary hypothesis VI 

 H0: There is no difference in the effect of ≥10% reduction in density at first follow-up 

mammogram on breast cancer risk (relative to <10% reduction) between anastrozole-treated 

patients and placebo-treated patients, after adjustment for age at randomisation, body mass 

index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: The effect of ≥10% reduction in density at first follow-up mammogram on breast 

cancer risk (relative to <10% reduction) in anastrozole-treated patients is different to the 

effect of ≥10% reduction in density at first follow-up mammogram on breast cancer risk 

(relative to <10% reduction) in placebo-treated patients, after adjustment for age at 

randomisation, body mass index at randomisation, baseline density, and Tyrer-Cuzick 10-

year risk. 

 

8.1.8 Secondary hypothesis VII 

 H0: There is no difference in the effect of ≥5% reduction in density at first follow-up 

mammogram on breast cancer risk (relative to <5% reduction) between anastrozole-treated 

patients and placebo-treated patients, after adjustment for age at randomisation, body mass 

index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: The effect of ≥5% reduction in density at first follow-up mammogram on breast cancer 

risk (relative to <5% reduction) in anastrozole-treated patients is different to the effect of 

≥5% reduction in density at first follow-up mammogram on breast cancer risk (relative to 

<5% reduction) in placebo-treated patients, after adjustment for age at randomisation, body 

mass index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

8.1.9 Secondary hypothesis VIII 

 H0: There is no difference in age-adjusted risk of breast cancer between anastrozole-treated 

patients who experience a ≥10% reduction in density at first follow-up mammogram and 

placebo-treated patients, and there is no difference in age-adjusted risk of breast cancer 

between anastrozole-treated patients who experience a <10% reduction in density at first 

follow-up mammogram and placebo-treated patients. 

 H1: Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a 

≥10% reduction in density at first follow-up mammogram is different to age-adjusted risk of 

breast cancer in placebo-treated patients, and age-adjusted risk of breast cancer in 

anastrozole-treated patients who experience a <10% reduction in density at first follow-up 

mammogram is different to age-adjusted risk of breast cancer in placebo-treated patients. 

 

8.1.10 Secondary hypothesis IX 

 H0: There is no difference in age-adjusted risk of breast cancer between anastrozole-treated 

patients who experience a ≥5% reduction in density at first follow-up mammogram and 
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placebo-treated patients, and there is no difference in age-adjusted risk of breast cancer 

between anastrozole-treated patients who experience a <5% reduction in density at first 

follow-up mammogram and placebo-treated patients 

 H1: Age-adjusted risk of breast cancer in anastrozole-treated patients who experience a ≥5% 

reduction in density at first follow-up mammogram is different to age-adjusted risk of breast 

cancer in placebo-treated patients, and age-adjusted risk of breast cancer in anastrozole-

treated patients who experience a <5% reduction in density at first follow-up mammogram 

is different to age-adjusted risk of breast cancer in placebo-treated patients. 

 

8.1.11 Secondary hypothesis X 

 H0: There is no difference in risk of breast cancer between anastrozole-treated patients who 

experience a ≥10% reduction in density at first follow-up mammogram and placebo-treated 

patients, and there is no difference in risk of breast cancer between anastrozole-treated 

patients who experience a <10% reduction in density at first follow-up mammogram and 

placebo-treated patients, after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: Risk of breast cancer in anastrozole-treated patients who experience a ≥10% reduction 

in density at first follow-up mammogram is different to risk of breast cancer in placebo-

treated patients, and risk of breast cancer in anastrozole-treated patients who experience a 

<10% reduction in density at first follow-up mammogram is different to risk of breast 

cancer in placebo-treated patients, after adjustment for age at randomisation, body mass 

index at randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

8.1.12 Secondary hypothesis XI 

 H0: There is no difference in risk of breast cancer between anastrozole-treated patients who 

experience a ≥5% reduction in density at first follow-up mammogram and placebo-treated 

patients, and there is no difference in risk of breast cancer between anastrozole-treated 

patients who experience a <5% reduction in density at first follow-up mammogram and 

placebo-treated patients, after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 H1: Risk of breast cancer in anastrozole-treated patients who experience a ≥5% reduction in 

density at first follow-up mammogram is different to risk of breast cancer in placebo-treated 

patients, and risk of breast cancer in anastrozole-treated patients who experience a <5% 

reduction in density at first follow-up mammogram is different to risk of breast cancer in 

placebo-treated patients, after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 
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8.1.13 Secondary hypothesis XII 

 H0: There is no difference in breast cancer risk between subgroups of covariates (tumour ER 

status, age at randomisation, body mass index at randomisation, baseline density, history of 

atypical hyperplasia or LCIS, hormone replacement use up to 12 months before 

randomisation, Tyrer-Cuzick 10-year risk, image type, and time between baseline 

mammogram and first follow-up mammogram) in women who experience an anastrozole-

induced ≥10% reduction in density from baseline to first follow-up mammogram. 

 H1: Breast cancer risk in women who experience an anastrozole-induced ≥10% reduction in 

density from baseline to first follow-up mammogram is different between subgroups of 

covariates (tumour ER status, age at randomisation, body mass index at randomisation, 

baseline density, history of atypical hyperplasia or LCIS, hormone replacement use up to 12 

months before randomisation, Tyrer-Cuzick 10-year risk, image type, and time between 

baseline mammogram and first follow-up mammogram). 

 

8.1.14 Secondary hypothesis XIII 

 H0: There is no difference in breast cancer risk between subgroups of covariates (tumour ER 

status, age at randomisation, body mass index at randomisation, baseline density, history of 

atypical hyperplasia or LCIS, hormone replacement use up to 12 months before 

randomisation, Tyrer-Cuzick 10-year risk, image type, and time between baseline 

mammogram and first follow-up mammogram) in women who experience an anastrozole-

induced ≥5% reduction in density from baseline to first follow-up mammogram. 

 H1: Breast cancer risk in women who experience an anastrozole-induced ≥5% reduction in 

density from baseline to first follow-up mammogram is different between subgroups of 

covariates (tumour ER status, age at randomisation, body mass index at randomisation, 

baseline density, history of atypical hyperplasia or LCIS, hormone replacement use up to 12 

months before randomisation, Tyrer-Cuzick 10-year risk, image type, and time between 

baseline mammogram and first follow-up mammogram). 

 

8.2 Analysis methods 

All statistical analysis will be conducted in STATA 13. All tests (see below) will be two-

sided with a significance level of 5%. Results will be omitted if subgroup numbers are small 

enough in order to un-blind the statistician. 

 

8.2.1 Baseline characteristics and risk 

The following baseline characteristics will be summarised in a frequency table by 

treatment arm and case status, along with univariate and multivariable odds ratios for 

risk of developing breast cancer. Frequency counts & percentages will be provided for 

categorical data and means (standard deviation, SD) and medians (interquartile range, 
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IQR) will be provided for continuous data. Two-sample t-tests (STATA’s “ttest” 

command) and Wilcoxon rank sum tests (STATA’s “ranksum” command) will test 

differences between cases and controls in continuous data and Pearson chi-squared tests 

(STATA’s “tab, chi2” command) will test differences between cases and controls in 

categorical data: 

 

 Age at randomisation (mean (SD), median (IQR)) 

 Body Mass Index (BMI) at randomisation (mean (SD), median (IQR)) 

 Age at menarche (mean (SD), median (IQR)) 

 Age at menopause (mean (SD), median (IQR)) 

 Tyrer-Cuzick 10-year risk (mean (SD), median (IQR)) 

 Baseline density (mean (SD), median (IQR)) 

 Age at first birth (nulliparous/>27/21-27/≤20) 

 Oral contraception use (never/previously/currently) 

 Hormone Replacement Therapy (HRT) use up to 12 months before randomisation 

(no/yes) 

 Smoking status (never/former/current) 

 History of atypical hyperplasia or LCIS (no/yes) 

 Image type (film/digital) 

 

 Univariate logistic regression models of risk of breast cancer on baseline covariates, 

adjusted for age at randomisation (except age at randomisation): n, odds ratio, 95% 

confidence interval, P-value. 

STATA’s “logistic” command 

 Multivariable logistic regression models of risk of breast cancer on baseline covariates. 

All covariates will be included in the multivariable model: n, odds ratio, 95% 

confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.2 Primary analysis  

 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<10% absolute reduction and ≥10% absolute reduction; reference group: <10% absolute 

reduction) and age at randomisation in anastrozole-treated patients: n, odds ratio, 95% 

confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.3 Secondary analysis I 
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 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<5% absolute reduction and ≥5% absolute reduction; reference group: <5% absolute 

reduction) and age at randomisation in anastrozole-treated patients: n, odds ratio, 95% 

confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.4 Secondary analysis II 

 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<10% absolute reduction and ≥10% absolute reduction; reference group: <10% absolute 

reduction) in anastrozole-treated patients, adjusted for covariates. All covariates will be 

included in the multivariable model: n, odds ratios, 95% confidence intervals, P-values. 

STATA’s “logistic” command 

 

8.2.5 Secondary analysis III 

 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<5% absolute reduction and ≥5% absolute reduction; reference group: <5% absolute 

reduction) in anastrozole-treated patients, adjusted for covariates. All covariates will be 

included in the multivariable model: n, odds ratios, 95% confidence intervals, P-values. 

STATA’s “logistic” command 

 

8.2.6 Secondary analysis IV 

 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<10% absolute reduction and ≥10% absolute reduction), treatment and an interaction 

between both, and age at randomisation: n, odds ratios, 95% confidence intervals, P-

values. 

STATA’s “logistic” command 

 

8.2.7 Secondary analysis V 

 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<5% absolute reduction and ≥5% absolute reduction), treatment and an interaction 

between both, and age at randomisation: n, odds ratios, 95% confidence intervals, P-

values. 

STATA’s “logistic” command 

 

8.2.8 Secondary analysis VI 

 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<10% absolute reduction and ≥10% absolute reduction), treatment and an interaction 
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between both, adjusted for covariates. All covariates will be included in the 

multivariable model: n, odds ratios, 95% confidence intervals, P-values. 

STATA’s “logistic” command 

 

8.2.9 Secondary analysis VII 

 Logistic regression model of breast cancer risk on change in density (dichotomised into 

<5% absolute reduction and ≥5% absolute reduction), treatment and an interaction 

between both, adjusted for covariates. All covariates will be included in the 

multivariable model: n, odds ratios, 95% confidence intervals, P-values. 

STATA’s “logistic” command 

 

8.2.10 Secondary analysis VIII 

 Logistic regression model of breast cancer risk on a variable for change in density and 

treatment (factorised into: anastrozole-induced <10% absolute reduction, anastrozole-

induced ≥10% absolute reduction, and placebo; reference category: placebo) and age at 

randomisation: n, odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.11 Secondary analysis IX 

 Logistic regression model of breast cancer risk on a variable for change in density and 

treatment (factorised into: anastrozole-induced <5% absolute reduction, anastrozole-

induced ≥5% absolute reduction, and placebo; reference category: placebo) and age at 

randomisation: n, odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.12 Secondary analysis X 

 Logistic regression model of breast cancer risk on a variable for change in density and 

treatment (factorised into: anastrozole-induced <10% absolute reduction, anastrozole-

induced ≥10% absolute reduction, and placebo; reference category: placebo), adjusted 

for covariates. All covariates will be included in the multivariable model: n, odds ratio, 

95% confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.13 Secondary analysis XI 

 Logistic regression model of breast cancer risk on a variable for change in density and 

treatment (factorised into: anastrozole-induced <5% absolute reduction, anastrozole-

induced ≥5% absolute reduction, and placebo; reference category: placebo), adjusted for 
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covariates. All covariates will be included in the multivariable model: n, odds ratio, 

95% confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.14 Secondary analysis XII 

 Odds ratios to assess the odds of breast cancer for anastrozole-induced ≥10% density 

reduction in each subgroup (relative to a reference subgroup), in the anastrozole arm 

only: n, odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.15 Secondary analysis XIII 

 Odds ratios to assess the odds of breast cancer for anastrozole-induced ≥5% density 

reduction in each subgroup (relative to a reference subgroup), in the anastrozole arm 

only: n, odds ratio, 95% confidence interval, P-value. 

STATA’s “logistic” command 

 

8.2.12 Adjustment covariates 

The following covariates will be included in adjusted regression models (8.2.4, 8.2.5, 

8.2.8 & 8.2.9): 

 

 Age at randomisation (continuous) 

 BMI at randomisation (continuous) 

 Baseline density (continuous) 

 Tyrer-Cuzick 10-year risk (continuous) 

 

Time on treatment will not be included in adjustments because an intention-to-treat 

analysis will be conducted. 

 

8.2.13 Subgroup covariates 

The following covariates will be considered in subgroup analyses (8.2.10 & 8.2.11): 

 

 Tumour ER status (negative/positive) 

 Age at randomisation (<median age, ≥median age) 

 BMI at randomisation (<median BMI, ≥median BMI) 

 Baseline density (<median baseline density, ≥median baseline density) 

 History of atypical hyperplasia or LCIS (no/yes) 

 HRT use up to 12 months before randomisation (no/yes) 

 Tyrer-Cuzick 10-year risk (<median risk, ≥median risk) 
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 Image type (film/digital) 

 Time between baseline and first mammogram (<median time between baseline and first 

mammogram, ≥median time between baseline and first mammogram) 

 

8.2.14 Sensitivity analysis for compliance  

It is possible that the greater reduction in breast cancer risk we might observe in 

subjects from the anastrozole arm who experience a density reduction of at least 10% or 

5% (compared with similar women who experience <10% or <5% density reduction) 

reflects better treatment compliance and is not a measure of biological response to 

treatment. To test this, we will use Kaplan–Meier curves (censored ~3 months (90 days) 

before cancer diagnosis) (STATA’s “sts graph” command) and log rank tests (STATA’s 

“sts test, logrank” command) to assess the difference in time to stopping treatment 

between cases on anastrozole with ≥10% vs. <10% reduction in density and ≥5% vs. 

<5% reduction in density. 
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8.3 Tables 

 

Table 1: Baseline characteristics by case status and treatment, with odds ratios (ORs) for the risk of developing breast cancer from univariate and multivariable 
logistic regression models. *P-value from two-sample t-test, **p-value from Wilcoxon rank sum test, ***p-value from logistic regression model Wald test of 
covariate, +++p-value from Pearson chi-squared test of association. +OR represents odds of breast cancer per unit increase in covariate, ++OR represents odds of breast 
cancer relative to the reference category. #All univariate models (except that for age at randomisation) are adjusted for age at randomisation. ##Multivariable models 
include all variables. N=. 

 

 

Variable 

All Placebo Anastrozole 
Cases Controls Univariate 

OR (95% 

CI) 
***#

 

Multivariable 

OR (95% CI) 

***##
 

Cases Controls Univariate 

OR (95% 

CI) 
***#

 

Multivariable 

OR (95% CI) 

***##
 

Cases Controls Univariate 

OR (95% 

CI) 
***#

 

Multivariable 

OR (95% CI) 

***##
 

Mean 
(SD)* 

Median 
(IQR)** 

Mean 
(SD)* 

Median 
(IQR)** 

Mean 
(SD)* 

Median 
(IQR)** 

Mean 
(SD)* 

Median 
(IQR)** 

Mean 
(SD)* 

Median 
(IQR)** 

Mean 
(SD)* 

Median 
(IQR)** 

Age at 

randomisation+ 

(y r) 
                  

P                   

Body  Mass 
Index+ (kg/m 2) 

                  

P                   
Baseline 

density + (%) 
                  

P                   
Ty rer-Cuzick 

10-year risk+ 
(%) 

                  

                   

 N+++ % N+++ %   N+++ % N+++ %   N+++ % N+++ %   
History  of 

atypical 
hyperplasia or 
LCIS++ 

                  

No     Ref Ref     Ref Ref     Ref Ref 

Yes                   

P                   
HRT use up to 

12 months 
before 
randomisation ++ 

                  

No     Ref Ref     Ref Ref     Ref Ref 

Yes                   

P                   
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 Number of women 

Boyd 
category at 
entry 

Boyd category at first follow-up: Cases Total Boyd category at first follow-up: Controls Total 

 0% 1-10% 11-25% 26-50% 51-75% 76-100%  0% 1-10% 11-25% 26-50% 51-75% 76-100%  

0%               
1-10%               

11-25%               
26-50%               

51-75%               
76-100%               

Total               
Table 2: Cross tabulation of number of women in each Boyd category at entry to the study with category at first follow-up, by case status. The first number in each 
cell is the total number of subjects. Numbers in parentheses are the placebo and anastrozole groups, respectively. 

 

Change in breast 
density, No. (%) 

Placebo Anastrozole 

Cases (N=) Controls (N=) Cases (N=) Controls (N=) 

Mean (SD)     

Median (IQR)     

<5% reduction     

≥5% reduction     

<10% reduction     

≥10% reduction     

P trend     
Table 3: Density change by treatment and case status. P-value from Wald test of change in density from a logistic regression model of breast cancer risk on change 
in density (semi-continuous) in each treatment arm. 
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Table 4: Logistic regression results for risk of breast cancer on first change in density (dichotomised into <5% reduction or ≥5% reduction, and <10% reduction or 
≥10% reduction) in anastrozole arm only, in univariate and adjusted models. *OR represents odds of breast cancer relative to the reference category, **OR 
represents odds of breast cancer per unit increase in covariate. #Multivariable models include all variables. +Additionally adjusted for age at randomisation in 
univariate model. P-values from logistic regression model Wald test. N=. 
 

 

 

 

 

 

 

 

 

 

Variable 

≥5% reduction ≥10% reduction 

N 

Univariate Adjusted# 

N 

Univariate Adjusted# 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Density change*+           

<5% reduction  Ref Ref Ref Ref  - - - - 

≥5% reduction       - - - - 

<10% reduction  - - - -  Ref Ref Ref Ref 

≥10% reduction  - - - -      

Age at randomisation (yr)**           

BMI at randomisation (kg/m2)**           

Baseline density (%)**           

Tyrer-Cuzick 10-year risk (%)**           
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Table 5: Logistic regression results for risk of breast cancer on first change in density (dichotomised into <5% reduction or ≥5% reduction, and <10% reduction or 
≥10% reduction) in anastrozole-treated women relative to all women in the placebo arm, in univariate and adjusted models. *OR represents odds of breast cancer 
relative to all women in the placebo arm, **OR represents odds of breast cancer per unit increase in covariate. #Multivariable models include all variables. 
+Additionally adjusted for age at randomisation in univariate model. P-values from logistic regression model Wald test. N=. 
 

Variable 
No. of control 

subjects/No. of case 
subjects 

Anastrozole, density reduction ≥5% P
###

 Anastrozole, density reduction ≥10% P
###

 

No. of case 
subjects 

OR
#
 (95% CI)  

No. of case 
subjects 

OR
##

 (95% 
CI) 

 

Overall        

Tumour ER status        

Negative        

Positive        

Age at randomisation (yr)*        

Younger age at randomisation        

Older age at randomisation        

Body Mass Index (kg/m
2
)*        

Lower Body Mass Index        

Higher Body Mass Index        

Baseline density*        

Lower baseline density        

Variable 

<5% or ≥5% reduction <10% or ≥10% reduction 

N 

Univariate Adjusted# 

N 

Univariate Adjusted# 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

OR 

(95% CI) 
P-value 

Density change*+           

<5% reduction       - - - - 

≥5% reduction       - - - - 

<10% reduction  - - - -      

≥10% reduction  - - - -      

Age at randomisation (yr)**           

BMI at randomisation (kg/m2)**           

Baseline density (%)**           

Tyrer-Cuzick 10-year risk (%)**           
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Higher baseline density        

History of atypical hyperplasia or LCIS        

No        

Yes        

HRT use up to 12 months before randomisation        

No        

Yes        

Tyrer-Cuzick 10-year risk (%)*        

Lower Tyrer-Cuzick 10-year risk        

Higher Tyrer-Cuzick 10-year risk        

Image type        

Film        

Digital        

Time between baseline mammogram and first 
follow-up mammogram (yr)* 

       

Shorter time between mammograms        

Longer time between mammograms        

Table 6: Risk of breast cancer on anastrozole-induced first change in density by subgroups of covariates. *Continuous variables dichotomised by median of variable 
in all women, #OR represents odds of developing breast cancer for women with ≥5% density reduction (relative to women with <5% density reduction) in different 
subgroups. ##OR represents odds of developing breast cancer for women with ≥10% density reduction (relative to women with <10% density reduction) in different 
subgroups. ###P-values from a Wald test. 
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C.XXVI Proforma for Chapter 6 

 
Request 

Originator: 

 

Ms Emma Atakpa 

PhD student, Centre for Cancer Prevention, Wolfson Institute 

 

Supervisors: 

Professor Jack Cuzick 

Dr Adam Brentnall 

Reason for 

request: 

To complete an analysis assessing anastrozole-induced change in 

mammographic density as a biomarker for breast cancer risk in patients from the 

IBIS-II Prevention trial. 

Background: Mammographic density (herein referred to as ‘density’) is one of the strongest 

known risk factors for breast cancer. Women in the highest density category 

(≥75%) are at a 4 to 6-fold increased risk of developing breast cancer relative to 

those with little or no density (79). 

 

Whilst postmenopausal hormone replacement therapy (HRT) is associated with 

an increase in risk of breast cancer (424) and density (188, 193); selective 

oestrogen receptor modulators (SERMs), such as tamoxifen, decrease risk (198, 

199, 425) and density (203-205). Most importantly, high-risk women who 

experienced ≥10% density reduction after approximately 18 months of 

prophylactic tamoxifen were shown to be at approximately 68% lower risk of 

developing breast cancer compared with women who experienced <10% density 

reduction after the same treatment in the IBIS-I trial (19). This makes 

tamoxifen-induced density reduction a potential biomarker for risk reduction. 

 

Similar to SERMs, aromatase inhibitors (AIs) are an anti-oestrogenic drug given 

to women in the treatment of breast cancer. In 2014, analysis from IBIS-II 

showed that anastrozole (an AI) reduced the risk of breast cancer in high-risk 

postmenopausal women (208). It is not yet known whether anastrozole-induced 

density reduction can also be used as a biomarker for risk reduction, whereby a 

≥10% reduction in density after approximately 18 months of preventive 

anastrozole treatment would be associated with a lower risk of breast cancer 

compared with <10% density reduction after the same treatment. 

Aims: 

 

 

 Primary objective: To determine whether women on anastrozole who 

experience a ≥10% reduction in density at first follow-up mammogram have 

a different level of age-adjusted risk of breast cancer than women on 

anastrozole who experience a <10% reduction in density at first follow-up 

mammogram in the IBIS-II Prevention trial. 

 Primary hypothesis: Age-adjusted risk of breast cancer in anastrozole-

treated patients who experience a ≥10% reduction in density at first follow-

up mammogram is different to age-adjusted risk of breast cancer in 

anastrozole-treated patients who experience a <10% reduction in density at 

first follow-up mammogram. 

 

 Secondary objective I: To determine whether women on anastrozole who 

experience a ≥5% reduction in density at first follow-up mammogram have 

a different level of age-adjusted risk of breast cancer than women on 

anastrozole who experience a <5% reduction in density at first follow-up 
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mammogram in the IBIS-II Prevention trial. 

 Secondary hypothesis I: Age-adjusted risk of breast cancer in anastrozole-

treated patients who experience a ≥5% reduction in density at first follow-up 

mammogram is different to age-adjusted risk of breast cancer in 

anastrozole-treated patients who experience a <5% reduction in density at 

first follow-up mammogram. 

 

 Secondary objective II: To determine whether women on anastrozole who 

experience a ≥10% reduction in density at first follow-up mammogram have 

a different level of risk of breast cancer than women on anastrozole who 

experience a <10% reduction in density at first follow-up mammogram in 

the IBIS-II Prevention trial, after adjustment for age at randomisation, body 

mass index at randomisation, baseline density, and Tyrer-Cuzick 10-year 

risk. 

 Secondary hypothesis II: Risk of breast cancer in anastrozole-treated 

patients who experience a ≥10% reduction in density at first follow-up 

mammogram is different to risk of breast cancer in anastrozole-treated 

patients who experience a <10% reduction in density at first follow-up 

mammogram, after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

 Secondary objective III: To determine whether women on anastrozole who 

experience a ≥5% reduction in density at first follow-up mammogram have 

a different level of risk of breast cancer than women on anastrozole who 

experience a <5% reduction in density at first follow-up mammogram in the 

IBIS-II Prevention trial, after adjustment for age at randomisation, body 

mass index at randomisation, baseline density, and Tyrer-Cuzick 10-year 

risk. 

 Secondary hypothesis III: Risk of breast cancer in anastrozole-treated 

patients who experience a ≥5% reduction in density at first follow-up 

mammogram is different to risk of breast cancer in anastrozole-treated 

patients who experience a <5% reduction in density at first follow-up 

mammogram, after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

 Secondary objective IV: To determine whether the age-adjusted effect of 

≥10% reduction in density at first follow-up mammogram on breast cancer 

risk (relative to <10% reduction) is different between anastrozole-treated 

and placebo-treated patients (interaction test for anastrozole-induced density 

change as a predictive biomarker for breast cancer risk reduction). 

 Secondary hypothesis IV: The age-adjusted effect of ≥10% reduction in 

density at first follow-up mammogram on breast cancer risk (relative to 

<10% reduction) in anastrozole-treated patients is different to the age-

adjusted effect of ≥10% reduction in density at first follow-up mammogram 

on breast cancer risk (relative to <10% reduction) in placebo-treated 

patients. 

 

 Secondary objective V: To determine whether the age-adjusted effect of 

≥5% reduction in density at first follow-up mammogram on breast cancer 
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risk (relative to <5% reduction) is different between anastrozole-treated and 

placebo-treated patients (interaction test for anastrozole-induced density 

change as a predictive biomarker for breast cancer risk reduction). 

 Secondary hypothesis V: The age-adjusted effect of ≥5% reduction in 

density at first follow-up mammogram on breast cancer risk (relative to 

<5% reduction) in anastrozole-treated patients is different to the age-

adjusted effect of ≥5% reduction in density at first follow-up mammogram 

on breast cancer risk (relative to <5% reduction) in placebo-treated patients. 

 

 Secondary objective VI: To determine whether the effect of ≥10% reduction 

in density at first follow-up mammogram on breast cancer risk (relative to 

<10% reduction) is different between anastrozole-treated and placebo-

treated patients (interaction test for anastrozole-induced density change as a 

predictive biomarker for breast cancer risk reduction), after adjustment for 

age at randomisation, body mass index at randomisation, baseline density, 

and Tyrer-Cuzick 10-year risk. 

 Secondary hypothesis VI: The effect of ≥10% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <10% reduction) in 

anastrozole-treated patients is different to the effect of ≥10% reduction in 

density at first follow-up mammogram on breast cancer risk (relative to 

<10% reduction) in placebo-treated patients, after adjustment for age at 

randomisation, body mass index at randomisation, baseline density, and 

Tyrer-Cuzick 10-year risk. 

 

 Secondary objective VII: To determine whether the effect of ≥5% reduction 

in density at first follow-up mammogram on breast cancer risk (relative to 

<5% reduction) is different between anastrozole-treated and placebo-treated 

patients (interaction test for anastrozole-induced density change as a 

predictive biomarker for breast cancer risk reduction), after adjustment for 

age at randomisation, body mass index at randomisation, baseline density, 

and Tyrer-Cuzick 10-year risk. 

 Secondary hypothesis VII: The effect of ≥5% reduction in density at first 

follow-up mammogram on breast cancer risk (relative to <5% reduction) in 

anastrozole-treated patients is different to the effect of ≥5% reduction in 

density at first follow-up mammogram on breast cancer risk (relative to 

<5% reduction) in placebo-treated patients, after adjustment for age at 

randomisation, body mass index at randomisation, baseline density, and 

Tyrer-Cuzick 10-year risk. 

 

 Secondary objective VIII: To determine whether women on anastrozole who 

experience a ≥10% reduction in density at first follow-up mammogram have 

a different level of age-adjusted risk of breast cancer than women on 

placebo, and whether women on anastrozole who experience a <10% 

reduction in density at first follow-up mammogram have a different level of 

age-adjusted risk of breast cancer than women on placebo in the IBIS-II 

Prevention trial (test for anastrozole-induced density change as a predictive 

biomarker for breast cancer risk reduction). 

 Secondary hypothesis VIII: Age-adjusted risk of breast cancer in 

anastrozole-treated patients who experience a ≥10% reduction in density at 
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first follow-up mammogram is different to age-adjusted risk of breast cancer 

in placebo-treated patients, and age-adjusted risk of breast cancer in 

anastrozole-treated patients who experience a <10% reduction in density at 

first follow-up mammogram is different to age-adjusted risk of breast cancer 

in placebo-treated patients. 

 

 Secondary objective IX: To determine whether women on anastrozole who 

experience a ≥5% reduction in density at first follow-up mammogram have 

a different level of age-adjusted risk of breast cancer than women on 

placebo, and whether women on anastrozole who experience a <5% 

reduction in density at first follow-up mammogram have a different level of 

age-adjusted risk of breast cancer than women on placebo in the IBIS-II 

Prevention trial (test for anastrozole-induced density change as a predictive 

biomarker for breast cancer risk reduction). 

 Secondary hypothesis IX: Age-adjusted risk of breast cancer in anastrozole-

treated patients who experience a ≥5% reduction in density at first follow-up 

mammogram is different to age-adjusted risk of breast cancer in placebo-

treated patients, and age-adjusted risk of breast cancer in anastrozole-treated 

patients who experience a <5% reduction in density at first follow-up 

mammogram is different to age-adjusted risk of breast cancer in placebo-

treated patients. 

 

 Secondary objective X: To determine whether women on anastrozole who 

experience a ≥10% reduction in density at first follow-up mammogram have 

a different level of risk of breast cancer than women on placebo, and 

whether women on anastrozole who experience a <10% reduction in density 

at first follow-up mammogram have a different level of risk of breast cancer 

than women on placebo in the IBIS-II Prevention trial (test for anastrozole-

induced density change as a predictive biomarker for breast cancer risk 

reduction), after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 Secondary hypothesis X: Risk of breast cancer in anastrozole-treated 

patients who experience a ≥10% reduction in density at first follow-up 

mammogram is different to risk of breast cancer in placebo-treated patients, 

and risk of breast cancer in anastrozole-treated patients who experience a 

<10% reduction in density at first follow-up mammogram is different to risk 

of breast cancer in placebo-treated patients, both after adjustment for age at 

randomisation, body mass index at randomisation, baseline density, and 

Tyrer-Cuzick 10-year risk. 

 

 Secondary objective XI: To determine whether women on anastrozole who 

experience a ≥5% reduction in density at first follow-up mammogram have 

a different level of risk of breast cancer than women on placebo, and 

whether women on anastrozole who experience a <5% reduction in density 

at first follow-up mammogram have a different level of risk of breast cancer 

than women on placebo in the IBIS-II Prevention trial (test for anastrozole-

induced density change as a predictive biomarker for breast cancer risk 

reduction), after adjustment for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 
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 Secondary hypothesis XI: Risk of breast cancer in anastrozole-treated 

patients who experience a ≥5% reduction in density at first follow-up 

mammogram is different to risk of breast cancer in placebo-treated patients, 

and risk of breast cancer in anastrozole-treated patients who experience a 

<5% reduction in density at first follow-up mammogram is different to risk 

of breast cancer in placebo-treated patients, both after adjustment for age at 

randomisation, body mass index at randomisation, baseline density, and 

Tyrer-Cuzick 10-year risk. 

 

 Secondary objective XII: To examine the effect of anastrozole-induced first 

density reduction of ≥10% on breast cancer risk in different subgroups of 

covariates in the IBIS-II Prevention trial (covariates to be split into 

subgroups are: tumour ER status, age at randomisation, body mass index at 

randomisation, baseline density, history of atypical hyperplasia or LCIS, 

hormone replacement use up to 12 months before randomisation, Tyrer-

Cuzick 10-year risk, image type, and time between baseline mammogram 

and first follow-up mammogram). 

 Secondary hypothesis XII: Breast cancer risk in women who experience an 

anastrozole-induced ≥10% reduction in density from baseline to first follow-

up mammogram is different between subgroups of covariates (tumour ER 

status, age at randomisation, body mass index at randomisation, baseline 

density, history of atypical hyperplasia or LCIS, hormone replacement use 

up to 12 months before randomisation, Tyrer-Cuzick 10-year risk, image 

type, and time between baseline mammogram and first follow-up 

mammogram). 

 

 Secondary objective XIII: To examine the effect of anastrozole-induced first 

density reduction of ≥5% on breast cancer risk in different subgroups of 

covariates in the IBIS-II Prevention trial (covariates to be split into 

subgroups are: tumour ER status, age at randomisation, body mass index at 

randomisation, baseline density, history of atypical hyperplasia or LCIS, 

hormone replacement use up to 12 months before randomisation, Tyrer-

Cuzick 10-year risk, image type, and time between baseline mammogram 

and first follow-up mammogram). 

 Secondary hypothesis XIII: Breast cancer risk in women who experience an 

anastrozole-induced ≥5% reduction in density from baseline to first follow-

up mammogram is different between subgroups of covariates (tumour ER 

status, age at randomisation, body mass index at randomisation, baseline 

density, history of atypical hyperplasia or LCIS, hormone replacement use 

up to 12 months before randomisation, Tyrer-Cuzick 10-year risk, image 

type, and time between baseline mammogram and first follow-up 

mammogram). 

Data 

required: 

 

 

Suitable mammograms (within the following specified timeframes, before breast 

cancer diagnosis, MLO view, deemed to be good quality) have been received for 

35 breast-cancer cases and 938 breast cancer-free controls. Baseline (up to 12 

months before randomisation) and first follow-up (9-38 months post 

randomisation) mammograms for these 973 women were batched and sent to a 

radiologist at St Bartholomew’s hospital for density scoring. 
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The study is currently underpowered. With 35 cases and 105 controls (1:3 ratio 

of cases to controls), the power to detect a difference in risk of breast cancer in 

anastrozole-treated patients who experience a ≥10% reduction in density at first 

follow-up mammogram relative to anastrozole-treated patients who experience a 

<10% reduction in density at first follow-up mammogram is 22% at the 5% 

type-I error level (please see ‘Other comments’). 

 

Since the requestor is blinded to treatment allocation, a set of STATA code will 

be sent to Dr Sestak to run on the un-blinded data for these 973 women. 

 

Describe the 

specific 

analyses or 

tables 

requested: 

Methods: 

 

 Mammograms were visually assessed by a radiologist (Dr Metaxa) at St 

Bartholomew’s hospital. 

 Each mammogram was scored in 5% increments, following the same 

method as in IBIS-I. 

 Contralateral mammograms were used for cases and mammograms from a 

randomly selected breast side were used for breast cancer-free controls. 

 Density change will be defined as the difference between baseline and first 

follow-up mammogram. 

 Only women with ≥10% baseline density will be included. 

 Only women with all mammograms of the same image type (i.e. all film or 

all digital) will be included. 

 

Statistical analysis: 

 

 Baseline characteristics will be summarised by treatment arm and case 

status using frequency tables with age at randomisation, body mass index at 

randomisation, age at menarche, age at menopause, Tyrer-Cuzick 10-year 

risk, baseline density, age at first birth, oral contraception use, hormone 

replacement therapy use up to 12 months before randomisation, smoking 

status, history of atypical hyperplasia or LCIS, and image type. An 

exploratory analysis will also assess the association between risk of 

developing breast cancer and baseline characteristics using univariate 

(adjusted for age at randomisation) and multivariable logistic regression. 

 

 The primary analysis will use a logistic regression model to examine the 

association between risk of breast cancer and anastrozole-induced ≥10% 

first follow-up density reduction (relative to anastrozole-induced <10% 

absolute reduction), adjusted for age at randomisation, in anastrozole-treated 

patients. 

 

 The secondary analysis (I) will use a logistic regression model to examine 

the association between risk of breast cancer and anastrozole-induced ≥5% 

first follow-up density reduction (relative to anastrozole-induced <5% 

absolute reduction), adjusted for age at randomisation, in anastrozole-treated 

patients. 

 

 The secondary analysis (II) will use a logistic regression model to examine 



 

438 
 

the association between risk of breast cancer and anastrozole-induced ≥10% 

first follow-up density reduction (relative to anastrozole-induced <10% 

absolute reduction), adjusted for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk; in 

anastrozole-treated patients. 

 

 The secondary analysis (III) will use a logistic regression model to examine 

the association between risk of breast cancer and anastrozole-induced ≥5% 

first follow-up density reduction (relative to anastrozole-induced <5% 

absolute reduction), adjusted for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk; in 

anastrozole-treated patients. 

 

 The secondary analysis (IV) will use a logistic regression model to examine 

the association between risk of breast cancer and first follow-up density 

reduction (dichotomised into <10% absolute reduction and ≥10% absolute 

reduction), treatment and an interaction between density reduction and 

treatment, adjusted for age at randomisation. 

 

 The secondary analysis (V) will use a logistic regression model to examine 

the association between risk of breast cancer and first follow-up density 

reduction (dichotomised into <5% absolute reduction and ≥5% absolute 

reduction), treatment and an interaction between density reduction and 

treatment, adjusted for age at randomisation. 

 

 The secondary analysis (VI) will use a logistic regression model to examine 

the association between risk of breast cancer and first follow-up density 

reduction (dichotomised into <10% absolute reduction and ≥10% absolute 

reduction), treatment and an interaction between density reduction and 

treatment, adjusted for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

 The secondary analysis (VII) will use a logistic regression model to examine 

the association between risk of breast cancer and first follow-up density 

reduction (dichotomised into <5% absolute reduction and ≥5% absolute 

reduction), treatment and an interaction between density reduction and 

treatment, adjusted for age at randomisation, body mass index at 

randomisation, baseline density, and Tyrer-Cuzick 10-year risk. 

 

 The secondary analysis (VIII) will use a logistic regression model to 

examine the association between risk of breast cancer and anastrozole-

induced ≥10% first follow-up density reduction (relative to placebo-treated 

women), and risk of breast cancer and anastrozole-induced <10% first 

follow-up density reduction (relative to placebo-treated women), adjusted 

for age at randomisation. 

 

 The secondary analysis (IX) will use a logistic regression model to examine 

the association between risk of breast cancer and anastrozole-induced ≥5% 

first follow-up density reduction (relative to placebo-treated women), and 
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risk of breast cancer and anastrozole-induced <5% first follow-up density 

reduction (relative to placebo-treated women), adjusted for age at 

randomisation. 

 

 The secondary analysis (X) will use a logistic regression model to examine 

the association between risk of breast cancer and anastrozole-induced ≥10% 

first follow-up density reduction (relative to placebo-treated women), and 

risk of breast cancer and anastrozole-induced <10% first follow-up density 

reduction (relative to placebo-treated women), adjusted for age at 

randomisation, body mass index at randomisation, baseline density, and 

Tyrer-Cuzick 10-year risk. 

 

 The secondary analysis (XI) will use a logistic regression model to examine 

the association between risk of breast cancer and anastrozole-induced ≥5% 

first follow-up density reduction (relative to placebo-treated women), and 

risk of breast cancer and anastrozole-induced <5% first follow-up density 

reduction (relative to placebo-treated women), adjusted for age at 

randomisation, body mass index at randomisation, baseline density, and 

Tyrer-Cuzick 10-year risk. 

 

 The secondary analysis (XII) will use logistic regression to assess the odds 

of developing breast cancer in women who have experienced anastrozole-

induced ≥10% density reduction in different subgroups of covariates 

(tumour ER status, age at randomisation, body mass index at randomisation, 

baseline density, history of atypical hyperplasia or LCIS, hormone 

replacement use up to 12 months before randomisation, Tyrer-Cuzick 10-

year risk, image type, and time between baseline mammogram and first 

follow-up mammogram). 

 

 The secondary analysis (XIII) will use logistic regression to assess the odds 

of developing breast cancer in women who have experienced anastrozole-

induced ≥5% density reduction in different subgroups of covariates (tumour 

ER status, age at randomisation, body mass index at randomisation, baseline 

density, history of atypical hyperplasia or LCIS, hormone replacement use 

up to 12 months before randomisation, Tyrer-Cuzick 10-year risk, image 

type, and time between baseline mammogram and first follow-up 

mammogram). 

 

 All statistical analysis will be conducted in STATA 13. All tests will be 

two-sided with a significance level of 5%. 

 

 Results will be omitted if subgroup numbers are small enough to un-blind 

the requestor. 

What will 

the data be 

used for?  

The results of the analysis will form a chapter in Ms Emma Atakpa’s PhD 

thesis. 

 

The results will also be prepared for publication in a peer-reviewed journal 

(dependent on results and TSC permitting). 

Date Analysis will begin as soon as possible after responses from the TSC. 
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required by: 

 

Other 

comments: 

There is currently not enough power to complete the primary objective. 

However, Kim et al. (264) found a provocative result of increased risk of 

recurrence in oestrogen receptor-positive breast cancer cases on AIs who lost 

<5% density after 8-20 months of treatment relative to similarly treated women 

who lost ≥5% density, although results were not significant (HR=7.11; 95% CI: 

0.90-56.37; p=0.06). The number of recurrences on AIs was not reported but it 

is estimated to be 13 from other numbers reported in the paper. Assuming 32% 

of the 35 cases in this study were on anastrozole (40 anastrozole cases/125 cases 

in Cuzick et al. (208)) we estimate there to be approximately 11 anastrozole 

cases. There may therefore be enough power in this study to detect an effect if 

density change is dichotomised into <5% and ≥5% reduction (secondary 

objectives). 

Proposed 

authorship: 

E. Atakpa, A. Brentnall, L. Metaxa, I. Sestak, J.F. Forbes, A. Howell, J. Cuzick 

This section to be completed by IBIS-II Trial Steering Committee 

Does the 

Request have 

Executive 

Committee 

Approval? 

Please place a X 

in appropriate 

box 

  Yes                No 

If no, reason for 

rejection: 

 

Date received by IBIS-II CCO: 

Date decision sent to applicant: 

 

  


