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Abstract

Automatic music transcription (AMT) and source separation are important

computational tasks, which can help to understand, analyse and process mu-

sic recordings. The main purpose of AMT is to estimate, from an observed

audio recording, a latent symbolic representation of a piece of music (piano-

roll). In this sense, in AMT the duration and location of every note played is

reconstructed from a mixture recording. The related task of source separa-

tion aims to estimate the latent functions or source signals that were mixed

together in an audio recording. This task requires not only the duration and

location of every event present in the mixture, but also the reconstruction

of the waveform of all the individual sounds. Most methods for AMT and

source separation rely on the magnitude of time-frequency representations

of the analysed recording, i.e., spectrograms, and often arbitrarily discard

phase information. On one hand, this decreases the time resolution in AMT.

On the other hand, discarding phase information corrupts the reconstruction

in source separation, because the phase of each source-spectrogram must

be approximated. There is thus a need for models that circumvent phase

approximation, while operating at sample-rate resolution.

This thesis intends to solve AMT and source separation together from

an unified perspective. For this purpose, Bayesian non-parametric signal

processing, covariance kernels designed for audio, and scalable variational

inference are integrated to form efficient and acoustically-inspired probabilis-

tic models. To circumvent phase approximation while keeping sample-rate

resolution, AMT and source separation are addressed from a Bayesian time-

domain viewpoint. That is, the posterior distribution over the waveform of

each sound event in the mixture is computed directly from the observed data.

For this purpose, Gaussian processes (GPs) are used to define priors over the

sources/pitches. GPs are probability distributions over functions, and its

kernel or covariance determines the properties of the functions sampled from

a GP. Finally, the GP priors and the available data (mixture recording) are
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combined using Bayes’ theorem in order to compute the posterior distribu-

tions over the sources/pitches.

Although the proposed paradigm is elegant, it introduces two main chal-

lenges. First, as mentioned before, the kernel of the GP priors determines the

properties of each source/pitch function, that is, its smoothness, stationari-

ness, and more importantly its spectrum. Consequently, the proposed model

requires the design of flexible kernels, able to learn the rich frequency con-

tent and intricate properties of audio sources. To this end, spectral mixture

(SM) kernels are studied, and the Matérn spectral mixture (MSM) kernel

is introduced, i.e. a modified version of the SM covariance function. The

MSM kernel introduces less strong smoothness, thus it is more suitable for

modelling physical processes. Second, the computational complexity of GP

inference scales cubically with the number of audio samples. Therefore, the

application of GP models to large audio signals becomes intractable. To

overcome this limitation, variational inference is used to make the proposed

model scalable and suitable for signals in the order of hundreds of thousands

of data points.

The integration of GP priors, kernels intended for audio, and variational

inference could enable AMT and source separation time-domain methods to

reconstruct sources and transcribe music in an efficient and informed man-

ner. In addition, AMT and source separation are current challenges, be-

cause the spectra of the sources/pitches overlap with each other in intricate

ways. Thus, the development of probabilistic models capable of differentiat-

ing sources/pitches in the time domain, despite the high similarity between

their spectra, opens the possibility to take a step towards solving source sepa-

ration and automatic music transcription. We demonstrate the utility of our

methods using real and synthesized music audio datasets for various types of

musical instruments.
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Geusseppe González. Please forgive me if you read this and do not find

your name here. If you consider me to be a friend, I would consider you to

be a friend too.

I also want to thank the PhD process itself. This research has helped

me to trust my judgment and to realise that every theory and method is

susceptible to questioning and challenging. Also, I learnt there is always

an inherent amount of subjectivity when interpreting the outcome of an

experiment or phenomenon. Therefore, there is not one single and absolute

truth. I have learned to doubt.

Moving abroad to study a PhD has been the most challenging experience

I have ever had. Looking back over the last four and a half years, I was not

aware of how much my life was going to change. Leaving my family, friends,

culture, language, weather, and lifestyle has made me question my identity

and abilities but mainly my intelligence. Back home, I used to consider

myself a successful academic and promising researcher. My ambition was to

achieve academic titles, to publish research papers and to become a well-

6



known researcher. Here in the UK I struggled to carry on, find hope and

my research no longer felt important to me. I learnt the importance of

enjoying again every day life in a place distant from home. The feeling of

companionship, belonging and the kindness of colleagues took precedence

over my research. I learnt to love, feel loved, to laugh and to dream again. I

remembered all that I had left behind while pursuing my academic aspirations

and I realised, fulfilling these simple needs was the key to have balance.

Unsurprisingly, I acknowledged I was a human being and not a research-paper

machine. During this research, I have developed a deeper understanding of

the topics that interest me, that is, Gaussian processes and music signal

processing. But more importantly, this journey has taught me a lot about

life itself.

7



Licence

This work is copyright © 2019 Pablo Alejandro Alvarado Duran, and is

licensed under the Creative Commons Attribution-Share Alike 4.0 Interna-

tional Licence. To view a copy of this licence, visit:

http://creativecommons.org/licenses/by-sa/4.0/

8

http://creativecommons.org/licenses/by-sa/4.0/


List of abbreviations

AMT Automatic Music Transcription
dB Decibel
ELBO Evidence Lower Bound
F0 Fundamental frequency
FL Learning in the Frequency Domain
FT Fourier Transform
GP Gaussian Process
IS-NMF Itakura-Saito NMF
KL Kullback-Leibler
KL-NMF Kullback-Leibler NMF
LD-PSDTF Positive Semi-Definite Tensor Factorization
LOO Leave One Out
LOO-SIG Leave One Out Sigmoid
MAPS MIDI Aligned Piano Sounds
MIDI Musical Instrument Digital Interface
min minutes
ML Marginal Likelihood
MSE Mean Squared Error
MSM Matérn Spectral Mixture
NMF Non-negative Matrix Factorization
PLCA Probabilistic Latent Component Analysis
RBF Radial Basis Function
RMSE Root Mean Squared Error
SAR Source to Artefacts Ratio
SDR Source to Distortion Ratio
SE Squared Exponential
SIG Sigmoid
SIR Source to Interferences Ratio
SM Spectral Mixture

9



SOF Softmax
SSGP Source Separation Gaussian Process
SVI Stochastic Variational Inference
TM Manual Tuning
VI Variational Inference
VFF Variational Fourier Features
WSS Wide Sense Stationary

10



Mathematical notation

y Audio signal (column vector)
x Column vector of input variables
f Column vector of size N
cov Covariance
K Covariance matrix
L Evidence lower bound
E Expected value
exp Exponential
Y Fourier transform of y
GP Gaussian process
I Identity matrix
KL Kullback-Leibler divergence
N Normal distribution
M Number of inducing variables
N Number of observations
f(·) Random function
tr(·) Trace of a matrix
var Variance
q(·) Variational distribution

11



Contents

1 Introduction 19

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Associated publications . . . . . . . . . . . . . . . . . . . . . . 24

2 Background 25

2.1 Audio signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 Music signals . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Automatic music transcription . . . . . . . . . . . . . . . . . . 28

2.2.1 Multi-pitch estimation and note-level AMT . . . . . . . 30

2.3 Source separation . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 The covariance function . . . . . . . . . . . . . . . . . 37

2.4.3 Stationary covariance functions . . . . . . . . . . . . . 39

2.4.4 Gaussian process regression . . . . . . . . . . . . . . . 43

2.4.5 Toy example regression . . . . . . . . . . . . . . . . . . 48

2.4.6 Challenges of Gaussian process models . . . . . . . . . 50

2.5 Kernel design for acoustic music signals . . . . . . . . . . . . . 51

2.6 Sparse variational Gaussian processes . . . . . . . . . . . . . . 52

2.6.1 Computational complexity of inverting matrices . . . . 52

2.6.2 Sparse approximate Gaussian processes . . . . . . . . . 54

12



2.6.3 Variational inference . . . . . . . . . . . . . . . . . . . 55

2.6.4 Variational inference for sparse GPs . . . . . . . . . . . 56

2.6.5 Gaussian process stochastic variational inference . . . . 57

3 Gaussian processes for music audio content analysis 60

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Kernel design . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 General form of the change-windows . . . . . . . . . . 63

3.2.2 Studied covariance functions . . . . . . . . . . . . . . . 64

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Pitch estimation . . . . . . . . . . . . . . . . . . . . . 69

3.3.3 Filling gaps of missing data in audio . . . . . . . . . . 69

3.3.4 Related work . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Efficient learning of harmonic priors for pitch detection 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Gaussian processes for pitch detection . . . . . . . . . . . . . . 77

4.2.1 The Matérn spectral mixture kernel . . . . . . . . . . . 79

4.2.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Transcription of polyphonic signal . . . . . . . . . . . . 84

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Variational sparse Gaussian process audio source separation

and multi-pitch detection 87

5.1 Gaussian process source separation . . . . . . . . . . . . . . . 88

5.1.1 Spectral mixture kernels for isolated sources . . . . . . 92

5.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.3 Experimental evaluation . . . . . . . . . . . . . . . . . 94

5.2 GP-SVI for source separation and multi-pitch detection: a

joint approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 An ELBO for the modulated-GP model . . . . . . . . . 100

13



5.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Conclusions and further work 116

6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . 116

6.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Gaussian distribution identities 122

B Leave one out: model with two sources 123

14



List of Figures

2.1 Audio signal generation. . . . . . . . . . . . . . . . . . . . . . 26

2.2 Two seconds of a piano waveform. The small box inside cor-

responds to zooming in on a 20 milliseconds window. . . . . . 27

2.3 Example music score. . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Piano-roll as intermediate representation between music score

and audio signal [22]. . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Relation between source separation and multi-pitch detection. 33

2.6 Three samples from a multivariate Gaussian distribution (dots).

Underlying functions (continuous lines). . . . . . . . . . . . . 36

2.7 Functions sampled from four different GPs. . . . . . . . . . . . 38

2.8 Functions drawn from GPs with different kernels. Exponenti-

ated quadratic (a). Matérn 1/2 (b). Matérn 3/2 (c). Matérn

5/2 (d). Standard periodic (e). Spectral mixture (f). . . . . . 41

2.9 Form kernels. Exponentiated quadratic, Matérn 1/2, 3/2, and

5/2 (a). Standard periodic (b). Spectral mixture (c). . . . . . 43

2.10 Example GP regression. Samples from the prior (a). Sam-

ples from the posterior (b). Posterior mean and interval of

confidence (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.11 Prior and posterior covariance matrices of example shown in

Figure 2.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.12 Example variational inference. . . . . . . . . . . . . . . . . . . 56

15



3.1 (a, b, c) Form of the analysed kernels: exponentiated quadratic

kEQ(τ), standard periodic kSP(τ), and exponentiated quadratic

× standard periodic kEQP(τ), respectively. Here, the hyper-

parameters had the values σ2 = 1.0, l = 0.125, z = 1.0 and

ω = 2π12. (d, e, f) Samples from a GP with kernel: kEQ(τ),

kSP(τ), and kEQP(τ), respectively. . . . . . . . . . . . . . . . 65

3.2 Spectral density of kEQ(τ) (a), kSP(τ) (b), and kEQP(τ) (c). . 66

3.3 (a) analysed audio (blue line), change windows (dashed lines).

(b) observed data (blue line), missing-data gaps (red line),

change-windows (dashed lines). . . . . . . . . . . . . . . . . . 68

3.4 Posterior mean for the pitch estimation experiments. (a) using

kEQ(τ), and (b) using kEQP(τ). . . . . . . . . . . . . . . . . . . 70

3.5 Zoom in a portion of missing-data gaps. In each figure the

continuous blue line represent the posterior mean, grey shaded

areas correspond to the posterior variance, red dots are missing

data, whereas black dots are observed data. . . . . . . . . . . 71

4.1 Graphical model of the proposed approach (see equation (4.1)).

At each time tn, the observed data yn depends on two sets ofM

latent variables {wm(tn)}Mm=1, and {φm(tn)}Mm=1 respectively.

The thick horizontal lines represent a set of fully connected

nodes [56]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 (a) sample of a training waveform Ym(ω). (b) corresponding
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Chapter 1

Introduction

1.1 Motivation

Source separation and multi-pitch detection are quite active areas of research

within the audio signal processing community. For example, source separa-

tion is useful in automatic speech recognition for isolating voice from back-

ground noise [40]. Also, pitch detection finds applications in speech [80],

automatic music transcription [67], and melody extraction [60]. From a

Bayesian perspective, these two tasks consist of updating prior knowledge

of underlying processes hidden in the data. Source separation reconstructs

latent signals that were mixed in an audio recording. Similarly, multi-pitch

detection retrieves the underlying symbolic representation (musical score, e.g.

piano roll) of a piece of music.

State-of-the-art methods for source separation and multi-pitch detection

commonly work on a time-frequency representation of the input raw audio.

In short, these methods first transform the input waveform into a magnitude

spectrogram, before performing the separation/detection task. For example,

approaches based on deep neural networks [67], non-negative matrix factor-

ization [78], and probabilistic latent component analysis [12, 30], exhibit this

pipeline. Although most researchers have extensively adopted this perspec-

tive, there are several potential disadvantages of working on time-frequency

representations.
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To illustrate the limitations of working with the spectrogram, consider the

problem of reconstructing the waveform sources from their corresponding

estimated spectrograms. To do so, the phase of each source spectrogram

needs to be approximated, corrupting the reconstruction. Also, in multi-pitch

detection, working with the spectrogram means that the time level resolution

is lost, introducing errors in the onset and offset times of the detection. These

challenges have motivated the development of new approaches that operate

directly on the input data waveform. Indeed, previous research suggests that

time-domain methods can circumvent phase approximation while achieving

time level resolution [87]. Still, current time-domain methods require further

developments before they can become widely used.

This thesis focuses explicitly on time-domain Bayesian approaches based

on Gaussian processes. Following a Bayesian approach means to specify first

a prior over the target variables, and then update it with observed data,

that is, to obtain a posterior. Here, the target variables are either the source

signals in source separation or the activation of each pitch in multi-pitch de-

tection. In both cases, the target variables are functions of time. Therefore,

both tasks need introducing priors over functions directly. Here, Gaussian

processes (GPs) are the mathematical tools that answer to this necessity.

A Gaussian process is a generalization of the multivariate normal distribu-

tion [56]. Moreover, as we will introduce shortly, GPs represent probability

distributions over functions.

Although time-domain source separation and multi-pitch detection mod-

els based on Gaussian processes have compelling advantages, these methods

face two main challenges. First, the prediction in GP models depends pro-

foundly on the chosen prior. Second, GPs are intractable for large audio

signals, as the computational complexity of inference scales cubically with

the data size. Specifically, evaluating the likelihood and computing the pos-

terior distribution requires to invert a dense matrix. The complexity of the

standard approach for matrix inversion is O(n3). On the other hand, the

Strassen’s algorithm [72] has complexity O(n2.8), which it is also intractable

for large datasets (n� 1× 104).
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1.2 Aim

This research aims to develop Bayesian machine learning methods that in-

terpret source separation and multi-pitch detection as a single unifying task.

Moreover, the proposed methods are intended to explain the raw waveform

of single-instrument music recordings directly; that is, they should work in

the time-domain. The reason is that the unprocessed audio data by itself

contains all the knowledge available in a music recording, in contrast to

transforming the audio waveform into a spectrogram, which often induces

loss of information.

Following the Bayesian paradigm, this work requires the development of

suitable Gaussian process priors able to encode the fundamental properties

of acoustic signals. That is, smoothness, periodicity, spectral content, and

non-stationary amplitude. Also, the audio signal processing tasks of source

separation and multi-pitch detection demand methods that are data-efficient.

consider, for instance, the possibly millions of data samples present in one

single music recording. Consequently, this work also requires the introduction

of inference approaches that make the proposed Bayesian methods scalable.

1.3 Thesis structure

Chapter 2 introduces the fundamental concepts and relevant research which

will serve as the building blocks of this thesis. First, it describes the

tasks of single-channel audio source separation and multi-pitch detec-

tion. Then, it presents how to use Gaussian processes (GPs) for ma-

chine learning regression, emphasising on how to design meaningful

and valid priors/kernels. Finally, this chapter concludes by discussing

how (stochastic) variational inference (VI) enables GP models for large

music recordings.

Chapter 3 presents a first attempt to develop a time-domain multi-pitch

detection model based on Gaussian processes. This method relies on

deterministic and parametric activation functions, with Gaussian pro-
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cesses explaining the harmonic behaviour of the pitches. Here, exper-

iments study the relationship between choosing a specific kernel and

the performance of the GP multi-pitch detection model.

Chapter 4 focuses on developing further the method presented in the pre-

vious section. For this purpose, this chapter introduces three main

changes. First, the activation functions go from being parametric to

becoming stochastic processes, explicitly, GPs. Second, instead of us-

ing generic kernels for describing spectral content, we propose to use

the Matérn spectral mixture kernel. A subsection introduces the com-

pelling properties and mathematical derivation of this kernel. Finally,

in this model, the observed audio data is described as the sum of

products of two GPs. Consequently, the posterior does not have a

closed-form. Therefore this chapter concludes by showing experiments

applying approximate variational inference to learn both, the hyperpa-

rameters and the posterior.

Section 5.1 This section investigates time-domain source separation mod-

els based on Gaussian processes. The evaluation metrics for this task

demand to reconstruct the source functions with a higher degree of

exactness, in contrast to multi-pitch detection. To this end, the pro-

posed method first frame the input music recording, and then analyses

each window individually. Besides, we suggest initialising the kernel of

each source by using the empirical autocorrelation of isolated source

recordings. Also, to learn the model hyperparameters, we propose to

maximise a marginal likelihood lower bound.

Section 5.2 This section investigates the application of the proposed meth-

ods in the scenario where 88 pitches need to be detected/separated.

Here, the aim is to carry out both tasks simultaneously; that is, to

identify pitches but also to reconstruct the source signal corresponding

to each pitch. This requires the usage of stochastic variational inference

(SVI). This chapter presents some preliminary results.

Chapter 6 concludes the thesis by drawing comparisons between the exper-
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iments and methods proposed throughout this research. This section

also discusses future work.

1.4 Contributions

The main contributions of this thesis are:

Chapter 3: A semi-parametric approach for multi-pitch detection that op-

erates in the time-domain. This method relies on Gaussian process

regression and parametric/deterministic activation functions.

Chapter 4: A fully nonparametric Bayesian method for time-domain multi-

pitch detection. Here, the activation functions follow stochastic pro-

cesses inferred directly from the audio data.

Chapter 4: Similarly to the spectral mixture kernel proposed by Wilson in

[83], we introduce the mathematical derivations of the Matérn Spectral

Mixture kernel.

Chapter 4: A methodology for initialising spectral mixture kernels, to make

them suitable for the spectral content of music notes.

Section 5.1: The development of an efficient approach for time-domain

Gaussian process source separation. This model works on a windowed

version of the mixture audio data and optimises an evidence lower

bound to learn hyperparameters. The covariance functions used by

this model resemble the empirical autocorrelation of isolated sounds

corresponding to the training data of each source.

Section 5.1: The development of a Python package called GPitch for source

separation and multi-pitch detection in the time domain. The available

code works currently on single-instrument music recordings.

Section 5.2: The introduction of stochastic variational inference methods

into multi-pitch detection GP models, allowing to use these methods

in large audio signals.
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1.5 Associated publications

Portions of the research presented in this thesis have been published in in-

ternational conferences and workshops, as follows

• Chapter 3: Presented at the 2016 IEEE International Workshop on

Machine Learning for Signal Processing (MLSP 2016) [7].

• Chapter 4: An early version of this work was released on arXiv.org

e-Print archive (2017) [8].

• Section 5.1: Published in the 2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP 2019) [6].
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Chapter 2

Background

This chapter introduces the main concepts and research related to the aim of

this thesis. It starts by defining what audio signals are, and how to represent

them as waveforms. Then, this chapter illustrates a more specific type of

acoustic signal: the polyphonic music recording. Also, it introduces two

forms of music representations: the music-score, and the piano-roll. These

concepts are essential to understand the two main areas of application of this

work, that is, automatic music transcription or multi-pitch detection, and

source separation. The subsequent section describes multi-pitch detection

and automatic music transcription. It first explains what pitch is and why

it is challenging to detect pitches in polyphonic music signals. Next, this

chapter illustrates the task of source separation. Similarly, it first defines

what a source is and why it is challenging to separate sources in polyphonic

music recordings. Then, the following section details the mathematical and

probabilistic foundations of the machine learning methods proposed in this

thesis. Explicitly, it introduces Gaussian processes and how to apply them for

Bayesian modelling. The chapter concludes by discussing how the research

of this thesis fits into the state-of-the-art of multi-pitch detection and source

separation.
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2.1 Audio signals

In general, the term audio alludes to recording, reproducing, transmitting,

and storing sound [74]. In this thesis, an audio signal refers solely to the

data captured by a microphone when registering pressure fluctuations in

the surrounding air (Figure 2.1). Further, the term audio signal is used

interchangeably with acoustic signal. Although these terms cover any sound,

for example, music, speech, bird songs, and street noise, here it refers mainly

to single-instrument music recordings.

sound wave propagation

Figure 2.1: Audio signal generation.

Any object vibrating at frequencies within the limits of human hearing

(20Hz to 20kHz) produces sound. These oscillations provoke displacement

of air molecules. The repeated pattern by which the molecules contract and

expand propagates through the air as a wave. Therefore, a way to represent

sound at a particular location in the space is by a pressure-time function,

also known as the waveform of a sound. For example, Figure 2.2 shows two

seconds of the waveform of a single piano note recorded using a microphone.

The small box inside Figure 2.2 shows 20 milliseconds of the same waveform.

In short, the waveform is a function of time that characterises air pressure

variations at a certain point. In this thesis, the terms waveform, acoustic

signal, and audio recording are all equivalent.
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Figure 2.2: Two seconds of a piano waveform. The small box inside corre-
sponds to zooming in on a 20 milliseconds window.

Pitch

Pitch is a subjective perception of the frequency content of a sound [48]. The

pitch is what enables a listener to distribute sounds on a scale ranging from

low to high [53]. Although the pitch is associated with an attribute of the

auditory sensation, there is a very strong relationship between pitch and the

fundamental frequency (F0) of a harmonic sound. The F0 is a quantitative

property, measured in Hertz or cycles/second. Therefore, this work often

uses pitch to refer to the fundamental frequency of the sounds present in a

music signal [23].

2.1.1 Music signals

A music signal refers to any audio recording related to the interpretation of

a piece of music. In a general sense, this could include several instruments

playing at the same time. This thesis addresses solely single-instrument music

signals, for example, an audio recording of only one violin or piano. Single-

instrument music signals fall into two groups. The first one corresponds to

pieces of music where only one note or pitch occurs at a time. This situation

happens in a melody, for example, when a single person sings. The second

group corresponds to polyphonic music signals, that is, recordings where more

than one pitch or note take place simultaneously. For instance, in a piano

interpretation, if a musician presses more than one key at the same time,
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then the piano would concurrently produce more than one sound.

Music representations

Within the context of western music, the sheet music, also known as musical

score, is a visual representation that describes a piece of music by using

symbols and letters (Figure 2.3 ). The term note refers to both the musical

symbols used in a score, and the corresponding sounds produced once the

sheet is interpreted by a musician using an instrument [51].

Piano ă
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ŐŐŐŐ
ˇ

ˇ ˇ ˇ ˇ

˘

Figure 2.3: Example music score.

The score and the waveform are two different ways to describe a music

signal. The first one relies on symbols, whereas the second one measures a

continuous property of air (pressure). The piano-roll appears as an inter-

mediate symbolic representation lying between the score and the waveform.

The piano-roll P is a matrix where the y-axis denotes the pitches, and the

x-axis refers to time (Figure 2.4). This matrix contains only zeros and ones.

Therefore, if the element of the piano-roll at the i-th row and j-th column

is equal to one, i.e. P[i, j] = 1, it means that the i-th pitch is active during

all the j-th window time. In short, the piano-roll registers the pitch and

duration of any note played in a musical interpretation [51].

2.2 Automatic music transcription

Automatic music transcription (AMT) aims to transform acoustic music sig-

nals into some symbolic music representation. Moreover, the form of the

intended music notation defines the complexity of AMT methods. For ex-

ample, a frame-level music representation requires an AMT system that first
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Figure 2.4: Piano-roll as intermediate representation between music score
and audio signal [22].

frames the input acoustic signal into windows of usually 10ms, to subse-

quently produce the list of pitches co-occurring inside the range of each frame.

A common approach to frame-level transcription is known as multi-pitch

estimation [13], which can be used to predict a piano-roll type transcrip-

tion. Likewise, a note-level music notation involves an AMT approach that

outputs a full list of notes, that is, a table with the pitch, onset, and offset

of every note detected in the input acoustic signal. Last, a notation-level

transcription refers to the case when the target notation is the music sheet

or score [13, 15]. This thesis focuses on frame-level (multi-pitch detection)

and note-level transcription.

Regardless of the desired music representation (frame, note, or notation

level), transcribing polyphonic music is a challenging task [14]. One reason
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is the high number of sound sources combined to form a single polyphonic

music signal. Here, sound sources include musical instruments, and vocals

(singing). Besides, each source could produce several simultaneous voices,

that is, more than one parallel melody. In this sense, AMT is undeniably an

underdetermined problem [13].

To understand another reason why AMT is challenging, first recall that

the sound of an individual note (a.k.a sound event) is not only a fixed-

duration sine wave, with a single frequency. A note sound has energy across

different frequency bands, and this distribution is often non-stationary yet

smooth. In short, a sound event consists of a full spectrum of harmonics,

i.e. a fundamental frequency and partials whose energy evolves in time [16].

Furthermore, these partials are comparable to building blocks which, once

rearranged and grouped in different shapes, form each of the musical note

sounds present in a music recording. In short, music sound events are virtu-

ally made of the same fundamental or essential components. The challenge

becomes harder when there is a time overlapping between sound events con-

stituted by the same or partially the same elements. This overlapping also

extends to the frequency domain. As a result, explaining the energy of a mu-

sic signal at a specific time and frequency band becomes ambiguous; different

combinations of sound events/pitches give equivalent feasible explanations.

2.2.1 Multi-pitch estimation and note-level AMT

Researchers have proposed a wide range of methods for automatic music

transcription. This section presents both frequency-domain and time-domain

approaches for multi-pitch estimation and note-level AMT.

Time-frequency approaches

Most time-frequency domain methods for multi-pitch detection rely on either

non-negative matrix factorization (NMF) or neural networks [13, 15, 17]. In

these approaches, the aim is to decompose the spectrogram (time-frequency

representation) of the input waveform into elementary components and subse-

quently use these components to calculate the individual pitch-spectrograms.
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Next, we describe some os these methods.

In NMF based multi-pitch estimation, the spectrogram V, which is a non-

negative matrix, is factorised as the product of two non-negative matrices

D, and A. The columns of the matrix D represent a dictionary or set of

K components, comprising the expected spectrum pattern of each target

pitch. The rows of the matrix A correspond to a set of corresponding K

activations that explain when the spectrum of a pitch is active or absent in

the spectrogram.

Inference in NMF corresponds to minimising the divergence between V

and DA, with the dictionary and activation matrices as the parameters to

be learned. The Kullback-Leibler (KL) divergence is a well-known cost func-

tion used for this purpose [39]. In the most unconstrained version of NMF,

the activations and dictionary matrices require only to have positive values.

Consequently, after minimising the KL divergence between the spectrogram

V and its approximation DA, the learned components, i.e. the columns of

D, could lack a spectrum pattern meaning associated with each pitch. In

short, the components could be extremely noisy. Likewise, the set of activa-

tions, i.e. the rows of A, could exhibit an absence of fundamental properties,

such as continuity, smoothness, and temporal and harmonic sense (from a

Western music theory point of view). In other words, the activations could

also be quite noisy [15].

To reduce the NMF limitations mentioned above, several extensions have

been proposed to introduce specific structure and properties in either the acti-

vations (rows of A) or the components dictionary (columns of D). For exam-

ple, sparsity in the activation matrix could be imposed to encourage that each

column of the spectrogram V is explained by a few number pitches/sources,

which is often the case in music signals [2]. On the other hand, the harmonic

structure of each target pitch can be learnt in a preprocessing step, so a pre-

established dictionary or set of components can be used in NMF inference.

This is possible when recordings of isolated notes or sound events are avail-

able during training. Similarly, every column of the dictionary matrix can be

modelled as a linear combination of narrowband spectra corresponding to a

finite number adjacent harmonic partials. This encourages harmonicity and
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spectral smoothness and allows the spectral envelope to each instrument to

be adaptive [78].

Neural networks methods for multi-pitch detection or frame level auto-

matic music transcription have also a mixture spectrogram as input. This

could include more than spectrogram each with different time-frequency res-

olution [21]. Likewise, music structure can be promoted by using a music

language model/prior [67]. Current state-of-the-art transcription systems in-

tended for piano rely on deep learning [32]. However, deep learning methods

require large quantities of training data to achieve good performance [13]. For

example, the overall size of the dataset used in [32] was about 65 hours of

audio recordings (see [28] for a description of this dataset). Nevertheless, the

authors in [32] claimed that “to further improve the results we need to create

a new dataset that is much larger”. Unfortunately, among the challenges in

the music transcription field are the limited available annotated-data [13],

and the difficulty of annotating new datasets efficiently [73].

Despite all the relevant contributions that time-frequency multi-pitch de-

tection methods have done to the research community, there are some inher-

ent shortcomings that are challenging to circumvent. Specifically, to operate

in the spectrogram means that a frame-level resolution is enforced in the

transcription. In short, time-frequency AMT methods are not capable of

achieving time-level resolution. Besides, working on the spectrogram often

means discarding the phase, incurring a loss of information present in the

raw music signal. Next, we describe time-domain methods that avoid these

disadvantages.

Time-domain methods

To avoid the time-frequency resolution trade-off, the method proposed in

[24] operates directly on the time domain. This method is based on convo-

lutional sparse coding and models the waveform of the mixture input signal

as a linear combination of deterministic piano note waveforms (dictionary of

components) convolved with their temporal activations. In addition, spar-

sity is encouraged in the activations, and time-domain components are pre-
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trained as a context-specific dictionary. Working in the time-domain allows

increasing the transcription accuracy in comparison to time-frequency AMT

systems.

Nonetheless, the method proposed in [24] introduces quite strong assump-

tions about the piano notes present in the music recording. In short, every

note is assumed fixed and deterministic, that is, the same sound events repeat

throughout the audio signal. This means that different intensities, dynamics,

and durations are troublesome to model. As a potential solution, the same

paper proposes as future work the usage of a larger and more flexible dictio-

nary of time-domain components. From a Bayesian perspective, we interpret

this larger dictionary of components as a probabilistic prior over time-domain

functions. As we will see shortly in section 2.4, Gaussian processes (GPs)

can be interpreted also as prior probability distributions over functions. This

suggests that GPs could be used for defining larger and more flexible dictio-

naries of time-domain components functions. This idea is at the heart of the

methods proposed in this thesis (chapters 3, 4, 5.1 and 5.2).

SS

AMT

AMT

AMT

Polyphonic signal

Pitch 1

Pitch 2

Pitch 3

Figure 2.5: Relation between source separation and multi-pitch detection.

In some cases, the boundary between source separation and multi-pitch

detection can be diffuse. For example, Yoshii et al. in [87] analysed single-

instrument polyphonic music signals to reconstruct the source waveform re-

lated to each pitch (Figure 2.5). In short, there was a one-to-one correspon-
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dence between sources and pitches. In the next section, we describe this

specific case of source separation.

2.3 Source separation

The aim in single-channel audio source separation is to estimate a certain

number of latent signals or sources that are mixed together in one mixture

signal [41]. State of the art time-frequency methods include deep learning

[70], non-negative matrix factorisation (NMF) [39], and probabilistic latent

component analysis (PLCA) [68]. Similarly to time-frequency multi-pith

detection approaches, these methods decompose the mixture power spec-

trogram into fundamental components. Then, the components are used to

calculate the individual source-spectrograms. Time-frequency methods often

arbitrarily discard phase information. As a result, the phase of each source-

spectrogram must be approximated, corrupting the reconstructed sources.

In contrast, time-domain source separation approaches can avoid the

phase approximation issue of time-frequency methods [29, 71]. For example,

Yoshii et al. [87] reconstructed source signals from the mixture waveform

directly in the time domain. To this end, Gaussian processes (GPs) were

used to predict each source waveform. GPs are probability distributions over

functions [56]. A Gaussian process is completely defined by a mean func-

tion, and a kernel or covariance function. In fact, the kernel determines the

properties of the functions sampled from a zero-mean GP.

A particularly influential work in time domain approaches is Liutkus et

al. [41], who first formulated source separation as a GP regression task. Al-

ternatively, Adam et al. [3] recently proposed to use variational sparse GPs

for source separation, however audio signals were beyond the scope of their

study. One clear advantage of the GP formulation is that prior knowledge

about the properties of the sources, components and activations can be ele-

gantly integrated into the model. This is possible by choosing or designing

suitable kernels or covariance functions that encode the desired properties

of the latent functions to be inferred. The Gaussian process paradigm is

explained in more detail in the next section.
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2.4 Gaussian processes

In sections 2.2 and 2.3 we explained that in AMT and source separation the

main goal is to infer latent functions from data. Specifically, the idea in source

separation is to reconstruct the source functions mixed together in an audio

recording, whereas the aim in automatic music transcription is to infer an

activation function for each pitch present in a polyphonic music signal. Now

we will introduce the mathematical paradigm of Gaussian processes (GPs).

As we will demonstrate shortly, GPs are suitable for inferring functions in

scenarios when prior knowledge about a reduced dataset is available. Clearly

our case of study is one such scenario, as we have access to a limited number

of audio signals. Also, there is knowledge available about the properties of

acoustic signals, such as non-stationarity, spectral content, and smoothness.

GPs are probability distributions over functions. Further, with GPs we have

the ability to combine audio recordings (data) together with knowledge about

acoustic signals, in order to make accurate predictions in source separation

and automatic music transcription.

This section is organized as follows: Gaussian processes are precisely

defined in subsection 2.4.1. The kernel or covariance of a GP is introduced

in subsection 2.4.2. Then, examples of stationary kernels are presented in

section 2.4.3. Finally, subsection 2.4.4 explains how to combine GPs together

with data in order to build regression models.

2.4.1 Preliminaries

Multivariate Gaussian distributions describe finite dimensional normal ran-

dom variables f ∈ Rn. Likewise, Gaussian processes describe infinite dimen-

sional normal random variables. That is, when n → ∞ [56]. This infinite

generalization of the finite-dimensional multivariate normal distribution fol-

lows the Kolmogorov existence theorem [38], which defines the consistency

conditions to guarantee that a family of consistent finite-dimensional prob-

ability distributions defines a stochastic process. In this sense, Gaussian

processes can be defined as distributions over functions. The reason is that a

function f(x) can be evaluated at infinite different points x, where x ∈ RD.
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If we interpret as random variables the values of f(·) evaluated at all points

x, then we end up with a collection of an infinite number of random vari-

ables. Moreover, in a Gaussian process any finite subset of random variables

f = [f(x1), · · · , f(xn)]> follows a joint normal distribution

f ∼ N (f |µ,K) , (2.1)

where µ is the mean, K is the covariance matrix, and the multivariate normal

distribution is defined as follows

N (f |µ,K) =
1

(2π)
n
2 |K| 12

exp

{
−1

2
(f− µ)>K−1(f− µ)

}
. (2.2)

Details about how to compute K are going to be presented shortly in

the next section. For now let us suppose the covariance matrix K is given.

We illustrate the concept of a Gaussian process in Figure 2.6. It shows

three vector samples {fi}3
i=1 with fi ∈ R10, drawn from (2.1) assuming a

zero mean vector µ = 0. Each plot corresponds to a sample, the black dots

represent the values of the vector sampled fi, the grey line corresponds to

the continuous posterior mean function (2.30) obtained using GP regression

(see section 2.4.4).
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Figure 2.6: Three samples from a multivariate Gaussian distribution (dots).
Underlying functions (continuous lines).

Just like the multivariate Gaussian distribution (2.2) is completely pa-

rametrized by its mean vector and covariance matrix, a Gaussian process is

fully specified by a mean function µ(x), and a covariance function or kernel
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k(x,x′). That is

µ(x) = E[f(x)], (2.3)

and

k(x,x′) = E [(f(x)− µ(x))(f(x′)− µ(x′))] , (2.4)

where k(x,x′) has free hyperparameters θ. In expressions such as (2.3) the

expectation is taken over the stochastic function f(x) equipped with a prob-

ability measure p(f(x)), that is E[f(x)] =
∫
f(x)p(f(x))df(x). We write the

Gaussian process as

f(x) ∼ GP(µ(x), k(x,x′)). (2.5)

When the mean function is assumed µ(x) = 0, then the kernel k(x,x′) de-

termines the properties of f(x). Also, the covariance function specifies how

a GP model generalizes or extrapolates [42].

2.4.2 The covariance function

We have introduced the GP as a collection of an infinite number of random

variables, such as any finite set of these random variables follows a multi-

variate normal distribution. This section presents the covariance function or

kernel of a GP, that is, the function k(x,x′) that specifies the dependency

between any pair of random variables, corresponding to evaluate the func-

tion f(·) at any two points x, x′. Further, the kernel defines the notion of

nearness or similarity between any two function values f(x) and f(x′) [56].

From now on, we will focus on univariate input variables, i.e. x ∈ R. This

is because the only independent variable we are considering in this research

is time. Therefore, we make the following change of variable x = t, in or-

der to keep the notation uncluttered. In addition, we use the word kernel

interchangeably with covariance function.

The kernel determines the properties of the functions sampled from a GP.
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For example, by choosing certain covariance function we can draw samples

that are stationary and smooth (Fig 2.7(a)) or rough (Fig 2.7(b)). In addi-

tion, a periodic kernel introduces regularities in the properties of the sampled

functions (Fig 2.7(c)). Also, by using a non-stationary covariance we can en-

courage the behaviour of the functions to depend on time (Fig 2.7(d)). In

summary, the kernel encodes prior knowledge (assumptions) about the data

we aim to model with a GP. How to combine GPs with data to make predic-

tions is introduced in section 2.4.4.
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Figure 2.7: Functions sampled from four different GPs.

Bear in mind that all functions with two inputs are not necessarily valid

kernels [56]. First, let us introduce t = {ti}ni=1 as a set of n time instants

where the function f(·) is evaluated. A valid kernel should satisfy the fol-

lowing necessary and sufficient condition: the matrix K, computed by evalu-

ating the kernel k(t, t′) at all possible combinations of the elements in t (i.e.

Ki,j = k(ti, tj)), is a positive semidefinite matrix for all possible choices of

the set t [19]. To fulfil this condition, a kernel has to satisfy the following

three properties:

k(t, t) = cov (f(t), f(t)) = var (f(t)) ≥ 0, (2.6)

that is, k(t, t) is positive. In addition,

k(t, t′) = cov (f(t), f(t′)) = cov (f(t′), f(t)) = k(t′, t), (2.7)
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that is, k(t, t′) is symmetric. Also,

n∑
i=1

n∑
j=1

aiajk(ti, tj) ≥ 0, (2.8)

where n, ai and ti are arbitrary [18]. Examples of valid kernels are presented

shortly.

2.4.3 Stationary covariance functions

A Gaussian process (2.5) is wide sense stationary (WSS) if its mean function

is constant, and its kernel is stationary, i.e. a function of τ = t− t′ [65, 56].

This means that the covariance is invariant to translations in time. If the

kernel is isotropic, then it is a function of r, where r = |τ |. In addition, it can

be shown that the spectral density or power spectrum S(s) of a WSS process

corresponds to the Fourier transform (FT) of its covariance function, that is

S(s) =

∫ ∞
−∞

k(τ)e−jsτdτ, (2.9)

thus

k(τ) =
1

2π

∫ ∞
−∞

S(s)ejsτds. (2.10)

This is known as the Wiener-Khintchine theorem [56, 65]. This connection

implies that we can analyse kernels in the frequency-domain, and choose the

covariance functions whose properties are more appropriate for modelling the

spectral content of music signals.

Next, we describe examples of stationary covariance functions, specifi-

cally, the exponentiated quadratic, three kernels from the Matérn family, the

standard periodic, and the spectral mixture kernel.
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Exponentiated quadratic

This kernel has the expression

kEQ(r) = σ2 exp

(
− r2

2`2

)
, (2.11)

where σ2 corresponds to the variance, and ` to the lengthscale parameter.

The form of (2.11) is shown in Figure 2.9(a), when σ2 = 1 and ` = 0.5. In

this kernel, the larger the gap r between the time instants, that is r = |t− t′|,
the less dependent the random variables f(t) and f(t′) are. The functions

sampled from a GP with this covariance are infinitely smooth (Figure 2.8(a)).

Matérn kernels

Here we present the first three kernels of the Matérn family with half-integer

orders [56]. These covariances have the form

k1/2(r) = σ2 exp
(
−r
`

)
, (2.12)

k3/2(r) = σ2

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
, (2.13)

k5/2(r) = σ2

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
, (2.14)

where σ2 represents the variance, and ` the lengthscale. The order of the

kernel, i.e. 1
2
, 3

2
or 5

2
, determines the number of times the realizations from

a GP (with a Matérn covariance) can be differentiated. In other words, the

order defines how smooth the drawn functions are. The lower the order,

the less smooth they are (Figure 2.8(b-d)). Similar to the exponentiated

quadratic kernel (2.11), in the Matérn family the dependency between two

observations decreases with the size of the time gap between them (Figure

2.9(a)).
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Figure 2.8: Functions drawn from GPs with different kernels. Exponentiated
quadratic (a). Matérn 1/2 (b). Matérn 3/2 (c). Matérn 5/2 (d). Standard
periodic (e). Spectral mixture (f).

Standard periodic

To create a standard kernel with periodic structure [43], first the input vari-

able time is wrapped onto a circle, i.e. φ(t) = [cos(t), sin(t)]>. Subsequently,

the two dimensional feature vector φ(t) is used as input in the exponentiated

quadratic kernel (2.11). Recall r = |t − t′|, but with the transformed input

variable we get

r̂ = |φ(t)− φ(t′)|,

r̂ =
√

[cos(t)− cos(t′)]2 + [sin(t)− sin(t′)]2,
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now, replacing r̂ in (2.11), we get

kSP(r̂) = σ2 exp

−
{√

[cos(t)− cos(t′)]2 + [sin(t)− sin(t′)]2
}2

2`2

 ,

= σ2 exp

(
−1− cos(t− t′)

`2

)
.

Using the trigonometric property sin2
(
θ
2

)
= 1

2
[1−cos(θ)] we get the standard

periodic covariance

kSP(r) = σ2 exp

(
−

2 sin2
(
r
2

)
`2

)
, (2.15)

with r = |t − t′| [56]. With this kernel the covariance evolves periodically

with respect to r (Figure 2.9(b)). The functions sampled from a GP with

this covariance are periodic. In addition, their spectral content is determined

by a mixture of a finite number of perfect harmonics, that is, a fundamental

frequency F0, plus partials whose frequency is an integer multiple of F0.

Figure 2.8(e) shows two samples from a GP with this covariance function.

Spectral mixture

The spectral mixture (SM) kernel is derived when a spectral density (2.9) is

approximated using a mixture of Gaussians [83]. If the input variable is an

scalar, i.e. x = t with t ∈ R, then the spectral mixture kernel corresponds to

kSM(r) =
P∑
p=1

σ2
p exp

(
− r2

2`2
p

)
cos (ωpr) . (2.16)

Here, the set of hyperparameters {ωp}Pp=1 defines the modes of the Gaussian

functions, that is, their locations in the frequency-domain, the set
{
σ2
p

}P
p=1

determines the contribution of the p-th component to the whole kernel, and

the set {`p}Pp=1 specifies the lengthscale for each component, that is, how

wide or narrow the p-th Gaussian function is in the frequency domain.
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Figure 2.9: Form kernels. Exponentiated quadratic, Matérn 1/2, 3/2, and
5/2 (a). Standard periodic (b). Spectral mixture (c).

The spectral mixture kernel is quite flexible. It can approximate a wide

range of stationary kernels, including periodic, quasi-periodic, and not peri-

odic ones. For this reason, functions drawn from a GP with this kernel can

have a wide variety of behaviours and properties. These kernel attributes

might be useful for music signals (see Chapters 4, 5.1 and 5.2). Here, we

show a specific example of the SM kernel (Figure 2.9(c)). In this case, the

functions drawn from a GP with this covariance are quasi-periodic (Figure

2.8(f)). This thesis pays considerable attention to spectral mixture kernels.

Moreover, we focus on developing a similar family of covariances, called the

Matérn spectral mixture kernels (chapter 4).

2.4.4 Gaussian process regression

So far we have introduced Gaussian processes as probability distributions over

functions. Further, we emphasized that the kernel governs the properties of

the functions drawn from a GP. This section presents how to combine GPs

with data, in order to make predictions. GP-based machine learning is con-

sidered a powerful Bayesian paradigm for nonparametric nonlinear regression

and classification models [62]. Here we focus on regression, i.e. predicting a

continuous quantity [56]. In GP regression rather than inferring the param-

eters θ of a fixed-form function of time f(t,θ), we introduce a prior over the

43



function f(t) itself. Subsequently, we use the information about the func-

tion provided by the data to calculate the posterior distribution over f(t)

[56, 59, 61]. In this sense, we use GPs as priors, that is, as the element that

embodies the assumptions and knowledge available about the observed data.

We notate the data, i.e. audio signals, as D = {ti, yi}ni=1, where ti ∈ R+

(including zero), yi ∈ R, and n is the number of observations. We group

time instants, and data values in the vectors t = [t1, · · · , tn]>, and y =

[y1, · · · , yn]> respectively. In addition, audio samples {yi}ni=1 are assumed to

be noisy measurements of a zero-mean GP f(t), that is,

f(t) ∼ GP (0, k(t, t′)) , (2.17)

where k(t, t′) is a covariance function. Also, the observation time instants

{ti}ni=1 are assumed regularly-spaced (though GP regression allows for irreg-

ular sampling or missing data). In short, the regression model corresponds

to

yi = f(ti) + εi, (2.18)

where the value of each noise variable in {εi}ni=1 is sampled independently

for each observation {yi}ni=1 [19]. We assume that every noise variable εi

follows the same zero-mean Gaussian distribution with variance ν2, that is,

εi ∼ N (0, ν2) ∀ i. Further, the probability of yi conditioned to fi is

p(yi|fi) = N (yi| fi, ν2),

where fi = f(ti). Because the noise is independent for each observation yi,

then the distribution over the complete audio recording y = [y1, · · · , yn]>,

conditioned to the function values f = [f(t1), · · · , f(tn)]>, corresponds to an

isotropic Gaussian distribution with form

p(y|f) =
n∏
i=1

N (yi| fi, ν2), (2.19)

= N (y| f , ν2I),
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where I is the identity matrix with size n×n. The expression (2.19) is known

as the likelihood. In addition, recall we assumed the function f(t) follows

a zero-mean GP ((2.17)), therefore the probability of f is

p(f) = N (f | 0,K), (2.20)

where the elements of the mean vector are {µi}ni=1 = 0. The covariance

matrix has entries Kij = k(ti, tj), where k(·, ·) is a valid kernel (see section

2.4.2).

From a Bayesian perspective, we are interested in calculating the posterior

over f(t) evaluated at test points t∗. For now lets suppose t∗ = t. Using

Bayes theorem we know that the conditional distribution of f given the data

y follows

p(f|y) =
p(y|f)p(f)
p(y)

, (2.21)

where p(f|y) is the posterior distribution, p(y|f) corresponds to the likeli-

hood, p(f) to the prior, and p(y) is the evidence or marginal likelihood. The

marginal-likelihood p(y) is the integral of the likelihood times the prior, and

it reflects how probable is the observed vector y, conditioned on the kernel

hyperparameters θ. The evidence corresponds to

p(y) =

∫
p(y|f)p(f)df. (2.22)

Since the likelihood p(y|f) is conjugate to the prior p(f), that is, both are

multivariate Gaussian distributions, then the form of the marginal-likelihood

p(y) in (2.22) is also Gaussian [56]. We can calculate directly the marginal

likelihood p(y), from (2.18) we know that

y = f + ε, (2.23)

where the f follows (2.20) (with zero-mean), and the noise vector follows

ε ∼ N (0, ν2I). The variable y corresponds to the sum of two normal vectors,
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therefore its distribution is also Gaussian with form

p(y) = N (y| E{y},Cov [y,y]) , (2.24)

where E{y} = E{f + ε} = 0, and

Cov [y,y] = E
{
yy>

}
= E

{
ff> + fε> + εf> + εε>

}
= E

{
ff>
}

+ E
{
εε>
}

= Cov [f, f] + Cov [ε, ε]

= K + ν2I,

then

p(y) = N (y| 0,Ky), (2.25)

where Ky = K + ν2I. The reason it is called the marginal likelihood, rather

than just likelihood, is because we have marginalized out the latent Gaussian

vector f [52]. The log of (2.25) is usually the objective function when learning

the hyperparameters (see training subsection). Finally, the computation of

the posterior (2.21) or predictive distribution is explained shortly.

Training

In GP regression, training refers to selecting the likelihood parameters (e.g.

noise variance), the covariance function, and its hyperparameters [56]. The

objective function to optimize is usually the log of the marginal likelihood

(2.25)

J(θ) = log p(y|θ), (2.26)

= −1

2
y>
[
K + ν2I

]−1
y − 1

2
log |K + ν2I| − n

2
log(2π),
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where θ are the kernel (used to calculate K ) and likelihood hyperparameters.

Moreover, optimization algorithms require the gradients of J(θ), that is,

∂

∂θi
J(θ) =

1

2
y>K−1

y

∂Ky

∂θi
K−1
y y − 1

2
tr

(
K−1
y

∂Ky

∂θi

)
, (2.27)

=
1

2
tr

((
αα> −K−1

y

) ∂Ky

∂θi

)
,

where α = K−1
y y. The form of these derivatives depends completely on the

selected kernel k(t, t′).

The computation of (2.26) and (2.27) require to invert a n × n matrix.

The time needed for matrix inversion is usually O(n3) (see section 2.6.1).

Thus, the larger the training dataset (i.e. n), the more time the optimization

demands. In fact, the standard GP regression model is intractable for large

datasets, making it incompatible with the audio signals we aim to analyse.

This is because when recording audio, between 16000 to 44100 data values

are usually collected per second. In order to make GP models suitable for

processing audio, we study approximate inference methods that alleviate the

burden of matrix inversion (for a detailed explanation see section 2.6).

Predictive distribution

Recall that the kernel introduces dependencies between the values of the

function f(t) at different time instants. Therefore, the noisy observations

y ∈ Rn of the function f(t) evaluated at t = {ti}ni=1 provide also informa-

tion of the unobserved function values f∗ ∈ Rm. Here, m is the number of

time instants where we aim to make predictions, that is t∗ =
{
t̂j
}m
j=1

. This

dependency introduced by the kernel is what allows us to make predictions.

To do so, we first define the joint distribution

p(y, f∗) = N

[y

f∗

] ∣∣∣∣∣0,
K(t, t) + ν2I K(t, t∗)

K(t∗, t) K(t∗, t∗)

 , (2.28)

where K(t, t) is a n × n matrix, K(t∗, t∗) is a m ×m matrix, and K(t, t∗)

is a n × m matrix corresponding to evaluate the kernel k(t, t′) on all pos-
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sible combinations between the elements of t and t∗, i.e. the training and

prediction time instants respectively. In addition, using the joint (2.28) and

the conditional property of the Gaussian distribution (see appendix A), we

calculate the posterior

p(f∗|y) = N
(
µpos, Kpos

)
, (2.29)

where the mean corresponds to

µpos = K(t∗, t)
[
K(t, t) + ν2I

]−1
y, (2.30)

and the covariance matrix to

Kpos = K(t∗, t∗)−K(t∗, t)
[
K(t, t) + ν2I

]−1
K(t, t∗). (2.31)

The form of the posterior mean (2.30) and covariance (2.31) depend on the

kernel used to calculate K(·, ·). Therefore, a change in the kernel will affect

the model prediction.

2.4.5 Toy example regression

To summarise the GP concepts presented so far, we introduce a toy exam-

ple of GP regression (Figure 2.10). Recall the main goal is to combine a

model/prior with data, to make predictions. Here, we used the Matérn 3/2

kernel (2.13). We first set the lengthscale and variance hyperparameters with

` = 1 and σ2 = 1 respectively. The functions sampled from this prior are

slightly smooth (Figure 2.10(a)). Then, we generated synthetic data by evalu-

ating the deterministic function g(t) = sin(2πt)+cos(2.3×2πt)+sin(1.3×2πt)

at seven random points in the range (0, 1). Subsequently, we used the data to

optimize the log marginal likelihood (2.26), that is, to learn the hyperparam-

eters. Last, with the trained lengthscale and variance ` = 0.25, σ2 = 0.49, we

computed the predictive distribution (2.29) over the function given the data.

Notice that the functions sampled from the posterior pass trough the obser-

vations (dots in Figure 2.10(b)). It is common practice to present, rather
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Figure 2.10: Example GP regression. Samples from the prior (a). Samples
from the posterior (b). Posterior mean and interval of confidence (c).
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Figure 2.11: Prior and posterior covariance matrices of example shown in
Figure 2.10.

than samples, the posterior mean as well as the confidence interval, i.e. the

shaded area in Figure 2.10(c). The confidence interval represents the space

where lie 95% of the realizations drawn from each posterior marginal distri-

bution p(f ?i |y), where f ?i ∈ R is the i-th variable of the prediction vector f?

(see (2.29)). Figure 2.10b shows 50 functions sampled from the posterior.

The posterior distribution is not independent throughout all the marginals,

Figure 2.11b shows its covariance matrix. We observe that this matrix is not

diagonal. This introduces dependency between any two random variables

representing the functions values f(t) and f(t′) at time instants where the

posterior covariance matrix is not equal to zero.

2.4.6 Challenges of Gaussian process models

To use Gaussian processes for machine learning presents advantages and lim-

itations, especially when modelling large datasets. Strengths of GPs include

its capacity to naturally introduce prior knowledge about the data into the

model, through the kernel. Also, GPs offer a principled manner to quan-

tify uncertainty, in the sense that predictions consist of a posterior mean

and intervals of confidence defined by the posterior variance. Moreover, GP

modelling is a non-parametric paradigm, that is, the inference corresponds
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to computing the posterior over a function given the data, rather than the

posterior over the parameters of a deterministic function established in ad-

vance. In short, GPs models are quite flexible, allowing the data to speak for

itself [19, 52, 56]. Still, GP modelling involves facing some challenges. The

following two sections discusses two of them, namely kernel design and scala-

bility. Also, we present an outline of how our research contributes to solving

these challenges within the context of pitch detection and source separation

in music signals.

2.5 Kernel design for acoustic music signals

The kernel of a Gaussian process profoundly influences how a model extrap-

olates to regions of the input space where there is no training data. In short,

the covariance function determines the GP model capability to generalise

[62, 56, 83]. For example, if the region of interest is far away from the ob-

servations, and the kernel used is not strictly periodic, then the prediction

converges to the mean function of the process, which often corresponds to

zero. Also, if the kernel encodes no more than general patterns such as

stationarity, continuity and regularity, then the GP works like a smoother

between the observations. Therefore, GP models with a higher capacity to

generalise depend on designing more expressive kernels.

Several researchers have studied kernel design for Gaussian process mod-

els. Related work to this thesis includes Durrande et al. [27], who developed

kernels for detecting periodicity in the data. Also, Wilson et al. [83] pro-

posed to approximate any stationary covariance function by using a linear

combination of RBF times cosine covariance functions. More recent work

includes Remes et al. [57], who proposed an extension of Wilson’s work to

non-stationary kernels. Besides, the models proposed in [77, 81] make use of

multi-output Gaussian processes to represent the cross-correlation between

frequency bands in natural sounds. This thesis, however, intends to specially

design GP priors that encode acoustic properties of music signals, namely:

smoothness, periodicity, spectral content, and non-stationary amplitude.

To this end, chapter 3 presents an initial comparison of well-known co-
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variance functions able to describe smoothness, periodicity, and harmonic

content in a very constrained manner. Next, chapter 4 departs from Wilson

et al. [83] work, and introduces the Matérn spectral mixture (MSM) ker-

nel, together with a method to initialise its hyperparameters in a region with

meaningful acoustics interpretation. Here, a product-GP model describes the

non-stationary amplitude of acoustic signals. Finally, chapter 5.1 presents an

alternative method to initialise the MSM kernel by using the autocorrelation

of the training data.

2.6 Sparse variational Gaussian processes

Doing inference in standard Gaussian process models is computationally ex-

pensive. This is because learning the hyperparameters by maximising the

marginal-likelihood, as well as computing the predictive distribution, re-

quires to invert a n × n matrix, where n is the size of the data {ti, yi}ni=1

[43, 56]. The computational complexity of inverting a matrix scales cubi-

cally, i.e. O(n3) (see section 2.6.1), which becomes intractable when n is big

(usually n� 1×104). In addition, the posterior does not have a closed-form

when the data likelihood is not conjugate to the prior, i.e. when the likelihood

is not Gaussian [36]. This thesis follows a sparse approximate variational

inference approach to tackle both of these challenges simultaneously.

2.6.1 Computational complexity of inverting matrices

Inverting dense covariance matrices are necessary operations when using

Gaussian processes for machine learning. This section describes the com-

putational complexity of matrix inversion.

Notation of computational complexity

In the context of this thesis, computational complexity refers to the asymp-

totic efficiency of algorithms. That is, how the running time needed to exe-

cute an algorithm increases with the size of the input, when the size of the

input rises without bound [25]. In addition, the O-notation (pronounced
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“big-oh”) refers to the asymptotic upper bound, i.e., the worst-case running

time needed to compute an algorithm. When we say that inverting a matrix

of size n× n takes time O(n3), it means that the worst-case running time of

performing such an operator increases cubically with the size of the matrix.

Matrix inversion

Suppose the square matrix A ∈ Rn×n is not singular, that is, there exists a

matrix A−1 ∈ Rn×n such as

AA−1 = In, (2.32)

where In is the identity matrix of size n × n. Defining X = A−1, and

expanding (2.32) we get
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn

 =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 , (2.33)

We can interpret (2.33) as a set of n distinct equations of the form

Axi = bi, (2.34)

where xi represents the i -th column in X, and bi corresponds to the i -th

column of the identity matrix In. The system of linear equations (2.34) can

be solve in time O(n2) when using an LUP decomposition of A. the LUP

decomposition follows PA = LU, where P is a permutation matrix, L a unit

lower-triangular matrix, and U an upper-triangular matrix [25]. Observe that

the LUP decomposition only depends on A, then the same decomposition

(i.e., computed only once) can be applied to (2.34) for different values of bi,

taking additional time O(n2). In general, it takes O(kn2) to solve k linear

systems of n-linear equations with n unknowns (2.34), when all systems

share A and differ only in bi. For a square matrix this means solving k = n

systems, therefore the time required for inverting a matrix in O(n3).
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In addition, matrix multiplication and matrix inversion are equivalent

problems, in the sense that we can use an algorithm for matrix multiplication

to solve the inverse of a matrix (and the other way around), taking the same

asymptotic running time [25]. Therefore, we can invert a matrix by using

the Strassen’s algorithm for matrix multiplication. The Strassen’s algorithm

runs in O(n2.81) time [72], which is faster than the approach explained above,

which runs in O(n3) time.

2.6.2 Sparse approximate Gaussian processes

The main idea in sparse GP methods is to approximate the high-dimensional

covariance matrix of the full Gaussian process prior (2.20). The approximate

matrix has a lower-rank in comparison to the real covariance matrix, and its

construction relies on a set of m variables called inducing variables, where

m < n. This approximation reduces the time complexity from O(n3) (see

section 2.6.1) to O(nm2) [55]. We denote the inducing variables as a column

vector u ∈ Rm. Specifically, u represents the values of the latent function

f(t) (see (2.17)) evaluated at a set of inducing points z = [z1, · · · , zm]>.

That is, u = [f(z1), · · · , f(zm)]>. In this case, the inducing points z lie on

the same domain as t, i.e. time.

Recall that inference in GP regression corresponds to maximize the log

marginal-likelihood (2.26) with respect to the hyperparameters θ. Using

(2.25), the objective function J(θ) = log p(y) can be written as

J(θ) = logN
(
y| 0, ν2I + K

)
. (2.35)

On the other hand, in sparse GPs the goal is to maximize an approxima-

tion of the log-marginal likelihood (2.35), resulting in the following objective

function

Ĵ(θ) = logN
(
y| 0, ν2I + Q

)
, (2.36)

where Q is an approximation of the true prior covariance matrix K (see

(2.20)) [76]. For example, in [82] the Nyström method was used for approx-
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imating the matrix K, resulting in

Q = KnmK−1
mmKmn, (2.37)

where Kmm is the covariance matrix of the inducing variables u, and Knm

is the cross-covariance between the inducing variables u and the values of

the latent function f. The comparison between the objective functions (2.35)

and (2.36) reveals that sparse approximations of GPs operate by “doing exact

inference with an approximate prior” [55].

2.6.3 Variational inference

The purpose behind VI is to rewrite Bayesian inference as an optimisation

problem [20]. In Bayesian inference the main goal is to compute the pos-

terior distribution over the latent variables z, given the observations x. If

computing the posterior p(z|x) is intractable, then approximate methods

are required. Approximate variational inference methods define an objective

function that measures the distance between the intractable posterior and

a variational distribution q(z). The distance metric most frequently used is

the Kullback-Leibler (KL) divergence, which quantifies how similar q(z) and

p(z|x) are. The KL divergence is written as

KL[q(z)||p(z|x)] = −
∫
q(z) log

p(z|x)

q(z)
dz, (2.38)

and follows the proprieties KL[q(z)||p(z|x)] ≥ 0, and KL[q(z)||p(z|x)] = 0

only when q(z) = p(z|x) [19].

The elegance of VI lies on the fact that to minimise the KL divergence

is not necessary to compute the intractable posterior. Minimising (2.38)

is equivalent to maximising the evidence lower bound (ELBO) [20]. The

derivation of the ELBO comes from applying the Jensen’s inequality to the

55



log marginal likelihood [88]

log p(x) = log

∫
p(x, z)dz

= logEq(z)

[
p(x, z)

q(z)

]
dz ≥ Eq(z)

[
log

p(x, z)

q(z)

]
dz.

The ELBO L(θ) follows

L(θ) ≡ Eq(z)

[
log

p(x|z)p(z)

q(z)

]
dz, (2.39)

= Eq(z) [log p(x|z)]−KL [q(z)||p(z)]

where θ are the parameters of the variational distribution. The ELBO (2.39)

only depends on the model likelihood p(x|z), prior p(z), and variational dis-

tribution q(z). In short, to maximise the ELBO, it is not necessary to calcu-

late the intractable posterior. This is how VI transforms Bayesian inference

into an optimisation problem.

p(z|x) q(z)

Figure 2.12: Example variational inference.

2.6.4 Variational inference for sparse GPs

Variational inference has substantially influenced the research community

working on GPs. Particularly, Titsias in [76] proposed the first sparse ap-

proximate variational inference method for Gaussian process. This approach

jointly learns the inducing points z and the kernel parameters θ by maximiz-
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ing a lower bound of the true log marginal likelihood (2.35). This operation is

equivalent to minimizing the KL divergence (2.38) between the approximate

distribution and the true posterior. The variational approach proposed in [76]

presents two advantages in comparison to previous sparse GP methods [55].

First, it avoids overfitting by treating the inducing points z as variational pa-

rameters. Second, it rigorously approximates the real GP model (when the

likelihood is Gaussian), by minimizing the Kullback-Leibler (KL) divergence

between the Gaussian approximate distribution q(u), and the true Gaussian

posterior p(f |y). This approach leads to the following objective function,

called evidence lower bound (ELBO):

L(θ) = logN
(
y| 0, Q + ν2I

)
− 1

2ν2
tr (K−Q) , (2.40)

where the matrix Q = KnmK−1
mmKmn is calculated following (2.37). The

ELBO (2.40) runs in time O(nm2), where n is the size of the data, and m

the number of inducing points [76]. Comparing (2.40) with the objective

function of previous GP sparse methods (2.36), we observe that there is a

new regularization trace term, which depends on the difference between the

variance of the true and the approximate covariance matrix.

2.6.5 Gaussian process stochastic variational inference

Variational inference has allowed the application of sparse GPs models to

large datasets [33]. Specifically, Hensman et al. [34] first introduced stochas-

tic variational inference (SVI) into Gaussian process models, opening the

door for big-data scenarios, such as audio signal processing. In a broad sense,

SVI operates as follows: first, mini-batches of the training data are selected

randomly and used to approximate the expected value of the likelihood under

the approximate distribution. Subsequently, the obtained approximate lower

bound is maximized in order to update a set of global variables [35]. In this

way, SVI outperforms traditional VI in terms of efficiency. In the following

section we describe a variational evidence lower bound (ELBO) for sparse

GPs that can be optimized in a stochastic manner.
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An ELBO for stochastic variational inference

One of the properties of the lower bound introduced in [76] (see (2.40)) is

that the inducing variables u are “collapsed” or marginalized [36]. However,

in order to make SVI suitable for sparse GPs, it is necessary to keep an

explicit representation of u thorough the variational distribution q(u), as

they represent the global variables to be optimized throughout the data mini-

batches [34]. The lower bound described below has an explicit variational

distribution over the inducing variables q(u), therefore, it can be maximized

by using SVI. The variational distribution over the latent variables has the

form

q(u) = N (u| m,S) , (2.41)

where the the covariance matrix is parametrized using a lower-triangular

form S = LL> to preserve S as positive semi-definite [36]. In addition, using

the conditional property of the Gaussian distribution (appendix A), and the

joint distribution

p(f ,u) = N

([
f

u

] ∣∣∣∣∣0,
[

Knn Knm

K>nm Kmm

])
, (2.42)

then the distribution over the latent vector f (2.20) conditioned to the induc-

ing variables u corresponds to

p(f|u) = N
(
KnmK−1

mmu, Knn −Qnn

)
, (2.43)

where Qnn = KnmK−1
mmK>nm. The distributions (2.41) and (2.43) are the two

pieces necessary to define the variational distribution over f, that is,

q(f) =

∫
p(f |u)q(u)du, (2.44)

which has the form

q(f) = N
(
KnmK−1

mmm, Knn + KnmK−1
mm (S−Kmm) K−1

mmK>nm
)
.
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The resulting lower bound of the marginal likelihood has the form

log p(y) ≥ Eq(f) [log p(y|f)]−KL [q(u)|p(u)] = L̂(θ)

where p(y|f) corresponds to the likelihood (2.19), and p(u) = N (0,Kmm) to

the true prior over the inducing variables. Given that the likelihood (2.19)

factorises thorough the data, then the lower bound follows

L̂(θ) = Eq(f)

[
log

n∏
i=1

p(yi|fi)

]
−KL[q(u)|p(u)] (2.45)

=
n∑
i=1

Eq(fi)[log p(yi|fi)]−KL[q(u)|p(u)],

where q(fi) is the i-th marginal of q(f). We observe that maximizing the

lower bound (2.45) requires to compute n expected values (recall n is the

data size), as well as computing the KL divergence between the prior and

the approximate distribution [36]. Therefore, the more data we have the more

integrals (expectations) we need to solve, demanding more time per iteration.

For big data scenarios, such as complete audio signals, inference becomes

quite slow or intractable. The advantage of the objective function (2.45) is

that it can be optimized using stochastic variational inference. First, the

sum of n expectations in (2.45) is approximated using a mini-batch sampled

independently from the data. Next, the obtained approximation of (2.45) is

optimized to learn the global parameters corresponding to the mean m and

covariance matrix S of the variational distribution (2.41) [36]. This procedure

repeats in a loop until convergence of the global parameters.

For a more detailed derivation of this kind of lower bounds refer to [34,

36], and Section 5.2.1 of this thesis, where an ELBO is introduced for the

modulated-GP, i.e. a regression model based on the product of two GPs [4].

This thesis applies variational inference in Chapters 4 and 5.1, and stochastic

variational inference in Section 5.2. But first, in Chapter 3 we investigate how

to encode musical-acoustic knowledge into our GP models, while learning the

hyperparameters by maximizing the true marginal likelihood (2.36).
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Chapter 3

Gaussian processes for music

audio content analysis

3.1 Introduction

Although music recordings are highly diverse, they have a strong underlying

structure. This statistical structure, together with the physical mechanisms

by which sounds are generated, can be naturally introduced into Automatic

Music Transcription (AMT) as prior knowledge using Bayesian modelling.

We present a Bayesian approach for modelling music audio and content anal-

ysis. The proposed methodology based on Gaussian processes seeks joint

estimation of multiple music concepts by incorporating into the kernel prior

information about non-stationary behaviour, dynamics, and intricate spec-

tra present in the modelled music signal. We illustrate the benefits of this

approach via two tasks: pitch estimation and inferring missing segments in

a polyphonic audio recording.

Real music signals are highly variable, but nevertheless they have strong

statistical structure. Prior information about the underlying structures, such

as knowledge of the physical mechanisms by which sounds are generated, and

knowledge about the rules by which complex sound structure is compiled

(notes, chords, a complete musical score), can be naturally unified using

Bayesian hierarchical modelling techniques. This allows the formulation of
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highly structured probabilistic models [22]. On the other hand, typically, al-

gorithms for AMT are developed independently to carry out individual tasks

such as multiple-F0 detection, beat tracking and instrument recognition. The

challenge remains to combine these algorithms, to perform joint estimation

of all parameters [15].

We present the design, implementation, and results of experiments of an

alternative Bayesian approach for audio content analysis on monophonic, and

polyphonic music signals with the possibility of being used for AMT. We use

Gaussian process (GP) models for jointly uncovering music concepts from

audio, by introducing a direct connection between the music concepts and

the model hyper-parameters. The proposed methodology allows to incorpo-

rate in the model prior information about physical or mechanistic behaviour,

nonstationarity, time dynamics (local periodicity, and non constant ampli-

tude envelope), spectral harmonic content, and musical structure, latent in

the modelled music signal. Specifically in the context of music informatics,

we present kernels that embody a probabilistic model of music notes as time-

limited harmonic signals with onsets and offsets. The presented approach can

describe polyphonic signals, by encouraging partial or complete overlapping

between the latent processes that represent each sound event or music note.

A comparison with related work is provided in section 3.3.4. We illustrate

the benefits of this approach via two tasks: pitch estimation in monophonic

music and inferring missing segments in a polyphonic audio recording.

3.2 Kernel design

The covariance function (2.4) used for computing the prior distribution (2.5)

allows us to introduce in the model the knowledge and beliefs we have about

the properties of music signals. Some of the broad properties of music signals

are non-stationarity, rich spectral content, dynamics (quasi-periodicity, and

non-constant amplitude envelope), mechanistic patterns, and music-theory

structure. Our goal is to design covariance functions that encode most these

properties.

One technique for constructing new kernels is to build them out of simpler
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kernels as building blocks [66, 19]. Two useful properties we can use to build

valid kernels are

k(t, t′) = φ(t)k1(t, t′)φ(t′), (3.1)

k(t, t′) = k1(t, t′) + k2(t, t′) (3.2)

where φ(·) is any function. Other properties can be found in [19]. We use

these properties for building non-stationary covariance functions [19]. To con-

struct non-stationary kernels we combine basic stationary covariance func-

tions. We use change-windows in order to be able to model notes or sound

events which are not continuously active but have a beginning and an ending

in the music signal. As in [42] we define a change-window by multiplying

two sigmoid functions. The parameters of the change-windows are directly

related with the location, onset and offset of the sound events. In the present

work we will use manually-specified onset/offset locations. Here we assume

the complete process f(t) is a linear combination of M Gaussian processes,

representing each one a note or sound event. In this way

f(t) =
M∑
m=1

φm(t)fm(t), (3.3)

where each GP in the set {fi(t)}Mi=1 is independent with respect to each other,

i.e.

E[fi · fj] = E[fi]E[fj] = 0 · 0 = 0, (3.4)

for i 6= j. This is because the mean of each GP is zero. In addition, M

corresponds to the number of notes or sound events in the signal. On the

other hand, {φm(t)}Mm=1 are the respectively change-windows that allow a

specific GP fm(t) to appear or vanish in certain parts of the input space

(time). In this sense the proposed approach can handle polyphonic signals,

by encouraging partial or complete overlapping between change-windows.
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3.2.1 General form of the change-windows

The change-windows are defined as the multiplication of two sigmoid func-

tions [42], that is

φm(t) =
1

1 + e−ςm(t−αm)
× 1

1 + e−ςm(βm−t)

=
[
1 + e−ςm(βm−t) + e−ςm(t−αm) + e−ςm(t−αm)e−ςm(βm−t)

]−1
,

where parameter ςm determine how fast or slow the sigmoid function rises to

one or falls to zero, whereas αm, βm defines the onset and the offset of the

window respectively. We assume that α < β, i.e. the location of the onset of

the change-window should be before the location of its offset, then

φm(t) =
[
1 + e−ςm(βm−t) + e−ςm(t−αm) + e−ςm(βm−αm)

]−1
. (3.5)

It can be shown that the covariance function for f(t) in (3.3) is given by

kf (t, t
′) =

M∑
m=1

φm(t)km(t, t′)φm(t′). (3.6)

The derivation of (3.6) is as follows

Cov [f(t), f(t′)] = E [f(t)f(t′)]

= E

[
M∑
m=1

φm(t)fm(t)
M∑

m′=1

φm′(t′)fm′(t′)

]

=
M∑
m=1

M∑
m′=1

φm(t)E [fm(t)fm′(t′)]φm′(t′)

=
M∑
m=1

M∑
m′=1

φm(t) [δm,m′km,m′(t, t′)]φm′(t′)

=
M∑
m=1

φm(t)km(t, t′)φm(t′),
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where δm,m′ is the Kronecker delta. We assume each GP fm(t) in (3.3) is

stationary.

3.2.2 Studied covariance functions

In the experiments of this chapter we compared three different kernels: the

exponentiated quadratic kEQ(τ) (2.11), the standard periodic kSP(τ) (2.15),

and the exponentiated quadratic periodic, which corresponds to multiply the

kernels (2.11) and (2.15), that is

kEQP(τ) = kEQ(τ)× kSP(τ) (3.7)

= σ2 exp

(
z cos(ωτ)− τ 2

2l2

)
,

here, we recall the definition of the exponentiated quadratic kernel (2.11) as

kEQ(τ) = σ2 exp

(
− τ

2

2l2

)
, (3.8)

and parameterize the standard periodic covariance function (2.15) as

kSP(τ) = σ2 exp (z cos(ωτ)) . (3.9)

The form of these kernels is shown in Fig. 3.1(a, b, c). The hyperparameters

used to generate Fig. 3.1 were σ2 = 1.0, l = 0.125, z = 1.0 and ω = 2π12. In

a GP with an exponentiated quadratic kernel (3.8), the dependency between

any two function values f(t) and f(t′) decreases with the time-lag between

them (τ = t−t′) (Fig. 3.1a). Therefore, function values will be similar if they

are close in time, that is, the realizations sampled from this GP are smooth

(Fig. 3.1d). On the order hand, in a GP with an standard periodic kernel

(3.9), the dependency between any two function values changes in a periodic

pattern that depends on the time lag τ , and has period T = ω−1 (see Fig.

3.1b). As a result, function values whose time distance is an integer value of

the period, that is {f(τ + nT )} for n = 0, 1, 2, . . . , will be highly dependent.

In other words, the sampled function will be periodic (Fig. 3.1e). Finally, a
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Figure 3.1: (a, b, c) Form of the analysed kernels: exponentiated quadratic
kEQ(τ), standard periodic kSP(τ), and exponentiated quadratic × standard
periodic kEQP(τ), respectively. Here, the hyperparameters had the values
σ2 = 1.0, l = 0.125, z = 1.0 and ω = 2π12. (d, e, f) Samples from a GP with
kernel: kEQ(τ), kSP(τ), and kEQP(τ), respectively.

GP with kernel (3.7) shares similar properties of the two previous examples.

Specifically, the dependency between any two function values decreases with

the time-lag, while following a periodic pattern (Fig. 3.1c). As a result,

the functions sampled will present not-perfectly periodic oscillations (Fig.

3.1f). Recall that the covariance function shown in Fig. 3.1c corresponds to

multiply the ones shown in Fig. 3.1a and Fig. 3.1b.

Spectral density of covariance functions

The Fourier transform (FT) of the kernels exponentiated quadratic (3.8),

standard periodic (3.9), and exponentiated quadratic × standard periodic
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Figure 3.2: Spectral density of kEQ(τ) (a), kSP(τ) (b), and kEQP(τ) (c).

(3.7) are shown in Fig. 3.2(a, b, c) respectively. The hyperparameters used

to compute the kernels were the same as in Fig. 3.1. The covariance function

(3.8) is probably the most widely-used kernel within the kernel machines field.

A Gaussian process with a exponentiated-quadratic covariance function is

infinitely smooth [56]. The spectral density of the GP with kernel (3.8)

contains only low frequency components and does not have any harmonic

structure (Fig. 3.2a). That is why the realizations shown in Fig. 3.1d,

sampled from a GP with kernel kEQ(τ), evolve smoothly without any periodic

or harmonic properties.

On the other hand, the spectral density of the standard periodic kernel

(3.9) shown in Fig. 3.2b, only has energy at 0Hz (zero Hertz) as well as at

frequencies {n× 12Hz}∞n=1, that is, at a natural frequency f0 = 12Hz and its

harmonics (integer numbers of 12Hz). Fig. 3.1d shows two functions sampled

from a GP with covariance function (3.9). These realizations present constant

amplitude-envelope and periodic properties with a fundamental frequency

together with several harmonics. However, the spectrum and amplitude-

envelope of real audio signals of music instruments evolve dynamically in

time, i.e., they are not constant (Fig. 3.3a).

The kernel (3.7) does not present the limitations imposed by using the

standard periodic kernel alone, that is, the covariance (3.7) allows to describe

functions where its amplitude-envelope and spectrum changes in time. Figure

3.2c depicts the FT of (3.7). We observe that this spectral density is similar
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to the one obtained for the standard periodic kernel (3.9) (Figure 3.2b), in the

sense that the energy is distributed around a set of frequencies corresponding

to a natural frequency and its harmonics (including the constant harmonic

at 0Hz). However, the main difference is that the energy also spreads around

these set of harmonics. This spread has the same shape as the spectral

density of the exponentiated quadratic kernel Figure 3.2a. This is because

the product of two functions in time, corresponds to the convolution of its

FT. In short, the realizations sampled from a GP with covariance function

(3.7) show two relevant properties of music signals: a non-constant amplitude

envelope, and a periodic structure with a natural frequency and harmonics

that evolve in time (Figure 3.1f). Therefore, the covariance function (3.7)

seems to be more appropriate for modelling music signals in comparison with

the two kernels presented previously ((3.8)-(3.9)). The hyper-parameter ω

in (3.9)-(3.7) corresponds to the natural frequency or F0 of the modelled

random processes.

3.3 Results and discussion

Experiments were done over real audio. We evaluated the performance of

different kernel on pitch estimation, and inferring missing data. All exper-

iments assume we previously know the number of change-windows and its

locations. In the pitch estimation task all the parameters of the covariance

function are known, except those related with the fundamental frequency of

each sound event, i.e. the value of ωm in (3.9) and (3.7) when using these

kernels in the general model (3.3). Thus, we focus on optimizing only these

model hyperparameters from the data. In the missing data imputation task

the score of the modelled piece of music audio is used for tuning manually

the model hyperparameters.

3.3.1 Data

In these experiments we used two short audio excerpts. The low size of

the data allows us to compute the closed-form predictive distribution (2.29),
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and learn the model hyperparameters by maximizing the marginal-likelihood

(2.26). The excerpt used for pitch estimation experiments corresponds to 0.7

seconds of the song Black Chicken 37 by Buena Vista Social Club. This

segment of audio contains three notes of a bass melody (Figure 3.3a). In

the missing data imputation task we used polyphonic audio corresponding

to 1.14 seconds of Chopin’s Nocturne Op. 15 No. 1, where more than one

note occur at the same time. The segments of signal in red in Figure 3.3b

represent gaps of missing data. We reduced the sample frequency of both

audio excerpts from 44.1kHz to 8kHz.
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(a) Signal used for pitch estimation.

0 0.2 0.4 0.6 0.8 1

time (sec)

A
m

p
lit

u
d

e

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Signal used for filling missing-data gaps.

Figure 3.3: (a) analysed audio (blue line), change windows (dashed lines).
(b) observed data (blue line), missing-data gaps (red line), change-windows
(dashed lines).

For inference, we take an empirical Bayes approach. That is, we first learn

point estimates of the model hyperparameters, and then we use the point

estimates to calculate the posterior over the latent function f(t). Specifically,

to learn the hyperparameters we maximize the marginal likelihood, by using

a standard gradient-based optimizer [52]. To do so, it is necessary to have

an expression for the log-marginal likelihood and its partial derivatives with
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respect to the hyperparameters.

3.3.2 Pitch estimation

For the pitch estimation task we tested two different models with kernels

(3.9), and (3.7) respectively. We performed hyperparameters learning using

all the observed signal shown in Figure 3.3a. This is because in this exper-

iment rather than evaluating the prediction of the trained models, we were

interested in the accuracy of pitch estimation. Covariance function (3.8) does

not have any parameter we can link to the fundamental frequency of each

sound event, that is why we omitted it here. We compared the GPs mod-

els results with the algorithm pYIN, a fundamental frequency estimator [47].

The trained model using kSP(τ) was able to estimate the pitch for each sound

event with a RMSE of 0.6282 semitones. On the other hand, the amplitude-

envelope evolution of the signal is beyond the scope of the structure that this

kernel can model (See Figure 3.4a). This is because this covariance function

can only describe constant amplitude-envelope, periodic signals, with a fun-

damental frequency and several harmonics (Figure ??). Results using (3.7)

are shown in Figure 3.4b. We observe that although the posterior mean of

the predictive distribution does not exactly fit the data, the model is able

to learn the pitch of each of the three sound events with a smaller RMSE of

0.1075 in comparison with the 0.1688 RMSE obtained with pYIN. Variations

in the amplitude envelope can also be described using (3.7).

3.3.3 Filling gaps of missing data in audio

We compared three different models predicting missing-data gaps. We stud-

ied kernels (3.8), (3.9), and (3.7). In Figure 3.3b first gap (red segment)

contains the transient, onset, and attack of a sound event [11]. In addition,

the second gap is located in a more steady segment of the data (smooth

decay). Figure 3.5a-3.5b depict the prediction using (3.8). These figures cor-

respond to zoom in small sections of the signal where the gaps occur (Figure

3.3b). We see that the model using this kernel overfits the data, i.e. the

posterior mean (blue line) fits all the observed data (black dots) with high
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(a) Observations (dots), and posterior mean (continuous line) using (3.9).
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(b) Observations (dots), and posterior mean (continuous line) using (3.7).

Figure 3.4: Posterior mean for the pitch estimation experiments. (a) using
kEQ(τ), and (b) using kEQP(τ).

confidence (grey shaded area), but the confidence decreases and the predic-

tion is quite poor in the input space zones where the data is not available (red

dots). Also, we see that the model using (3.8) does not expect any periodic

behaviour in the gaps.

Figure 3.5c-3.5d show the prediction using covariance function (3.9). In

the transient gap (Figure 3.5c) the posterior mean (blue line) does not follows

the data, this is because transients are short intervals during which the signal

evolves in a non-stationary, non-trivial and unpredictable way [11]. opposite

to this, the model using kernel (3.9) can only describe the behaviour of

constant amplitude-envelope periodic stochastic functions. In the second gap

(Figure 3.5d) the posterior mean describes properly the periodic behaviour of

the data, but it does not follow the amplitude-envelope of the observations.

This is because this covariance function is able to describe periodic functions

that have several harmonic components. The drawback of this kernel is that

it assumes constant the amplitude of the periodic stochastic functions that

describes.
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Figure 3.5: Zoom in a portion of missing-data gaps. In each figure the con-
tinuous blue line represent the posterior mean, grey shaded areas correspond
to the posterior variance, red dots are missing data, whereas black dots are
observed data.

Results using (3.7) are presented in Figure 3.5e-3.5f. We see that in

Figure 3.5f the posterior mean describes properly the periodic behaviour and

amplitude envelope smooth evolution of the modelled signal. We observe that

prediction on the decay gap using (3.7) is closer to the actual data (red dots)

than the results obtained with (3.9) as well as (3.8). This is because (3.7)

allows to describe periodic functions that have several harmonic components

and time-varying amplitude envelope. On the other hand, the prediction

performance reduces for the transient gap (Figure 3.5e). In order to model

the onset, attack and decay of a sound event, covariance function (3.7) could

be modified for modelling non-stationary amplitude envelope evolution.

The performance of the three analysed kernels is summarized in table 3.1.

As expected, the lower root mean squared error (RMSE) was obtained using

the kernel able to describe periodic functions with time-varying amplitude

envelope, that is, kEQP. Also, the kEQP kernel presented a higher error when
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Table 3.1: Root mean squared error (RMSE) for the task filling gaps of
missing data.

kernel RMSE transient gap RMSE decay gap
kEQ(τ) 0.2265 0.3172
kSP(τ) 0.2143 0.0964
kEQP(τ) 0.0912 0.0355

predicting the data associated with the transient gap. This suggests that it

is more challenging to model the transient (first gap in Figure 3.3b) of the

analysed sound, in comparison to a more steady section of the data (second

gap Figure 3.3b).

3.3.4 Related work

In [77] GPs are used for time-frequency analysis as probabilistic inference.

Natural signals are assumed to be formed by the superposition of distinct

time-frequency components, with the analytic goal being to infer these com-

ponents by applying Bayes’ rule [77]. GPs have also been used for audio

source separation [41, 87]. In [41] the mixture signal is modelled as a lin-

ear combination of independent convolved versions of latent GPs or sources.

The model splits the mixture signal in frames also considered independent, by

using weight-functions. Thus each source is modelled as a series of concate-

nated locally stationary frames, each one with its corresponding covariance

function. With this assumption the resulting signal is supposed to be non-

stationary [41]. On the other hand, despite the approach we present also

assumes that the latent GPs fm in (3.3) are independent, the observed signal

is not framed into independent segments. Instead of using weight-functions

that act over the observed data, we introduce change-windows φm influencing

each latent GP ending up with latent processes representing specific sound

events that happen at certain segments of time. Therefore the proposed

model keeps the dependency between the observations throughout all the

signal. That is what allows to make prediction in gaps of missing data (sec-

tion 3.3.3). GPs have been used also for estimating spectral envelope and

fundamental frequency of a speech signal [86]. Finally, GPs for music genre
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classification and emotion estimation were investigated in [44].

3.4 Conclusions

We discussed a GP regression framework for modelling music audio. We com-

pared different models in pitch estimation as well as in prediction of missing

data. We showed which kernels were more appropriate for describing prop-

erties of music signals, specifically: nonstationarity, dynamics, and spectral

harmonic content. The advantage of this approach is that by designing a

proper kernel we can introduce into the model prior knowledge and beliefs

about the properties of music signals, and use all the prior information to

improve prediction. Computational complexity is an important limitation

of GPs (see section 2.6.1), therefore the presented work could be extended

using efficient representations to model larger audio signals. Kernels as [83]

could be studied for modelling harmonic content, and Latent Force models

[9] for describing mechanistic characteristics.
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Chapter 4

Efficient learning of harmonic

priors for pitch detection

4.1 Introduction

Automatic music transcription (AMT) aims to infer a latent symbolic rep-

resentation of a piece of music (piano-roll), given a corresponding observed

audio recording. Transcribing polyphonic music, that is, music recordings

where multiple notes can be played simultaneously, is a challenging problem.

This is because of the highly structured overlapping between the spectra of

concurrent sound events. We study whether the introduction of acoustically

inspired Gaussian process (GP) priors into audio content analysis models

improves the extraction of patterns required for AMT. Here audio signals

are described as a linear combination of a finite number of functions we call

sources. In addition, each source is decomposed into the product between an

activation process, and a quasi-periodic component process. For each source,

the activation controls its amplitude-envelope, whereas the component con-

tains its spectrum. We introduce the Matérn spectral mixture (MSM) kernel

for describing frequency content of singles notes. We consider two different

regression approaches. On one hand, in the sigmoid model every source ac-

tivation is independently non-linear transformed. On the other hand, in the

softmax model the activation GPs are jointly non-linearly transformed. This
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introduce cross-correlation between activations. We use variational Bayes for

approximate inference. We empirically evaluate how these models work in

practice transcribing polyphonic music. We found that rather than encour-

age dependency between activations, what is relevant for improving pitch

detection is to learn priors that fit the frequency content of the sound events

to be detected.

In the research field of music information retrieval, the aim of audio con-

tent analysis is to infer underlying musical concepts, such as pitch, melody,

chords, onset, beat, tempo, rhythm, which are present but hidden in the

audio data [64]. Then, perhaps the most general application is recovering

the score (symbolic representation) of a music track given only the audio

recording [50]. This is known as automatic music transcription (AMT) [15].

Transcribing polyphonic music (when multiple notes are played simultane-

ously) is a challenging problem, especially in its more unconstrained form

when the task is performed on an arbitrary acoustical input [14]. This is

because simultaneous notes cause a highly structured overlap of harmonics

in the acoustic signal [67].

Moreover, a single note produced by a music instrument is not just a

fixed-duration sine wave, with a single frequency. It rather has a full spec-

trum of harmonics, as well as an attack and decay in its intensity. These

spectrum evolution is instrument dependent, and therefore must be learned

in a recording-specific manner. The polyphony together with complex har-

monic structure of sound events creates a source-separation problem at the

heart of the transcription task [16, 75].

We seek to take advantage of the underlying structure that music acous-

tic signals have [22]. Specifically, we aim to develop audio content analysis

Bayesian models that naturally bring together prior knowledge about the

underlying acoustical mechanisms that govern the nature of acoustic music

signals. To do so, we introduce spectrum patterns in the prior of probabilis-

tic models. Our method is based on Gaussian processes (GPs). GPs have

been extensively used for modelling audio recordings. GPs were used to con-

sider time-frequency analysis as probabilistic inference [77], source separation

[41, 87, 3], and for estimating spectral envelope and fundamental frequency
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of a speech signal [86]. GPs for music genre classification and emotion esti-

mation were investigated in [44]. Also, in [54] a mixture of Gaussian process

experts was used for predicting sung melodic contour with expressive dy-

namic fluctuations.

Similar to [4], we propose a regression model where the data is described

as the multiplication of two GPs. Here, several GPs are jointly non-linear

transformed using the softmax function. We call this the softmax model.

This comes as a principled way to introduce dependency between pitch ac-

tivations, encouraging them to reflect two properties: non-negativity, and

sparsity; to enable few pitches to be active at certain time. We introduce

what we call the Matérn spectral mixture (MSM) kernel. In order describe the

harmonic content of sound events. Quite similar to [83], we model a spectral

density as a mixture of basis functions. The difference is that here the basis

functions, rather than Gaussians, are Lorentzian functions [37]. This corre-

sponds to the Fourier transform of the Matérn-1
2

kernel [33]. In this work, we

use the Matérn spectral mixture covariance function to encourage the model

prior to reflect the clearly evident complex harmonic content present in mix-

ture signals which can be learned in advance from of isolated sounds. Third,

we increase the model scalability through approximate methods using vari-

ational inference, enabling the analysis of audio signals with several seconds

of duration. Finally, in comparison with the model presented in [7], with the

proposed approach the amount of model parameters becomes independent

of the total sound events present in the audio recording. Moreover, to know

a priori the number of sound events becomes inessential, as this quantity is

learned directly from audio.

This chapter is organized as follows. Section 4.2 introduces the GPs model

for pitch detection. Two different variants of the base model are presented

in sections 4.2 and 4.2. In section 4.2.2, we provide details for learning in

frequency domain the parameters of the MSM kernel. We empirically evalu-

ated how the proposed framework works in practice transcribing polyphonic

music recordings (section 4.3.1). Final conclusions are given in section 4.4.
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4.2 Gaussian processes for pitch detection

Recall that automatic music transcription aims to infer a latent symbolic

representation, such as piano-roll or score, given an observed audio record-

ing. Piano-roll refers to a matrix representation of musical notes across time

[15, 22]. We used GPs for modelling both, amplitude-envelope and compo-

nent functions. From a Bayesian latent variable perspective [20], transcrip-

tion consists in updating our beliefs about the symbolic description for a

certain piece of music, after observing a corresponding audio recording. As

in [87], we approach the transcription problem from a time-domain source

separation perspective. That is, given an audio recording D = {yn, tn}Nn=1,

we seek to formulate a generative probabilistic model that describes how the

observed polyphonic signal (mixture of sources) was generated. Moreover,

this allows us to infer the latent variables associated with the piano-roll rep-

resentation. To do so, we use the regression model yn = f(tn) + εn, where yn

is the value of the analysed polyphonic signal at time tn, the noise follows a

normal distribution εn ∼ N (0, σ2), and the function f(t) is a random process

composed by a linear combination of M sources {fm(t)}Mm=1. Each source

is decomposed into the product of two factors, an amplitude-envelope or ac-

tivation function φm(t), and a quasi-periodic or component function wm(t).

Putting all this together we get the following modulated-GP regression model

y(t) =
M∑
m=1

φm(t)wm(t) + ε(t). (4.1)

We interpret the set {wm(t)}Mm=1 as a dictionary where each component wm(t)

is a GP with a defined fundamental frequency or pitch. Likewise, each ac-

tivation GP in {φm(t)}Mm=1 represents a row of the posteriogram-matrix, i.e

the time dependent non-negative activation of a specific pitch throughout the

analysed piece of music. Similar to the graph presented [4], Figure 4.1 shows

the graphical model of equation (4.1). To keep the graph uncluttered we

omitted the unobserved noise variance σ2, as well as the set of hyperparam-

eters associated to each of the M activations {φm(t)}Mm=1, and components

{wm(t)}Mm=1.
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Figure 4.1: Graphical model of the proposed approach (see equation (4.1)).
At each time tn, the observed data yn depends on two sets of M latent
variables {wm(tn)}Mm=1, and {φm(tn)}Mm=1 respectively. The thick horizontal
lines represent a set of fully connected nodes [56].

The components {wm(t)}Mm=1 follow wm(t) ∼ GP(0, km(t, t′)), where the

covariance km(t, t′) reflects the frequency content of the mth component, and

has the form of a MSM kernel (section 4.2.1). In [7] only the component

functions followed GPs, whereas the amplitude-envelopes were parametric

functions. Here the flexibility of activations {φm(t)}Mm=1 increases by treating

them as GPs non-linearly transformed either independently or jointly, by

using the sigmoid function (section 4.2) or the softmax function (section 4.2)

respectively.

Sigmoid model

To guarantee the activations to be non-negative we apply non-linear transfor-

mations to GPs. To do so, we use the sigmoid function σ(x) = [1 + exp(−x)]−1 ,

also applied in GP binary classification [56]. In the sigmoid model an acti-

vation is defined as φm(t) = σ(gm(t)), where the set of functions {gm(t)}Mm=1

are independent GPs. The sigmoid model follows

y(t) =
M∑
m=1

σ(gm(t))wm(t) + ε(t). (4.2)
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This formulation does not introduce any dependency between the activations.

Softmax model

To enhance sparsity on the activations we use the softmax, or normalized

exponential function. Therefore

φm(t) =
exp(gm(t))∑
∀j exp(gj(t))

, (4.3)

where {gj(t)}Mj=1 are GPs [52, 19]. Similarly to the sigmoid function, the

softmax (4.3) enforces the activations to be non-negative as well as to be

bounded between 0 and 1. Furthermore, (4.3) introduces dependences be-

tween all activations. The sparsity is enhanced because
∑
∀m φm(t) = 1, for

all t. With this property we can encourage to activate only one or a few

pitches at certain time. This is because if the j-th pitch explains better the

audio signal at time tn, then the activation φj(tn) ≈ 1, therefore it follows

that the other activations φi(tn) ≈ 0 for all i 6= j. The softmax model

corresponds to

y(t) =
1∑M

j=0 exp(gj(t))

M∑
m=0

exp(gm(t))wm(t) + ε, (4.4)

where we choose the component process w0(t) = 0 for all t to allow for silence

or rest. The activation φ0(t) is equal to 1 only when there is silence in the

audio recording.

4.2.1 The Matérn spectral mixture kernel

A single note produced by a music instrument (see Figure 4.2a) consist of an

intricate spectrum of harmonics, with an attack and decay in intensity. The

spectrum evolution is instrument dependent, and therefore must be learnt in

a recording-specific way [16, 75]. This motivates the design of what we call

the Matérn spectral mixture (MSM) kernel; a stationary covariance function

able to reflect the rich spectra of sounds [83]. In this section, we first recall
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the spectral representation of stationary kernels. Next, we introduce the

formulation of the MSM kernel by an illustrative example. This covariance

describes the components {wm(t)}Mm=1.

Taking as example two basic kernels we use later on, we apply (2.9) on

the Matérn-1
2

and Cosine kernels [56], defined as

k1/2(r) = σ2e−λr, λ = l−1, (4.5)

kCOS(r) = cos(ω0r), ω0 = 2πf0, (4.6)

respectively. In (4.5) l governs the time length-scale over which the function

varies, and σ2 defines the scale (amplitude). In (4.6) f0 defines the function’s

frequency in Hertz, and the variance is assumed to be one. The corresponding

spectral densities are

s1/2(ω) = 2σ2λ(λ2 + ω2)−1, (4.7)

sCOS(ω) = π [δ(ω − ω0) + δ(ω + ω0)] . (4.8)

We use the spectral representation of covariance functions to formulate the

MSM kernel. Figure 4.2a shows the waveform of a single note ŷm(t), corre-

sponding to playing pitch C4 (261.6 Hz) on an electric guitar. Figure 4.2b

depicts the corresponding magnitude Fourier Transform (FT) |Ŷm(ω)|, which

is a real, symmetric function, similar to kernels and its corresponding spectral

densities. This leads to the idea of designing kernels whose spectral density

is close to the frequency content of the single notes available for training,

that is

s(ω) ≈ |Ŷm(ω)|. (4.9)

However, the Matérn-1
2

covariance function (4.5) is not appropriate for mod-

elling harmonic content by itself. This is because the spectral density of this

kernel has the form of a Lorentzian function (see (4.7)) centred on the ori-

gin [37], whereas the spectral density of single notes have peaks at certain
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frequencies not necessarily at ω = 0 (see Figure 4.2b). To describe a sin-

gle partial in Figure 4.2b it is necessary to shift the spectral density of the

Matérn-1
2
, centring it around a specific frequency. To do so, we multiply (4.5)

by (4.6), ending up with the base kernel k(r) = k1/2(r) · kCOS(r). Replacing

k(r) in (2.9), and using the convolution theorem, then

s(ω) = L(ω;θ) + L(−ω;θ), (4.10)

L(ω;θ) =
2πσ2λ

λ2 + (ω − ω0)2
, (4.11)

with θ = {σ2, λ, ω0}, i.e. the set of hyperparameters associated with (4.5)

and (4.6). Expression (4.11) corresponds to shift, from the origin to ω0, the

Matérn-1
2

spectral density (4.7). To model D number of partials we use a

linear combination of Lorentzian functions pairs

sMSM(ω; Θ) =
D∑
j=1

L(ω;θj) + L(−ω;θj), (4.12)

where Θ = {θj}Dj=1. Recall we intend to make as close as possible the spectral

density of the kernel to the spectral density of the training data. Therefore

the aim of the learning stage is to find the Θ that makes sMSM(ω) close to

|Ŷm(ω)|, that is

Θ∗ = argmin
Θ

√(
sMSM(ω; Θ)− |Ŷm(ω)|

)2

. (4.13)

An algorithm for optimizing (4.13) is proposed in section 4.2.2. Finally,

replacing (4.12) in (2.10) we end up with a kernel the with form

kMSM(r) =

Nh∑
j=1

σ2
j e
−λjr cos(ω0jr), (4.14)

where ω0j is the frequency in radians, σ2
j explains the contribution of each

frequency to the overall kernel, and λj = l−1
j , where lj is the length-scale.

The MSM kernel (4.14) can be seen as a spectral-mixture kernel [83], where
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instead of using the squared exponential (SE) covariance we use the Matérn-
1
2
. Although the SE kernel (a covariance function infinitely differentiable)

is probably the most widely-used kernel [56], in [69] Stein argues that such

strong smoothness assumptions are unrealistic for modelling many physical

processes, and recommends the Matérn class. Moreover, we have particular

interest in using the family of Matérn kernels with half-integer orders, to

explore as future work the Variational Fourier Features (VFF) presented

in [33] for efficient GP models. Finally, by encouraging (4.12) to reflect the

frequency content of isolated sounds, we keep the MSM kernel within a region

where it has musically-acoustically interpretation.

4.2.2 Inference

Learning the hyper-parameters of GP models by maximising the marginal

likelihood is challenging. This is because the computational complexity of

inference usually scale cubically with the number of data observations [33, 56].

To overcome this, we introduce an algorithm for optimizing (4.13). We take

advantage of the sparse frequency content of the magnitude FT of the isolated

events available for training (for a sample see Figure 4.2b). The basic idea

is to fit a Lorentzian function (4.11) around each local maximum present in

the spectral density, but considering only one peak at time (Algorithm 1).

Algorithm 1 Fitting MSM kernel in the frequency domain.

Input: |Ŷm(ω)|2, D
Output: Θ = {θi}Di=1

1: H(ω) = |Ŷm(ω)|2
2: for i := 1 to D do
3: ω∗ = argmax

ω
H(ω)

4: Initialize θ = {σ2, λ, ω0 = ω∗}
5: θi = argmin

θ

√
[L(ω;θ)−H(ω)]2

6: H(ω) = |H(ω)− L(ω;θi)|
7: end for
8: return Θ

With this approach learning hyperparameters takes only few seconds,
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despite using all 32 × 103 data points available for training for of each iso-

lated note audio file (16 kHz sample frequency, 2 seconds duration). Fig-

ure 4.2c(top) shows the spectral density of initializing the MSM kernel with

perfect harmonics and equal variance (dashed red line) against the FT of

the actual training data (continuous blue line). Figure 4.2c(middle) shows

the FT of the learnt MSM kernel using marginal likelihood (red line). The

frequency content of the learnt covariance using the proposed approach is

depicted in Figure 4.2c(bottom). One advantage of the MSM kernel is that

it is not limited to perfect harmonics. This facilitates better fit to the au-

dio data frequency content, which in this specific case have quasi-harmonic

behaviour.

4.3 Experiments

This section presents the empirical evaluation of how (4.1) works in prac-

tice for pitch detection. The sigmoid (SIG) (4.2) and softmax (SOF) (4.4)

models were used for inferring the occurrence of two different pitches in syn-

thetic audio of an electric guitar. In order to extend the model to more

than two pitches we study the scenario where one single component wm(t)

reflects the frequency content of several sound events with different pitches.

We studied how the learned kernels affected the performance of the model

on the pitch detection task. To do so, we compared: tuning manually (TM)

the hyperparameters of the kernel, learning the hyperparameters in the fre-

quency domain (FL) (proposed method), and learning the hyperparameters

by optimizing the marginal likelihood (ML). We use the Sparse Variational

GP regression implemented in GPflow [45] for running the experiments. We

analysed the electric guitar audio from the study done in [87], containing the

sound events (C4, E4, G4, C4+E4, C4+G4, E4+G4, and C4+E4+G4). This

signal was generated with 16 kHz sample frequency, and last 14 seconds. For

training we used the first three isolated notes.
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Figure 4.2: (a) sample of a training waveform Ym(ω). (b) corresponding
magnitude FT |Ŷm(ω)|. Spectral density of learnt kernel using (c-top) TM
(red dashed line), (c-middle) ML (red), (c-bottom) FL (red).

4.3.1 Transcription of polyphonic signal

First we focus on detecting pitches C4 and E4, i.e. from the complete audio

signal we only analysed the segments from 0 to 4 seconds and from 6 to 8

seconds. Table 4.1 shows the F-measure obtained using either the sigmoid

(SIG) model (4.2) or the softmax (SOF) model (4.4). We compare how the

inference approach used affects the performance of these two models. We

observe that slightly better performance is achieved by using the sigmoid

model. The learning approach considerably affects the performance of the

models. The best pitch detection (98.68% F-measure) was achieved using
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Model Inference method F-measure

SIG
TM 89.54 %
ML 59.23 %
FL 98.68 %

SOF
TM 86.28 %
ML 55.28 %
FL 97.15 %

SIG-LOO
TM 76.21 %
ML 84.86 %
FL 98.19 %

Table 4.1: F-measure for the sigmoid model (SIG) and softmax model (SOF)
when detecting two pitches. F-measure for the sigmoid-leave-one-out (SIG-
LOO) model when detecting three pitches. Three inference methods were
compared: tuned manually (TM), marginal likelihood (ML), and frequency
learning (FL) (proposed).

SIG model and learning in frequency domain (FL).

In order to extend the model to detect more than two pitches, we al-

low one of the components to reflect the frequency content of two isolated

notes with different pitches, per example: s1(ω) ≈ |ŶC4(ω)|, whereas s2(ω) ≈
|ŶE4(ω)| + |ŶG4(ω)|. We call this approach leave one out (SIG-LOO) as one

of the spectral densities of the covariances reflects only one pitch, whereas

the other the remaining pitches. Figure 4.3a shows the corresponding ground

truth piano-roll. Transcriptions using frequency learning, marginal likelihood

optimization, and initial guess are shown in Figure 4.3d, 4.3c, 4.3b respec-

tively. Results show SIG-LOO model together with the proposed learning in

frequency domain outperforms for pitch detection (98.19% F-measure Table

4.1).

4.4 Conclusions

We proposed a GP regression approach for pitch detection in polyphonic sig-

nals. We introduced the Matérn mixture kernel into the model, this allows

to reflect the intricate frequency content of sounds of single notes, together
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Figure 4.3: Transcription using LOO-SIG. (a) ground truth. (b-d) transcrip-
tion using TM, ML, FL learning approaches respectively.

with an algorithm for learning its parameters in frequency domain. The

proposed approach allows to introduce prior information about activations,

such as smoothness (not infinite), non-negativity, and dependency between

activations. Results suggest that what it is really relevant for pitch detection

is a set of MSM kernels that properly fit the frequency content of the sound

events to detect. We conclude that using the proposed hyperparameter learn-

ing in the frequency domain, together with the sigmoid model, outperforms

the other compared approaches in pitch detection. To our surprise, even if

the sigmoid models lacks to encourage dependency between activations as

the softmax model does. In addition, one advantage of using the LOO is

its linear scalability regarding the number of pitches. Further empirical val-

idation is necessary to validate its performance for more than 3 pitches. As

future work we plan to explore other Matérn kernels and VFF in order to be

able to analyse a complete piece of music.
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Chapter 5

Variational sparse Gaussian

process audio source separation

and multi-pitch detection

So far in this thesis, we have used Gaussian process models for detecting

multiple pitches in polyphonic music signals (Chapter 3, and Chapter 4).

Also, we have predicted gaps of missing data in mixture audio recordings

(Chapter 3). Now, we turn our attention to source separation (see Section

2.3). That is, the task of estimating a certain number of latent functions

called sources from a mixture signal (observed data) [41]. This chapter is

divided in two main sections. In Section 5.1 the sources are modelled as

GPs, and the mixture signal is assumed to be a linear combination of the

sources. In addition, the hyperparameters are learned by windowing the data

and maximizing a variational lower bound for each window.

Later, in Section 5.2, we reintroduce the modulated-GP model, described

in Chapter 4. Recall that in the modulated-GP each latent function, i.e.

each source in the context of this chapter, is modelled as the product of

two GPs, one controlling the amplitude-envelope, and the other describing

the frequency content of the source. As in Section 5.1, the mixture data is

also assumed to be a linear combination of the sources. The main difference

is that the hyperparameters are learned by maximizing an evidence lower
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bound using stochastic variational inference (SVI). This allows the usage

of all the available data (by sampling mini-batches) when optimizing the

objective function, suppressing the need to divide the data into independent

windows.

5.1 Gaussian process source separation

Gaussian process (GP) audio source separation is a time-domain approach

that circumvents the inherent phase approximation issue of spectrogram

based methods. Furthermore, through its kernel, GPs elegantly incorpo-

rate prior knowledge about the sources into the separation model. Despite

these compelling advantages, the computational complexity of GP inference

scales cubically with the number of audio samples. As a result, source sepa-

ration GP models have been restricted to the analysis of short audio frames.

We introduce an efficient application of GPs to time-domain audio source

separation, without compromising performance. For this purpose, we used

GP regression, together with spectral mixture kernels, and variational sparse

GPs. We compared our method with LD-PSDTF (positive semi-definite ten-

sor factorization), KL-NMF (Kullback-Leibler non-negative matrix factor-

ization), and IS-NMF (Itakura-Saito NMF). Results show that the proposed

method outperforms these techniques.

Single-channel audio source separation is a central problem in signal pro-

cessing research. Here, the task is to estimate a certain number of latent

signals or sources that were mixed together in one recorded mixture signal

[41]. State of the art time-frequency methods for source separation include

deep neural networks [70], non-negative matrix factorisation (NMF) [39],

and probabilistic latent component analysis (PLCA) [68]. These approaches

decompose the power spectrogram of the mixture into elementary compo-

nents. Then, the components are used to calculate the individual source-

spectrograms. Time-frequency methods often arbitrarily discard phase in-

formation. As a result, the phase of each source-spectrogram must be ap-

proximated, corrupting the reconstructed sources.

In contrast, time-domain source separation approaches can avoid the
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phase approximation issue of time-frequency methods [29, 71]. For example,

Yoshii et al. [87] reconstructed source signals from the mixture waveform di-

rectly in the time domain. To this end, Gaussian processes (GPs) were used

to predict each source waveform. A particularly influential work in time

domain approaches is Liutkus et al. [41], who first formulated source sepa-

ration as a GP regression task. One clear advantage of this formulation was

that prior knowledge about the properties of the sources could be elegantly

integrated into the model. This was done by choosing suitable covariance

functions.

Although source separation Gaussian process (SSGP) models circumvent

phase approximation, the computational complexity of GP inference scales

cubically with the number of audio samples (see section 2.6). Hence, different

approximate techniques have been proposed to make the separation tractable.

For instance, various authors partitioned the mixture signal into independent

frames [41, 87]. Further, approximate inference in the frequency domain

was used to learn model hyperparameters [41]. Alternatively, Adam et al.

[3] recently proposed to use variational sparse GPs for source separation,

however audio signals were beyond the scope of their study.

Although the kernel selection in SSGP models determines the properties

of sources, only standard covariance functions have been used so far. For ex-

ample, Adam et al. [3] considered stationarity, smoothness and periodicity,

using exponentiated quadratic times cosine kernels. Standard periodic ker-

nels [43] were applied in [41]. These kernels assume that the source spectrum

is composed of a fundamental frequency and perfect harmonics. However,

real audio signals have more intricate spectra [17], and so separating audio

sources requires more flexible covariance functions. One such covariance, the

spectral mixture (SM) kernel [83] (A modification of this kernel was intro-

duced in chapter 4), is intended for intricate spectrum patterns. SM kernels

approximate the spectral density of any stationary covariance function, us-

ing a Gaussian mixture. Alternatively, non-parametric kernels are implicitly

considered when the covariance matrix of each source is directly optimised

by maximum likelihood [87]. However, that study did not contemplate vari-

ational sparse GPs. To our knowledge, it has not been determined whether
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incorporating SM kernels together with variational sparse GPs into source

separation models leads to more efficient and accurate audio source recon-

structions.

In this dissertation we introduce a method that combines GP regression

[56, 41], spectral mixture kernels [83], and variational sparse GPs [76]. We

consider the mixture data as noisy observations of a function of time, com-

posed as the sum of a known number of sources. Further, we assume that

each source follows a different GP with a distinctive spectral mixture kernel.

In addition, we adapt the kernels to reflect prior knowledge about the typ-

ical spectral content of each source. Also, we frame the mixture data, and

for every frame we maximize a variational lower bound of the true marginal

likelihood to learn the hyperparameters that control the amplitude of each

source (variances). Finally, to separate the sources, we use the learned priors

to calculate the true posterior over each source.

We notate the mixture data vector as y = [y1, · · · , yn]> at time instants

t = [t1, · · · , tn]>. As mentioned previously, we consider each mixture au-

dio sample yi as an observation of a mixture function f(t) corrupted by

independent Gaussian noise. Further, we assume f(t) as the sum of J inde-

pendent source functions {sj(t)}Jj=1. These functions represent the sources to

be reconstructed. Each source sj(t) follows a different GP with zero mean,

and a distinctive spectral mixture kernel. That is, yi = f(ti) + εi, where

f(t) =
∑J

j=1 sj(t), and each

sj(t) ∼ GP ( 0, kj(t, t
′) ) for j = 1, 2, . . . , J. (5.1)

Here, the noise follows εi ∼ N (0, ν2), with variance ν2. The kernel for the

j-th source is represented by kj(t, t
′) (introduced shortly in section 5.1.1). In

addition, it is a well known property that the sum of GPs is also a Gaussian

process [56]. Therefore, the mixture function follows

f(t) ∼ GP

(
0,

J∑
j=1

kj(t, t
′)

)
, (5.2)
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where its kernel is the sum of source kernels, i.e. kf (t, t
′) =

∑J
j=1 kj(t, t

′).

We focus only on predicting the mixture function (5.2) as well as the sources

(5.1) evaluated at t.

Following the standard Gaussian process regression approach introduced

earlier in section 2.4.4, the prior over the mixture function, and each source

evaluated at t, correspond to f ∼ N (0, Kf ), and sj ∼ N
(
0, Ksj

)
re-

spectively, where f = [f(t1), . . . , f(tn)]>, sj = [sj(t1), . . . , sj(tn)]>, and the

covariance matrix Kf =
∑J

j=1 Ksj . Each matrix in
{
Ksj

}J
j=1

is computed by

evaluating its corresponding source kernel kj(t, t
′) at all pairs of time instants

contained in t. Also, when a Gaussian likelihood is assumed, the priors are

conjugate to the likelihood [56]. Hence, the posterior distributions are also

Gaussian. That is,

p(y | f) =
n∏
i=1

N
(
yi | fi, ν2

)
, (5.3)

p(f | y) = N
(
f | K>f H−1y, K̂f

)
, (5.4)

p(sj | y) = N
(
si | K>sjH

−1y, K̂sj

)
. (5.5)

Here, the likelihood (5.3) factorizes across the mixture data, and the posterior

over the mixture function (5.4) has covariance matrix K̂f = Kf−K>f H−1Kf .

Also, the posterior distribution over the i-th source (5.5) has covariance ma-

trix K̂sj = Ksj −K>sjH
−1Ksj , where the matrix H = Kf + ν2I, and I is the

identity matrix. Further, the model hyperparameters are usually learned by

maximizing the log-marginal likelihood

log p(y) = −1

2

[
y>H−1y + log |H|+ n log 2π

]
, (5.6)

where H needs to be inverted.

Although the source separation GP model introduced so far is elegant, its

application to large audio signals becomes intractable. This is because the

computational complexity of GP inference scales cubically with the number of

audio samples. Specifically, learning the hyperparameters by maximizing the

true marginal likelihood (5.6) is computationally demanding, as it requires
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the inversion of a n × n matrix. To overcome the limitations imposed by

matrix inversion, we instead maximized a variational lower bound of the true

marginal likelihood (5.6) (introduced shortly in section 5.1.2). In addition,

we divided the mixture data into overlapping frames of size n̂� n. Finally,

to reconstruct the sources, we used the hyperparameters learned for each

frame to calculate the true posterior distribution over the sources (eq. (5.5)).

The rest of this section is structured as follows. Section 5.1.1 introduces the

spectral mixture kernel used for each source. Then, section 5.1.2 presents

the lower bound of the true marginal likelihood we maximized for learning

the hyperparameters.

5.1.1 Spectral mixture kernels for isolated sources

The kernel kj(t, t
′) in (5.1) determines the properties of each source sj(t),

that is, smoothness, stationarity, and more importantly, its spectrum. To

model the typical spectral content of each isolated source, we used spectral

mixture kernels [83]. These kernels approximate the spectral density of any

stationary covariance function using a Gaussian mixture. Further, in chapter

4 we assumed a Lorentzian mixture instead, resulting in the Matérn-1/2

spectral mixture (MSM) kernel

kj(τ) = σ2
j exp

(
− τ
`j

)
×

D∑
d=1

α2
jd cos(ωjd τ), (5.7)

where τ = |t − t′|, the set of parameters
{
α2
jd, ωjd

}D
d=1

controls the energy

distribution throughout all the harmonics/partials of the j-th source spec-

trum. In addition, the variance σ2
j controls the source amplitude, whereas

the lengthscale `j determines how fast sj(t) evolves in time. We grouped

all the kernel parameters in the set θj =
{
σ2
j , `j,

{
α2
jd, ωjd

}D
d=1

}
. We

fitted a MSM kernel (5.7) to the spectrum of every source. For this pur-

pose, we used training data consisting of one audio recording of each isolated

source. We denoted the training data as a set of vectors
{
g(j)
}J
j=1

, where

each g(j) ∈ Rñ is the training data vector for the j-th source. Here, the
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vector g(j) = [g(j)(x1), · · · , g(j)(xñ)]>, and x = [x1, · · · , xñ]> is the corre-

sponding time vector. In addition, because only one single realization g(j)

was available for each source in {sj(t)}Jj=1, we assumed the sources to be

covariance-ergodic processes with zero mean [10, 65, 31]. Therefore, their

covariances {Cj(τ̂)}Jj=1 were estimated as the time average

Cj(τ̂) =
1

T

∫ T

0

g(j)(x+ τ̂) g(j)(x) dx. (5.8)

Here, T denotes the size (in seconds) of the window used to compute the cor-

relation. We used the discrete version of eq. (5.8). Finally, for every source

we then minimized the mean square error (MSE) between the covariance

estimator (5.8) and the corresponding MSM kernel (5.7). That is,

L(θj) =
1

Nc

Nc∑
i=1

[kj(τ̂i)− Cj(τ̂i)]2 , (5.9)

where Nc is the number of points where (5.8) was approximated, and θj is

the set of kernel parameters in (5.7).

5.1.2 Inference

To reduce the computational time required for learning the hyperparameters

by maximizing the true marginal likelihood (5.6), we divided the mixture

data {ti, yi}ni=1 into W overlapping frames of size n̂ � n. Therefore, the

set of data frames corresponded to
{
t̂(w), ŷ(w)

}W
w=1

, where t̂(w), ŷ(w) ∈ Rn̂.

In addition, for each mixture frame ŷ(w), we maximized the evidence lower

bound of the true log marginal likelihood (5.6) proposed in [76] for sparse

GPs variational inference. For a detailed description of this lower bound see

section 2.6. Recalling the form of this objective function:

L ∆
= logN

(
ŷ(w)| 0, Qn̂n̂ + ν2I

)
− 1

2ν2
tr (Kn̂n̂ −Qn̂n̂) , (5.10)

where Qn̂n̂ = Kn̂mK−1
mmKmn̂ [76]. The value of the cross-covariance matrix

at the i-th row and j-th column, corresponds to Kn̂m[i, j] = kf (t
(w)
i , zj). Sim-
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Figure 5.1: Flowchart proposes model.

ilarly, Kmm[i, j] = kf (zi, zj). Recall that kf (t, t
′) is the kernel of the mixture

function (5.2). In brief, by framing the data and maximizing the lower bound

(5.10), the computational time required for learning hyperparameters in each

frame or window is reduced to O(n̂m2). The proposed method is illustrated

in Figure 5.1. In the following experiments the inducing points z were not

learned from maximizing the lower bound (5.10). We instead used two sepa-

rate criteria to select the inducing points z. Either the inducing points were

located at the extrema of the mixture data, that is, the peaks and valleys of

the audio signal (see Figure 5.2), or the inducing points were equal to the

time vector (full GP).

5.1.3 Experimental evaluation

We tested the proposed SSGP method on the same dataset analysed in [87].

That is, three different mixture audio signals sampled at 16kHz, correspond-

ing to piano, electric guitar, and clarinet. Each mixture lasts 14 seconds,
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Figure 5.3: Source separation metrics. SDR (a), SIR (b), SAR (c), RMSE
(d).

and consists of the following sequence of music notes (C4, E4, G4, C4+E4,

C4+G4, E4+G4, and C4+E4+G4). Thus, for each mixture, the aim was to

reconstruct three source signals, each with a corresponding note, C4, E4, and

G4. The metrics used to measure the separation performance were: source to

distortion ratio (SDR), source to interferences ratio (SIR), source to artefacts

ratio (SAR) [79], and root mean square error (RMSE). We compared with

LD-PSDTF (positive semi-definite tensor factorization), KL-NMF (Kullback-

Leibler NMF), and IS-NMF (Itakura-Saito NMF) with rank three [87]. The

code was implemented using GPflow [46].

We determined the performance of the proposed method in mixtures of

three sources. That is, J = 3 in eq. (5.2). To this end, we first divided

the mixtures into frames of 125 milliseconds (n̂ = 2001) with 50% overlap,

and initialized the kernel for each source (eq. (5.7) with D = 15), by min-
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Method SDR SIR SAR Opt. time

KL-NMF 17.7 22.2 19.7 –
IS-NMF 19.1 24.0 21.0 –
LD-PSDTF 23.0 27.7 25.1 –
SSGP (proposed) 24.1 31.4 25.1 5.33
SSGP-full 22.9 22.3 24.6 284.2

Table 5.1: Separation metrics (dB). Optimization time (min).

imizing eq. (5.9). Then, for each mixture frame, we maximized eq. (5.10)

to learn the variance of each source, i.e.,
{
σ2
j

}J
j=1

. We compared the time

required for learning the hyperparameters in these two scenarios. Finally,

we used eq. (5.5), and the learned hyperparameters to calculate the true

posterior over each source p
(
s

(w)
i |y(w)

)
. We recovered the sources applying

the overlap-add method to the frame-wise predictions [5]. We found that

our method (SSGP) presented the highest SDR and SIR metrics (Figure

5.3), and reduced the optimization time by 98.12% compared to the full GP

(Table 5.1), indicating that our method is efficient, robust to interferences be-

tween sources (highest SIR), and it introduces less distortion (highest SDR).

Further, we observed that the kernels learned for each source presented dis-

tinctive spectral patterns (Fig 5.4), which demonstrates that SM kernels are

appropriate for learning the rich frequency content found in audio sources.

Moreover, we observed that the proposed approach reconstructed accurately

the sources (Fig 5.6), showing the variances learned by maximizing the lower

bound were consistent with the true sources. In addition, to establish the

effect of kernel selection on the separation performance, we carried out the

same previous experiment, but changing the number of components D in the

kernel eq. (5.7). We found that SDR, SIR and SAR metrics stabilized when

D > 3 (Figure 5.3(a-c)), indicating that the proposed model is less affected by

kernel selection when more than three components are used. Further, RMSE

decreased exponentially with D (Figure 5.3(d)), suggesting that increasing

the number of components in the kernel leads to more accurate waveform

reconstructions.
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Figure 5.4: Kernels learned for each piano source (left column). Correspond-
ing log-spectral density (right column).

Discussion

Our findings indicate that combining variational sparse GPs together with

SM kernels enables time-domain source separation GP models to reconstruct

audio sources in an efficient and informed manner, without compromising

performance. Also, RMSE results imply that suitable spectrum priors over

the sources are essential to improve source reconstruction. Moreover, SDR,

SIR, and SAR results suggest the proposed method can be used for other

applications such as multipitch-detection, where low interference between

sources (SIR) is more relevant than reconstruction artefacts (SAR). We pro-

posed an alternative method that circumvents phase approximation by ad-

dressing audio source separation from a variational time-domain perspective.

The code is available at [1].
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5.2 GP-SVI for source separation and multi-

pitch detection: a joint approach

So far in this thesis, to handle the computational time of inference in GP

models we have either used exact inference on a small data set (Chapter 3),

or framed the input audio signal and learned the hyperparameters from each

window independently, by maximizing a variational evidence lower bound

for sparse GPs (Chapter 4, and Section 5.1). Framing the data has enabled

GP models to analyse longer audio signals. However, windowing audio sig-

nals presents some disadvantages. First, the GP model lacks the ability to

learn from the data in adjacent windows/frames. That is, information useful

for inference is not taken into account. Second, the predicted activations,

components, and sources present discontinuities between adjacent windows.

This can be solved by using overlapping windows (Section 5.1). However,

this means more windows to analyse, increasing the computational time of

inference. Stochastic variational inference (SVI) (see Section 2.6.5) offers an

alternative method that does not need to window the input audio signal [35].

This means that in the overall process of inference the optimisation algorithm

has access to the whole data. Moreover, discontinuities are avoided, since a

single model is used when doing predictions.

In this section we combine SVI and the modulated-GP model (4.1), intro-

duced in Chapter 4 for multi-pitch detection. Moreover, the SVI-GP model

formulated in this section is used for two tasks simultaneously, namely source
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Figure 5.6: Source reconstruction on piano mixture signal.

separation and multi-pitch detection. That is, the modulated-GP model re-

turns one prediction in the form of a waveform (time-domain function) per

each corresponding detected pitch (see Figure 5.11). We show preliminary

results on two experiments; separating three different sources (as in Section

5.1), and detecting 88 pitches on a piano signal from the MAPS dataset [28].
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5.2.1 An ELBO for the modulated-GP model

From the description of stochastic variational inference presented in Section

2.6.5, we know that in order to use SVI in sparse GPs, it is necessary to

formulate a lower bound that has global variables, and that also decomposes

into a sum of n terms, each term associated to a single data point [35]. This

subsection presents the formulation of a SVI-suitable evidence lower bound

for the modulated-GP model; a model that decomposes an observed audio

signal as the multiplication of a non-negative random process and a Gaus-

sian process with a spectral mixture kernel [4]. This generative probabilistic

model is intended to explain how an observed polyphonic music signal (mix-

ture of sources or pitches) was generated. We also seek to compute a posterior

distribution over the latent functions associated with each source/pitch.

We study the scenario where the mixture signal has only one source.

Then, the model is extended to several sources. The formulation of the

ELBO is organized as follows. First, we introduce the model for one single

source. Precisely, we define the likelihood, prior, joint distribution, and the

limitation of computing the posterior distribution. This motivates the use

of approximate inference. Second, we introduce the inducing variables as in

[36], but within the context of the modulated-GP. Third, the correspond-

ing variational lower bound is introduced. Subsequently, we analyse in more

detail the variational expectation of the log-likelihood and derive two equiv-

alent solutions. The first approximates a double integral by a two dimen-

sional Gauss-Hermite quadrature, whereas the second solution approximates

the double integral as the sum of several one-dimensional Gauss-Hermite

quadratures. For related work refer to [4, 34, 36, 63].

Single source model

Given an audio recording D = {yn, tn}Nn=1 and the regression model

y(t) = σ(g(t))f(t) + ε(t),
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where f(t) and g(t) follow GPs and ε(t) follows a white noise process, then

yn = σ(gn)fn + εn,

where gn = g(tn), fn = f(tn), and εn ∼ N (εn|0, ν2). Defining the vectors

y = [y1, · · · , yN ]>, f = [f1, · · · , fN ]>, g = [g1, · · · , gN ]>, and assuming the

observations as i.i.d then the likelihood corresponds to

p(y|f,g) =
N∏
n=1

p(yn|fn, gn) (5.11)

=
N∏
n=1

N (yn|σ(gn)fn, ν
2).

We put an independent GP over each function f(t) and g(t), therefore the

prior over the latent vectors f and g corresponds to p(f,g) = p(f)p(g), where

p(f) = N (f|0,Kf),

and

p(g) = N (g|0,Kg).

Given the prior and the likelihood we can define the joint distribution as

p(y, f,g) = p(y|f,g)p(f)p(g)

=
N∏
n=1

N (yn|σ(gn)fn, ν
2) N (f|0,Kf) N (g|0,Kg).

The posterior can be calculated as

p(f,g|y) =
p(y|f,g)p(f)p(g)

p(y)
, (5.12)
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where the marginal likelihood is defined as

p(y) =

∫ ∫
p(y|f,g)p(f)p(g) df dg. (5.13)

Computing this expression is usually difficult due to O(N3) complexity and

non-tractability.

Introducing inducing variables

Introducing inducing points Z = {zm}Mm=1 for both latent functions f(t)

and g(t) and their corresponding inducing variables uf = {f(zm)}Mm=1 and

ug = {g(zm)}Mm=1, then the joint distribution of all latent variables correspond

to p(f,uf ) = p(f|uf )p(uf ), and p(g,ug) = p(g|ug)p(ug). The joint now

follows

p(y, f,g,uf ,ug) = p(y|f,g,uf ,ug)p(f,g,uf ,ug)

= p(y|f,g)p(f,uf )p(g,ug)

= p(y|f,g)p(f|uf )p(g|ug)︸ ︷︷ ︸
p(y,f,g|uf ,ug)

p(uf )p(ug)

Then

p(y|uf ,ug) =

∫ ∫
p(y, f,g|uf ,ug)df dg

=

∫ ∫
p(y|f,g,uf ,ug)p(f,g|uf ,ug)df dg

=

∫ ∫
p(y|f,g)p(f|uf )p(g|ug)df dg

= Ep(g|ug)

[
Ep(f|uf ) [p(y|f,g)]

]
= Ep(f|uf )p(g|ug) [p(y|f,g)] .

Similar to [36] we will use the following inequality to get a variational ap-

proximation

log p(y|uf ,ug) ≥ Ep(f|uf )p(g|ug) [log p(y|f,g)] . (5.14)
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Variational lower bound

We assume the following variational distribution over all inducing variables

q(u) = q(uf ,ug) (5.15)

= q(uf )q(ug)

= N (mf ,Sf )N (mg,Sg),

that is q(uf ) = N (mf ,Sf ) and q(ug) = N (mg,Sg). Using the standard

variational equation

log(y) ≥ Eq(u) [log p(y|u)]−KL (q(u)||p(u)) (5.16)

≥ Eq(uf ,ug) [log p(y|uf ,ug)]−KL (q(uf ,ug)||p(uf ,ug))

≥ Eq(uf )q(ug) [log p(y|uf ,ug)]−KL (q(uf )q(ug)||p(uf )p(ug)) .

Replacing (5.14) in (5.16) then

log(y) ≥ Eq(uf )q(ug)

[
Ep(f|uf )p(g|ug) [log p(y|f,g)]

]︸ ︷︷ ︸
B

−KL (q(uf )q(ug)||p(uf )p(ug))︸ ︷︷ ︸
A

.

(5.17)

Analysing A in (5.17)

Analysing the KL divergence in (5.17) we get

KL (q(uf )q(ug)||p(uf )p(ug)) =

∫ ∫
q(uf )q(ug) log

{
q(uf )q(ug)

p(uf )p(ug)

}
duf dug,
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that is

=

∫ ∫
q(uf )q(ug) [log q(uf ) + log q(ug)− log p(uf )− log p(ug)] duf dug

=

∫ ∫
q(uf )q(ug)

[
log

{
q(uf )

p(uf )

}
+ log

{
q(ug)

p(ug)

}]
duf dug

=

∫ ∫
q(uf )q(ug) log

{
q(uf )

p(uf )

}
duf dug +

∫ ∫
q(uf )q(ug) log

{
q(ug)

p(ug)

}
duf dug

=

∫
q(uf ) log

{
q(uf )

p(uf )

}
duf +

∫
q(ug) log

{
q(ug)

p(ug)

}
dug,

therefore

KL (q(uf )q(ug)||p(uf )p(ug)) = KL (q(uf )||p(uf )) + KL (q(ug)||p(ug)) .
(5.18)

Analysing B in (5.17)

Analysing the expectation we have

Eq(uf )q(ug)

[
Ep(f|uf )p(g|ug) [log p(y|f,g)]

]
=∫ ∫ ∫ ∫

log p(y|f,g)p(f|uf )p(g|ug)q(uf )q(ug) df dg duf dug =∫ ∫
log p(y|f,g)

[∫
p(f|uf )q(uf ) duf

]
·
[∫

p(g|ug)q(ug) dug

]
df dg =∫ ∫

log p(y|f,g)q(f)q(g) df dg,

therefore

Eq(uf )q(ug)

[
Ep(f|uf )p(g|ug) [log p(y|f,g)]

]
= Eq(f)q(g) [log p(y|f,g)] , (5.19)

where

q(f) =

∫
p(f|uf )q(uf )duf ,

q(g) =

∫
p(g|ug)q(ug)dug.
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ELBO

The evidence lower bound (ELBO) is defined by replacing (5.18) and (5.19)

into (5.17)

ELBO(q(uf ), q(ug)) = (5.20)

Eq(f)q(g) [log p(y|f,g)]−KL (q(uf )||p(uf ))−KL (q(ug)||p(ug)) .

This is the functional we aim to maximise in the variational approach.

Approximating variational expectations using quadrature

Analysing the expectation in the lower bound equation (5.20), and using the

definition of the likelihood (5.11) we have

Eq(f)q(g) [log p(y|f,g)] = Eq(f)q(g)

[
log

N∏
n=1

p(yn|fn, gn)

]
(5.21)

= Eq(f)q(g)

[
N∑
n=1

log p(yn|fn, gn)

]

=
N∑
n=1

Eq(f)q(g) [log p(yn|fn, gn)]

=
N∑
n=1

∫ ∫
log p(yn|fn, gn)q(f)q(g) df dg

=
N∑
n=1

∫ ∫
log p(yn|fn, gn)q(fn)q(gn) dfn dgn,

then we end up solving N two dimensional Gauss-Hermite quadratures.

From (5.21) we aim to approximate the following double integral by

quadrature methods∫ ∫
log p(yn|fn, gn)q(fn)q(gn) dfn dgn. (5.22)

In the next two subsections we present two different solutions. The first one

solves the double integral in (5.21) by using a two dimensional quadrature,
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whereas the second solves (5.21) by using a linear combination of 2 one

dimensional quadratures, this might help to reduce computational cost.

Solving (5.22) by using quadrature of dimension 2

From the definition of the variational distribution q(uf ,ug) in (5.15) we know

that q(fn) = N (fn|mfn , s
2
fn

), and q(gn) = N (gn|mgn , s
2
gn) Then, replacing in

(5.22) we get∫ ∫
log p(yn|fn, gn)N (fn|mfn , s

2
fn)N (gn|mgn , s

2
gn) dfn dgn = (5.23)

1

(2πs2
fn

)1/2

1

(2πs2
gn)1/2

∫ ∫
log p(yn|fn, gn)× · · ·

exp

{
− 1

2s2
fn

(fn −mfn)2

}
exp

{
− 1

2s2
gn

(gn −mgn)2

}
dfn dgn,

introducing the following change of variable:

f̂n =
fn −mfn√

2sfn
,

and

ĝn =
gn −mgn√

2sgn
,

then (5.23) can be written as∫ ∫
log p(yn|fn, gn)N (fn|mfn , s

2
fn)N (gn|mgn , s

2
gn) dfn dgn =

1

π

∫ ∫
log p(yn|

√
2sfn f̂n +mfn ,

√
2sgn ĝn +mgn) exp

{
−f̂n

2
}

exp
{
−ĝn2

}
df̂n dĝn,
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The previous double integral can be approximated as∫ ∫
log p(yn|fn, gn)q(fn)q(gn) dfn dgn ≈ (5.24)

1

π

∑
∀i

∑
∀j

wiwj log p(yn|
√

2sfnx̂i +mfn ,
√

2sgn ŷj +mgn),

where wi, wj, x̂i, ŷi are obtained from the formula for the Gauss-Hermite

quadrature.

Solving (5.22) by using quadratures of dimension 1

Focusing on the expression for the likelihood of a single point yn in (5.22)

p(yn|fn, gn) = N (yn|σ(gn)fn, ν
2)

=
1

(2πν2)1/2
exp

{
− 1

2ν2
[yn − σ(gn)fn]2

}
,

then

log p(yn|fn, gn) = −1

2
log(2π)− 1

2
log(ν2)− 1

2ν2
[yn − σ(gn)fn]2 ,

replacing this into (5.22) we get∫ ∫
log p(yn|fn, gn)q(fn)q(gn) dfn dgn =

− 1

2ν2

∫ ∫
[yn − σ(gn)fn]2 q(fn)q(gn) dfn dgn −

1

2
log(2π)− 1

2
log(ν2),

107



where∫ ∫
[yn − σ(gn)fn]2 q(fn)q(gn) dfn dgn =∫ ∫ [
y2
n − 2ynσ(gn)fn + σ(gn)2f 2

n

]
q(fn)q(gn) dfn dgn =∫ ∫

y2
nq(fn)q(gn) dfn dgn − · · ·∫ ∫

2ynσ(gn)fnq(fn)q(gn) dfn dgn + · · ·∫ ∫
σ(gn)2f 2

nq(fn)q(gn) dfn dgn =

y2
n − 2yn

∫
fnq(fn) dfn ·

∫
σ(gn)q(gn) dgn +

∫
f 2
nq(fn) dfn ·

∫
σ(gn)2q(gn) dgn =

y2
n − 2ynEq(fn) [fn]Eq(gn) [σ(gn)] + Eq(fn)

[
f 2
n

]
Eq(gn)

[
σ(gn)2

]
=

y2
n − 2ynmf,nEq(gn) [σ(gn)] + (s2

f,n +m2
f,n)Eq(gn)

[
σ(gn)2

]
.

Then∫ ∫
log p(yn|fn, gn)q(fn)q(gn) dfn dgn = (5.25)

− 1

2ν2

{
y2
n − 2ynmf,nEq(gn) [σ(gn)] + (s2

f,n +m2
f,n)Eq(gn)

[
σ(gn)2

]}
− 1

2
log(2π)− 1

2
log(ν2).

where mf,n and s2
f,n are the mean and variance of the variational distribution

over the latent variable fn. The expectations in the previous expression

can be approximated using 2 one dimensional Gauss-Hermite quadrature.

Therefore we have reduced the dimensionality of the approximate integrals.

Approximating Eq(gn) [σ(gn)] and Eq(gn) [σ(gn)2] in (5.25) using 1 dimen-

sional Gauss-Hermite quadrature

Here we study in more detail the expectations found (5.25). Specifically

Eq(gn) [σ(gn)] and Eq(gn) [σ(gn)2]

Eq(gn) [σ(gn)] =

∫ ∞
−∞

σ(gn)
1

(2πs2
gn)1/2

exp

{
− 1

2s2
gn

(gn −mgn)2

}
dgn,
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The Hermite-Gauss is defined for a normal distribution with zero mean, that

is why we require a change of variable:

x̃ =
gn −mgn√

2sgn
,

dgn =
√

2sgndx̃,

then we have

1√
π

∫ ∞
−∞

σ(
√

2sgnx̃+mgn) exp(−x̃2)dx̃,

calling h(x̃) = σ(
√

2sgnx̃+mgn), then

1√
π

∫ ∞
−∞

h(x̃) exp(−x̃2)dx̃,

Now we can approximate this integral using the Hermite-Gaussian quadra-

ture, that is

1√
π

∫ ∞
−∞

h(x̃) exp(−x̃2)dx̃ ≈ 1√
π

∑
∀j

wjσ(
√

2sgnxj +mgn). (5.26)

The expressions for Eq(gn) [σ(gn)2] can be calculated similarly. Replacing

(5.26) into (5.25) we get∫ ∫
log p(yn|fn, gn)q(fn)q(gn) dfn dgn ≈ (5.27)

− 1

2ν2

{
y2
n − 2ynmfn

[
1√
π

∑
∀i

wiσ(
√

2sgnx̂i +mgn)

]
+ · · ·

(s2
fn +m2

fn)

[
1√
π

∑
∀j

wjσ(
√

2sgn ŷj +mgn)2

]}
− 1

2
log(2π)− 1

2
log(ν2).

5.2.2 Experiments

Next we present preliminary results applying SVI in GP models for two

different tasks; separating three sources, and detecting 88 pitches on two
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seconds of a piano audio recording from the MAPS dataset [28].

Source Separation

SVI was tested in the same problem addressed in chapter 5.1, that is, to

separate three sources in a piano audio recording that lasts 14 seconds. The

signal has up to three pitches happening at the same time (see Fig 5.6 bot-

tom). With a sample rate of 16 kHz, the audio signal contains 224000 data

points, which is a big data scenario for GPs. we applied the modulated GP

model, introduced in Chapter 4.

Figure 5.7: Predicted activations using modulated GP with SVI, after 1000,
2000, and 10000 iterations.

We observed that the inferred activations after 1000 iterations where close

to zero (Figure 5.7 green curves). However, after 2000 iterations the distinc-

tive pattern of each activation became evident as either the predicted mean
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or/and the interval of confidence increased (Figure 5.7 orange curves). Acti-

vations reached a specific form after 10000 iterations (Figure 5.7 blue curves).

These observations confirm that the predictions obtained using SVI are con-

tinuous, indicating that all the information in the whole dataset is considered

during inference, in a stochastic fashion.

Figure 5.8: Predicted components using modulated GP with SVI, after 1000,
2000, and 10000 iterations.

Likewise, we found that the learnt components presented a similar be-

haviour (Figure 5.8). That is, they were continuous and had a characteristic

pattern that differentiates them between each other. The form of these func-

tions was not well-defined even after 1000 or 2000 iterations. Nevertheless,

these functions converged after 10000 iterations.

Finally, the sources where were reconstructed by multiplying the corre-

sponding activations and components predictive means shown in Fig 5.7 and

Figure 5.8. We detected that the reconstructed sources were close to the true
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Figure 5.9: Predicted sources using modulated GP with SVI.

data, i.e. they matched the sequence of events for each source (Figure 5.9).

Nevertheless, the reconstructed sources were smoother than expected. Also,

a small outlier was observed at the beginning of the third source. These

observations indicate that SVI based GP models find challenging to predict

sharp changes in the audio recordings. This could be because in an audio

recording most of the audio corresponds to the steady-state or decay of the

sound events. In other words, the onset of the sounds last for a very short

time, therefore there is few available onset-related data.

112



Multi-pitch detection

To establish if SVI truly enables GP models for detecting pitches in a real

music scenario, that is, predicting the 88 pitches/keys of a piano, we applied

the modulated GP model (chapter 4) to a two seconds audio signal. This

audio segment contains five different pitches, still, we predicted the activa-

tion, components, and sources of the full range of 88 notes. In short, the

model outputs a waveform for each pitch, and for each of these waveforms

we define if a pitch is active or not depending on their energy at a certain

time. The top left of Figure 5.10 shows the ground truth piano-roll of the

analysed signal, the red squares demarcate the onsets of the notes. We found

that the proposed GP method was able to detect the true pitches occurring

in the audio signal (Figure 5.10 top right). However, several false positive ac-

tivations were also present (principally octaves, fifths and thirds of the true

pitches). Also, two onsets were missing. These observations indicate that

GP models that rely solely on acoustic modelling of the sources are prone to

make mistakes that could be avoided by introducing a joint prior over the

activations with musical meaning, i.e. a music language model/prior. We

also observed that the evidence lower bound stabilised after 20000 iterations,

indicating that the SVI algorithm converged to a (possibly local) maximum

(Figure 5.10 bottom). Finally, we observed that the proposed GP method us-

ing SVI was able to produce the 88 waveforms associated with the 88 pitches

we aimed to detect (Figure 5.11), indicating that GP models combined with

SVI are a promising alternative for integrating Bayesian non-parametric GP

models into big-data music signal processing tasks.
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Figure 5.10: Example of multi-pitch estimation and source separation.
Ground truth piano-roll (top left). Estimated piano-roll (top right). ELBO
convergence (bottom).
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Figure 5.11: 88 waveforms reconstructed from a single polyphonic signal of
piano (MAPS dataset). 115



Chapter 6

Conclusions and further work

In the achievement of the general aim of this research “to develop Bayesian

machine learning methods that interpret source separation and multi-pitch

detection as a single unifying task” (Section 1.2), this thesis has centred

on the construction of time-domain probabilistic models based on Gaussian

processes. Furthermore, this study has focused on making the proposed GP

models efficient and interpretable from a music audio signal perspective. To

verify the proposed methods, we have investigated the design of kernels or

covariance functions that lead to GP priors with audio signals characteristics,

while studying how to apply approximate variational inference. To close this

document, we first review the contributions made. Subsequently, we reflect

on the outcomes of our study. Finally, we suggest possible directions in which

future work can extend this research.

6.1 Summary of contributions

• We explored a variety of covariance functions, as an initial stage aim-

ing to find GP priors that represented better the properties of audio

signals (Chapter 3). We found that conventional kernels tended to de-

scribe a restricted scope of audio features, including dynamics, quasi-

periodicity, and an oversimplified harmonic content. Our early findings

were used to direct the research towards the designing of more powerful
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covariance functions.

We also analysed the usage of deterministic activation functions or

change-windows to include non-stationarity in GP regression models.

In the experiments, the activation functions were a determinant factor

in improving the performance of pitch detection GP models. How-

ever, the predefined number of change-windows and the estimation of

more hyperparameters limited the proposed approach. From these re-

sults, we hypothesised that non-parametric activation functions were a

promising alternative for overcoming these limitations.

• We proposed to use the GP-product model as the basis of our multi-

pitch detection approach [4] (Chapter 4). Here, for each pitch, a point-

wise multiplication of two Gaussian processes described the correspond-

ing source waveform. One GP (component function) embodied har-

monic content, whereas the second GP represented the time-changing

amplitude, i.e. the source activation. Also, we proposed to use the

Matérn spectral mixture (MSM) kernel to specify the prior over the

component functions [83]. In our experiments, the highest performance

in multi-pitch detection was achieved when the MSM kernels were ini-

tialised using the Fourier transform of isolated sources available for

training. We concluded that “what it is really relevant for pitch detec-

tion is a set of MSM kernels that properly fit the frequency content of

the target sound events” [8].

Besides, to tackle the intractability issue produced by a non-closed-form

posterior, we introduced sparse variational inference into the multi-

pitch detection GP model [76]. Also, to address the computational

cost of doing inference in large data sets, we suggested framing the

waveform of the input audio signal. Results imply that making GP

models suitable for real scenarios of music signal processing may require

to use sparse variational inference together with framing audio signals.

• We studied standard Gaussian process regression for source separation

in single-instrument music signals (Section 5.1). Here we also framed
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the audio signal and used sparse variational inference for tractability.

We found that accurate and efficient source reconstructions were possi-

ble when learning hyperparameters by maximising the evidence lower

bound while computing the conditional distribution over each source

given the mixture data (source posterior) using its classic closed-form

definition. Furthermore, in our experiments, the best performance in

separation was achieved when the spectral mixture kernels were very

close to the empirical autocorrelation of the training data (waveforms

of isolated sources). Our findings can serve to establish a method to

obtain GP priors with accurate spectral content representations.

• We developed GPitch, a new Python package intended for time-domain

source separation and multi-pitch detection using Gaussian processes.

This package relies on GPflow and TensorFlow, which makes it com-

putational efficient when using sparse variational inference methods

running on GPUs.

• We introduced stochastic variational inference (SVI) into time-domain

GP models for multi-pitch and source separation. SVI allows to analyse

music signals without framing them, circumventing prediction discon-

tinuities between audio windows. This thesis presented preliminary

results in Section 5.2.

Some of these contributions were submitted and/or published in interna-

tional conferences. For a detailed list please refer to Section 1.4.

6.2 Further work

This research could be extended to different areas. Here, we describe poten-

tial directions.

Variational Fourier features: One of the shortcomings of sparse

Gaussian process variational approach is that the inducing variables

lie on the same domain as the input training data variables, that is,
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time. Therefore, to analyse longer audio signals may imply to use more

inducing points. A different possibility is to use inducing points that

exist on a different domain. A promising alternative is to use variational

Fourier features, where the inducing points are in the frequency domain

[33]. In short, analysing longer signals would not necessarily require

more inducing points in the time-domain; it would instead need to

relocate the inducing features in the frequency domain as the size of

the audio signal increases.

Music language models: A music language model could be in-

troduced as a prior joint distribution over the activation functions

[67, 85, 58]. Consequently, activations could exhibit musical mean-

ing when analysing them simultaneously. This approach could reduce

the number of mistakes when making predictions by avoiding the com-

binations of activations that are less likely under specific music rules.

For example, using a music language model could be beneficial for ig-

noring the activation of pitches whose relative distance is one semitone,

thus discouraging dissonant mixtures of pitches. Besides, spurious and

intermittent activations could be excluded by using the same principle.

Non-stationary spectral mixture kernels: Another potential ex-

tension of this research is the design of non-stationary spectral mixture

kernels that can encode or describe the attack and decay of pitched

music sound events. In short, such covariance functions could incor-

porate the time-dependent evolution of the spectral content of sources

[57]. The usage of attack-decay spectral mixture kernels may increase

the accuracy in source reconstructions and reduce the number of miss-

detections in multi-pitch estimation.

Combinations with deep learning: The proposed nonparametric

approach could be combined with deep learning. This combination

could be beneficial, for example, to develop more powerful kernels that

can extract and learn relevant features directly from the audio data,

without needing a human expert to select a specific family of covariance
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functions [84, 26]. Also, a hybrid approach using deep learning and GPs

could have both, the effective function modelling of deep learning and

the Bayesian uncertainty quantification paradigm offered by Gaussian

process regression.

Multi-output Gaussian processes: Music language models could

be coupled with multi-output Gaussian processes and multi-task learn-

ing. This combination could potentially improve the performance of

multi-pitch detection GP models. This is because sharing information

between tasks (learning each source/pitch) usually makes the overall

model more robust [49].

6.3 Closing remarks

In general, multi-pitch estimation and source separation remain open chal-

lenges in music signal processing. Our work proposes a unifying approach

that addresses both tasks simultaneously, specifically for single-instrument

music audio signals. The time-domain methods we have introduced give

time-level resolution in multi-pitch detection and reconstruct sources without

requiring phase approximations. Furthermore, the Gaussian process models

we have developed provide an elegant and principled formalism for intro-

ducing prior knowledge about activations (smoothness and continuity) and

sources (spectral content), circumventing post-processing steps for smoothing

the activations. Moreover, the proposed GP methods quantify uncertainty in

the predictions; a property that source separation and multi-pitch detection

systems usually do not have or exploit.

Making GP models suitable for full-scale music signal processing scenar-

ios needs further research. For example, to detect a broader range of pitches

such as the 88 notes of a piano, in an audio recording of a complete piece of

music that last several minutes, demands more efficient and scalable GP ap-

proximate methods. Such a task could also need new kernels that reflect more

intricate properties of audio signals (attack and decay), and music language

priors that give more relevance to activations that make sense musically.
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Analysing the outcomes in chapters 3, 4, 5.1 and 5.2, we conclude that

time-domain Gaussian process models are a promising approach to solving

multi-pitch detection and source separation in polyphonic music signals. Our

findings can be used to guide the selection of covariance functions when ap-

plying GP models to music signal processing problems. Besides, we proposed

two different methods to initialise source kernels within a region with prac-

tical music and audio interpretation. Our results indicate that GP priors

that successfully incorporate the spectral content of sources/pitches are de-

termining to obtain high-quality source reconstructions and pitch estimates.

Furthermore, variational inference (either sparse or stochastic) should be

used to break free from the GP computational burden and release the full

potentiality that GPs have in music signal processing.
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Appendix A

Gaussian distribution identities

These derivations were obtained from [56] (appendix A). Suppose x and y

are Gaussian multivariate random variables with joint distribution p(x,y)

given by [
x

y

]
∼ N

([
µx

µy

]
,

[
A C

C> B

])
,

then, it can be shown that the conditional distribution p(x|y) is given by

p(x|y) = N
(
x| µ̂, Â

)
,

where

µ̂ = µx + CB−1(y− µy),

and

Â = A−CB−1C>.
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Appendix B

Leave one out: model with two

sources

Likelihood

Assuming the regression model

y(t) =
D∑
d=1

σ(g(d)(t))f (d)(t) + ε(t)

with D = 2, then

yn = σ(g(1)
n )f (1)

n + σ(g(2)
n )f (2)

n + εn

assuming the observations as i.i.d then the likelihood corresponds to

p(y|F,G) =
N∏
n=1

p(yn|fn,gn) (B.1)

=
N∏
n=1

N (yn|ĝ>n fn, ν
2),

where the components of the matrices [F]n,d = f
(d)
n , [G]n,d = g

(d)
n , then each

row in F and G is given by the vectors f>n = [f
(1)
n , f

(2)
n ], g>n = [g

(1)
n , g

(2)
n ].

Finally, ĝn = [σ(g
(1)
n ), σ(g

(2)
n )]> represents the non-linear transformation of
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the envelope processes.

Analysing the log-likelihood

From (B.1) we get the log-likelihood

log p(y|F,G) =
N∑
n=1

log p(yn|fn,gn) (B.2)

=
N∑
n=1

logN (yn|ĝ>n fn, ν
2)

=
N∑
n=1

[
−1

2
log(2π)− 1

2
log(ν2)− 1

2ν2

(
yn − ĝ>n fn

)2
]

= −N
2

log(2π)− N

2
log(ν2)− 1

2ν2

N∑
n=1

(
yn − ĝ>n fn

)2

= −N
2

log(2π)− N

2
log(ν2)− 1

2ν2

N∑
n=1

{
yn −

[
σ(g(1)

n )f (1)
n + σ(g(2)

n )f (2)
n

]}2
.

We are interested in calculating

Eq(F,G)[log p(y|F,G)],

Then∫ ∫ ∫ ∫
log p(y|f(1), f(2),g(1),g(2))q(f(1))q(f(2))q(g(1))q(g(2)) df(1) df(2) dg(1) dg(2).

We can calculate the previous fourth integral using a 4 dimensional Gauss-

Hermite quadrature.

Now we get an expression where only 1 dimensional quadratures are re-

124



quired.∫ ∫ ∫ ∫
log p(y|f(1), f(2),g(1),g(2))q(f(1))q(f(2))q(g(1))q(g(2)) df(1) df(2) dg(1) dg(2) =

− N

2
log(2π)− N

2
log(ν2)−

1

2ν2

N∑
n=1

∫ ∫ ∫ ∫ [
yn − σ(g(1)

n )f (1)
n − σ(g(2)

n )f (2)
n

]2 × · · ·
q(f (1)

n )q(f (2)
n )q(g(1)

n )q(g(2)
n ) df (1)

n df (2)
n dg(1)

n dg(2)
n

the previous expression can be decomposed into 6 quadruple-integrals∫ ∫ ∫ ∫ {
y2
n − 2ynσ(g(1)

n )f (1)
n − 2ynσ(g(2)

n )f (2)
n +

[
σ(g(1)

n )f (1)
n

]2
+ · · ·

2σ(g(1)
n )f (1)

n σ(g(2)
n )f (2)

n +
[
σ(g(2)

n )f (2)
n

]2}× · · ·
q(f (1)

n )q(f (2)
n )q(g(1)

n )q(g(2)
n ) df (1)

n df (2)
n dg(1)

n dg(2)
n =

y2
n − 2yn

{
m̃f (1)

n E
[
σ
(
g(1)
n

)]
+ m̃f (2)

n E
[
σ
(
g(2)
n

)]}
+

[(
m̃f (1)

n

)2

+ ν̃f
(1)

n

]
E
[
σ
(
g(1)
n

)2
]

+ · · ·

2m̃f (1)

n m̃f (2)

n E
[
σ
(
g(1)
n

)]
E
[
σ
(
g(2)
n

)]
+

[(
m̃f (2)

n

)2

+ ν̃f
(2)

n

]
E
[
σ
(
g(2)
n

)2
]
.

From the last expression we conclude that the 4-dimensional integral needed

to compute the expectation of the log-likelihood can be calculated as a com-

bination of four 1-dimensional integrals. This allows to use 1D-quadrature

instead of 4D-quadratures, reducing computation time and memory. Rewrit-

ing we get:

Eq(F:,G:)[log p(y|F:,G:)] = (B.3)

− N

2
log(2π)− N

2
log(ν2)− 1

2ν2

N∑
n=1
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n − 2yn

[
m̃f (1)

n E
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n E
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n
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n
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.
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