
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ilal20

Leukemia & Lymphoma

ISSN: 1042-8194 (Print) 1029-2403 (Online) Journal homepage: https://www.tandfonline.com/loi/ilal20

Follicular lymphoma genomics

Lucy Pickard, Giuseppe Palladino & Jessica Okosun

To cite this article: Lucy Pickard, Giuseppe Palladino & Jessica Okosun (2020): Follicular
lymphoma genomics, Leukemia & Lymphoma

To link to this article:  https://doi.org/10.1080/10428194.2020.1762883

Published online: 19 May 2020.

Submit your article to this journal 

View related articles 

View Crossmark data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/340119337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.tandfonline.com/action/journalInformation?journalCode=ilal20
https://www.tandfonline.com/loi/ilal20
https://doi.org/10.1080/10428194.2020.1762883
https://www.tandfonline.com/action/authorSubmission?journalCode=ilal20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ilal20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10428194.2020.1762883
https://www.tandfonline.com/doi/mlt/10.1080/10428194.2020.1762883
http://crossmark.crossref.org/dialog/?doi=10.1080/10428194.2020.1762883&domain=pdf&date_stamp=2020-05-19
http://crossmark.crossref.org/dialog/?doi=10.1080/10428194.2020.1762883&domain=pdf&date_stamp=2020-05-19


REVIEW

Follicular lymphoma genomics

Lucy Pickard, Giuseppe Palladino and Jessica Okosun

Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK

ABSTRACT
Although outcomes for follicular lymphoma (FL) continue to improve, it remains incurable for
the majority of patients. Through next generation sequencing (NGS) studies, we now recognize
that the genomic landscape of FL is skewed toward highly recurrent mutations in genes that
encode epigenetic regulators co-occurring with the pathognomonic t(14;18) translocation.
Adopting these technologies to study longitudinal and spatially-derived lymphomas has pro-
vided unique insights into the tumoral heterogeneity, clonal evolution of the disease and sup-
ports the existence of a tumor-repopulating population, considered the Achilles’ heel of this
lymphoma. An in-depth understanding of the genomics and its contribution to the disease
pathogenesis is identifying new biomarkers and therapeutic targets that can be translated into
clinical practice and, in the not too distant future, enable us to start considering precision-based
approaches to the management of FL.
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Introduction

Follicular lymphoma (FL) is a malignancy derived from
germinal center (GC) B-cells and the most common
indolent B-cell lymphoma with an estimated 3–4 new
cases per 100,000 persons per year [1]. The median
overall survival for FL now extends to 15–20 years [2],
however it is still referred to as an incurable malig-
nancy. The natural history of FL is characterized by a
protracted, relapse remitting course, with each dis-
ease-free period becoming progressively shorter lead-
ing to eventual treatment refractoriness. Importantly,
significant clinical heterogeneity exists amongst
patients, which poses dilemmas for treatment deci-
sion-making. A group of patients can be managed
expectantly for many years without requiring treat-
ment whereas approximately 15–20% display high risk
features by progressing or being refractory to initial
conventional treatment within the first few years or
undergoing histological transformation to an aggres-
sive high grade lymphoma, typically diffuse large B
cell lymphoma (DLBCL) [3]. These high risk patients
have significantly poorer prognosis [4,5]. Elucidating
the biological processes that underpin the clinical het-
erogeneity remains a major research focus. This is par-
ticularly pressing as our current induction treatments
still underserve the high risk FL population and may
indeed over-treat those with low risk disease.

Our understanding of the genetic basis of FL has
changed significantly in the last decade and continues
to evolve, firstly due to the development of next gen-
eration sequencing (NGS) technologies and, more
recently, single cell multi-modal approaches allow fea-
tures of the cancer to be studied at a single cell reso-
lution. This review summarizes recent insights into FL
genetics, both at diagnosis and relapse, its contribu-
tion to pathogenesis and perturbed biological path-
ways and how this is beginning to be translated into
clinical practice.

Genomic landscape of follicular lymphoma

A key hallmark of FL biology is the t(14;18)(q32.3,
q21.3) reciprocal translocation, present in 80–85% of
patients and considered the first hit in the oncogenic
cascade [6,7]. The translocation juxtaposes the proto-
oncogene BCL2 in close vicinity to the Ig heavy chain
loci IGH, resulting in constitutive BCL2 overexpression.
The t(14;18) break occurs during an early stage of B-
cell development within the bone marrow [8]. Ectopic
overexpression of BCL2 confers a survival advantage
to the t(14;18)-bearing B cells, however, multiple lines
of evidence support the insufficiency of BCL2 deregu-
lation alone in propagating tumorigenesis. Firstly, the
translocation can be detected at very low levels in the
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blood of healthy individuals [9–11]. Secondly, BCL2
overexpression mouse models require additional gen-
etic hits to promote overt tumor formation [12,13]
and thirdly a subset of FL patients do not have the
t(14;18) yet follow similar clinical trajectories [14].
Altogether, the acquisition of additional molecular
events is necessary for the development of the overt
malignant FL phenotype.

Initially identification of these additional hits relied
on lower resolution techniques including conventional
cytogenetics, array comparative genomic hybridization
(aCGH) and DNA microarrays. These primarily identi-
fied recurrent copy number alterations (CNAs) such as
deletions in chromosome regions such as 1p36, 6q,
10q, 13p, 17p and gains of 1q, 2p, 7, 8, 12q, 18q and
X [15–18]. These alterations span across many genes,
proving difficult to pinpoint the exact genes within

the regions that contributed to FL biology. The advent
of NGS techniques including whole genome, exome
and targeted gene sequencing in the last decade has
enabled the identification of a near complete catalog
of genetic lesions that occur alongside the t(14;18)
translocation (Figure 1).

Role of epigenetic deregulation

Compared to other malignancies, FL tumors have an
apparent ‘addiction’ to epigenetic alterations, as over
90% of patient tumors harbor mutations in genes
encoding epigenetic modifiers (‘epimutations’) sug-
gesting it is a pivotal pathogenic hallmark [19–22].
The majority of these epimutations center on genes
involved in epigenetic regulation through histone
modifications including KMT2D, CREBBP and EZH2,

Figure 1. Key biological pathways affected in FL. (A) Mutations in histone-modifying genes in FL. Inactivating mutations in KMT2D
lead to decreased methylation marks on lysine 4 of histone 3 (H3K4). EZH2 gain of function mutations lead to accumulation of
tri-methylated H3K27. Loss of function mutations in CREBBP and EP300 impair H3K27 acetylation. Genes encoding linker histones
(H1) are recurrently mutated in FL. (B) Loss of function mutations in TNFRSF14 disrupt HVEM-BTLA signaling resulting in increased
secretion of TNF associated cytokines and recruitment of Tfh cells, which support tumor B cell survival. (C) Genetic aberrations
that converge on mTORC1 signaling. RRAGC mutations result in tethering of mTORC1 to the lysosomal surface and activation of
mTORC1, even in amino acid deprived states. Sestrin1, an upstream negative regulator of mTORC1 is frequently deleted.
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highlighting the convergence on two specific amino
acid residues along the histone tail, histone H3 lysine
4 (H3K4) and histone H3 lysine 27 (H3K27).

KMT2D encodes a H3K4 methyltransferase that facil-
itates gene transcription by marking gene promoters
and enhancers [23]. It is the most frequently mutated
gene in FL, with mutations occurring in approximately
70–80% of patients [19,20,22,24–26]. KMT2D aberra-
tions are typically biallelic with copy neutral loss of
heterozygosity (cnLOH) affecting one allele with the
second allele targeted by mutations, usually truncating
in nature thus leading to loss of its enzymatic activity
or complete loss of protein expression [27]. Kmt2d-
deficient mice have enhanced proliferation of germinal
center (GC) B cells and reduced numbers of class-
switched B cells, indicative of a block in B cell
differentiation at the GC stage [23,27]. Genome-wide
transcriptomic and epigenomic analysis of KMT2D
mutated or deficient tumors showed reduced mono-
and di- methylation of H3K4 enhancers of KMT2D tar-
get genes involved in CD40, JAK-STAT and BCR signal-
ing suggesting these alterations contributed to the
phenotype [23].

Aberrations in histone acetyltransferase (HATs)
enzymes, CREBBP and EP300, occur in up to 70% and
15% of FL cases respectively [19–22,24–26]. CREBBP
mutations are mostly clustered within the catalytic
HAT domain and this locus is frequently affected by
cnLOH therefore, rendering the mutations homozy-
gous [20,28]. A recent study showed that different
classes of CREBBP mutations conferred different func-
tional severities, with HAT mutations associated with
inferior clinical outcomes [29]. Global CREBBP knock-
down preferentially depletes H3K27 acetylation at the
enhancers of genes that are normally deactivated in
GC B cells and linked with exiting the GC reaction
implying that CREBBP mutations aberrantly maintain
the GC phenotype [30–32]. These mutations also con-
tribute to immune evasion by downregulation of anti-
gen presentation genes including major
histocompatibility class (MHC) II, with decreased fre-
quencies of tumor infiltrating CD4 helper T cells and
CD8 memory cytotoxic T cells in CREBBP mutant
tumors [31,33]. The aberrations were associated with
unopposed deacetylation by the BCL6-SMRT-HDAC3
transcriptional repressor complex [31]. Mechanistic
studies exploring the relationship between CREBBP
and EP300 indicate that combined loss of Crebbp and
Ep300 in GC B-cells abrogated GC formation, suggest-
ing these proteins partially compensate for each other
through common transcriptional targets and in vitro
CREBBP and EP300 have a synthetic lethal relationship

perhaps hinting at why mutations in these genes do
not typically co-occur in patient tumors [34,35].

EZH2 is a SET domain histone methyltransferase, a
catalytic subunit of the polycomb repressive complex
2 (PRC2) [36], which silences gene transcription by tri-
methylating the lysine 27 residue of histone 3 (H3K27)
[37]. EZH2 mutations are present in up to 25% of FL
cases, the majority are heterozygous single nucleotide
variants centered on 3 amino acids within the catalytic
SET domain, most notably affecting tyrosine 646
(Y646) [38,39]. These mutations result in a gain of
function and a global increase in the H3K27 mark.
Mutant EZH2 regulates the GC phenotype through the
repression of specific cell cycle checkpoint genes such
as CDKN1A and genes responsible for exit from the GC
and terminal differentiation (IRF4 and PRDM1)
[37,40,41]. Ezh2 loss abrogated GC formation, however
there is no evidence of overt tumor formation with
the Ezh2 mutation alone indicating additional onco-
genic hits are required for overt tumorigenesis [37].

Other commonly altered genes in FL within the
large epigenetic umbrella include mutations in genes
involved in chromatin remodeling such as, ARID1A
(typically nonsense mutations) and the linker histones
(HIST1H1B-E), occurring in up to 10% and 30% of cases
respectively [19,42]. HIST1H1C and HIST1H1E are the
most frequently mutated linker histones. The majority
of these aberrations are missense mutations, clustered
in the highly conserved globular domain. Mutations in
linker histones (H1) compromise chromatin compac-
tion [19] and has recently been shown to induce
primitive stem cell transcriptional programs suggesting
they can enhance self-renewal [43].

Overall, these studies demonstrate that epigenetic
aberrations promote a shift toward aberrant repression
of gene transcription, block normal GC B cell exit and
differentiation. The epimutations alone do not appear
sufficient to initiate lymphoma, but require dysregu-
lated expression of BCL2 to induce lymphomagenesis
[23,27,28,32]. This is supported by studies in which
individuals with germline mutations in KMT2D, CREBBP
and EZH2 do not have a predisposition to early onset,
or a higher incidence of lymphoma [44–46]. Critically,
the majority of FLs are affected by multiple co-occur-
ring epimutations indicating that mechanistic cooper-
ation is likely required for lymphomagenesis.

Genes impacting the tumor microenvironment

Herpes virus entry mediator A (HVEM), encoded by
the gene TNFRSF14, is the most recurrently mutated
gene outside of the epigenetic family [47,48]. Up to
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40% of FL patients have loss of function mutations,
deletions or cnLOH in TNFRSF14 [48]. HVEM is a bidir-
ectional signaling molecule involved in B and T cell
activation or inhibition depending on its interaction
with different ligands including B and T-lymphocyte
attenuator (BTLA) and LIGHT [49]. Hvem or btla knock-
down accelerated FL development in a BCL2 mouse
model [50]. This was partially explained by disruption
to HVEM-BTLA signaling, which inhibits BCR signaling
and B cell proliferation. Interestingly, HVEM-deficient B
cells produce increased tumor necrosis factor (TNF)
associated cytokines resulting in abnormal stroma acti-
vation, thereby inducing a supportive tumor micro-
environment (TME) milieu with increased recruitment
of T follicular helper (Tfh) cells that support tumor B
cell survival. Recently, HVEM engagement of BTLA on
Tfh cells was shown to reduce the delivery of T helper
signals to B cells, restraining B cell proliferation [51].
These studies highlight how genetic aberrations con-
tribute to subverting the TME to their advantage pro-
moting tumor cell survival TNFRSF14 mutations were
initially thought to confer adverse clinical outcomes
[47], although this was not validated in a subsequent
study [48].

Alterations in mTORC1 signaling

More recently, mutations in the nutrient-sensing arm
of the metabolic checkpoint, mTORC1, were reported.
In normal cells, intracellular amino acid levels are
sensed through a supercomplex that includes Rag
GTPases, the Ragulator complex, the v-ATPase com-
plex and sodium-coupled neutral amino acid trans-
porter 9 (SLC38A9) that in a concerted manner
activate mTORC1 signaling but only in the presence of
sufficient amino acids [52–54]. RRAGC, a Rag GTPase, is
mutated in up to 17% of FL patients and particularly
co-occur with mutations in subunits of the v-ATPase
complex (ATP6V1B2 and ATP6AP1). For reasons that are
unclear, mutations in these genes appear unique to FL
[55,56]. RRAGC mutations are predominantly missense
mutations that confer a gain-of-function, by promot-
ing the interaction with mTORC1, tethering mTORC1
to the lysosomal surface and subsequently activating
mTORC1 even in states of amino acid deprivation
[55–57]. Rragc mutant mice have expanded germinal
centers but have reduced need for micro environmen-
tal signals, with resistance to apoptosis and a decrease
of Tfh cell abundance [58]. Interestingly, the opposing
reliance on Tfh support might explain why RRAGC and
TNFRSF14 mutations are mostly mutually exclusive
indicating that FL tumors with different mutation

profiles utilize different micro environmental mecha-
nisms to support their growth. Recently, ATP6V1B2
mutations (present in about 10% of FLs) were shown
to activate autophagy even under nutrient deprived
conditions [59]. Deletions and epigenetic silencing of
SESTRIN1, an upstream negative regulator of mTORC1
via p53 occurs in 20% of FL patients and is mutually
exclusive with RRAGC mutations [60]. Altogether, these
show a convergence on mTORC1 signaling.

Other signaling pathways

Genes involved in BCR-NFjB and JAK-STAT signaling
are frequently mutated in FL. Mutations in genes
encoding proteins in the BCR-NFjB signaling pathway
(CARD11, TNFAIP3, CD79A, CD79B MYD88) collectively
occur in approximately one third of patients [19,26].
CARD11 mutations are activating and occur in the
coiled-coil domain whilst TNFAIP3 mutations are inacti-
vating [61,62]. They both occur in about 10% of FLs
and lead to a constitutive activation of anti-apoptotic
NFjB signaling [63,64]. The JAK/STAT pathway medi-
ates signal transduction downstream of a variety of
cytokines and growth factors and is essential for the
GC reaction. Mutations in SOCS1 and STAT6 occur in
approximately 10% and 12% of FL cases, respectively
[19,21]. Activating STAT6 mutations allow preferential
localization to the nucleus and induction of STAT6 tar-
get gene expression, promoting cell survival [65].

We now have a more complete picture of the gen-
omic landscape of FL. However, the majority of these
discovery efforts have come from typically single
institution analyses. Larger scale genomic studies to
determine specific patterns of mutual exclusivity and
co-occurrences, how these relate to clinical pheno-
types, both at diagnosis and progression, together
with more detailed studies to elaborate the functional
impact of these mutations are important next steps in
realizing the full potential of which, if any, of these
gene mutations can serve as predictive or prognos-
tic biomarkers.

Tumor evolution and heterogeneity

A FL patient’s disease journey is punctuated by epi-
sodes of relapse, progression and/or transformation.
Analyzing sequential tumor samples provides unprece-
dented snapshots into the genetic evolution that
occurs at specific disease episodes. Earlier studies
showed that patterns of somatic hypermutation (SHM)
within the variable regions of the IGH gene in sequen-
tial tumors could infer the clonal dynamics of tumor
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evolution [66–68]. Through SHM, these regions also
acquire sequence motifs that act as sites for N-glyco-
sylation [69]. Shared SHM patterns between progres-
sion events and the preceding FL confirmed that
sequential tumors were primarily clonally-related [70].

Analysis of sequential tumor samples, using WES
and WGS, has added considerably to this understand-
ing. Genomic and exomic analysis of paired diagnostic
and relapsed or transformed FL (tFL) tumors demon-
strate branching or divergent evolution as the most
frequent pattern of evolution. Kridel et al. showed that
early progression arises due to expansion of preexist-
ing subclones already present at diagnosis, suggesting
these subclones were resistant to conventional ther-
apy [22]. Mutations in ten genes (KMT2C, TP53, BTG1,
MKI67, XBP1, SOCS1, IKZF3, B2M, FAS and MYD88) were
enriched in the diagnostic tumors of patients who
experienced early progression.

FL transformation (tFL) affects approximately
10–15% of patients but remains the leading cause of
lymphoma-related mortality [71–73]. Somatic muta-
tions present in nearly all tumor cells (clonal) repre-
sent early events and are likely driver mutations, the
most frequent of which are the epimutations (KMT2D
and CREBBP). These driver mutations are stable and
remain clonally dominant from diagnosis to transform-
ation, irrespective of therapy [19,21,22]. Unsurprisingly,
in all of these studies, no single genetic event drives
transformation. Instead, the genetic landscape of the
transformed tumor becomes more complex with add-
itional genetic events that are enriched at transform-
ation including mutations in genes involved in NFjB
signaling (MYD88, TNFAIP3), B cell development (EBF1),
cell cycle control (CDKN2A/B) and immune evasion
(B2M, CD58) [19,21,22]. Additionally, tFL is character-
ized by increased CNAs including amplifications in
regions that encompass genes such as EZH2, MYC and
REL [15,19]. However, it is important to note that these
genetic aberrations are imperfect predictors for trans-
formation as they are also present in untransformed
FL tumors, although at lower frequencies. Critically,
the majority of these transformation-enriched genetic
alterations did not exist in the precedent FL biopsy,
suggesting they were gained during the clonal expan-
sion event leading to transformation, perhaps under-
scoring the need for repeat biopsies at progression
and transformation.

Most studies have focused on studying the tem-
poral clonal dynamics of FL, however, we are becom-
ing aware of the extent and clinical importance of
spatial tumor heterogeneity within an individual FL
patient who typically have multiple sites of tumor

involvement. Genomic analyses of spatially-separated
synchronous biopsies from FL patients showed vari-
able levels of spatial heterogeneity [74]. The epimuta-
tions, CREBBP and KMT2D were spatially concordant in
all the patients in the series reaffirming these are early
driver events. Of relevance, the incidences of spatial
discordance where gene mutations are present in one
site of disease but absent in the other presents a chal-
lenge for accurately identifying predictive or prognos-
tic biomarkers that rely on gene mutations. This
spatial heterogeneity has been further illustrated by a
recent study using single cell RNA sequencing (scRNA-
seq) to interrogate the gene expression and micro-
environment composition in spatially-separated fine
needle lymph node aspirates from FL patients at diag-
nosis [75]. Recent single cell analyses also show that
within an individual, FL cells exhibit a broad con-
tinuum of transcriptional states rather than being fixed
at the GC stage as was once thought [76]. Collectively,
the degree of clonal evolution and intra-patient het-
erogeneity in space and time in FL patients’ tumors
reinforces the notion that a single biopsy cannot cap-
ture such molecular diversity.

Evidence for a dormant reservoir population

There are increasing clues that FL tumors may be
propagated from a reservoir population with
‘stemness’ hallmarks such as self-renewal capacity and
ability to recapitulate the entire cell repertoire of the
whole tumor. Initial data supporting the existence of a
putative lymphoma-propagating population came
from two unique cases of donor-derived FL following
allogeneic stem cell transplantation [77,78]. In both
cases, the donor and recipient tumors shared identical
BCL2-IGH rearrangements in addition to other genetic
alterations, suggesting that lymphoma precursor cells
had been transferred from the donor to recipient at
the time of transplantation, several years before clin-
ical onset of the disease. Intriguingly, in one case,
three somatic mutations shared between the donor
and recipient were identified in both the mature
CD19þ B-cell population and the immature stem cell-
progenitor enriched (CD34þCD10-CD19-) populations
of the donor lymphocyte infusion (collected 7 years
before onset of symptomatic lymphoma), allowing
one to hypothesize that lymphoma-associated muta-
tions could occur early in the hematopoietic hierarchy.

Furthermore, the notion of FL-propagating popula-
tions is supported by genomic profiling of sequential
FL biopsies that were discussed earlier. The evolution-
ary history of these tumors can be reconstructed with
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phylogenetic trees and demonstrate that every disease
episode arises from a ‘trunk’ of shared mutations that
represents a common ancestral origin referred to in
the literature as the common precursor or progenitor
cell (CPC) [19,21,22,79].

The genetic aberrations within this putative lymph-
oma-propagating population has been inferred from
deep sequencing of bulk tumor samples, with many
cases harboring the BCL2-IGH translocation along with
mutations in the histone-modifiers, CREBBP and
KMT2D [19,21,25,69], and N-glycosylation sites [80].
There remains a lack of clarity of where exactly these
early driver events occur within the stages of B cell
development. Of note, mice with conditional Kmt2d
deletions prior to the GC stage of development, but
not after, were shown to have a profound magnitude
of transcriptional change and B-cell proliferation [27]
and analogous to these observations, loss of Crebbp in
murine hematopoietic stem and progenitor cells
results in increased incidence of B cell lymphomas
compared to Crebbp wild-type mice [81]. Whilst this
intimates that genotypes at different stages of differ-
entiation confers different tumor phenotypes, the sig-
nificance of these data in the context of human FL
tumors remains unclear. Nevertheless, the sequential
studies and prevalence of progression and transform-
ation in FL suggests that current treatment do not suf-
ficiently eradicate these CPC reservoirs and a better
understanding of these dormant and elusive popula-
tions warrants further investigation.

Can this genomic information inform
clinical practice?

With an increasing wealth of information, the next
steps are finding avenues where these can be incorpo-
rated to improve patient prognostication, disease
monitoring, identifying predictive biomarkers and
ultimately refined treatment strategies, with particular
emphasis given to high risk FL patients (Figure 2).

Patient risk stratification

Biology-based prognostic tools have been developed
using molecular information from tumor biopsies,
including the m7-FLIPI [82] and gene expression
scores [83] that aims to dichotomize patients into low
and high risk groups at diagnoses. The m7-FLIPI incor-
porates the mutation status of 7 genes (EZH2, ARID1A,
MEF2B, EP300, FOXO1, CREBBP, CARD11) with clinical
characteristics (performance status and FLIPI score) to
compute a risk score for each patient. The validity of
the m7-FLIPI score was proven in patients receiving
rituximab together with either CHOP or CVP chemo-
therapy, however retrospective analysis of samples
from the phase III GALLIUM trial (NCT01332968) [84]
showed that the m7-FLIPI was not prognostic for
patients receiving bendamustine in combination with
immunotherapy [85]. Interestingly, this analysis also
reported that EZH2 mutation status could serve as a
predictive biomarker to guide chemotherapy selection.

Figure 2. Potential clinical utility of molecular data. Biomarkers from the molecular information including genomics and transcrip-
tomics can lead to improved prognostic tools, new targets and therapies and novel ways for disease monitoring.
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EZH2-mutated patients who received CHOP/CVP with
immunotherapy had a superior progression free sur-
vival compared to those who received bendamustine
with immunotherapy. Of note, the m7-FLIPI model
was not prognostic for FL patients who received rituxi-
mab without chemotherapy [86], perhaps indicating
that the validity of such tools occurs within the con-
fines of specific treatment approaches. Huet and col-
leagues showed that a prognostic model derived from
the expression profile of 23 genes can also risk stratify
FL patients, although needs prospective validation
[83]. The position of these prognostic tools in inform-
ing clinical decision making is uncertain especially as
treatment algorithms continue to evolve. Presently,
each of these tools rely on molecular information from
the diagnostic tumors alone and may lack the true
precision in predicting the continued tumor evolution
and heterogeneity seen in progressing FL.

Disease monitoring

An emerging area is molecular subtyping and disease
monitoring of circulating tumor DNA (ctDNA) from
liquid biopsies. As ctDNA is released into the blood
from multiple tumor sites, it may better reflect intra-
patient tumoral heterogeneity [87], providing a better
assessment of genomic landscape at diagnosis and
enable early detection of progression [88].
Delfau–Larue et al demonstrated that ctDNA is prog-
nostic in FL and correlated with total metabolic tumor
volume [89]. Pretreatment and reduction of ctDNA lev-
els after the first two cycles of treatment is prognostic
in DLBCL [90]. As such, the value of ctDNA in lymph-
oma monitoring is currently under evaluation and will
require standardization and prospective validation
before incorporation into routine clinical practice.

New ‘actionable’ targets

Better understanding of the genomic basis of FL
opens up the potential characteristics that are
‘actionable’ and therapeutically targeted. As epigenetic
changes are reversible, drugs targeting the epigenome
could be effective in patients carrying these muta-
tions. Activating EZH2 mutations are an attractive
therapeutic target in EZH2-mutated lymphomas.
Potent small-molecule EZH2 inhibitors have been
developed which decrease the aberrant global
H3K27me3 levels due to EZH2 mutations [91–93]. In a
phase II study, relapsed/refractory FL patients with
EZH2-mutated tumors treated with the EZH2 inhibitor,
tazemetostat (Tazverik) had superior overall response

rates compared with wild-type EZH2 patients (ORR:
69% vs 35% respectively) and was well tolerated with
a low incidence of treatment-related adverse events
[94]. Recently, Ennishi and colleagues demonstrated
that EZH2-mutant GCB DLBCLs have significantly lower
expression of antigen presentation molecules.
Tazemetostat restored MHC expression and increased
T-cell infiltration in EZH2-mutant cell lines suggesting
that epigenetic therapies could also indirectly modu-
late antitumor immunity and exert an anti-lymphoma
effect [95]. Pan-HDAC inhibitors have shown moderate
activity in B-cell lymphomas like FL [96,97] but have
not been explored beyond early phase studies.
However, selective HDAC3 inhibitors are showing
promise as a means of abrogating the effect of
CREBBP mutations [29,31,98].

There is an increasing armory of drugs being eval-
uated in FL, especially in the relapsed- refractory set-
ting, including PI3 kinase, BCL2 inhibitors and
immunotherapies including checkpoint inhibitors and
bispecific antibodies [99–102]. One of the current chal-
lenges in managing patients with FL is determining
which patients will respond to these newer treat-
ments. The next focus must be to identify molecular
correlates that define why some patients respond to
treatments and others do not, thereby enabling us to
stratify who will benefit most from specific therapies.
Pharmacologically targeting a single genetic aberra-
tion may ultimately lead to development of treat-
ment-resistant clones, therefore combination therapies
to target the multiple vulnerabilities of the tumor will
be needed to stave off resistance. Finally, if it is
believed that the CPC is the root of the disease events
in FL, a hypothetical strategy would be to identify
drugs that target the specific vulnerabilities of this res-
ervoir population as a means of eradicating this
tumor-replenishing reservoir.

Conclusion

Our understanding of FL genomics, heterogeneity and
evolution continue to shed light on the pathogenesis
of this lymphoma. These observations open up new
questions: why do FL tumors appear so dependent on
epigenetic dysregulation, can it be easily reversed,
what are the characteristics of the reservoir popula-
tions, where do they reside, can they be targeted and
can we learn lessons from early stage FL that seem
mostly ‘cured’ with radiotherapy. Careful research is
now required to understand the contributions of the
various genetic events in FL and the interplay with
other features such as host-tumor immunity and the
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epigenetic landscape to determine how they shape
these tumors. How best we deploy and maximize this
new-found and evolving biological knowledge into
clinical practice and move toward more precision-
based approaches, especially for the underserved FL
populations, will likely require a change in the status
quo and more innovative biology-guided clinical
trial designs.
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