
PINT : Probabilistic In-band Network Telemetry
Ran Ben Basat

Harvard University
ran@seas.harvard.edu

Sivaramakrishnan Ramanathan
University of Southern California

satyaman@usc.edu

Yuliang Li
Harvard University

yuliangli@g.harvard.edu

Gianni Antichi
Queen Mary University of London

g.antichi@qmul.ac.uk

Minlan Yu
Harvard University

minlanyu@seas.harvard.edu

Michael Mitzenmacher
Harvard University

michaelm@eecs.harvard.edu

ABSTRACT
Commodity network devices support adding in-band telemetry mea-
surements into data packets, enabling a wide range of applications,
including network troubleshooting, congestion control, and path
tracing. However, including such information on packets adds sig-
nificant overhead that impacts both flow completion times and
application-level performance.

We introduce PINT , an in-band network telemetry framework
that bounds the amount of information added to each packet. PINT
encodes the requested data on multiple packets, allowing per-packet
overhead limits that can be as low as one bit. We analyze PINT and
prove performance bounds, including cases when multiple queries
are running simultaneously. PINT is implemented in P4 and can
be deployed on network devices.Using real topologies and traf-
fic characteristics, we show that PINT concurrently enables appli-
cations such as congestion control, path tracing, and computing
tail latencies, using only sixteen bits per packet, with performance
comparable to the state of the art.

KEYWORDS
Network Telemetry, Networking Algorithms, Networking Protocols

1 INTRODUCTION
Network telemetry is the basis for a variety of network management
applications such as network health monitoring [72], debugging [28],
fault localization [6], resource accounting and planning [56], attack
detection [27, 65], congestion control [46], load balancing [2, 41,
42], fast reroute [47], and path tracing [36]. A significant recent
advance is provided by the In-band Network Telemetry (INT) [75].
INT allows switches to add information to each packet, such as
switch ID, link utilization, or queue status, as it passes by. Such
telemetry information is then collected at the network egress point
upon the reception of the packet.

INT is readily available in programmable switches and network in-
terface cards (NICs) [8, 14, 58, 85], enabling an unprecedented level
of visibility into the data plane behavior and making this technology
attractive for real-world deployments [16, 46]. A key drawback of
INT is the overhead on packets. Since each switch adds information
to the packet, the packet byte overhead grows linearly with the path
length. Moreover, the more telemetry data needed per-switch, the
higher the overhead is: on a generic data center topology with 5 hops,
requesting two values per switch requires 48 Bytes of overhead, or
4.8% of a 1000 bytes packet (§2). When more bits used to store
telemetry data, fewer bits can be used to carry the packet payload
and stay within the maximum transmission unit (MTU). As a result,
applications may have to split a message, e.g., an RPC call, onto

multiple packets, making it harder to support the run-to-completion
model that high-performance transport and NICs need [7]. Indeed,
the overhead of INT can impact application performance, potentially
leading in some cases to a 25% increase and 20% degradation of
flow completion time and goodput, respectively (§2). Furthermore, it
increases processing latency at switches and might impose additional
challenges for collecting and processing the data (§2).

We would like the benefits of in-band network telemetry, but
at smaller overhead cost; in particular, we wish to minimize the
per-packet bit overhead. We design Probabilistic In-band Network
Telemetry (PINT ), a probabilistic variation of INT, that provides
similar visibility as INT while bounding the per-packet overhead
according to limits set by the user. PINT allows the overhead budget
to be as low as one bit, and leverages approximation techniques
to meet it. We argue that often an approximation of the telemetry
data suffices for the consuming application. For example, telemetry-
based congestion control schemes like HPCC [46] can be tuned to
work with approximate telemetry, as we demonstrate in this paper.
In some use cases, a single bit per packet suffices.

With PINT , a query is associated with a maximum overhead al-
lowed on each packet. The requested information is probabilistically
encoded onto several different packets so that a collection of a flow’s
packets provides the relevant data. In a nutshell, while with INT
a query triggers every switch along the path to embed their own
information, PINT spreads out the information over multiple pack-
ets to minimize the per-packet overhead. The insight behind this
approach is that, for most applications, it is not required to know
all of the per-packet-per-hop information that INT collects. existing
techniques incur high overheads due to requiring perfect telemetry
information. For applications where some imperfection would be
sufficient, these techniques may incur unnecessary overheads. PINT
Is designed for precisely such applications For example, it is pos-
sible to check a flow’s path conformance [30, 56, 72], by inferring
its path from a collection of its packets. Alternatively, congestion
control or load balancing algorithms that rely on latency measure-
ments gathered by INT, e.g., HPCC [46], Clove [41] can work if
packets convey information about the path’s bottleneck, and do not
require information about all hops.

We present the PINT framework (§3) and show that it can run
several concurrent queries while bounding the per-packet bit over-
head. To that end, PINT uses each packet for a query subset with
cumulative overhead within the user-specified budget. We introduce
the techniques we used to build this solution (§4) alongside its im-
plementation on commercial programmable switches supporting
P4 (§5). Finally, we evaluate (§6) our approach with three differ-
ent use cases. The first traces a flow’s path, the second uses data

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/340119447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Metadata value Description
Switch ID ID associated with the switch
Ingress Port ID Packet input port
Ingress Timestamp Time when packet is received
Egress Port ID Packet output port
Hop Latency Time spent within the device
Egress Port TX utilization Current utilization of output port
Queue Occupancy The observed queue build up
Queue Congestion Status Percentage of queue being used

Table 1: Example metadata values.

plane telemetry for congestion control, and the third estimates the
experienced median/tail latency. Using real topologies and traffic
characteristics, we show that PINT enables all of them concurrently,
with only sixteen bits per packet and while providing comparable
performance to the state of the art.

In summary, the main contributions of this paper are:
• We present PINT , a novel in-band network telemetry approach

that provides fine-grained visibility while bounding the per-packet
bit overhead to a user-defined value.
• We analyze PINT and rigorously prove performance bounds.
• We evaluate PINT in on path tracing, congestion control, and

latency estimation, over multiple network topologies.
• We open source our code [1].

2 INT AND ITS PACKET OVERHEAD
INT is a framework designed to allow the collection and reporting
of network data plane status at switches, without requiring any con-
trol plane intervention. In its architectural model, designated INT
traffic sources, (e.g., the end-host networking stack, hypervisors,
NICs, or ingress switches), add an INT metadata header to pack-
ets. The header encodes telemetry instructions that are followed
by network devices on the packet’s path. These instructions tell
an INT-capable device what information to add to packets as they
transit the network. Table 1 summarizes the supported metadata
values. Finally, INT traffic sinks, e.g., egress switches or receiver
hosts, retrieve the collected results before delivering the original
packet to the application. The INT architectural model is intention-
ally generic, and hence can enable a number of high level appli-
cations, such as (1) Network troubleshooting and verification, i.e.,
microburst detection [36], packet history [30], path tracing [36],
path latency computation [34]; (2) Rate-based congestion control,
i.e., RCP [22], XCP [40], TIMELY [53]; (3) Advanced routing, i.e,
utilization-aware load balancing [2, 42].

INT imposes a non insignificant overhead on packets though. The
metadata header is defined as an 8B vector specifying the telemetry
requests. Each value is encoded with a 4B number, as defined by
the protocol [75]. As INT encodes per-hop information, the overall
overhead grows linearly with both the number of metadata val-
ues and the number of hops. For a generic data center topology
with 5 hops, the minimum space required on packet would be 28
bytes (only one metadata value per INT device), which is 2.8%
of a 1000 byte packet (e.g., RDMA has a 1000B MTU). Some
applications, such as Alibaba’s High Precision Congestion Con-
trol [46] (HPCC), require three different INT telemetry values for
each hop. Specifically, for HPCC, INT collects timestamp, egress
port tx utilization, and queue occupancy, alongside some additional
data that is not defined by the INT protocol. This would account

 1

 1.1

 1.2

 1.3

28 48 68 88 108

N
o

rm
a

liz
e

d
 F

C
T

Overhead (Bytes)

30%
70%

 0

 0.2

 0.4

 0.6

 0.8

 1

28 48 68 88 108

N
o

rm
a

liz
e

d
 G

o
o

d
p

u
t

Overhead (Bytes)

30%
70%

Figure 1: Normalized average
Flow Completion Time varying
the network load and increasing
the per-packet overhead.

Figure 2: Normalized average
goodput of long flows (>10MB)
varying the network load and in-
creasing per-packet overhead.

for around 6.8% overhead using a standard INT on a 5-hop path.1

This overhead poses several problems:
1. High packet overheads degrade application performance. The
significant per-packet overheads from INT affect both flow comple-
tion time and application-level throughput, i.e., goodput. We ran an
NS3 [76] experiment to demonstrate this. We created a 5-hop fat-tree
data center topology with 64 hosts connected through 10Gbps links.
Each host generates traffic to randomly chosen destinations with a
flow size distribution that follows a web search workload [3]. We
employed the standard ECMP routing with TCP Reno. We ran our
experiments with a range of packet overheads from 28B to 108B.
The selected overheads correspond to a 5-hop topology, with one
to five different INT values collected at each hop. Figure 1 shows
the effect of increasing overheads on the average flow completion
time (FCT) for 30% (average) and 70% (high) network utilization.
Figure 2, instead, focuses on the goodput for only the long flows,
i.e., with flow size >10 MBytes. Both graphs are normalized to the
case where no overhead is introduced on packets.

In the presence of 48 bytes overhead, which corresponds to 3.2%
of a 1500B packet (e.g., Ethernet has a 1500B MTU), the average
FCT increases by 10%, while the goodput for long flows degrades
by 10% if network utilization is approximately 70%. Further in-
creasing the overhead to 108B (7.2% of a 1500B packet) leads to
a 25% increase and 20% degradation of flow completion time and
goodput, respectively. This means that even a small amount of band-
width headroom can provide a dramatic reduction in latency [4].
The long flows’ average goodput is approximately proportional to
the residual capacity of the network. That means, at a high network
utilization, the residual capacity is low, so the extra bytes in the
header cause larger goodput degradation than the byte overhead
itself [4]. As in our example, the theoretical goodput degradation
should be around 1 − 100%−70%∗1.072

100%−70%∗1.032 ≈ 10.1% when increasing the
header overhead from 48B to 108B at around 70% network utiliza-
tion. This closely matches the experiment result, and is much larger
than the extra byte overhead (4%).

Although some data center networks employ jumbo frames to
mitigate the problem2, it is worth noting that (1) not every network
can employ jumbo frames, especially the large number of enterprise
and ISP networks; (2) some protocols might not entirely support
jumbo frames; for example, RDMA over Converged Ethernet NICs
provides an MTU of only 1KB [54].

1HPCC reports a slightly lower (4.2%) overhead because they use customized INT.
For example, they do not use the INT header as the telemetry instructions do
not change over time.
2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html

2

 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/network_mtu.html


Application Description Measurement Primitives
Per-packet aggregation
Congestion Control [22, 29, 40, 46] Congestion Control with in-network support timestamp, port utilization, queue occupancy
Congestion Analysis [17, 38, 57] Diagnosis of short-lived congestion events queue occupancy
Network Tomography [26] Determine network state, i.e., queues status switchID, queue occupancy
Power Management [31] Determine under-utilized network elements switchID, port utilization
Real-Time Anomaly Detection [66, 86] Detect sudden changes in network status timestamp, port utilization, queue occupancy
Static per-flow aggregation
Path Tracing [36, 56, 65, 72] Detect the path taken by a flow or a subset switchID
Routing Misconfiguration [45, 69, 72] Identify unwanted path taken by a given flow switchID
Path Conformance [45, 69, 73] Checks for policy violations. switchID
Dynamic per-flow aggregation
Utilization-aware Routing [2, 41, 42] Load balance traffic based on network status. switchID, port utilization
Load Imbalance [45, 65, 73] Determine links processing more traffic. switchID, port utilization
Network Troubleshooting [36, 57, 73] Determine flows experiencing high latency. switchID, timestamp

Table 2: Use cases enabled by PINT, organized per aggregation mode.

2. Switch processing time. In addition to consuming bandwidth,
the INT overhead also affects packet processing time at switches.
Every time a packet arrives at and departs from a switch, the bits
carried over the wire need to be converted from serial to parallel and
vice versa, using the 64b/66b (or 66b/64b) encoding as defined by
the IEEE Standard 802.3 [33]. For this reason, any additional bit
added into a packet affects its processing time, delaying it at both in-
put and output interfaces of every hop. For example, adding 48 bytes
of INT data on a packet (INT header alongside two telemetry infor-
mation) would cause a latency increase with respect to the original
packet of almost 76ns and 6ns for 10G and 100G interfaces, respec-
tively3. On a state-of-the-art switch with 10G interfaces, this can
represent an approximately 3% increase in processing latency [60].
On larger topologies and when more telemetry data is needed, the
overhead on the packet can cause an increase of latency in the order
of microseconds, which can hurt the application performance [61].
3. Collection overheads. Telemetry systems such as INT generate
large amounts of traffic that may overload the network. Additionally,
INT produces reports of varying size (depending on the number of
hops), while state-of-the-art end-host stack processing systems for
telemetry data, such as Confluo [43], rely on fixed-byte size headers
on packets to optimize the computation overheads.

3 THE PINT FRAMEWORK
We now discuss the supported functionalities of our system, formal-
izing the model it works in.
Telemetry Values. In our work, we refer to the telemetry informa-
tion as values. Specifically, whenever a packet pj reaches a switch s,
we assume that the switch observes a value v(pj , s). The value can
be a function of the switch (e.g., port or switch ID), switch state
(e.g., timestamp, latency, or queue occupancy), or any other quantity
computable in the data plane. In particular, our definition supports
the information types that INT [75] can collect.

3.1 Aggregation Operations
We design PINT with the understanding that collecting all (per-
packet per-switch) values pose an excessive and unnecessary over-
head. Instead, PINT supports several aggregation operations that

3Consuming 48Bytes on a 10G interface requires 6 clock cycles each of them burning 6.4 ns [83].
On a 100G interface, it needs just one clock cycle of 3ns [84].

allow efficient encoding of the aggregated data onto packets. For ex-
ample, congestion control algorithms that rely on the bottleneck link
experienced by packets (e.g., [46]) can use a per-packet aggregation.
Alternatively, applications that require discovering the flow’s path
(e.g., path conformance) can use per-flow aggregation.

• Per-packet aggregation summarizes the data across the different
values in the packet’s path, according to an aggregation func-
tion (e.g., max/min/sum/product). For example, if the packet
pj traverses the switches s1, s2, . . . , sk and we perform a max-

aggregation, the target quantity is max
{
v(pj , si )

}k
i=1.

• Static per-flow aggregation targets summarizing values that may
differ between flows or switches, but are fixed for a (flow, switch)
pair. Denoting the packets of flow x by p1, . . . ,pz , the static prop-
erty means that for any switch s on x’s path we have v(p1, s) =
. . . = v(pz , s); for convenience, we denotev(x , s) ≜ v(p1, s). If the
path taken by x is s1, . . . , sk , the goal of this aggregation is then to
compute all values on the path, i.e., v(x , s1),v(x , s2), . . . ,v(x , sk ).
As an example, if v(x , si ) is the ID of the switch si , then the
aggregation corresponds to inferring the flow’s path.
• Dynamic per-flow aggregation summarizes, for each switch on

a flow’s path, the stream of values observed by its packets. Denote
by p1, . . . ,pz the packets of x and by s1, . . . , sk its path, and let
sequence of values measured by si on x’s packets be denoted as
Sx,i = ⟨v(p1, si ),v(p2, si ), . . .v(pz , si )⟩. The goal is to compute a
function of Si,x according to an aggregation function (e.g., median
or number of values that equal a particular value v). For example,
ifv(pj , si ) is the latency of the packet pj on the switch si , using the
median as an aggregation function equals computing the median
latency of flow x on si .

3.2 Use Cases
PINT can be used for a wide variety of use cases (see Table 2). In
this paper, we will mainly discuss three of them, chosen in such a way
that we can demonstrate all the different PINT aggregations in action.
Per-packet aggregation: Congestion Control. State of the art con-
gestion control solutions often use INT to collect utilization and
queue occupancy statistics [46]. PINT shows that we can get similar
or better performance while minimizing the overheads associated
with collecting the statistics.

3



Static per-flow aggregation: Path Tracing. Discovering the path
taken by a flow is essential for various applications like path confor-
mance [45, 69, 73]. In PINT , we leverage multiple packets from the
same flow to infer its path. For simplicity, we assume that each flow
follows a single path.
Dynamic per-flow aggregation: Network Troubleshooting. For
diagnosing network issues, it is useful to measure the latency quan-
tiles from each hop [17, 34, 36, 57]. Tail quantiles are reported as
the most effective way to summarize the delay in an ISP [19]. For
example, we can detect network events in real-time by noticing a
change in the hop latency [9]. To that end, we leverage PINT to
collect the median and tail latency statistics of (switch, flow) pairs.

3.3 Query Language
Each query in PINT is defined as a tuple ⟨val_t, agg_t, bit-budget,
optional: space-budget, flow definition, frequency⟩ that specifies
which values are used (e.g., switch IDs or latency), the aggrega-
tion type as in Section 3.1, and the query bit-budget (e.g., 8 bits
per packet). The user may also specify a space-budget that deter-
mines how much per-flow storage is allowed, the flow-definition
(e.g., 5-tuple, source IP, etc.) in the case of per-flow queries, and
the query frequency (that determines which fraction of the packets
should be allocated for the query).

PINT works with static bit-budgets to maximize its effectiveness
while remaining transparent to the sender and receiver of a packet.
Intuitively, when working with INT/PINT one needs to ensure that
a packet’s size will not exceed the MTU even after the telemetry
information is added. For example, for a 1500B network MTU, if the
telemetry overhead may add to X bytes, then the sender would be
restricted to sending packets smaller than 1500−X . Thus, by fixing
the budget, we allow the network flows to operate without being
aware of the telemetry queries and path length.

3.4 Query Engine
PINT allows the operator to specify multiple queries that should
run concurrently and a global bit-budget. For example, if the global
bit-budget is 16 bits, we can run two 8-bit-budget queries on the
same packet. In PINT , we add to packets a digest – a short bitstring
whose length equals the global bit budget. This digest may compose
of multiple query digests as in the above example.

Each query instantiates an Encoding Module, a Recording Mod-
ule, and an Inference Module. The Encoding runs on the switches
and modifies the packet’s digest. When a packet reaches a PINT
Sink (the last hop on its path), the sink extracts (removes) the di-
gest and sends the data packet to its destination. This way, PINT
remains transparent to both the sender and receiver. The extracted
digest is intercepted by the Recording Module, which processes and
stores the digests. We emphasize that the per-flow data stored by the
Recording Module sits in an offline storage and no per-flow state is
stored on the switches. Another advantage of PINT is that, compared
with INT, we send fewer bytes from the sink to be analyzed and
thereby reduce the network overhead. The Inference Module runs
on a commodity server that uses the stored data to answer queries.
Fig. 3 illustrates PINT ’s architecture.

Importantly, all switches must agree on which query set to run on
a given packet, according to the distribution chosen by the Query
Engine. We achieve coordination using a global hash function, as

Queries
𝑄1, 𝑄2, …

Max 
overhead

Query 
Engine

Query Set Probability
{𝑄2} 0.4
{𝑄3} 0.3

{𝑄1, 𝑄4} 0.3

Execution Plan

PINT Sink PINT Source 

Sender Receiver

Storage

Inference 
Module

Fixed-width 
PINT digest

Packet
Header Packet Payload

Figure 3: PINT ’s architecture: The Query Engine decides on an
execution plan that determines the probability of running each
query set on packets and notifies the switches. The first hop, PINT
Source, adds a digest whose size is determined by the user. Ev-
ery switch along the path may modify the digest but does not add
bits. The last hop, PINT Sink, removes the collected telemetry in-
formation and sends it to the Recording Module. On demand, the
Inference Module is invoked to analyze the recorded data.

described in Section 4.1. Unlike INT, we do not add a telemetry
header; in this way we minimize the bit overhead.4 Instead, the
PINT Query Engine compiles the queries to decide on the execution
plan (which is a probability distribution on a query set, see Fig. 3)
and notifies the switches.

3.5 Challenges
We now discuss several challenges we face when designing algo-
rithms for PINT .
Bit constraints. In some applications, the size of values may be
prohibitively large to a point where writing a single value on each
packet poses an unacceptable overhead.
Switch Coordination. The switches must agree on which query
set to use for each packet. While the switches can communicate
by exchanging bits that are added to packets, this increases the
bit-overhead of PINT and should be avoided.
Switch constraints. The hardware switches have constraints, in-
cluding limited operations per packet, limited support for arith-
metic operations (e.g., multiplication is not supported), inability
to keep per-flow state, etc. See [12] for a discussion of the con-
straints. For PINT , these constraints mean that we must store mini-
mal amount of state on switches and use simple encoding schemes
that adhere to the programmability restrictions.

4 AGGREGATION TECHNIQUES
In this section, we present the techniques used by PINT to over-
come the above challenges. We show how global hash functions
allow efficient coordination between different switches and be-
tween switches and the Inference Module. We also show how dis-
tributed encoding schemes help reduce the number of packets needed
to collect the telemetry information. Finally, we adopt compres-
sion techniques to reduce the number of bits required to represent
numeric values (e.g., latency).

Our techniques reduce the bit-overhead on packets using proba-
bilistic techniques. As a result, some of our algorithms (e.g., latency
quantile estimation) are approximate, while others (e.g., path tracing)
require multiple packets from the same flow to decode. Intuitively,

4We note that removing the header is minor compared to the overhead saving PINT
obtains by avoiding logging all per-hop values.

4



oftentimes one mostly cares about tracing large (e.g., malicious)
flows and does not require discovering the path of very short ones.
Similarly, for network diagnostics it is OK to get approximated
latency measurements as we usually care about large latencies or
significant latency changes. We summarize which techniques apply
for each of the use cases in Table 3.

Use Case Global Hashes Distributed Coding Value Approximation
Congestion Control ✗ ✗ ✓

Path Tracing ✓ ✓ ✗

Latency Quantiles ✓ ✗ ✓

Table 3: A summary of which techniques are used for each use case.

4.1 Implicit Coordination via Global Hash
Functions

In PINT , we extensively use global hash functions to determine
probabilistic outcomes at the switches. As we show, this solves the
switch coordination challenge, and also enables implicit coordination
between switches and the Inference Module – a feature that allows
us to develop efficient algorithms.
Coordination among switches. We use a global (i.e., that is known
to all switches) hash function to determine which query set the
current packet addresses. For example, suppose that we have three
queries, each running with probability 1/3, and denote the query-
selection hash, mapping packet IDs to the real interval5 [0, 1], by
q. Then if q(pj ) < 1/3, all switches would run the first query, if
q(pj ) ∈ [1/3, 2/3] the second query, and otherwise the third. Since
all switches compute the same q(pj ), they agree on the executed
query without communication. This approach requires the ability to
derive unique packet identifiers to which the hashes are applied (e.g.,
IPID, IP flags, IP offset, TCP sequence and ACK numbers, etc.). For
a discussion on how to obtain identifiers, see [21].
Coordination between switches and Inference Module. The In-
ference Module must know which switches modified an incoming
packet’s digest, but we don’t want to spend bits on encoding switch
IDs in the packet. Instead, we apply a global hash function д on a
(packet ID, hop number)6 pair to choose whether to act on a packet.
This enables the PINT Recording Module to compute д’s outcome
for all hops on a packet’s path and deduct where it was modified.
This coordination plays a critical role in our per-flow algorithms
as described below.
Example #1: Dynamic Per-flow aggregation. In this aggregation,
we wish to collect statistics from values that vary across packets,
e.g., the median latency of a (flow, switch) pair. We formulate
the general problem as follows: Fix some flow x . Let p1, . . . ,pz
denote the packets of x and s1, . . . , sk denote its path. For each
switch si , we need to collect enough information about the sequence
Si,x = ⟨v(p1, si ),v(p2, si ), . . .v(pz , si )⟩ while meeting the query’s
bit-budget. For simplicity of presentation, we assume that packets
can store a single value.7

5For simplicity, we consider hashing into real numbers. In practice, we hash into M
bits (the range {0, . . . , 2M − 1}) for some integer M (e.g., M = 64). Checking if
the real-valued hash is in [a, b] corresponds to checking if the discrete hash is in the
interval

[ ⌊
(2M − 1) · a

⌋
,
⌊
(2M − 1) · b

⌋ ]
.

6The hop number can be computed from the current TTL on the packet’s header.
7If the global bit-budget does not allow encoding a value, we compress it at the cost
of an additional error as discussed in Section 4.3. If the budget allows storing multiple
values, we can run the algorithm independently multiple times and thereby collect more
information to improve the accuracy.

PINT ’s Encoding Module runs a distributed sampling process.
The goal is to have each packet carry the value of a uniformly
chosen hop on the path. That is, each packet pj should carry each
value from

{
v(pj , s1), . . . ,v(pj , sk )

}
with probability 1/k . This way,

with probability 1 − e−Ω(z/k ), each hop will get z/k · (1 ± o(1))
samples, i.e., almost an equal number.

To get a uniform sample, we use a combination of global hashing
and the Reservoir Sampling algorithm [82]. Specifically, when the
i’th hop on the path (denoted si ) sees a packet pj , it overwrites its
digest with v(pj , si ) if д(pj , i) ≤ ri . Therefore, the packet will end
up carrying the value v(pj , si ) only if (i) д(pj , i) ≤ ri , and (ii) ∀ȷ ∈
{i + 1, . . . ,k} : д(pj , ȷ) > r ȷ . To get uniform sampling, we follow
the Reservoir Sampling algorithm and set ri ≜ 1/i. Indeed, for each
hop (i) and (ii) are simultaneously satisfied with probability 1/k.
Intuitively, while later hops have a lower chance of overriding the
digest, they are also less likely to be replaced by the remaining
switches along the path.

Intuitively, we can then use existing algorithms for constructing
statistics from subsampled streams. That is, for each switch si , the
collected data is a uniformly subsampled stream of Si,x . One can
then apply different aggregation functions. For instance, we can esti-
mate quantiles and find frequently occurring values. As an example,
we can estimate the median and tail latency of the (flow, switch) pair
by finding the relevant quantile of the subsampled stream.

On the negative side, aggregation functions like the number
of distinct values or the value-frequency distribution entropy are
poorly approximable from subsampled streams [49].

PINT aims to minimize the decoding time and amount of per-flow
storage. To that end, our Recording Module does not need to store
all the incoming digests. Instead, we can use a sketching algorithm
that suits the target aggregation (e.g., a quantile sketch [39]). That is,
for each switch si through which flow x is routed, we apply a sketch-
ing algorithm to the sampled substream of Si,x . If given a per-flow
space budget (see §3.3) we split it between the k sketches evenly.
This allows us to record a smaller amount of per-flow information
and process queries faster. Further, we can use a sliding-window
sketch (e.g., [5, 11, 13]) to reflect only the most recent measure-
ments. Finally, the Inference Module uses the sketch to provide
estimates on the required flows.

The accuracy of PINT for dynamic aggregation depends on the ag-
gregation function, the number of packets (z), the length of the path
(k), and the per-flow space stored by the Recording Module (which
sits off-switch in remote storage). We state results for two typical
aggregation functions. The analysis is deferred to Appendix A.1.

THEOREM 1. Fix an error target ε ∈ (0, 1) and a target quantile
ϕ ∈ (0, 1) (e.g., ϕ = 0.5 is the median). After seeing O(kε−2) packets
from a flow x , usingO(kε−1) space, PINT produces a (ϕ±ε)-quantile
of Sx,i for each hop i.

THEOREM 2. Fix an error target ε ∈ (0, 1) and a target threshold
θ ∈ (0, 1). After seeingO(kε−2) packets from a flow x , usingO(kε−1)
space, PINT produces all values that appear in at least a θ -fraction
of Sx,i , and no value that appears less than a (θ − ε)-fraction, for
each hop i.

5



…
𝑒1 𝑒2 𝑒3 𝑒𝑘

Message 
Blocks

0100
0000
0101

1111
1101
0011

0101
1010
1111

0101
1010
1001

Encoders

𝑀1 𝑀2 𝑀3 𝑀𝑘

Packets’ path

Receiver

Arriving 
Packets

𝑀1, … ,𝑀𝑘

Decode

0100
0000
0000

0100
0011
0000

0100
1111
0000

0101
1010
1111

Figure 4: Multiple encoders send a distributed message.

4.2 Distributed Coding Schemes
When the values are static for a given flow (i.e., do not change
between packets), we can improve upon the dynamic aggregation
approach using distributed encoding. Intuitively, in such a scenario,
we can spread each value v(x , si ) over multiple packets. The chal-
lenge is that the information collected by PINT is not known to
any single entity but is rather distributed between switches. This
makes it challenging to use existing encoding schemes as we wish to
avoid adding extra overhead for communication between switches.
Further, we need a simple encoding scheme to adhere to the switch
limitations, and we desire one that allows efficient decoding.

Traditional coding schemes assume that a single encoder owns
all the data that needs encoding. However, in PINT , the data we
wish to collect can be distributed among the network switches.
That is, the message we need to transfer is partitioned between
the different switches along the flow’s path.

We present an encoding scheme that is fully distributed without
any communication between encoders. Specifically, we define our
scheme as follows: a sequence of k encoders hold a k-block message
M1, . . . ,Mk such that encoder ei has Mi for all i ∈ {1, . . . ,k}. The
setting is illustrated in Fig. 4. Each packet carries a digest which
has a number of bits that equals the block size and has a unique
identifier which distinguishes it from other packets. Additionally,
each encoder is aware of its hop number (e.g., by computing it from
the TTL field in the packet header). The packet starts with a digest
of 0 (a zero bitstring) and passes through e1, . . . , ek . Each encoder
can modify the packet’s digest before passing it to the next encoder.
After the packet visits ek , it is passed to the Receiver, which tries to
decode the message. We assume that the encoders are stateless to
model the switches’ inability to keep a per-flow state in networks.

Our main result is a distributed encoding scheme that needs k ·
log log∗ k · (1 + o(1)) packets for decoding the message with near-
linear decoding time. We note that Network Coding [32] can also be
adapted to this setting. However, we have found it rather inefficient,
as we explain later on.
Baseline Encoding Scheme. A simple and intuitive idea for a dis-
tributed encoding scheme is to carry a uniformly sampled block on
each packet. That is, the encoders can run the Reservoir Sampling
algorithm using a global hash function to determine whether to write
their block onto the packet. Similarly to our Dynamic Aggregation al-
gorithm, the Receiver can determine the hop number of the sampling
switch, by evaluating the hash function, and report the message.

The number of packets needed for decoding the message using
this scheme follows the Coupon Collector Process (e.g., see [24]),
where each block is a coupon and each packet carries a random sam-
ple. It is well-known that for k coupons, we would need k lnk(1 +
o(1)) samples on average to collect them all. For example, for
k = 25, Coupon Collector has a median (i.e., probability of 50%

0 50 100 150 200
Number of Packets

0

5

10

15

20

25

E
[M

is
si

n
g
 H

o
p
s]

XOR

Hybrid

Baseline

(a) Algorithm Progress

0 50 100 150 200
Number of Packets

0.0

0.2

0.4

0.6

0.8

1.0

D
e
co

d
e
 P

ro
b
a
b
ili

ty

XOR

Hybrid

Baseline

(b) Probability of Decoding

Figure 5: The XOR scheme (with prob. 1/d ) decodes fewer hops at first
but is able to infer the entire path using a similar number of packets to
Baseline. By interleaving both schemes (Hybrid), we get a better result
as the first hops are mainly decoded by Baseline packets and the last
hops by XOR packets that have XOR probability log logd/logd and
are more likely to hit the missing hops. Plotted for d = k = 25 hops.

to decode) of 89 packets and a 99’th percentile of 189 packets,
as shown in Fig. 5.

The problem with the Baseline scheme is that while the first
blocks are encoded swiftly, later ones require a higher number of
packets. The reason is that after seeing most blocks, every consec-
utive packet is unlikely to carry a new block. This is because the
encoders are unaware of which blocks were collected and the proba-
bility of carrying a new block is proportional to number of missing
blocks. As a result, the Baseline scheme has a long “tail”, meaning
that completing the decoding requires many packets.
Distributed XOR Encoding. An alternative to the Baseline scheme
is to use bitwise-xor while encoding. We avoid assuming that the
encoders know k , but assume that they know a typical length d , such
that d = Θ(k). Such an assumption is justified in most cases; for
example, in data center topologies we often know a tight bound on
the number of hops [72]. Alternatively, the median hop count in the
Internet is estimated to be 12 [80], while only a few paths have more
than 30 hops [15, 77]. The XOR encoding scheme has a parameter
p, and each encoder on the path bitwise-xors its message onto the
packet’s digest with probability p = 1/d , according to the global hash
function. That is, the i’th encoder changes the digest if д(pj , i) < p.
We note that this probability is uniform and that the decision of
whether to xor is independent for each encoder, allowing a distributed
implementation without communication between the encoders.

When a packet reaches the Receiver, the digest is a bitwise-xor
of multiple blocks Mi1 ⊕ . . . ⊕ MiK , where K is a binomial random
variable K ∼ Bin(k,p). The Receiver computes д(pj , 1), . . . ,д(pj ,k)
to determine the values i1, . . . , iK . If this set contains exactly one
unknown message block, we can discover it by bitwise-xoring
the other blocks. For example, if we have learned the values of
M1,M3,M4,M6 and the current digest is pj .dig = M1 ⊕ M5 ⊕ M6,
we can derive M5 since M5 = pj .dig ⊕ M1 ⊕ M6.

On its own, the XOR encoding does not asymptotically improve
over the Baseline. Its performance is optimized when p = 1/d =
Θ(1/k), where it requires O(k logk) packets to decode, i.e., within a
constant factor from the Baseline’s performance. Interestingly, we
show that the combination of the two approaches gives better results.
Interleaving the Encoding Schemes. Intuitively, the XOR and
Baseline schemes behave differently. In the Baseline, the chance of
learning the value of a message block with each additional packet
decreases as we receive more blocks. In contrast, to recover data

6



from an XOR packet, we need to know all xor-ed blocks but one.
When p is much larger than 1/k, many packet digests are modified
by multiple encoders, which means that the probability to learn a
message block value increases as we decode more blocks.

As an example for how the interleaved scheme helps, consider
the case of k = 2 encoders. The Baseline scheme requires three
packets to decode the message in expectation; the first packet always
carries an unknown block, but each additional packet carries the
missing block with probability only 1/2. In contrast, suppose each
packet chooses the Baseline scheme and the XOR scheme each with
probability 1/2, using p = 1. For the interleaved scheme to complete,
we need either two Baseline packets that carry different blocks or
one XOR packet and one Baseline packet. A simple calculation
shows that this requires just 8/3 packets in expectation.

For combining the schemes, we first choose whether to run the
Baseline with probability τ , or the XOR otherwise. Once again,
switches make the decision based on a global hash function applied
to the packet identifier to achieve implicit agreement on the packet
type. Intuitively, the Baseline scheme should reduce the number
of undecoded blocks from k to k ′, and the XOR will decode the
rest. To minimize the number of packets, we can set τ = 3/4 and the
XOR probability8 to log logd/logd to reduce the required number of
packets to O(k log logk/log log logk). In such setting, the Baseline
decodes most hops, leaving k ′ ≈ k/logk for the XOR layer. For
example, when k = 25, we get a median of 41 packets and a 99’th
percentile of 68 packets to decode the message. That is, not only
does it improve the average case, the interleaving has sharper tail
bounds. This improvement is illustrated in Fig. 5.
Multi-layer Encoding. So far, we used a single probability for
xor-ing each packet, which was chosen inversely proportional to k ′

(the number of hops that were not decoded by the Baseline scheme).
This way, we maximized the probability that a packet is xor-ed
by exactly one of these k ′ blocks, and we xor any block from the
k − k ′ that are known already to remove them from the decoding.
However, when most of the k ′ blocks left for XOR are decoded,
it also “slows down” and requires more packets for decoding each
additional block. Therefore, we propose to use multiple XOR lay-
ers that vary in their sampling probabilities. We call the Baseline
scheme layer 0, and the XOR layers 1, . . . ,L. Each XOR layer
ℓ ∈ {1, . . . ,L} starts with kℓ undecoded blocks, xors with probabil-
ity pℓ , and ends when kℓ+1 blocks are undecoded.

Our analysis, given in Appendix A.2, shows that by optimizing
the algorithm parameters τ ,L, {kℓ}

L
ℓ=1 and {pℓ}

L
ℓ=1, we obtain the

following result. The value of L is a function of d, and we have
that L = 1 if d ≤ ⌊ee ⌋ = 15 and L = 2 if 16 ≤ d ≤ ee

e
; i.e.,

in practice we need only one or two XOR layers.

THEOREM 3. After seeing k log log∗ k(1+o(1)) packets, the Multi-
layer scheme can decode the message.

We note that the o(1) term hides an O(k) packets additive term,
where the constant depends on how well d approximates k . Namely,
when d = k , our analysis indicates that k(log log∗ k+2+o(1)) packets
are enough. Finally, we note that if d is not representative of k at all,
we still get that k lnk(1 + o(1)) packets are enough, the same as in
the Baseline scheme (up to lower order terms). The reason is that

8If d ≤ 15 then log logd < 1; in this case we set the probability to 1/logd .

our choice of τ is close to 1, i.e., only a small fraction of the packets
are used in the XOR layers.
Comparison with Linear Network Coding. Several algorithms
can be adapted to work in the distributed encoding setting. For
example, Linear Network Coding (LNC) [32] allows one to decode a
message in a near-optimal number of packets by taking random linear
combinations over the message blocks. That is, on every packet, each
block is xor-ed into its digest with probability 1/2. Using global hash
functions to select which blocks to xor, one can determine the blocks
that were xor-ed onto each digest. LNC requires just ≈ k + log2 k
packets to decode the message. However, in some cases, LNC may
be suboptimal and PINT can use alternative solutions. First, the LNC
decoding algorithm requires matrix inversion which generally takes
O(k3) time in practice (although theoretically faster algorithms are
possible). If the number of blocks is large, we may opt for approaches
with faster decoding. Second, LNC does not seem to work when
using hashing to reduce the overhead. As a result, in such a setting,
LNC could use fragmentation, but may require a larger number of
packets than the XOR-based scheme using hashing.
Example #2: Static Per-flow Aggregation. We now discuss how
to adapt our distributed encoding scheme for PINT ’s static aggrega-
tion. Specifically, we present solutions that allow us to reduce the
overhead on packets to meet the bit-budget in case a single value
cannot be written on a packet. For example, for determining a flow’s
path, the values may be 32-bit switch IDs, while the bit-budget can
be smaller (even a single bit per packet). We also present an imple-
mentation variant that allows to decode the collection of packets
in near-linear time. This improves the quadratic time required for
computing

{
д(pj , i)

}
for all packets pj and hops i.

Reducing the Bit-overhead using Fragmentation. Consider a sce-
nario where each value has q bits while we are allowed to have
smaller b-bits digests on packets. In such a case, we can break each
value into F ≜ ⌈q/b⌉ fragments where each has ≤ b bits. Using an
additional global hash function, each packet pj is associated with a
fragment number in {1, . . . , F }. We can then apply our distributed
encoding scheme separately on each fragment number. While frag-
mentation reduces the bit overhead, it also increases the number of
packets required for the aggregation, and the decode complexity, as
if there were k · F hops.
Reducing the Bit-overhead using Hashing. The increase in the
required number of packets and decoding time when using fragmen-
tation may be prohibitive in some applications. We now propose
an alternative that allows decoding with fewer packets, if the value-
set is restricted. Suppose that we know in advance a small set of
possible block values V, such that any Mi is in V. For example,
when determining a flow’s path, V can be the set of switch IDs
in the network. Intuitively, the gain comes from the fact that the
keys may be longer than log2 |V| bits (e.g., switch IDs are often
32-bit long, while networks have much fewer than 232 switches).
Instead of fragmenting the values to meet the q-bits query bit bud-
get, we leverage hashing. Specifically, we use another global hash
function h that maps (value, packet ID) pairs into q-bit bitstrings.
When encoder ei sees a packet pj , if it needs to act it uses h(Mi ,pj )
to modify the digest. In the Baseline scheme ei will write h(Mi ,pj )
on pj , and in the XOR scheme it will xor h(Mi ,pj ) onto its current
digest. As before, the Recording Module checks the hop numbers

7



that modified the packet. The difference is in how the Inference
Module works – for each hop number i, we wish to find a single
valuev ∈ V that agrees with all the Baseline packets from hop i. For
example, if p1 and p2 were Baseline packets from hop i, Mi must
be a value such that h(Mi ,p1) = p1.dig and h(Mi ,p2) = p2.dig. If
there is more than one such value, the inference for the hop is not
complete and we require additional packets to determine it. Once
a value of a block Mi is determined, from any digest pj that was
xor-ed by the i’th encoder, we xor h(Mi ,pj ) from pj .dig. This way,
the number of unknown blocks whose hashes xor-ed pj decreases by
one. If only one block remains, we can treat it similarly to a Baseline
packet and use it to reduce the number of potential values for that
block. Another advantage of the hashing technique is that it does not
assume anything about the width of the values (e.g., switch IDs), as
long as each is distinct.
Reducing the Decoding Complexity. Our description of the en-
coding and decoding process thus far requires processing is super-
quadratic (ω(k2)) in k . That is because we need ≈ k log log∗ k pack-
ets to decode the message, and we spend O(k) time per packet in
computing the д function to determine which encoders modified its
digest. We now present a variant that reduces the processing time
to nearly linear in k. Intuitively, since the probability of changing
a packet is Ω(1/k), the number of random bits needed to determine
which encoders modify it is O(k logk). Previously, each encoder
used the global function д to get O(logk) pseudo-random bits and
decide whether to change the packet. Instead, we can use д to create
O(log 1/p) = O(logk) pseudo-random k-bit vectors. Intuitively, each
bit in the bitwise-and of these vectors will be set with probability p
(as defined by the relevant XOR layer). The i’th encoder will modify
the packet if the i’th bit is set in the bitwise-and of the vectors9.
At the Recording Module, we can compute the set of encoders that
modify a packet in time O(logk) by drawing the random bits and us-
ing their bitwise-and. Once we obtain the bitwise-and vector we can
extract a list of set bits in time O(#set bits) using bitwise operations.
Since the average number of set bits is O(1), the overall per-packet
complexity remains O(logk) and the total decoding time becomes
O(k logk log log∗ k). We note that this improvement assumes that k
fits in O(1) machine words (e.g., k ≤ 256) and that encoders can do
O(logk) operations per packet.
Improving Performance via Multiple Instantiations. The num-
ber of packets PINT needs to decode the message depends on the
query’s bit-budget. However, increasing the number of bits in the
hash may not be the best way to reduce the required number of
packets. Instead, we can use multiple independent repetitions of the
algorithm. For example, given an 8-bit query budget, we can use two
independent 4-bit hashes.

4.3 Approximating Numeric Values
Encoding an exact numeric value on packet may require too many
bits, imposing an undesirable overhead. For example, the 32-bit la-
tency measurements that INT collects may exceed the bit-budget. We
now discuss to compress the value, at the cost of introducing an error.
Multiplicative approximation. One approach to reducing the num-
ber of bits required to encode a value is to write on the packet’s

9This assumes that the probability is a power of two, or provides a
√
2 approximation of

it. By repeating the process we can get a better approximation.

digest a(pj , s) ≜
[
log(1+ε )2 v(pj , s)

]
instead of v(pj , s). Here, the [·]

operator rounds the quantity to the closest integer. At the Inference
Module, we can derive a (1 + ε)-approximation of the original value
by computing (1 + ε)2·a(pj ,s). For example, if we want to compress
a 32-bit value into 16 bits, we can set ε = 0.0025.
Additive approximation. If distinguishing small values is not as
crucial as bounding the maximal error, we obtain better results
by encoding the value with additive error instead of multiplicative
error. For a given error target ∆ (thereby reducing the overhead by⌊
log2 ∆

⌋
bits), the Encoding Module writes a(pj , s) ≜

[
v(pj ,s)

2∆

]
, and

the Inference Module computes (2∆) · a(pj , s).
Randomized counting. For some aggregation functions, the aggre-
gation result may require more bits than encoding a single value.
For example, in a per-packet aggregation over a k-hop path with
q-bit values, the sum may require q + logk bits to write explic-
itly while the product may take q · k bits. This problem is espe-
cially evident if q is small (e.g., a single bit specifying whether
the latency is high). Instead, we can take a randomized approach
to increase the value written on a packet probabilistically. For ex-
ample, we can estimate the number of high-latency hops or the
end-to-end latency to within a (1 + ε)-multiplicative factor using
O(log ε−1 + log log(2q · k · ε2))) bits [55].
Example #3: Per-packet aggregation. Here, we wish to summa-
rize the data across the different values in the packet’s path. For
example, HPCC [46] collects per-switch information carried by INT
data, and adjusts the rate at the end host according to the highest link
utilization along the path. To support HPCC with PINT , we have two
key insights: (1) we just need to keep the highest utilization (i.e., the
bottleneck) in the packet header, instead of every hop; (2) we can
use the multiplicative approximation to further reduce the number of
bits for storing the utilization. Intuitively, PINT improves HPCC as
it reduces the overheads added to packets, as explained in Section 2.

In each switch, we calculate the utilization as in HPCC, with slight
tuning to be supported by switches (discussed later). The multipli-
cation is calculated using log and exp based on lookup tables [67].
The result is encoded using multiplicative approximation. To further
eliminate systematic error, we write a(pj , s) ≜

[
log(1+ε )2 v(pj , s)

]
R

,

the [·]R randomly performs floor or ceiling, with a probability distri-
bution that gives an expected value equals to log(1+ε )2 v(pj , s). This
way, some packets will overestimate the utilization while others
underestimate it, thus resulting in the correct value on average. In
practice, we just need 8 bits to support ε = 0.025.
Tuning HPCC calculation for switch computation. We maintain
the exponential weighted moving average (EWMA) of link utiliza-
tion U of each link in the switch. U is updated on every packet with:
U = T−τ

T ·U + τ
T · u, where u = qlen

B ·T +
byte
B ·τ is the new sample for

updating U . Here, T is the base RTT and B is the link bandwidth
(both are constants). Intuitively, the weight of the EWMA, τT , corre-
sponds to each new packet’s time occupation τ . The calculation of u
also corresponds to each new packet: byte is the packet’s size, and
qlen is the queue length when the packet is dequeued10.

10This is slightly different from HPCC, where the calculation is done in the host,
which can only see packets of its own flow. Therefore, the update is scaled for
packets of the same flow (τ is time gap between packets of the same flow, and
byte includes the bytes from other flows in between). Here, the update is performed

8



0
10
20
30
40
50
60
70

G
o
o
d
p
u
t

[G
b
p
s]

HPCC(PINT)

HPCC(INT)

20 30 40 50 60 70
Network Load [%]

0
20
40
60
80

G
a
in

 [
%

]

(a) Web search workload (large flows)

7K 20K 30K 50K 73K 197K 989K 2M 5M 30M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d
o
w

n

HPCC(INT)

HPCC(PINT)

(b) Web search workload

324 399 500 599 699 999 7K 46K 120K 10M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d
o
w

n

HPCC(INT)

HPCC(PINT)

(c) Hadoop workload

Figure 7: Comparison of the 95th-percentile slowdown of the standard INT-based HPCC and the PINT -based HPCC. PINT improves the performance
for the long flows due to its reduced overheads. In (b) and (c), the network load is 50% and the x-axis scale is chosen such that there are 10% of the
flows between consecutive tick marks.

Switch Pipeline

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8

HPCC 
Arithmetics

HPCC 
Arithmetics

HPCC 
Arithmetics

HPCC 
Arithmetics

HPCC 
Arithmetics

Value
Compression

Write 
Digest

Write 
Digest

Compute 
Latency

Value
Compression

Compute 𝑔

Choose 
Layer 1

Choose 
Layer 2

Compute 𝑔

Compute 𝑔

Compute 
hash

Compute 
hash

Write 
Digest

Write 
Digest

HPCC 
Arithmetics

Choose a 
query subset

Figure 6: Layout illustration for two path tracing hashes, alongside a
latency query, and a congestion control query.

To calculate the multiplications, we first do the following transfor-
mation:U = T−τ

T ·U +
qlen·τ
B ·T 2 +

byte
B ·T . Then we calculate the multiplica-

tions using logarithm and exponentiation as detailed in Appendix B.

5 IMPLEMENTATION
PINT is implemented using the P4 language and can be deployed
on commodity programmable switches. We explain how each of our
use cases is executed.

For running the path tracing application (static per-flow aggre-
gation), we require four pipeline stages. The first chooses a layer,
another computes д, the third hashes the switch ID to meet the
query’s bit budget, and the last writes the digest. If we use more
than one hash for the query, both can be executed in parallel as
they are independent.

Computing the median/tail latency (dynamic per-flow aggrega-
tion) also requires four pipeline stages: one for computing the latency,
one for compressing it to meet the bit budget; one to compute д; and
one to overwrite the value if needed.

Our adaptation of the HPCC congestion control algorithm re-
quires six pipeline stages to compute the link utilization, followed
by a stage for approximating the value and another to write the di-
gest. For completeness, we elaborate on how to implement in the
data plane the different arithmetic operations needed by HPCC in
Appendix C. We further note that running it may require that the
switch would need to perform the update of U in a single stage. In
other cases, we propose to store the last n values of U on separate
stages and update them in a round-robin manner, for some integer n.
This would mean that our algorithm would need to recirculate every
n’th packet as the switch’s pipeline is one-directional.

Since the switches have a limited number of pipeline stages, we
parallelize the processing of queries as they are independent of each

on all packets on the same link. Since different flows may interleave on the link,
our calculation is more fine-grained.

other. We illustrate this parallelism for a combination of the three
use cases of PINT .We start by executing all queries simultaneously,
writing their results on the packet vector. Since HPCC requires more
stages than the other use cases, we concurrently compute which
query subset to run according to the distribution selected by the
Query Engine (see §3.4). We can then write the digests of all the
selected queries without increasing the number of stages compared
with running HPCC alone. The switch layout for such a combination
is illustrated in Fig. 6.

6 EVALUATION
We evaluate on the three use cases discussed on §3.2.

6.1 Congestion Control
We evaluate how PINT affects the performance of HPCC [46] using
the same simulation setting as in [46]. Our goal is not to propose a
new congestion control scheme, but rather to present a low-overhead
approach for collecting the information that HPCC utilizes. We use
NS3 [76] and a FatTree topology with 16 Core switches, 20 Agg
switches, 20 ToRs, and 320 servers (16 in each rack). Each server has
a single 100Gbps NIC connected to a single ToR. The capacity of
each link between Core and Agg switches, as well as Agg switches
and ToRs, are all 400Gbps. All links have a 1µs propagation delay,
which gives a 12µs maximum base RTT. The switch buffer size is
32MB. The traffic is generated following the flow size distribution
in web search from Microsoft [3] and Hadoop from Facebook [62].
Each server generates new flows according to a Poisson process,
destined to random servers. The average flow arrival time is set
so that the total network load is 50% (not including the header
bytes). We use the recommended setting for HPCC:WAI = 80 bytes,
maxStaдe = 0, η = 95%, and T = 13µs.

The results, depicted in Fig. 7(b) and Fig. 7(c), show that PINT has
similar performance (in terms of slowdown) to HPCC, despite using
just 8 bits per packet. Here, slowdown refers to the ratio between
the completion time of the flow in the presence of other flows and
alone. Specifically, PINT has better performance on long flows while
slightly worse performance on short ones. The better performance
on long flows is due to PINT ’s bandwidth saving. Fig. 7(a) shows the
relative goodput improvement, averaged over all flows over 10MB,
of using PINT at different network load. At higher load, the byte
saving of PINT brings more significant improvement. For example,
at 70% load, using PINT improves the goodput by 71%. This trend
aligns with our observation in §2.

To evaluate how the congestion control algorithm would perform
alongside other queries, we experiment in a setting where only a

9



7K 20K 30K 50K 73K 197K987K 2M 5M 30M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d
o
w

n

p=1=256

p=1=16

p=1

(a) Web search workload

324 399 500 599 699 999 7K 46K 120K 10M

Flow Size [Bytes]

2

4

6

8

10

S
lo

w
d
o
w

n

p=1=256

p=1=16

p=1

(b) Hadoop workload

Figure 8: The 95th-percentile slowdown of running PINT -based HPCC
(at 50% network load) on p-fraction of the packets. On both workloads,
the performance of running it on 1/16 of the packets produces similar
results to running it on all.

200 400 600 800 1000
Sample Size [Packets]

0

10

20

30

40

50

R
e
la

ti
v
e
 E

rr
o
r 

[%
]

Web Search Tail

200 400 600 800 1000
Sample Size [Packets]

Hadoop Tail

200 400 600 800 1000
Sample Size [Packets]

Hadoop Median

100 200 300
Sketch Size [Bytes]

0

10

20

30

40

50

R
e
la

ti
v
e
 E

rr
o
r 

[%
]

100 200 300
Sketch Size [Bytes]

100 200 300
Sketch Size [Bytes]

PINT (b=8) PINT (b=4) PINTS  (b=8) PINTS  (b=4)

Figure 9: PINT error on estimating latency quantiles with a sketch
(PINTS ) and without. In the first row, the sketch has 100 digests; in
the second, the sample has 500 packets.

p = 1, 1/16, 1/256 fraction of the packets carry the query’s digest.
As shown in Fig. 8(a) and Fig. 8(b), the performance only slightly
degrades for p = 1/16. This is expected, because the bandwidth-
delay product (BDP) is 150 packets, so there are still 9.4 (≈150/16)
packets per RTT carrying feedback. Thus the rate is adjusted on
average once per 1/9.4 RTT (as compared to 1/150 RTT with per-
packet feedback), which is still very frequent. With p = 1/256,
the performance of short flows degrades significantly, because it
takes longer than an RTT to get feedback. The implication is that
congestion caused by long flows is resolved slowly, so the queue
lasts longer, resulting in higher latency for short flows. The very long
flows (e.g., > 5MB) also have worse performance. The reason is that
they are long enough to collide with many shorter flows, so when
the competing shorter flows finish, the long flows have to converge
back to the full line rate. With p = 1/256, it takes much longer time
to converge than with smaller p.

In principle, the lower feedback frequency p only affects the con-
vergence speed as discussed above, but not the stability and fairness.
Stability is guaranteed by no overreaction, and HPCC’s design of ref-
erence window (constant over an RTT) provides this regardless of p.
Fairness is guaranteed by additive-increase-multiplicative-decrease
(AIMD), which is preserved regardless of p.

6.2 Latency Measurements
Using the same topology and workloads as in our congestion control
experiments, we evaluate PINT ’s performance on estimating latency
quantiles. We consider PINT in four scenarios, using b = 4 and

b = 8 bit-budgets, with sketches (denoted PINTS ), and without. In
our experiment, we have used the, state of the art, KLL sketch [39].
The results, appearing in Fig. 9, show that when getting enough
packets, the error of the aggregation becomes stable and converges
to the error arising from compressing the values. As shown, by
compressing the incoming samples using a sketch (e.g., that keeps
100 identifiers regardless of the number of samples), PINT accuracy
degrades only a little even for small 100B sketches. We conclude
that such sketches offer an attractive space to accuracy tradeoff.

6.3 Path Tracing
We conduct these experiments on Mininet [52] using two large-
diameter (denoted D) ISP topologies (Kentucky Datalink and US
Carrier) from Topology Zoo [44] and a (K = 8) Fat Tree topology.
The Kentucky Datalink topology consisted of 753 switches with a
diameter of 59 and the US carrier topology consisted of 157 switches
with a diameter of 36. For each topology and every path, we esti-
mate the average and 99’th percentile number of packets needed for
decoding over 10K runs. We consider three variants of PINT– using
1-bit, 4-bit, and two independent 8-bit hash functions (denoted by
2 × (b = 8)). We compare PINT to two state-of-the-art IP Traceback
solutions PPM [65] and AMS2 [70] with m = 5 and m = 6. When
configured with m = 6, AMS2 requires more packets to infer the
path but also has a lower chance of false positives (multiple possible
paths) compared with m = 5. We implement an improved version
of both algorithms using Reservoir Sampling, as proposed in [63].
PINT is configured with d = 10 on the ISP topologies and d = 5
(as this is the diameter) on the fat tree topology. In both cases, this
means a single XOR layer in addition to a Baseline layer.

The results (Fig. 10) show that PINT significantly outperforms
previous works, even with a bit-budget of a single bit (PPM and
AMS both have an overhead of 16 bits per packet). As shown, the
required number of packets for PINT grows near-linearly with the
path length, validating our theoretical analysis. For the Kentucky
Datalink topology (D = 59), PINT with 2 × (b = 8) on average uses
25–36 times fewer packets when compared to competing approaches.
Even when using PINT with b = 1, PINT needs 7–10 times fewer
packets than competing approaches. For the largest number of hops
we evaluated (59, in the Kentucky Datalink topology), PINT requires
only 42 packets on average and 94 for the 99’th percentile, while
alternative approaches need at least 1–1.5K on average and 3.3–5K
for 99’th percentile, respectively.

6.4 Combined Experiment
We test the performance of PINT when running all three use cases
concurrently. Based on the previous experiments, we tune PINT to
run each query using a bit budget of 8 bits and a global budget of
16 bits. Our goal is to compare how PINT performs in such setting,
compared with running each application alone using 16 bits per
packet (i.e., with an effective budget of 3 × 16 bits). That is, each
packet can carry digests of two of the three concurrent queries.
As we observe that the congestion control application has good
performance when running in p = 1/16 of the packets, and the
path tracing requires more packets than the latency estimation, we
choose the following configuration. We run the path algorithm on
all packets, alongside the latency algorithm in 15/16 of the packets,
and alongside HPCC in 1/16 of the packets. As Fig. 11 shows, the

10



6 12 18 24 30 36 42 48 54
Path Length [Hops]

0

500

1000

1500

2000

2500

3000

3500

A
v
e
ra

g
e
 N

u
m

b
e
r 

[P
a
ck

e
ts

] 
 

(a) Kentucky Datalink (D = 59)

4 8 12 16 20 24 28 32 36
Path Length [Hops]

0
200
400
600
800

1000
1200
1400
1600
1800

A
v
e
ra

g
e
 N

u
m

b
e
r 

[P
a
ck

e
ts

] 
 

(b) US Carrier (D = 36)

2 3 4 5
Path Length [Hops]

0
20
40
60
80

100
120
140
160
180

A
v
e
ra

g
e
 N

u
m

b
e
r 

[P
a
ck

e
ts

] 
 

(c) Fat Tree (D = 5)

PINT 2£(b=8)
AMS2 (m=5)

PINT (b=4)

AMS2 (m=6)

PINT (b=1)

PPM

6 12 18 24 30 36 42 48 54
Path Length [Hops]

0

1000

2000

3000

4000

5000

6000

9
9

th
 P

e
rc

e
n
ti

le
 [

P
a
ck

e
ts

]

(d) Kentucky Datalink (D = 59)

4 8 12 16 20 24 28 32 36
Path Length [Hops]

0

500

1000

1500

2000

2500

3000

3500

9
9

th
 P

e
rc

e
n
ti

le
 [

P
a
ck

e
ts

]

(e) US Carrier (D = 36)

2 3 4 5
Path Length [Hops]

0

50

100

150

200

250

300

350

9
9

th
 P

e
rc

e
n
ti

le
 [

P
a
ck

e
ts

]
(f) Fat Tree (D = 5)

Figure 10: Comparison of the number of packets required (lower is better) for path decoding of different algorithms, including PINT
with varying bit-budget.

performance of PINT is close to a Baseline of running each query
separately. For estimating median latency, the relative error increases
by only 0.7% from the Baseline to the combined case. In case of
HPCC, we that observe short flows become 6.6% slower while the
performance of long flows does not degrade. As for path tracing, the
number of packets increases by 0.5% compared with using two 8
bit hashes as in Fig. 10. We conclude that, with a tailored execution
plan, our system can support these multiple concurrent telemetry
queries using an overhead of just two bytes per packet.

Baselin
e

Combined
0.0

0.5

1.0

1.5

2.0

S
lo

w
d
o
w

n

HPCC(PINT)

Baselin
e

Combined
0

2

4

6

8

10

12

A
v
e
ra

g
e
 N

u
m

b
e
r 

[P
a
ck

e
ts

] Path Tracing

Baselin
e

Combined
0

1

2

3

4

5

E
rr

o
r 

[%
]

Tail Latency

Figure 11: The performance of each query in a concurrent execution
(FatTree topology + Hadoop workload) compared to running it alone.

7 LIMITATIONS
In this section, we discuss the limitations associated with our proba-
bilistic approach. The main aspect to take into consideration is the
required per-packet bit-budget and the network diameter. The bigger
overhead allowed and the smaller the network, the more resilient
PINT will be in providing results in different scenarios.
Tracing short flows. PINT leverages multiple packets from the same
flow to infer its path. In our evaluation (§6), we show that our solu-
tion needs significantly fewer packets when compared to competing
approaches. However, in data center networks, small flows can con-
sist of just a single packet [3]. In this case, PINT is not effective and a
different solution, such as INT, would provide the required information.
Data plane complexity. Today’s programmable switches have a
limited number of pipeline stages. Although we show that it is possi-
ble to parallelize the processing of independent queries (§5), thus
saving resources, the PINT requirements might restrict the amount
of additional use cases to be implemented in the data plane, e.g., fast
reroute [18] or in-network caching [37] and load balancing [2, 42].
Tracing flows with multipath routing. The routing of a flow may
change over time (e.g., when using flowlet load balancing [2, 42])
or multiple paths can be taken simultaneously when appropriate
transport protocols such as Multipath TCP are used [25]. In those
cases, the values (i.e, switch IDs) for some hops will be different.
Here, PINT can detect routing changes when observing a digest

11



that is not consistent with the part of the path inferred so far. For
example, if we know that the sixth switch on a path is M6, and a
Baseline packet pj comes with a digest from this hop that is different
than h(M6,pj ), then we can conclude that the path has changed. The
number of packets needed to identify a path change depends on
the fraction of the path that has been discovered. If path changes
are infrequent, and PINT knows the entire path before the change,
a Baseline packet will not be consistent with the known path (and
thus signify a path change) with probability 1 − 2−q . Overall, in the
presence of flowlet routing, PINT can still trace the path of each
flowlet, provided enough packets for each flowlet-path are received
at the sink. PINT can also profile all paths simultaneously at the cost
of additional overhead (e.g., by adding a path checksum to packets
we can associate each with the path it followed).
Current implementation. At the time of writing, the PINT exe-
cution plan is manually selected. We envision that an end to end
system that implements PINT would include a Query Engine that
automatically decides how to split the bit budget.

8 RELATED WORK
Many previous works aim at improving data plane visibility. Some
focus on specific flows selected by operators [56, 78, 87] or only on
randomly selected sampled flows [10, 21]. Such approaches are in-
sufficient for applications that need global visibility on all flows, such
as path tracing. Furthermore, the flows of interest may not be known
in advance, if we wish to debug high-latency or malicious flows.

Other works can be classified into three main approaches: (1)
keep information out-of-band; (2) keep flow state at switches; or (3)
keep information on packets. The first approach applies when the
data plane status is recovered by using packet mirroring at switches
or by employing specially-crafted probe packets. Mirroring every
packet creates scalability concerns for both trace collection and anal-
ysis. The traffic in a large-scale data center network with hundreds of
thousands of servers can quickly introduce terabits of mirrored traf-
fic [28, 62]. Assuming a CPU core can process tracing traffic at 10
Gbps, thousands of cores would be required for trace analysis [87],
which is prohibitively expensive. Moreover, with mirroring it is not
possible to retrieve information related to switch status, such as port
utilization or queue occupancy, that are of paramount importance
for applications such as congestion control or network troubleshoot-
ing. While such information can be retrieved with specially-crafted
probes [74], the feedback loop may be too slow for applications like
high precision congestion control [46]. We can also store flow infor-
mation at switches and periodically export it to a collector [45, 69].
However, keeping state for a large number of active flows (e.g., up
to 100K [62]), in the case of path tracing, is challenging for lim-
ited switch space (e.g., 100 MB [51]). This is because operators
need the memory for essential control functions such as ACL rules,
customized forwarding [68], and other network functions and appli-
cations [37, 51]. Another challenge is that we may need to export
data plane status frequently (e.g., every 10 ms) to the collector, if we
want to enable applications such as congestion control. This creates
significant bandwidth and processing overheads [45].

Proposals that keep information on packets closely relate to this
work [36, 72, 75], with INT being considered the state-of-the-art
solution. Some of the approaches, e.g., Path Dump [72], show how
to leverage properties of the topology to encode only part of each

path (e.g., every other link). Nonetheless, this still imposes an over-
head that is linear in the path length, while PINT keeps it constant.
Alternative approaches add small digests to packets for tracing
paths [64, 65, 70]. However, they attempt to trace back to potential
attackers (e.g., they do not assume unique packet IDs or reliable
TTL values as these can be forged) and require significantly more
packets for identification, as we show in Section 6. In a recent effort
to reduce overheads on packets, similarly to this work, Taffet et
al. [71] propose having switches use Reservoir Sampling to collect
information about a packet’s path and congestion that the packet
encounters as it passes through the network. PINT takes the process
several steps further, including approximations and coding (XOR-
based or network coding) to reduce the cost of adding information
to packets as much as possible. Additionally, our work rigorously
proves performance bounds on the number of packets required to
recover the data plane status as well as proposes trade-offs between
data size and time to recover.

9 CONCLUSION
We have presented PINT , a probabilistic framework to in-band
telemetry that provides similar visibility to INT while bounding
the per-packet overhead to a user-specified value. This is important
because overheads imposed on packets translate to inferior flow
completion time and application-level goodput. We have proven
performance bounds (deferred to Appendix A due to lack of space)
for PINT and have implemented it in P4 to ensure it can be readily
deployed on commodity switches. PINT goes beyond optimizing
INT by removing the header and using succinct switch IDs by re-
stricting the bit-overhead to a constant that is independent of the
path length. We have discussed the generality of PINT and demon-
strated its performance on three specific use cases: path tracing, data
plane telemetry for congestion control and estimation of experienced
median/tail latency. Using real topologies and traffic characteristics,
we have shown that PINT enables the use cases, while drastically
decreasing the required overheads on packets with respect to INT.

Acknowledgements. We thank the anonymous reviewers, Jiaqi
Gao, Muhammad Tirmazi, and our shepherd, Rachit Agarwal, for
helpful comments and feedback. This work is partially sponsored by
EPSRC project EP/P025374/1, by NSF grants #1829349, #1563710,
and #1535795, and by the Zuckerman Foundation.
This work does not raise any ethical issues.

12



REFERENCES
[1] 2020. PINT open source code: https://github.com/ProbabilisticINT. (2020).

https://github.com/ProbabilisticINT
[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters. In ACM SIGCOMM.

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In ACM SIGCOMM.

[4] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-
dat, and Masato Yasuda. 2012. Less is More: Trading a Little Bandwidth for
Ultra-Low Latency in the Data Center. In USENIX NSDI.

[5] Arvind Arasu and Gurmeet Singh Manku. 2004. Approximate Counts and Quan-
tiles over Sliding Windows. In ACM PODS.

[6] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu, Jitu
Padhye, Boon Thau Loo, and Geoff Outhred. 2018. 007: Democratically Finding
the Cause of Packet Drops. In USENIX NSDI.

[7] Tom Barbette, Cyril Soldani, and Laurent Mathy. 2015. Fast Userspace Packet
Processing. In IEEE/ACM ANCS.

[8] Barefoot. [n. d.]. Barefoot Deep Insight. https://barefootnetworks.com/products/
brief-deep-insight/. ([n. d.]).

[9] Barefoot Networks. 2018. Barefoot Deep Insight. https://www.barefootnetworks.
com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf. (2018).

[10] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau Feibish, Danny Raz, and
Minlan Yu. 2020. Routing Oblivious Measurement Analytics. In IFIP Networking.

[11] Ran Ben Basat, Gil Einziger, Isaac Keslassy, Ariel Orda, Shay Vargaftik, and Erez
Waisbard. 2018. Memento: Making Sliding Windows Efficient for Heavy Hitters.
In ACM CoNEXT.

[12] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018. Efficient
Measurement on Programmable Switches using Probabilistic Recirculation. In
IEEE ICNP.

[13] Ran Ben-Basat, Gil Einziger, and Roy Friedman. 2018. Fast flow volume estima-
tion. Pervasive Mob. Comput. (2018).

[14] Broadcom. [n. d.]. Broadcom BCM56870 Series. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56870-series. ([n. d.]).

[15] Robert L Carter and Mark E Crovella. 1997. Server selection using dynamic path
characterization in wide-area networks. In IEEE INFOCOM.

[16] SDX Central. [n. d.]. AT&T Runs Open Source
White Box. https://www.sdxcentral.com/articles/news/
att-runs-open-source-white-box-switch-live-network/2017/04/. ([n. d.]).

[17] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstre-
ich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue Measure-
ment in the Data Plane. In ACM CoNEXT.

[18] Marco Chiesa, Roshan Sedar, Gianni Antichi, Michael Borokhovich, Andrzej
Kamisiundefinedski, Georgios Nikolaidis, and Stefan Schmid. 2019. PURR: A
Primitive for Reconfigurable Fast Reroute. In ACM CoNEXT.

[19] Baek-Young Choi, Sue Moon, Rene Cruz, Zhi-Li Zhang, and Christophe Diot.
2007. Quantile Sampling for Practical Delay Monitoring in Internet Backbone
Networks. Computer Networks.

[20] Damu Ding, Marco Savi, and Domenico Siracusa. 2020. Estimating Logarithmic
and Exponential Functions to Track Network Traffic Entropy in P4. In IEEE/IFIP
NOMS.

[21] N. G. Duffield and Matthias Grossglauser. 2001. Trajectory Sampling for Direct
Traffic Observation. In IEEE/ACM ToN.

[22] Nandita Dukkipati and Nick McKeown. 2006. Why Flow-Completion Time is the
Right Metric for Congestion Control. ACM SIGCOMM CCR (2006).

[23] David Felber and Rafail Ostrovsky. 2017. A Randomized Online Quantile Sum-
mary in O ((1/ε ) log(1/ε ))Words. In Theory of Computing.

[24] Philippe Flajolet, Daniele Gardy, and Loÿs Thimonier. 1992. Birthday Paradox,
Coupon Collectors, Caching Algorithms and Self-organizing Search. Discrete
Applied Mathematics (1992).

[25] Alan Ford, Costin Raiciu, Mark J. Handley, and Olivier Bonaventure. 2013. TCP
Extensions for Multipath Operation with Multiple Addresses. (2013).

[26] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosen-
blum, and Amin Vahdat. 2019. SIMON: A Simple and Scalable Method for
Sensing, Inference and Measurement in Data Center Networks. In USENIX NSDI.

[27] Dimitrios Gkounis, Vasileios Kotronis, Christos Liaskos, and Xenofontas Dim-
itropoulos. 2016. On the Interplay of Link-Flooding Attacks and Traffic Engineer-
ing. ACM SIGCOMM CCR (2016).

[28] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray Huang, Dave
Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, Zhi-Wei Lin, and Varugis
Kurien. 2015. Pingmesh: A Large-Scale System for Data Center Network Latency
Measurement and Analysis. In ACM SIGCOMM.

[29] Dongsu Han, Robert Grandl, Aditya Akella, and Srinivasan Seshan. 2013. FCP: A
Flexible Transport Framework for Accommodating Diversity. ACM SIGCOMM
CCR (2013).

[30] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and
Nick McKeown. 2014. I Know What Your Packet Did Last Hop: Using Packet
Histories to Troubleshoot Networks. In USENIX NSDI.

[31] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiakoumis, Puneet
Sharma, Sujata Banerjee, and Nick McKeown. 2010. ElasticTree: Saving Energy
in Data Center Networks. In USENIX NSDI.

[32] T Ho, R Koetter, M Medard, DR Karger, and M Effros. 2003. The Benefits of
Coding over Routing in a Randomized Setting. In IEEE ISIT.

[33] IEEE. [n. d.]. Standard 802.3. https://standards.ieee.org/standard/802_3-2015.
html. ([n. d.]).

[34] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. 2019. QPipe:
Quantiles Sketch Fully in the Data Plane. In ACM CoNEXT.

[35] Svante Janson. 2018. Tail Bounds for Sums of Geometric and Exponential
Variables. Statistics & Probability Letters (2018).

[36] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,
and David Mazières. 2014. Millions of Little Minions: Using Packets for Low
Latency Network Programming and Visibility. In ACM SIGCOMM.

[37] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In ACM SOSP.

[38] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-Time Microburst Monitoring for Datacenter Networks.
In ACM APSys.

[39] Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. 2016. Optimal Quantile Ap-
proximation in Streams. In IEEE FOCS.

[40] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for
High Bandwidth-Delay Product Networks. In ACM SIGCOMM.

[41] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman, Changhoon
Kim, and Jennifer Rexford. 2017. Clove: Congestion-Aware Load Balancing at
the Virtual Edge. In ACM CoNEXT.

[42] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data
Planes. In ACM SOSR.

[43] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. 2019. Confluo: Distributed
Monitoring and Diagnosis Stack for High-Speed Networks. In USENIX NSDI.

[44] Simon Knight, Hung X Nguyen, Nickolas Falkner, Rhys Bowden, and Matthew
Roughan. 2011. The Internet Topology Zoo. IEEE JSAC (2011).

[45] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. 2016. FlowRadar: A
Better NetFlow for Data Centers. In USENIX NSDI.

[46] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu.
2019. HPCC: High Precision Congestion Control. In ACM SIGCOMM.

[47] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira,
and Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In
USENIX NSDI.

[48] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. 1998. Ap-
proximate Medians and Other Quantiles in One Pass and with Limited Memory.
In ACM SIGMOD.

[49] Andrew Mcgregor, A. Pavan, Srikanta Tirthapura, and David P. Woodruff. 2016.
Space-Efficient Estimation of Statistics Over Sub-Sampled Streams. Algorithmica
(2016).

[50] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient
Computation of Frequent and Top-k Elements in Data Streams. In ICDT.

[51] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. 2017.
SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switch-
ing ASICs. In ACM SIGCOMM.

[52] Mininet. [n. d.]. Mininet: An Instant Virtual Network on your Laptop. http:
//mininet.org/. ([n. d.]).

[53] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-Based Congestion Control for the Datacenter. In ACM
SIGCOMM.

[54] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In ACM SIGCOMM.

[55] Robert Morris. 1978. Counting Large Numbers of Events in Small Registers. In
Communications of ACM. ACM.

[56] Srinivas Narayana, Mina Tashmasbi Arashloo, Jennifer Rexford, and David Walker.
2016. Compiling Path Queries. In USENIX NSDI.

[57] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
ACM SIGCOMM.

[58] Netronome. [n. d.]. Netronome Agilio CX SmartNIC. https://www.netronome.
com/blog/in-band-network-telemetry-its-not-rocket-science/. ([n. d.]).

[59] Donald J Newman. 1960. The Double Dixie Cup Problem. The American
Mathematical Monthly (1960).

13

https://github.com/ProbabilisticINT
https://github.com/ProbabilisticINT
https://barefootnetworks.com/products/brief-deep-insight/
https://barefootnetworks.com/products/brief-deep-insight/
https://www.barefootnetworks.com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf
https://www.barefootnetworks.com/static/app/pdf/DI-UG42-003ea-ProdBrief.pdf
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.sdxcentral.com/articles/news/att-runs-open-source-white-box-switch-live-network/2017/04/
https://www.sdxcentral.com/articles/news/att-runs-open-source-white-box-switch-live-network/2017/04/
https://standards.ieee.org/standard/802_3-2015.html
https://standards.ieee.org/standard/802_3-2015.html
http://mininet.org/
http://mininet.org/
https://www.netronome.com/blog/in-band-network-telemetry-its-not-rocket-science/
https://www.netronome.com/blog/in-band-network-telemetry-its-not-rocket-science/


[60] Remi Oudin, Gianni Antichi, Charalampos Rotsos, Andrew W. Moore, and Steve
Uhlig. 2019. OFLOPS-SUME and the art of switch characterization. IEEE JSAC
(2019).

[61] Diana Popescu, Noa Zilberman, and Andrew W. Moore. 2017. Characterizing the
Impact of Network Latency on Cloud-based ApplicationsâĂŹ Performance. In
Technical Report, Number 914, UCAM-CL-TR-914. University of Cambridge.

[62] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In ACM SIGCOMM.

[63] Pegah Sattari. 2007. Revisiting IP Traceback as a Coupon CollectorâĂŹs Problem.
In PhD Dissertation. University of California, Irvine.

[64] Pegah Sattari, Minas Gjoka, and Athina Markopoulou. 2010. A network coding
approach to IP traceback. In IEEE Symposium on Network Coding (NetCod).

[65] Stefan Savage, David Wetherall, Anna Karlin, and Tom Anderson. 2000. Practical
Network Support for IP Traceback. In ACM SIGCOMM.

[66] Robert Schweller, Ashish Gupta, Elliot Parsons, and Yan Chen. 2004. Reversible
Sketches for Efficient and Accurate Change Detection over Network Data Streams.
In ACM IMC.

[67] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Arvind Krishna-
murthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the Power of Flexible
Packet Processing for Network Resource Allocation. In USENIX NSDI.

[68] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait Dixit,
and Mihai Budiu. 2015. DC.P4: Programming the Forwarding Plane of a Data-
center Switch. In ACM SOSR.

[69] Alex C. Snoeren, Craig Partridge, Luis A. Sanchez, Christine E. Jones, Fabrice
Tchakountio, Stephen T. Kent, and W. Timothy Strayer. 2001. Hash-based IP
Traceback. In ACM SIGCOMM.

[70] Dawn Xiaodong Song and Adrian Perrig. 2001. Advanced and Authenticated
Marking Schemes for IP Traceback. In IEEE INFOCOM.

[71] Philip Taffet and John Mellor-Crummey. 2019. Understanding Congestion in High
Performance Interconnection Networks Using Sampling. In ACM SC.

[72] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. 2016. Simplifying Data-
center Network Debugging with Pathdump. In USENIX OSDI.

[73] Praveen Tammana, Rachit Agarwal, and Mjungjin Lee. 2018. Distributed Network
Monitoring and Debugging with SwitchPointer. In USENIX NSDI.

[74] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu, Karl Deng,
Dongming Bi, and Dong Xiang. 2019. Netbouncer: Active Device and Link
Failure Localization in Data Center Networks. In USENIX NSDI.

[75] The P4.org Applications Working Group. [n. d.]. In-band Network Telemetry
(INT) Dataplane Specification. https://github.com/p4lang/p4-applications/blob/
master/docs/telemetry_report.pdf. ([n. d.]).

[76] The University of Washington NS-3 Consortium. [n. d.]. NS3 official website.
https://www.nsnam.org/. ([n. d.]).

[77] Wolfgang Theilmann and Kurt Rothermel. 2000. Dynamic distance maps of the
Internet. In IEEE INFOCOM.

[78] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and Laurent
Vanbever. 2018. Stroboscope: Declarative Network Monitoring on a Budget. In
USENIX NSDI.

[79] Muhammad Tirmazi Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020.
Cheetah: Accelerating Database Queries with Switch Pruning. In ACM SIGMOD.

[80] P Van Mieghem, Gerard Hooghiemstra, and Remco Hofstad. 2001. A scaling law
for the hopcount in Internet. In PAM.

[81] Vladimir N Vapnik and A Ya Chervonenkis. 2015. On the Uniform Convergence
of Relative Frequencies of Events to their Probabilities. Measures of Complexity
(2015).

[82] Jeffrey S Vitter. 1985. Random Sampling with a Reservoir. Transactions on
Mathematical Software (1985).

[83] Xilinx. [n. d.]. 10G/25G Ethernet Subsystem. https://www.xilinx.com/products/
intellectual-property/ef-di-25gemac.html. ([n. d.]).

[84] Xilinx. [n. d.]. UltraScale Integrated 100G Ethernet Subsystem. https://www.
xilinx.com/products/intellectual-property/cmac.html. ([n. d.]).

[85] Xilinx. [n. d.]. Xilinx to Showcase Unprecedented Programmability and Visibility.
https://www.xilinx.com/news/press/2018/barefoot-networks-and-xilinx.html. ([n.
d.]).

[86] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Mea-
surement with OpenSketch. In USENIX NSDI.

[87] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,
Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and Haitao Zheng. 2015.
Packet-Level Telemetry in Large Datacenter Networks. In ACM SIGCOMM.

14

https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/telemetry_report.pdf
https://www.nsnam.org/
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html
https://www.xilinx.com/products/intellectual-property/ef-di-25gemac.html
https://www.xilinx.com/products/intellectual-property/cmac.html
https://www.xilinx.com/products/intellectual-property/cmac.html
https://www.xilinx.com/news/press/2018/barefoot-networks-and-xilinx.html


A ANALYSIS
A.1 Dynamic per-flow Aggregation
We now survey known results that Theorem 1 and Theorem 2 are
based on.
Quantiles. Classical streaming results show that by analyzing a
uniformly selected subset of O(ε−2s log ε−1s ) elements, one can esti-
mate all possible quantiles [48, 81] to within an additive error of εs .
It is also known that if one is interested in a specific quantile (e.g.,
median), a subset size of O(ε−2s ) is enough.

In our case, for each switch si through which flow x is routed,
we get a sampled substream of Si,x where each packet carries a
value from it with probability 1/k. This is not a fixed-size subset,
but a Bernouli sample. Nevertheless, Felber and Ostrovsky show
that a Bernouli sample with the same expected size is enough [23].
Therefore, for a specific quantile (e.g., median) we need to getO(ε−2s )
samples for each of the k switches on the path. Using a standard
Chernoff bound argument, we have that if z = O(kε−2s ) packets reach
the PINT sink, all hops on the path will get at least O(ε−2s ) samples
with probability 1 − e−Ω(z/k ) = 1 − e−Ω(ε

−2
s ).

To compress the amount of per-flow storage needed for computing
the quantiles, we can use a Õ(ε−1a ) space sketch such as KLL [39].
We run separate sketch for each of the k hops, thus needing Õ(kε−1a )
per-flow storage in total. The resulting error would be ε = εs + εa ,
as the sampling adds an additive error of εs and the sketching an
additive error of εa .
Frequent Values. Using a standard Chernoff bound argument, one
can use a O(ε−2s )-sized substream of Si,x , one can estimate the frac-
tion in which each specific value appears, up to an additive error of
εs . We can then use a heavy hitters algorithm like Space Saving [50]
to estimate the frequency of values in the sampled substream to
within an additive error of εa , using O(ε−1a ) space. As before, to get
the correct estimations for all hops, we need a factor k multiplicative
overhead to both the number of packets and space.

A.2 Static per-flow Aggregation
Before we can analyze the algorithm (§A.2.2), we start with some
auxiliary results.

A.2.1 Auxiliary Results. The first lemma gives a bound on
how many independent coins with probability p we need to flip until
we get k successes.

LEMMA 4. Let k ∈ N and p,δ ∈ (0, 1).
Denote N = k+2 ln δ−1+

√
2k ln δ−1

p and let X ∼ Bin(N ,p). Then

Pr[X ≤ k] ≤ δ .

PROOF. Using the Chernoff bound we have that for any γ > 0:

Pr[X < E[X ](1 − γ )] ≤ e−γ
2E[X ]/2 .

We set γ =
√

2 ln δ−1
Np , which means that γ 2E[X ]/2 = lnδ and there-

fore Pr[X < E[X ](1 − γ )] ≤ δ .
Finally,

E[X ](1 − γ ) = Np(1 − γ ) = Np −
√
2Np lnδ−1.

Denote x =
√
Np, then we want to show that

x2 − x
√
2 lnδ−1 − k ≥ 0,

which holds for

x >

√
2 lnδ−1 +

√
2 lnδ−1 + 4k
2

=

√
lnδ−1 +

√
lnδ−1 + 2k
√
2

.

This gives

N = x2/p ≥

(√
lnδ−1 +

√
lnδ−1 + 2k

)2
2p

=
k + 2 lnδ−1 +

√
2k lnδ−1

p
.

□

The next theorem provide a high-probability bound on the Double
Dixie Cup problem [59]. Specifically, consider trying to collect at
least Z copies from each of k coupons, where at each stage you get
a random coupon. The following bounds the number of samples you
need.

THEOREM 5. After seeing

N = k ·
(
Z − 1 + ln(k/δ ) +

√
(Z − 1 + ln(k/δ ))2 − (Z − 1)2/4

)
samples, our algorithm has at least Z copies of each of the k

coupons.

PROOF. Therefore, the number of copies of the i’th coupon isa
binomial random variable we denote by Yi ∼ Bin(N , 1/k). Our goal
is to show that getting Yi < Z is unlikely; to that end, we use
the Chernoff inequality that states that Pr[Yi ≤ E[Yi ](1 − γ )] ≤
e−E[Yi ]γ

2/2 for any γ ∈ (0, 1]. We set γ = 1 − k(Z − 1)/N to get

Pr[Yi < Z ] = Pr[Yi ≤ Z − 1] = Pr[Yi ≤ E[Yi ](1 − γ )]

≤ e−E[Yi ]γ
2/2 = e−N /2k ·(1−k (Z−1)/N )

2

= e−(N /2k−(Z−1)+k (Z−1)
2/2N ) = e−(x−(Z−1)+(Z−1)

2/4x ),

where x = N /(2k). We want Pr[Xi < Z ] ≤ δ/k , which according to
the above follows from

x − (Z − 1) + (Z − 1)2/4x ≥ lnk/δ ⇐⇒

x ≥ 0.5 ·
(
Z − 1 + ln(k/δ ) +

√
(Z − 1 + ln(k/δ ))2 − (Z − 1)2/4

)
.

The last inequality follows directly from our choice of N . Finally,
we use the union bound to get that after N samples all coupons get
at least Z copies except with probability k · Pr[Yi < Z ] ≤ δ . □

We proceed with a tail bound on the Partial Coupon Collector
problem, in which we wish to get N out of r possible coupons, where
at each timestamp we get a random coupon. Our proofs relies on the
following result for a sharp bound on the sum of geometric random
variables:

THEOREM 6. ([35]) Let {A1, . . .AN } be independent geometric
random variables such that Ai ∼ Geo(pi ) and p1 ≥ . . . ≥ pN . Then
the sum A =

∑N
i=1Ai satisfies:

Pr [A > E[A] · λ] ≤ e−pN E[A](λ−1−ln λ).

Additionally, we will use the following fact.
15



FACT 7. For any positive real number ε ∈ R+,

1 + ε +
√
2ε − ln(1 + ε +

√
2ε) ≥ 1 + ε .

We now prove our result.

THEOREM 8. Let E[A] = r (Hr − Hr−N ) denote the expected
number of samples required for seeing N distinct coupons. With
probability 1 − δ , the number of samples required for seeing at least
N distinct coupons is at most

E[A] +
r lnδ−1

(r − N )
+

√
2rE[A] lnδ−1

(r − N )
.

PROOF. We wish to use Theorem 6; notice that we need λ−ln λ ≥
1 + ln δ−1

pN E[A]
which implies

e−pN E[A](λ−1−ln λ) ≤ δ .

According to Fact 7, for ε = ln δ−1
pN E[A]

, it is enough to set

λ = 1 +
lnδ−1

pN E[A]
+

√
2 lnδ−1

pN E[A]
.

Plugging in pN = (1 − (N − 1)/r ) > (r − N )/r we have that the
required number of required packets is at most

λ · E[A] =
©«E[A] + lnδ−1

pN
+

√
2E[A] lnδ−1

pN

ª®¬
≤
©«E[A] + r lnδ−1

(r − N )
+

√
2rE[A] lnδ−1

(r − N )

ª®¬ .
For example, if r = 2N , we have E[A] ≈ 1.39N and the number of
packets is(
E[A] + 2 lnδ−1 +

√
4E[A] lnδ−1

)
≈

(
1.39N + 2 lnδ−1 + 2.35

√
N lnδ−1

)
. □

Next, we show a bound on the number of samples needed to
collect K(1 −ψ ) in a Coupon Collector process [24] on K coupons.

LEMMA 9. LetK ∈ N+ andψ ∈ (0, 1/2]. The number of samples
required for collecting all butψK coupons is at most

K lnψ−1 +ψ−1 lnδ−1 +
√
2Kψ−1 lnψ−1 lnδ−1

= O(K lnψ−1 +ψ−1 lnδ−1).

PROOF. For i = 1, . . . ,K(1 − ψ ), let Ai ∼ Geo(1 − (i − 1)/K)
denote the number of samples we need for getting the i’th distinct
coupon, and let A =

∑K (1−ψ )
i=1 Ai . We have that

E[A] =

K(1−ψ )∑
i=1

K

K − (i − 1)
= K

(
HK − HKψ

)
= K lnψ−1.

According to Theorem 8, it is enough to obtain the following
number of samples

E[A] +
K lnδ−1

K(1 − (1 −ψ ))
+

√
2KE[A] lnδ−1

K(1 − (1 −ψ ))

= K lnψ−1 +ψ−1 lnδ−1 +
√
2Kψ−1 lnψ−1 lnδ−1.

Finally, we note that
√
Kψ−1 lnψ−1 lnδ−1 is the geometric mean of

K lnψ−1 andψ−1 lnδ−1 and thus:

K lnψ−1 +ψ−1 lnδ−1 +
√
2Kψ−1 lnψ−1 lnδ−1

≤

(
K lnψ−1 +ψ−1 lnδ−1

)
(1 + 1/

√
2)

= O
(
K lnψ−1 +ψ−1 lnδ−1

)
.

□

A.2.2 Analysis of the algorithm. We denote by d ≜ d
log∗ d the

number of hops we aim to decode using the XOR layers. Our algo-
rithm has ⌈log∗ d⌉+1 layers, where layer 0 runs the Baseline scheme
and the remaining L ≜ ⌈log∗ d⌉ layers use XOR. We denote by ↑↑
Knuth’s iterated exponentiation arrow notation, i.e., x ↑↑ 0 = 1 and

x ↑↑y = xx
x ·
··
x }

y-times.

The sampling probability in layer ℓ is then set to

pℓ =
e ↑↑ (ℓ − 1)

d
.

Each packet it hashed to choose a layer, such that layer 0 is chosen
with probability τ =

(
1 − 1

1+log log∗ d

)
= 1 − o(1) and otherwise one

of layers 1, . . . ,L is chosen uniformly. The pseudo code for the final
solution is given in Algorithm 1.

Algorithm 1 PINT Processing Procedure at Switch s

Input: A packet pj with b-bits digest pj .dig.
Output: Updated digest pj .dig.
Initialization:
τ =

log log∗ d
1+log log∗ d , ∀ℓ ∈ {1, . . . ,L} : pℓ = e↑↑(ℓ−1)

d
.

Let i such that the current switch is the i ′th so far
1: H←H(pj ) ▷ Distributed uniformly on [0, 1]
2: if H < τ then ▷ Update layer 0
3: if д(pj , i) < 1/i then
4: pj .dig← h(s,pj ) ▷ Sample with probability 1/i
5: else
6: ℓ ←

⌈
L ·

H−τ
1−τ

⌉
▷ Choose the layer

7: if д(pj , i) < pℓ then
8: pj .dig← pj .dig ⊕ h(s,pj ) ▷ Xor w.p. pℓ

For simplicity, we hereafter assume in the analysis that a packet
can encode an entire identifier. This assumption is not required in
practice and only serves for the purpose of the analysis. We note
that even under this assumption the existing approaches require
O(k logk) packets. In contrast, we show that except with probability

16



δ = e−O (k
0.99) the number of packets required for decoding a k-hops

path in our algorithm is just

X = k log log∗ k · (1 + o(1)).11

Note that log log∗ k is a function that grows extremely slowly, e.g.,
log log∗ P < 2 where P is the number of atoms in the universe.
Our assumption on the error probability δ allows us to simplify the
expressions and analysis but we can also show an

O
(
k log log∗ k + log∗ k logδ−1

)
bound on the required number of packets thus the dependency on δ
is minor.

For our proof, we define the quantities

Q ≜ k1 + ln
(
4 log∗ k1

δ

)
+

√
2k1 ln

(
4 log∗ k1

δ

)
= O

(
k

log∗ k
+ logδ−1

)
= O

(
k

log∗ k

)
and

S ≜
Q + 2 ln

(
4L
δ

)
+

√
2Q ln

(
4L
δ

)
c · e−c

= O

(
k

log∗ k
+ logδ−1

)
= O

(
k

log∗ k

)
.

Note that Q and S are not known to our algorithm (which is only
aware of d) and they are used strictly for the analysis. Our proof
follows the next roadmap:

(1) When a flow has at least X ≜ k log log∗ k · (1 + o(1)) packets,
Baseline (layer 0) gets at least X · (1 − o(1)) = k log log∗ k ·
(1 + o(1)) digests and XOR (layers 1 and above) gets at least
Ω(X/log log∗ k) = Ω (k) digests with probability 1 − δ/6.

(2) When Baseline (layer 0) gets at least X · (1 − o(1)) digests, it
decodes all hops but k1 ≜ k

log∗ k with probability 1 − δ/6.
(3) When at least Ω (k) packets reach XOR (layers 1 and above),

with probability 1 − δ/6 each layer gets at least S digests.
(4) When a layer ℓ ∈ {1, . . . ,L} gets S digests, with probability

1 − δ/6L, at least Q of the digests contain exactly one of the
kℓ undecoded switches.

(5) When a layer ℓ ∈ {1, . . . ,L − 1} gets Q of digests that con-
tain exactly one of the kℓ ≜ k1/(e ↑↑ (ℓ − 1)) undecoded
switches, it decodes all hops but at most kℓ+1 with probability
1 − δ/6L.

(6) When the last layer L gets Q of digests that contain exactly
one of the kℓ undecoded switches, it decoded all the remain-
ing hops with probability 1 − δ/6L.

We then use the union bound over all bad events to conclude that
the algorithm succeeds with probability at least 1 − δ .

11The o(1) part hides an additive O (k ) term, which we upper bound as k
c ·e−c up to

lower order terms. Specifically, if d = k (thus, c = 1), the required number of packets
is at most k log log∗ k + e · k + o(k ).

A.2.3 Proof of Part (1). The first step is to observe that by a
straightforward application of the Chernoff bound, since layer 0 is
chosen with probability 1/2, the number of packets that it receives
is with probability 1 − δ/6:

X0 = τ · X ±O

(√
τ · X · logδ−1

)
.

Since X = ω(logδ−1), we have that

X0 ≥ X(τ − o(1)) = k log log∗ k · (1 + o(1)).

A.2.4 Proof of Part (2). Applying Lemma 9 for ψ = 1
log∗ k ,

we get that after

k ln log∗ k + log∗ k lnδ−1 +
√
2k log∗ k ln log∗ k lnδ−1

= k log log∗ k · (1 + o(1))

packets from layer 0 the number of hops that are not decoded is at
most k1 ≜ k ·ψ = k

log∗ k with probability 1 − δ/6. That is, we use
k1 to denote the number of undecoded hops that are left for layers 1
and above.

A.2.5 Proof of Part (3). When at least Ω(k) reach XOR, the
number of digests that the levels get is a balls and bins processes
with the levels being the bins. According to Theorem 5:

After seeing

L ·

(
S − 1 + ln(6L/δ ) +

√
(S − 1 + ln(6L/δ ))2 − (S − 1)2/4

)
= O (L · (S + log(L/δ )))

= O

(
log∗ k ·

(
k

log∗ k
+ logδ−1 + log(δ−1 log∗ k)

))
= O (k)

packets, with probability 1−δ/6 our algorithm has at least Q samples
in each layer.

A.2.6 Proof of Part (4). Follows from Lemma 4 for p = c ·e−c ,
k = Q and δ ′ = δ

6L .

A.2.7 Proof of Part (5). Follows from Lemma 9 with K = kℓ
andψ = kℓ+1

kℓ
.

A.2.8 Proof of Part (6). The last layer is samples needs to
decode

kL ≤
k1

e ↑↑ (L − 1)
=

k1
log d

= O

(
k1

logk1

)
and samples with probability

pL =
e ↑↑ (L − 1)

d
=

log d
d
= Θ

(
logk1
k1

)
.

Therefore, with a constant probability, a digest would be xor-ed by
exactly one of the kL undecoded hops, and the number of such pack-
ets needed to decode the remainder of the path is O

(
kL logkL

)
=

O(k1).

A.3 Revised Algorithm to Improve the Lower
Order Term’s Constant

Consider changing the algorithm to sample layer 0 with probability

τ ′ ≜
1 + log log∗ d
2 + log log∗ d

= 1 −
1

2 + log log∗ d
.

17



Then when getting X′ = k ·
(
log log∗ k + 1 + 1

ce1−c + o(1)
)
, we

will have

k · (log log∗ k + 1 + o(1))

packets that reach layer 0, which would leave only

k ′1 ≜
k

e · log∗ k

undecoded hops to layers 1 and above. As above, the number of
packets required for the upper layers to decode the missing hops is

k ′1 log
∗ k ′1

ce−c
≤

k

ce1−c
.

Since ce−c ≤ 1/e for any c > 0, we get that this is a strict improve-
ment in the number of packets that are required for the path decoding.
For example, if d = k (i.e., c = 1), we reduce the required number
of packets from k(log log∗ k + e + o(1)) to k(log log∗ k + 2 + o(1)).

A.4 An Extension – Detecting Routing Loops
Real-time detection of routing loops is challenging, as switches need
to recognize looping packets without storing them. Interestingly, we
can leverage PINT to detect loops on the fly. To do so, we check
whether the current switch’s hash matches the one on the packet.
Specifically, before choosing whether to sample or not, the switch
checks whether pj .dig = h(s,pj ). If there is a loop and s was the last
switch to write the digest, it will be detected. Unfortunately, such an
approach may result in a significant number of false positives. For
example, if we use b = 16-bit hashes, the chance of reporting a false
loop over a path of length 32 would be roughly 0.05%, which means
several false positives per second on a reasonable network.

To mitigate false positives, we propose requiring multiple matches,
corresponding to multiple passes through the loop. We use an addi-
tional counter c to track the number of times a switch hash matched
the digest. When c = 0, the switches follow the same sampling
protocol as before. However, if c > 0 then the digest is no longer
changed, and if c exceeds a value of T then we report a loop. This
changes the loop detection time, but the switch that first incremented
c may report the loop after at most T cycles over the loop. This ap-
proach adds

⌈
log2 (T + 1)

⌉
bits of overhead, but drastically reduces

the probability of false positives. For example, if T = 1 and b = 15,
we still have an overhead of sixteen bits per packet, but the chance of
reporting false loops decreases to less than 5 · 10−7. If we use T = 3
and b = 14, the false reporting rate further decreases to 5 · 10−13,
which allows the system to operate without false alarms in practice.

Algorithm 2 PINT Processing at s with Loop Detection

Input: A packet pj with b-bits digest pj .dig and a counter pj .c.
Output: Updated digest pj .dig or LOOP message.

1: if pj .dig = h(s,pj ) then
2: if pj .c = T then return LOOP

3: pj .c ← pj .c + 1
Let i such that the current switch is the i ′th so far

4: if pj .c = 0 and д(pj , i) < 1/i then
5: pj .dig← h(s,pj ) ▷ Sample with probability 1/i

B COMPTING HPCC’S UTILIZATION
We first calculate the logarithm:

U _term = log(
T − τ

T
·U ) = log(T − τ ) − logT + logU

qlen_term = log(
qlen · τ
B ·T 2 ) = log qlen + logτ − logB − 2 logT

byte_term = log(
byte
B ·T

) = log byte − logB − logT

Then calculate U using exponentiation:

U = 2U _term + 2qlen_term + 2byte_term

C ARITHMETIC OPERATIONS IN THE DATA
PLANE

Some of our algorithms require operations like multiplication and
division that may not be natively supported on the data plane of
current programmable switches. Nonetheless, we now discuss how
to approximate these operations through fixed-point representations,
logarithms, and exponentiation. We note that similar techniques have
appeared, for example, in [67], [79] and [20].
Fixed-point representation: Modern switches may not directly
support representation of fractional values. Instead, when requiring a
real-valued variable in the range [0,R], we can usem bits to represent
it so that the integer representation r ∈ {0, 1, . . . , 2m − 1} stands for
R · r · 2−m . R is called scaling factor and is often a power of two for
simplicity. For example, if our range is [0, 2], and we use m = 16
bits, then the encoding value 39131 represents 2 · 39131 · 2−16 ≈ 1.19.

Conveniently, this representation immediately allows using inte-
ger operations (e.g., addition or multiplication) to manipulate the
variables. For example, if x and y are variables with scale factor R
that are represented using r (x), r (y), then their sum is represented
using r (x)+r (y) (assuming no overflow, this keeps the scaling factor
intact) and their product is r (x) · r (y) with a scaling factor of R2. As
a result, we hereafter consider operating on integer values.
Computing logarithms and exponentiating: Consider needing
to approximate log2(x) for some integer x (and storing the result
using a fixed-point representation). If the domain of x is small (e.g.,
it is an 8-bit value), we can immediately get the value using a lookup
table. Conversely, say that x is an m-bit value for a large m (e.g.,
m = 64). In this case, we can use the switch’s TCAM to find the most
significant set bit in x , denoted ℓ. That is, we have that x = 2ℓ · α for
some α ∈ [1, 2). Next, consider the next q bits of x , denoted by xq ,
where q is such that it is feasible to store a 2q -sized lookup table on
the switch (e.g., q = 8). 12 Then we have that x = xq · 2ℓ−q (1 + ε)
for a small relative error ε < 2−q . Therefore, we write

log2(x) = log2(xq · 2
ℓ−q (1 + ε)) = (ℓ − q) + log2(xq ) + log2(1 + ε).

Applying the lookup table to xq , we can compute ỹ ≜ (ℓ − q) +
log2(xq ) on the data plane and get that ỹ ∈ [log2 x − log2(1 +
ε), log2 x].13 We can further simplify the error expression as log2(1+

12If q < ℓ we can simply look up the exact value as before.
13In addition to the potential error that arises from the lookup table.

18



ε) ≤ ε/ln 2 ≈ 1.44 · 2−q . We also note that computing logarithms
with other bases can be done similarly as logy x = log2 x/log2 y.

For exponentiation, we can use a similar trick. Assume that we
wish to compute 2x for some real-valued x that has a fixed-point
representation r . Consider using a lookup table of 2q entries for a
suitable value of q, and using the TCAM to find the most significant
set bit in r . Then we can compute 2x up to a multiplicative factor of
2xε for some ε ≤ 2−q . Assuming that x is bounded by R ≤ 2q , this
further simplifies to 2xε ≤ 2x2

−q
≤ 1+R ·2−q . For example, if x is in

the range [0, 2] and we are using q = 8 then logarithms are computed
to within a (1 + 2−7)-multiplicative factor (less than 1% error).
Multiplying and dividing: We overcome the lack of support for
arithmetic operations such as multiplication and division using ap-
proximations, via logarithms and exponentiation. Intuitively, we have

that x · y = 2log2 x+log2 y and x/y = 2log2 x−log2 y . We have already
discussed how to approximate logarithms and exponentiation, while
addition and subtraction are currently supported. We note that the er-
rors of the different approximations compound and thus it is crucial
to maintain sufficient accuracy at each step to produce a meaningful
approximation for the multiplication and division operations.

An alternative approach is to directly use a lookup table that takes
the q/2 most significant bits, starting with the first set bit, of x and
y and return their product/quotient (as before, this would require
a 2q -sized table). However, going through logarithms may give a
more accurate result as the same lookup table can be used for both
x and y, and its keys are a single value, which allows considering q
bits for the same memory usage.

19


	Abstract
	1 Introduction
	2 INT and its Packet Overhead
	3 The PINT Framework
	3.1 Aggregation Operations
	3.2 Use Cases
	3.3 Query Language
	3.4 Query Engine
	3.5 Challenges

	4 Aggregation Techniques
	4.1 Implicit Coordination via Global Hash Functions
	4.2 Distributed Coding Schemes
	4.3 Approximating Numeric Values

	5 Implementation
	6 Evaluation
	6.1 Congestion Control
	6.2 Latency Measurements
	6.3 Path Tracing
	6.4 Combined Experiment

	7 Limitations
	8 Related Work
	9 Conclusion
	References
	A Analysis
	A.1 Dynamic per-flow Aggregation
	A.2 Static per-flow Aggregation
	A.3 Revised Algorithm to Improve the Lower Order Term's Constant
	A.4 An Extension – Detecting Routing Loops

	B Compting HPCC's Utilization
	C Arithmetic Operations in the Data Plane

