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Abstract

Summary: We describe a novel computational method for genotyping repeats using sequence

graphs. This method addresses the long-standing need to accurately genotype medically important

loci containing repeats adjacent to other variants or imperfect DNA repeats such as polyalanine

repeats. Here we introduce a new version of our repeat genotyping software, ExpansionHunter,

that uses this method to perform targeted genotyping of a broad class of such loci.

Availability and implementation: ExpansionHunter is implemented in Cþþ and is available under

the Apache License Version 2.0. The source code, documentation, and Linux/macOS binaries are

available at https://github.com/Illumina/ExpansionHunter/.

Contact: meberle@illumina.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Short tandem repeats (STRs) are ubiquitous throughout the human

genome. Although our understanding of STR biology is far from

complete, emerging evidence suggests that STRs play an important

role in basic cellular processes (Gymrek et al., 2016; Hannan,

2018). In addition, STR expansions are a major cause of over 20 se-

vere neurological disorders including amyotrophic lateral sclerosis,

Friedreich ataxia (FRDA) and Huntington’s disease (HD).

ExpansionHunter was the first computational method for geno-

typing STRs from short-read sequencing data capable of consistently

genotyping repeats longer than the read length and, hence, detecting

pathogenic repeat expansions (Dolzhenko et al., 2017). Since the ini-

tial release of ExpansionHunter, several other methods have been

developed and were shown to accurately identify long (greater than

read length) repeat expansions (Dashnow et al., 2018; Mousavi

et al., 2019; Tang et al., 2017; Tankard et al., 2018).

VC The Author(s) 2019. Published by Oxford University Press. 4754

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(22), 2019, 4754–4756

doi: 10.1093/bioinformatics/btz431

Advance Access Publication Date: 27 May 2019

Applications Note

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/340119469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-3296-0677
https://github.com/Illumina/ExpansionHunter/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz431#supplementary-data
https://academic.oup.com/


Current methods are not designed to handle complex loci that

harbor multiple repeats. Important examples of such loci include

the CAG repeat in the HTT gene that causes HD flanked by a CCG

repeat, the GAA repeat in FXN that causes FRDA flanked by an ad-

enine homopolymer and the CAG repeat in ATXN8 that causes

Spinocerebellar ataxia type 8 (SCA8) flanked by an ACT repeat. An

even more extreme example is the CAGG repeat in the CNBP gene

whose expansions cause Myotonic Dystrophy type 2(DM2). This

repeat is adjacent to polymorphic CA and CAGA repeats (Liquori

et al., 2001) making it particularly difficult to accurately align

reads to this locus. Another type of complex repeat is the polyala-

nine repeat which has been associated with at least nine disorders

to date (Shoubridge and Gecz, 2012). Polyalanine repeats consist of

repetitions of a-amino acid codons GCA, GCC, GCG or GCT (i.e.

GCN).

Clusters of variants can affect alignment and genotyping

accuracy (Lincoln et al., 2019). Variants adjacent to low complexity

polymorphic sequences can be additionally problematic because

methods for variant discovery can output clusters of inconsistently

represented or spurious variant calls in such genomic regions. This,

in part, is due to the elevated error rates of such regions in sequenc-

ing data (Benjamini and Speed, 2012; Dolzhenko et al., 2017). One

example is a single-nucleotide variant (SNV) adjacent to an adenine

homopolymer in MSH2 that causes Lynch syndrome I (Froggatt

et al., 1999).

Here we present a new version (v3.0.0) of ExpansionHunter that

was reimplemented to handle complex loci such as those described

above. The implementation uses sequence graphs (Dilthey et al.,

2015; Garrison et al., 2018; Paten et al., 2017) as a general and flex-

ible model of each target locus.

2 Implementation

ExpansionHunter works on a predefined variant catalog containing

genomic locations and the structure of a series of targeted loci. For

each locus, the program extracts relevant reads (Dolzhenko et al.,

2017) from a binary alignment/map file (Li et al., 2009) and realigns

them using a graph-based model representing the locus structure.

The realigned reads are then used to genotype each variant at the

locus (Fig. 1).

The locus structure is specified using a restricted subset of the regular

expression syntax. For example, the HTT repeat region linked to HD

can be defined by expression (CAG)*CAACAG(CCG)* that signifies

that it harbors variable numbers of the CAG and CCG repeats separated

by a CAACAG interruption (see Supplementary Materials); the FXN

repeat region linked to the FRDA corresponds to expression

(A)*(GAA)*; the ATXN8 repeat region linked to SCA8 corresponds to

(CTA)*(CTG)*; the CNBP repeat region linked to DM2 consists of

three adjacent repeats defined by (CAGG)*(CAGA)*(CA)*; the MSH2

SNV adjacent to an adenine homopolymer that causes Lynch syndrome

I corresponds to (A|T)(A)*.

Additionally, the regular expressions are allowed to contain

multi-allelic or ‘degenerate’ base symbols that can be specified using

the International Union of Pure and Applied Chemistry notation

(Cornish-Bowden, 1985). Degenerate bases make it possible to rep-

resent certain classes of imperfect DNA repeats where, e.g. different

bases may occur at the same position. Using this notation, polyala-

nine repeats can be encoded by the expression (GCN)* and polyglut-

amine repeats can be encoded by the expression (CAR)*.

ExpansionHunter translates each regular expression into a se-

quence graph. Informally, a sequence graph consists of nodes that

correspond to sequences and directed edges that define how these

sequences can be connected together to assemble different alleles.

We implemented the basic sequence graph functionality used by

ExpansionHunter in the GraphTools Cþþ library (Supplementary

Materials). One of the key features of the library is its support for

single-node loops in contrast to the traditional approaches that use

fully acyclic graphs (Lee et al., 2002). Single-node loops are the key

to representing STRs and other sequences that can appear in any

number of copies.

Genotyping is performed by analyzing the alignment paths asso-

ciated with the presence or absence of each constituent allele. The

repeats are genotyped as before (Dolzhenko et al., 2017) and SNVs/

indels are genotyped using a straightforward Poisson-based model

(Supplementary Materials).

3 Results and discussion

To demonstrate the performance of ExpansionHunter we analyzed

multiple complex STR regions. First, we analyzed a simulated dataset

containing a wide range of CAG and CCG repeat sizes at the HTT

locus. As expected, the accuracy of ExpansionHunter was substantially

higher when the reads were aligned to a sequence graph that included

both repeats compared to when the repeats were analyzed independ-

ently (Supplementary Fig. S2). ExpansionHunter also produced more

accurate genotypes compared to other tools that were not designed to

(a) (b)

(c)

(e)

(d)

Fig. 1. Overview of ExpansionHunter. (a) A locus definition is read from the variant catalog file. (b) Sequence graph is constructed according to its specification in

the variant catalog. (c) Relevant reads are extracted from the input binary alignment/map file. (d) Reads are aligned to the graph. (e) Alignments are pieced to-

gether to genotype each variant
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handle loci harboring multiple nearby STRs, GangSTR and

TREDPARSE (Supplementary Fig. S2). A recent study used

ExpansionHunter to investigate mutations in the short sequence inter-

rupting two repeats in the HTT locus across 1600 samples (Wright

et al., 2019) demonstrating usefulness of the program for analysis of

complex loci in real data. ExpansionHunter also correctly detected the

pathogenic SNV adjacent to an adenine homopolymer in the MSH2

gene in three WGS replicates of a sample obtained from SeraCare Life

Sciences (Supplementary Materials).

To demonstrate the utility of ExpansionHunter across both short

and long repeats, we compared calls from ExpansionHunter,

GangSTR and TREDPARSE on sequence data from samples with

experimentally confirmed repeat expansions (Supplementary

Materials and Fig. S3). ExpansionHunter had better accuracy (preci-

sion ¼0.91, recall ¼0.99) in detecting the expanded repeats in this

dataset compared to GangSTR (precision ¼0.88, recall ¼0.83) and

TREDPARSE (precision ¼0.84, recall ¼0.46).

Finally, we used ExpansionHunter to genotype degenerate DNA

repeats by analyzing a polyalanine repeat in PHOX2B gene in 150

healthy controls and one sample harboring a known pathogenic expan-

sion. PHOX2B contains a polyalanine repeat of 20 codons that can ex-

pand to cause congenital central hypoventilation syndrome. Consistent

with what is known about this repeat (Amiel et al., 2003), all but a few

controls were genotyped 20/20. ExpansionHunter accurately geno-

typed the sole sample with the expansion as 20/27; the correctness of

this genotype was confirmed by Sanger sequencing.

In summary, we have developed a novel method that addresses

the need for more accurate genotyping of complex loci. This method

can genotype polyalanine repeats and resolve difficult regions con-

taining repeats in close proximity to small variants and other

repeats. A catalog of difficult regions is supplied with the software

and can be extended by the user. We expect that the flexibility of the

sequence graph framework now adopted in ExpansionHunter will

enable a variety of novel variant calling applications.
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