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Abstract

The determination of the time at which an event may take place in the future

is a well-studied problem in a number of science and engineering disciplines.

Indeed, for more than fifty years, researchers have tried to establish adequate

methods to characterize the behaviour of dynamic systems in time and imple-

ment predictive decision-making policies. Most of these efforts intend to model

the evolution in time of nonlinear dynamic systems in terms of stochastic pro-

cesses; while defining the occurrence of events in terms of first-passage time

problems with thresholds that could be either deterministic or probabilistic in

nature. The random variable associated with the occurrence of such events has

been determined in closed-form for a variety of specific continuous-time diffusion

models, being most of the available literature motivated by physical phenomena.

Unfortunately, literature is quite limited in terms of rigorous studies related to

discrete-time stochastic processes, despite the tremendous amount of digital in-

formation that is currently being collected worldwide. In this regard, this article

provides a mathematically rigorous formalization for the problem of computing

the probability of occurrence of uncertain future events in both discrete- and
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continuous-time stochastic processes, by extending the notion of thresholds in

first-passage time problems to a fully probabilistic notion of “uncertain events”

and “uncertain hazard zones”. We focus on discrete-time applications by show-

ing how to compute those probability measures and validate the proposed frame-

work by comparing to the results obtained with Monte Carlo simulations; all

motivated by the problem of fatigue crack growth prognosis.

Keywords: First-hitting time, First-passage time, Time of Failure probability,

Remaining useful life, Fatigue crack prognosis

1. Introduction1

One of the motivations behind the use of mathematical models to character-2

ize the evolution in time of dynamic systems is to provide the means to predict3

and anticipate the occurrence of possibly critical future events. Many different4

mathematical frameworks can be used for this purpose, and the “best” choice for5

a model structure will largely depend on the specific application domain. Dy-6

namic models including an explicit characterization of uncertainty sources (e.g.,7

those that include stochastic equations) are particularly suitable to quantify8

the risk associated with the occurrence of events, since they provide a rigorous9

mathematical framework for the computation of probability measures. In this10

context, the conditions that define the occurrence of events have been typi-11

cally defined in terms of a “threshold”, so that the event of interest is always12

triggered when a scalar function of the system states reaches this threshold for13

the first time. Naturally, this implies the assumption that the requirements14

needed to trigger the occurrence of events can always be represented by a de-15

terministic function of the system condition. As the system condition randomly16

evolves in time (i.e., the condition indicator is a stochastic process), a proba-17

bility distribution for the threshold first hitting time is therefore induced: the18

First-Passage Time (FPT) [1–4] or First-Hitting Time (FHT) [5, 6] probability19

distribution. On the one hand, this concept is equivalent to duration models20

[7, 8] and, although understood in a different context, it is also analogous to21
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survival probability in statistics [9–11]. On the other hand, in the engineering22

discipline of Prognostics and Health Management (PHM) these concepts are re-23

lated to the Remaining Useful Life (RUL), End-of-Life (EoL), Time-of-Failure24

(ToF) and Time-to-Failure (TtF) probability distributions [12–14].25

Efforts on finding analytical expressions for FPT probability distributions26

have been carried out on many disciplines and application domains such as in27

chemistry [15, 16], physics [17, 18], biology [19, 20], neurobiology [21, 22], epi-28

demiology [23], psychology [24], finance [25, 26], economy [27, 28], reliability29

theory [29, 30], among others [1, 2]. Nonetheless, it is important to emphasize30

the fact that most of these research efforts have focused on continuous-time31

[31–37], rather than discrete-time systems [27, 38–40] (except the case of au-32

toregressive models [39, 41–48]). In continuous-time systems, the FPT proba-33

bility distribution constitutes the solution to particular Stochastic Differential34

Equation (SDE) with boundary conditions, which is typically solved using trans-35

formations [49–51] or on eigenfunction expansions [32, 50] (most of the times36

numerically approximated). Derivations of direct closed-form expressions are37

constrained to just a few standard cases related to Brownian motion, like in38

[52], and some other direct approximations [53–65]. Although it may be nat-39

ural to think that events occur when some threshold or region is reached by a40

variable (or condition indicator) that is evolving in time, in some cases it is not41

straightforward to determine an appropriate value for this threshold. In this42

regard, and to the best of our knowledge, just a handful of contributions have43

aimed at incorporating the notion of random thresholds [66–71] (and solely for44

very specific types of stochastic processes).45

1.1. Failure prognosis in the discipline of Prognostics and Health Management46

Fundamental problems of interest in the modern engineering discipline of47

PHM are, on the one hand, the implementations of Fault Detection and Diag-48

nostics (FDD) schemes and, on the other hand, the prediction of catastrophic49

system failures (i.e., failure prognosis). In this regard, it is noteworthy that50

a clear distinction should be made between the concepts of “faults” (abnor-51
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mal conditions in which the systems is still operative) and catastrophic failures52

(which imply the total inoperatibility of a system), as it is indicated in recent53

and comprehensive surveys on FDD and failure prognostic approaches [72]. The54

concept of hazard zone [73] arose as an extension to the typical threshold stand-55

point found in FDD schemes by defining a likelihood over the state-space in56

regions suggesting faulty conditions. In [74, 75], there was an attempt to pro-57

vide a more general insight, but it was restricted to Markov processes. Also,58

there was an underlying hypothesis of statistical independence in the proposed59

probability measures; although these measures have still proven to be useful to60

define a functional cost criterion for prognostic algorithm design [76]. More-61

over, despite the fact that hazard zones are well known and accepted in the62

PHM community [13], the current state-of-the-art formalization of failure prog-63

nosis problem [77, 78] still defines failure events with the classical deterministic64

threshold approach, is restricted to events over Markov processes, lacks of math-65

ematical demonstrations, and has led to inconsistencies when computing FPT66

probability distributions with methods different from those simulating complete67

state trajectories of systems [74].68

1.2. Uncertainty characterization in Reliability-Based Optimization69

The discipline of Reliability Analysis has been a precursor to PHM regarding70

the study of risks associated with the design and operation of engineering sys-71

tems. Particularly, the contribution of Reliability-Based Optimization (RBO)72

[79–82] to this specific aspect is noteworthy. It is only natural, then, to scruti-73

nize how events (or failures) have been defined in the specific context of RBO74

and the manner in which the concept of uncertainty have been incorporated75

into these definitions. As it will be shown below, RBO corresponds to a good76

example for the notion of thresholds-triggered events, even though the value77

associated with these thresholds might be random in nature and, thus, endowed78

with probability distributions.79

RBO defines an optimization problem for the design of engineering systems

under uncertainty. This problem can be formulated in different ways, although
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minimization of expected life time costs, and particularly corrective maintenance

costs, is particularly relevant. Indeed, without loss of generality, the RBO

problem can be formulated as [81]:

min
z∈Ωz

E{C(z,Φ)}

s.t. hi(z) ≤0 , i = 1, . . . , nC (1)

Pj(z) ≤P tolj , j = 1, . . . , nP ,

where the objective function is the expectation of a cost C(·), which depends on

the vector z (design variables) and a random vector Φ (uncertain parameters).

The functions hi(·) represent constraints to the problem, and Pj(·) denotes the

probability of occurrence of a j-th event. Consequently,

Pj(z) = P(gj(z,Φ) ≤ 0) =

∫
{φ∈Ωφ:gj(z,φ)≤0}

p(φ|z)dφ, (2)

where p(φ|z) is the joint probability density function of the random vector of

uncertain parameters Φ. The function

gj(z,Φ) = Bj − rj(z,Φ) (3)

is a performance function associated with the occurrence of a certain event.

The function rj(z,Φ) characterizes the response of the system (i.e., demand),

whereas Bj corresponds to a –possibly random– threshold of maximum toler-

ance (i.e., capacity). Therefore, an event in RBO occurs if gj(z,Φ) ≤ 0 or,

equivalently, if Bj ≤ rj(z,Φ). As a result, if Bj is a random variable, the

probability of occurrence for the j-th event is given by:

Pj(z) = P(gj(z,Φ) ≤ 0) (4)

= P(Bj ≤ rj(z,Φ)) (5)

=

∫
bj∈ΩBj

P(bj ≤ rj(z,Φ)|bj)p(bj)dbj , (6)

where p(bj) denotes a probability density function associated with a threshold80

of maximum tolerance bj . As Eq. (6) indicates, the occurrence of events in81

RBO are triggered by situations in which a threshold is violated, although it is82

allowed to characterize the values of these thresholds using random variables.83
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1.3. Structure of the article and main contributions84

In this paper we provide a mathematically rigorous formalization for the85

time of occurrence of uncertain future events, characterized over both discrete-86

and continuous-time stochastic processes by extending the classical determin-87

istic threshold crossing standpoint to a probabilistic notion of uncertain event,88

equivalent to that of uncertain hazard zone in PHM [73]. Particularly, Section 289

presents explicit semi-closed expressions for the associated probability measures,90

which are derived and demonstrated using Probability Theory. In addition to91

these theoretical contributions, in Section 3 we present a friendly explanation92

of the practical implications related to these theoretical concepts, using for93

this purpose a case study based on the problem of crack growth prognostics94

(discrete-time). Results obtained using the proposed semi-closed expressions95

for the probability of failure are validated and compared with those obtained96

by using Monte Carlo simulations. Finally, in Section 4 we summarize the main97

conclusions of this research effort.98

2. Occurrence Probability of Uncertain Future Events99

Let us consider a probability space (Ω,F ,P) and a measurable space (X,Σ).100

Also, let X : T ∪ {0} × Ω→ X, T ∈ {N,R+}, be a stochastic process; and FXτ101

denote the respective probability measure in (X,Σ) induced by Xτ , τ ∈ T.102

Definition 1. [Uncertain Event Process & Likelihood] Let E denote an

event of interest. An uncertain event process is defined as a function E :

T× X→ {E , Ec} such that

P(Eτ = E) =

∫
Ω

P(Eτ = E , Xτ (ω))dP(ω) (7)

=

∫
Xτ

P(Eτ = E|xτ )dFXτ (xτ ), ∀τ ∈ T. (8)

Additionally, we define an uncertain event likelihood function as P(Eτ =103

E|x) : T× X→ [0, 1].104
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Thus, an event process {Eτ}τ∈T describes a random variable evolving in

time associated with the occurrence of an uncertain event whose statistics are

subjected only to those of a stochastic process {Xτ}τ∈T∪{0} evaluated at the

same time instant. Indeed, given i, j ∈ T, i 6= j, we have

P({Ei = E}, {Ej = E}|{Xτ}τ∈T) = P(Ei = E|Xi)P(Ej = E|Xj). (9)

In general, Eτ is independent of any other variable as long as it is conditioned105

on Xτ , ∀τ ∈ T. This is a quite important property that will be used later.106

Remark 1. [Time-variant definition of uncertain events] The time in-107

dex τ of the binary random variable Eτ , in the definition of uncertain event108

likelihood functions (see Definition 1), denotes a time dependence associated109

with the concept of uncertain event. For this reason, the definition of the prob-110

ability P(Eτ = E|x) uses “x” as conditioning argument instead of “xτ”; i.e.,111

the system state “x” solely corresponds to an argument in the time-dependant112

likelihood function. In other words, the time dependency of the uncertain event113

likelihood function determines the manner in which the definition of the event of114

interest changes over time (see Section 3.2 for an example of a time-invariant115

definition of uncertain event likelihood function).116

Remark 2. [Particular case: Threshold] According to Definition 1, deter-

mining P(Eτ = E|x) as a function of x ∈ X corresponds exactly to a probabilistic

description of the occurrence of an uncertain event E. By assuming X = R, for

example, and defining P(Eτ = E|x) = 1XE (x), with XE = {x ∈ R : x > c, c ∈ R},

we get the classical threshold crossing event setting studied so far in the litera-

ture, where Eτ (x) conditional to a fixed x ∈ R is no longer a random variable:

Eτ (x) =

E , x ∈ XE

Ec, ∼ .
(10)

Remark 3. [Hazard zone] The uncertain event likelihood function P(Eτ =117

E|x) as a function of x ∈ X is exactly what is understood as hazard zone [73]118

in the discipline of PHM.119
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Now, let us introduce a formal definition for the first time of occurrence of120

an uncertain event.121

Definition 2. [First Event Time] Let {Xτ}τ∈T∪{0} be a stochastic process

and {Eτ}τ∈T be an event process, respectively. The first time of occurrence of

an event E after a time instant τp ∈ T ∪ {0} is defined as

τE(τp) := inf{τ ∈ T : {τ > τp} ∧ {Eτ = E}}. (11)

With these few definitions, the probability distribution associated to τE can122

be mathematically formalized in a general way for both discrete- and continuous-123

time stochastic processes as follows.124

2.1. Discrete-Time Stochastic Processes125

Let {Xk}k∈N∪{0} be a stochastic process and {Ek}k∈N be an uncertain event

process. The probability mass function associated to τE = τE(kp), kp ∈ N ∪

{0}, can be obtained using an expression with the same structure of survival

probability, as shown below:

P(τE = k) := P
(
{Ek = E}, {Ej = Ec}k−1

j=kp

)
(12)

= P
(
Ek = E

∣∣{Ej = Ec}k−1
j=kp

)
P
(
{Ej = Ec}k−1

j=kp

)
(13)

...

= P
(
Ek = E

∣∣{Ej = Ec}k−1
j=kp

) k−1∏
j=kp+1

P
(
Ej = Ec

∣∣{Ei = Ec}j−1
i=kp

)
���

���
�:1

P
(
Ekp = Ec

)
(14)

= P (Ek = E|τE ≥ k)

k−1∏
j=kp+1

P (Ej = Ec|τE ≥ j) (15)

Alternatively, there is a recursive way to express P(τE = k) according to

[27], which is developed below but under the generalized notion of uncertain

event presented in Definition 1. If an event occurs at time k, it implies that

kp < τE ≤ k, and by the Law of Total Probability it can be obtained

P(Ek = E) =

k∑
j=kp+1

P(Ek = E|τE = j)P(τE = j) (16)
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= P(Ek = E|τE = k)P(τE = k) +

k−1∑
j=kp+1

P(Ek = E|τE = j)P(τE = j)

(17)

Thus, provided P(Ek = E|τE = k) = 1, it yields

P(τE = k) = P(Ek = E)−
k−1∑

j=kp+1

P(Ek = E|τE = j)P(τE = j) (18)

Let us prove now the equivalence of both probability distributions presented126

above with the following lemma.127

Lemma 1. Let {Xk}k∈N∪{0} be a stochastic process and {Ek}k∈N be an event

process, respectively. Let also τE = τE(kp), kp ∈ N ∪ {0}. The mapping P(τE =

·) : N→ [0, 1] can be either defined as

P(τE = k) : = P (Ek = E|τE ≥ k)

k−1∏
j=kp+1

P (Ej = Ec|τE ≥ j) (19)

as well as

P(τE = k) : = P(Ek = E)−
k−1∑

j=kp+1

P(Ek = E|τE = j)P(τE = j). (20)

Proof.128

Using Eq. (20), Eq. (19) can be obtained as shown below

P(τE = k) = P(Ek = E)−
k−1∑

j=kp+1

P(Ek = E|τE = j)P(τE = j) (21)

= P(Ek = E)−
k−1∑

j=kp+1

P(τE = j|Ek = E)P(Ek = E) (22)

= P(Ek = E)

1−
k−1∑

j=kp+1

P(τE = j|Ek = E)

 (23)

= P(Ek = E) (1− P(τE < k|Ek = E)) (24)

= P(Ek = E)P(τE ≥ k|Ek = E) (25)

= P(Ek = E|τE ≥ k)P(τE ≥ k) (26)
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However, note that

P(τE ≥ k) = 1− P(τE < k) (27)

= 1− P(τE < k − 1)− P(τE = k − 1) (28)

= P(τE ≥ k − 1)− P(τE = k − 1) (29)

= P
(
{Ej = Ec}k−2

j=kp

)
− P

(
{Ek−1 = E}, {Ej = Ec}k−2

j=kp

)
(30)

= P
(
{Ej = Ec}k−2

j=kp

)
− P

(
Ek−1 = E

∣∣{Ej = Ec}k−2
j=kp

)
P
(
{Ej = Ec}k−2

j=kp

)
(31)

= P
(
{Ej = Ec}k−2

j=kp

)(
1− P

(
Ek−1 = E

∣∣{Ej = Ec}k−2
j=kp

))
(32)

= P(τE ≥ k − 1)P
(
Ek−1 = Ec

∣∣τE ≥ k − 1
)

(33)

By iterating this result, it yields

P(τE ≥ k) =

k−1∏
j=kp+1

P (Ej = Ec|τE ≥ j) (34)

129

Before presenting the previous results in a formal theorem, please note the

following. Since each Ek depends on Xk, using the property illustrated with

Eq. (9) and the concept of uncertain event likelihood function introduced in

Definition 1, it can be obtained:

P(τE = k) = P (Ek = E|τE ≥ k)

k−1∏
j=kp+1

P (Ej = Ec|τE ≥ j) (35)

=

∫
Xkp+1:k

P
(
Ek = E|{τE ≥ k}, xkp+1:k

) k−1∏
j=kp+1

P
(
Ej = Ec|{τE ≥ j}, xkp+1:k

)
dFXkp+1:k

(xkp+1:k)

(36)

=

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

P (Ej = Ec|xj) dFXkp+1:k
(xkp+1:k) (37)

=

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

(
1− P (Ej = E|xj)

)
dFXkp+1:k

(xkp+1:k). (38)

This expression is used later in Section 3.2 to implement a procedure to130

compute these probabilities based on numeric methods.131
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Theorem 1. [First Event Time in Stochastic Processes] Let {Xk}k∈N∪{0}
be a stochastic process and {Ek}k∈N be an uncertain event process, respectively.

If the first time of occurrence of the event E, τE = τE(kp), with kp ∈ N∪ {0}, is

such that τE < +∞, P− a.s., then the mapping P(τE = ·) : N→ [0, 1] exists and

is well-defined in terms of its uncertain event likelihood function as:

P(τE = k) :=

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

(
1− P (Ej = E|xj)

)
dFXkp+1:k

(xkp+1:k).

(39)

Therefore,

PE(A) =
∑
k∈A

P(τE = k), ∀A ∈ 2N, (40)

is a probability measure that defines the probability space (N, 2N,PE). Indeed,132

the following conditions hold:133

1) PE(N) = 1.134

2) 0 ≤ PE(A) ≤ 1, ∀A ∈ 2N.135

3) PE(∪k∈NAk) =
∑
k∈N PE(Ak), ∀{Ak ∈ 2N}k∈N, with Ai ∩Aj = φ, ∀i 6= j.136

Proof.137

1) Let us define {Ak}k∈N, Ak = {1, . . . , k}, such that Ak ↗ N

PE(Ak) =

k∑
j=1

P(τE = j) = P(τE < k + 1) (41)

⇒ lim
k→+∞

PE(Ak) = lim
k→+∞

P(τE < k + 1) (42)

⇒ PE(N) = P(τE < +∞) = 1, (43)

due to the continuity property of probability measures and because τE <138

+∞, P− a.s.139

2) By definition, because

0 ≤ P(τE = k), ∀k ∈ N ⇒ 0 ≤ PE(A), ∀A ∈ 2N, (44)
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and, on the other hand,

A ⊆ N ⇒
∑
k∈A

P(τE = k) ≤
∑
k∈N

P(τE = k) (45)

⇔ PE(A) ≤ PE(N) = 1, ∀A ∈ 2N. (46)

3) Let {Ak ∈ 2N}k∈N such that Ai ∩Aj = φ, ∀i 6= j. By definition,

PE (∪k∈NAk) =
∑

j∈∪k∈NAk

P(τE = j) (47)

=
∑
k∈N

∑
j∈Ak

P(τE = j) (48)

=
∑
k∈N

PE(Ak) (49)

140

2.2. Continuous-Time Stochastic Processes141

Let {Xt}t∈R+∪{0} be a stochastic process and {Et}t∈R+
be an uncertain event

process. By definition, if there was a probability density function associated to

τE = τE(tp), tp ∈ R+ ∪ {0}, then it could be obtained using an expression with

the same structure of survival probability, as shown below:

p(τE = t) := P
(
{Et = E}, {Eτ = Ec}τ∈(tp,t)

)
(50)

= P ({Et = E}, {τE ≥ t}) (51)

= P (Et = E|τE ≥ t)P (τE ≥ t) (52)

with P(τE ≥ t) = 1 − P(τE < t). Let B(R+) and λ = λ(R+) denote the Borel

σ-algebra and Lebesgue measure in R+, respectively. Let also FτE (t) = P(τE ≤

t) be a probability measure in the measurable space (R+,B(R+)) such that

FτE << λ. According to the Theorem of Radon-Nikodym, there is a probability

density function p(τE = t) :=
dFτE
dλ (t), t ∈ R+, such that

P(τE < t) =

∫
(tp,t)

dFτE (τ) (53)

=

∫
(tp,t)

p(τE = τ)dτ (54)
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=

∫
(tp,t)

P (Eτ = E|τE ≥ τ)P (τE ≥ τ) dτ (55)

Due to the existence of the aforementioned probability density function,

P(τE ≥ t) must be differentiable

⇒ d

dt
P(τE ≥ t) = −P (Et = E|τE ≥ t)P (τE ≥ t) , (56)

because P
(
Etp = E|τE ≥ tp

)
= P

(
Etp = E

)
= 0 (at the beginning it was stated

that τE > tp). Integrating over time,

−
∫

(tp,t)

P (Eτ = E|τE ≥ τ) dτ =

∫
(tp,t)

1

P (τE ≥ τ)

d

dτ
P (τE ≥ τ) dτ (57)

=

∫
(tp,t)

d

dτ
logP (τE ≥ τ) dτ (58)

= logP (τE ≥ t)−���
���

�:0
logP (τE ≥ tp) (59)

Thus,

⇒ P (τE ≥ t) = e
−

∫ t
tp

P(Eτ=E|τE≥τ)dτ
. (60)

Before presenting the previous results in a formal theorem, please note the

following. Since each Et depends on Xt, using the property illustrated with

Eq. (9) and the concept of uncertain event likelihood function introduced in

Definition 1, it can be obtained:

p(τE = t) = P (Et = E|τE ≥ t) e
−

∫ t
tp

P(Eτ=E|τE≥τ)dτ

=

∫
X(tp,t]

P
(
Et = E|{τE ≥ t}, x(tp,t]

)
e
−

∫ t
tp

P(Eτ=E|{τE≥τ},x(tp,t])dτdFX(tp,t]
(x(tp,t])

(61)

=

∫
X(tp,t]

P (Et = E|xt) e
−

∫ t
tp

P(Eτ=E|xτ )dτ
dFX(tp,t]

(x(tp,t]). (62)

Theorem 2. [First Event Time in Stochastic Processes] Let B(R+) and

λ = λ(R+) denote the Borel σ-algebra and Lebesgue measure in R+, respectively.

Let also {Xt}t∈R+∪{0} be a stochastic process and {Et}t∈R+ be an uncertain

event process. If the first time of occurrence of the event E, τE = τE(tp), with
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tp ∈ R+∪{0}, is such that τE < +∞, P−a.s., and FτE << λ, then the mapping

p(τE = ·) : R+ → [0, 1] exists and is well-defined in terms of its uncertain event

likelihood function as

P(τE = t) :=

∫
X(tp,t]

P (Et = E|xt) e
−

∫ t
tp

P(Eτ=E|xτ )dτ
dFX(tp,t]

(x(tp,t]). (63)

Therefore,

PE(B) =

∫
B

dFτE (τ) =

∫
B

p(τE = τ)dτ, ∀B ∈ B(R+), (64)

is a probability measure defining a probability space (R+,B(R+),PE). Indeed,142

the following conditions hold:143

1) PE(R+) = 1.144

2) 0 ≤ PE(B) ≤ 1, ∀B ∈ B(R+).145

3) PE(∪k∈NBk) =
∑
k∈N PE(Bk), ∀{Bk ∈ B(R+)}k∈N, with Bi ∩ Bj = φ,146

∀i 6= j.147

Proof.148

1) Let us define Bt = (0, t), t ∈ R+, such that Bt ↗ R+

PE(Bt) =

∫
(0,t)

p(τE = τ)dτ = P(τE < t) (65)

⇒ lim
t→+∞

PE(Bt) = lim
t→+∞

P(τE < t) (66)

⇒ PE(R+) = P(τE < +∞) = 1, (67)

due to the continuity property of probability measures and because τE <149

+∞, P− a.s.150

2) By definition, because

0 ≤ P(τE = t), ∀t ∈ R+ ⇒ 0 ≤ PE(B), ∀B ∈ B(R+), (68)

and, on the other hand,

B ⊆ R+ ⇒
∫
B

p(τE = τ)dτ ≤
∫
R+

p(τE = τ)dτ (69)

⇔ PE(B) ≤ PE(R+) = 1, ∀B ∈ B(R+). (70)
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3) Let {Bk ∈ B(R+)}k∈N such that Bi ∩Bj = φ, ∀i 6= j. By definition,

PE(∪k∈NBk) =

∫
∪k∈NBk

p(τE = τ)dτ (71)

=
∑
k∈N

∫
Bk

p(τE = τ)dτ (72)

=
∑
k∈N

PE(Bk) (73)

151

3. Uncertain Event Prognosis in Practice152

This section aims at facilitating the transition between theory and practice153

by providing a friendly interpretation of theorems that constitute the true con-154

tribution of this article. In addition, a case study inspired on the problem of155

fatigue crack growth is used to illustrate the application of these concepts in156

failure prognostics.157

3.1. A Friendly Interpretation of Theorems 1 and 2158

Since theoretical implications of Theorems 1 and 2 are completely analo-159

gous, we will focus on providing adequate interpretations for Theorem 1, which160

characterizes the probability of future events in discrete-time dynamic systems.161

For this purpose, let us assume that it is intended to perform critical event

prognostics at a time kp. The first element to consider is a proper representation

for the dynamic system that characterizes the future evolution of the condition

indicator of interest. This representation corresponds to the stochastic process

{Xk}k∈N∪{0}, where the variable k is a time index (seconds, minutes, hours,

cycles of operation) that takes values in the set of natural numbers. System

dynamics in typical real-world applications are commonly characterised using

Markov processes (i.e. future is independent of the past, conditional on the

present), which leads to the state-space model:

xk+1 = f(xk, uk, ωk), (74)

15



where uk denotes an exogenous system input and ωk is a random vector that162

accounts for model uncertainty, a.k.a. the process noise. It is important to163

note, however, that the Markovian assumption was used in this section solely164

for illustrative purposes since, as can be verified in Theorems 1 and 2, there165

are no restrictions on the stochastic process that could be used to describe the166

dynamics of the system.167

Figure 1: Illustration of statistical dependency relationships in the dynamic system described

by Eq. (74). The statistics of τE depend on {Ek}k>kp , and this dependency is clearly

expressed in Eq. (12) (or Eq. (50) in the case of continuous-time systems).

The next step that is required to use Theorem 1 is to characterize the uncer-

tain event process {Ek}k∈N. Naturally, this characterization depends on which

event E is sought to be prognosticated. As it is illustrated in Fig. 1, at each

future time instant k, k > kp, the binary random variable Ek indicates whether

the event E has occurred or not, solely depending on the system condition in-

dicator Xk. This is one of the main concerns that should be settled by the

designer of the prognostic algorithm: How can the dependency of Ek on Xk be

determined? What does E has to do with this dependency? It is important to

remark that the event E must be, in the first place, qualitatively defined; for

example:

E = “Critical system failure”.

The latter would imply that the occurrence of the E at a time k corresponds

16



to a binary random variable Ek. This variable, in contrast to E , must be defined

in terms of a quantitative description given by an uncertain event likelihood

function P(Ek = E|x) for each k > kp. Following the aforementioned example,

if the system state were to be a one-dimensional fault indicator (scalar value),

“Critical system failure” might be declared once the system state reaches an

upper threshold x̄. With this definition, we have

P(Ek = E|x) = P(Ek = “Critical system failure”|x) =

1, x ≥ x̄

0, ∼ .
(75)

However, one may wonder what happens if there this upper threshold is not168

absolutely and accurately known? In other words, what happens if the upper169

threshold is “uncertain”? The definition of uncertain event likelihood function170

allows us to incorporate uncertainty in the widely accepted “threshold” concept,171

leading to the notion of “uncertain events”. Please refer to Remark 2 and172

Section 3.2 for more insights on this line of thought.173

Now, the final aim of the prognostic algorithm is to characterize the proba-

bility distribution of the random variable τE , which denotes the first occurrence

time of the event E in the future. Having defined the uncertain event like-

lihood function P(Ek = E|x) for each k > kp, it is straightforward to apply

Eq. (39) of Theorem 1 (or Eq. (63) of Theorem 2 in the continuous time case)

to probabilistically characterize τE :

P(τE = k) =

∫
Xkp+1:k

P (Ek = E|xk)
k−1∏

j=kp+1

(
1−P (Ej = E|xj)

)
dFXkp+1:k

(xkp+1:k)

(76)

This expression, however, can often be rewritten in terms the probability

density p(xkp+1:k) as:

P(τE = k) =

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

(
1−P (Ej = E|xj)

)
p(xkp+1:k)dxkp+1:k.

(77)

The use of the infinitesimal term “dFXkp+1:k
(xkp+1:k)” is a mathematical174

technicality due to the use of Lebesgue integration, since it is possible to rewrite175
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P(τE = k) in terms of Riemann integration, except when the probability density176

p(xkp+1:k) does not exist, which is rather rare in practice.177

Finally, it is noteworthy that P(τE = ·) exists only if τE < +∞, P− a.s. The178

latter implies that “the first event E must occur in a finite time k, k > kp, almost179

surely or with probability 1 ”. This requirement in practice can be understood180

as “the event E must occur at some future time”. If this condition does not181

hold, P(τE = ·) could still exist, but without fulfilling the axiom of probability182 ∑
k∈N P(τE = k) = 1.183

3.2. Application to Fatigue Crack Prognosis184

The theoretical contributions presented in Section 2 include their corre-185

sponding mathematical demonstrations and thus, in our humble opinion, do186

not need further validation. Nonetheless, in this section the authors intend to187

illustrate how these abstract mathematical statements can be used to solve a188

practical engineering application: the characterization of Time-of-Failure prob-189

ability distributions in the context of failure prognostics problem; and more190

specifically, the problem of fatigue crack growth prognosis. For this purpose,191

a simplified stochastic degradation model is used to describe the growth of a192

fatigue crack in a test coupon as a function of loading cycles. The event E of193

interest corresponds to critical failures that may occur in mechanical systems194

with components that undergo fatigue crack processes, though it may not be195

clear that a specific crack lengths could trigger these events. The problem is196

addressed using the concept of uncertain event and is compared to the case of197

classical threshold-crossing-based events (i.e., critical failure always occurs when198

the crack length exceeds a known specific value). In all these cases, probability199

distributions for the first time of occurrence of the event are shown so as to200

develop a further discussion.201

3.2.1. Crack Growth Model202

In order to illustrate both the problem and the implementation of the concept203

of uncertain events, we have chosen to use the simplified discrete-time crack204
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growth model presented in [83]. It is of paramount importance to emphasize205

the fact that the aim of this application example is to show how the presented206

conceptual contributions can be applied, rather than contributing to the state-207

of-the-art in terms of topic of crack length prognostics. More information about208

the specifics of fatigue crack growth in alloy test coupons can be found in [83].209

According to the mathematical notation introduced in Section 2, the crack

length can be described by a stochastic process {Xk}k∈N∪{0}. Note that the

indexing variable k usually denotes time, and more specifically in this case, it

denotes a cycle number. The material undergoes compression and decompres-

sion instances. In addition, and provided that a length can only adopt positive

values, we have X = R+ and Σ = B(R+) (Borel sets in R+). The crack length

is described in arbitrary units by the following discrete-time model:

xk+1 = xk + eωkC(β
√
xk)n, (78)

where ωk ∼ N (0, σ2
w) is a random variable depicting white Gaussian noise, and210

C, β and n are fixed constants. All the model parameters values are summarized211

in Table 1.212

C β n σ2
w

Values 0.005 1 1.3 2.98

Table 1: Model parameters and their values.

3.2.2. Uncertain Event Definition213

As stated in Definition 1, and assuming the existence of a probability density

that characterizes the crack length at each cycle given by the model described

in Eq. (78), the statistics of an uncertain event E (in this case, critical failures

in mechanical systems with components that undergo fatigue crack processes)

are determined by the definition of P(Ek = E|x) (see Eq. (8)), which describes

how likely is that event E occurs at a particular time instant k given that the

crack length is x. Without loss of generality, let us assume that the critical

failure events of interest can be associated with crack lengths of approximately
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x̄ = 100. Thus, we may define the uncertain event likelihood function

P(Ek = E|x) =
1

1 + e−α(x−x̄)
, α > 0, ∀k ∈ N. (79)

to provide a characterization of the uncertainty related to the occurrence of

critical failure events in terms of the condition of the test coupon. Moreover, by

using this critical failure likelihood, it is still possible to go back to a threshold-

based failure characterization (see Remark 2) by simply studying the limit

lim
α→+∞

1

1 + e−α(x−x̄)
= 1{x∈R:x>x̄}(x). (80)

Remark 4. [Example of time-invariant uncertain event likelihood func-214

tion]215

Eq. (79) corresponds to an example of a time-invariant uncertain event likeli-216

hood function P(Ek = E|x) (see Remark 1).217

Remark 5. [How to define the uncertain event likelihood function?]218

The uncertain event likelihood function that characterizes the uncertainty of219

the failure event can be built either using post-mortem statistical analysis or220

expert knowledge. The post-mortem statistical analysis requires the availability221

of run-to-failure data that could be used to reconstruct the trajectory of system222

condition indicators prior to the failure event. Values of condition indicators223

at the recorded failure events can be used to build a non-parametric likelihood224

function (in other words, to build an empirical joint probability mass function for225

condition indicators at the moment in which the system failed). Alternatively,226

it is always possible to adjust the parameters of a known function to fit the227

data. The use of expert knowledge would give rise to an epistemic source of228

uncertainty, where the uncertain event likelihood function is adjusted according229

to an expert’s criteria. Bayesian approaches can always be used to fuse prior230

expert knowledge with scarce run-to-failure data.231

It is important to note that the shortcomings associated with these procedures232

are equivalent to those that one would face when trying to establish a threshold233

for the failure indicator. The introduction of uncertain event prognosis, however,234
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provides a solid theoretical framework where the concept of uncertain event is235

properly recognized and characterized. Both researchers and practitioners can236

use this theoretical framework to safely explore different methods to define these237

likelihood functions according to the specific challenges they are facing.238

3.2.3. Method of Monte Carlo Simulations239

C
ra
ck
	L
en
gt
h

Cycle

Figure 2: Single realization of the discrete-time stochastic process associated to crack length

growth. The red color illustrates the magnitude of the uncertain event likelihood function

P(Ek = E|x); the greater the opacity, the greater the likelihood (see Definition 1). In contrast,

the classical approach to first event time prediction would not had shown a color hue, but an

abrupt and discontinuous change from color white to red.

The notion of uncertain event incorporates a new degree of freedom for

uncertainty characterization. In order to show how this new uncertainty source

may impact event predictions, hereby we study its effect on the probability

distribution associated to τE . Monte Carlo simulations are employed below to

perform the required computation given their capacity to calculate expectations

with arbitrary accuracy by simply increasing the number of simulations, denoted

as N ∈ N. Besides, let x
(i)
kp+1:k = {x(i)

j }kj=kp+1 denote the i-th realization of the

stochastic process simulated from cycle kp up to cycle k (see Fig. 2), described

by the crack growth model (Markov process) of Eq. (78), with i ∈ {1, . . . , N},
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N >> 1. According to Theorem 1, the probability P(τE = k), with τE = τE(kp),

can be approximated as:

P(τE = k) =

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

(
1− P (Ej = E|xj)

)
dFXkp+1:k

(xkp+1:k)

(81)

=

∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

(
1− P (Ej = E|xj)

)
p(xkp+1:k)dxkp+1:k (82)

≈
∫
Xkp+1:k

P (Ek = E|xk)

k−1∏
j=kp+1

(
1− P (Ej = E|xj)

)( 1

N

N∑
i=1

δ
x
(i)
kp+1:k

(xkp+1:k)

)
dxkp+1:k

(83)

=
1

N

N∑
i=1

P
(
Ek = E

∣∣x(i)
k

) k−1∏
j=kp+1

(
1− P

(
Ek = E

∣∣x(i)
j

))
(84)

As depicted in Fig. 2, each realization of the stochastic process describing240

the evolution of the crack growth throughout usage cycles (the i-th for exam-241

ple), determines a likelihood for the occurrence of the uncertain event (material242

futility in this case). In this example, the figure illustrates the magnitude of243

the uncertain event likelihood function of Eq. (8) in terms of an hue over the244

crack length space with colors that go from a clear white to red progressively.245

The smoothness of this changing color depends, in this case, of the parameter246

α included in Eq. (8). In order to study the impact of this parameter on the247

probability mass distribution P(τE = ·), we explore different values, which are248

shown in Table 2.249

α1 α2 α3 α4 α+∞

Values 0.1 0.3 1.0 3.3 α→ +∞

Table 2: Values considered for the parameter α in the definition of the uncertain event likeli-

hood function P(Ek = E|x) shown in Eq. (79).

For clarity purposes, Fig. 3 illustrates how the uncertain event likelihood250

function looks like for the aforementioned values for the parameter α. A special251
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case denoted by α+∞ is also considered, which corresponds to the standard252

notion of threshold crossing, highly explored in the literature taking place when253

α→ +∞ (see Eq. (80)).

Figure 3: Uncertain event likelihood P(Ek = E|x) as a function of the crack length x ∈ R+

for different values of the parameter α in Eq. (79). The parameter value α+∞ depicts the

behaviour of the function when α→ +∞ (see Eq. (80)). The less the value of the parameter

α, the higher the uncertainty about an specific crack length depicting material futility.

254
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Remark 6. [Simulation of τE by definition] Researchers within the PHM255

community often compute the probability distribution of τE by definition, using256

for this purpose Monte Carlo simulations. Assuming that system failure can be257

characterized using a deterministic threshold (in other words, assuming α+∞258

for this particular case study), this methodology would be equivalent to simulate259

N (with N being a natural number large enough to reach convergence) possible260

future trajectories of the system state to characterize the probability of failure.261

Indeed, considering the definition of τE (see Definition 2), an histogram of failure262

times can be made by simply counting the number of times that the simulated263

system state trajectories hit the failure threshold for the first time. There is a264

consensus among members of the PHM community regarding the fact that such265

histogram converges to the probability distribution of τE when N → +∞. With266

this in mind, it is possible to notice that Eq. (84) describes exactly this procedure267

when the uncertain event likelihood function P(Ek = E|x) describes a failure268

threshold (i.e. when it is an indicator function), as explained in Remark 2.269

In this regard, the semi-closed analytical expressions for P(τE = ·) provided270

in Theorems 1 and 2 of this article formalize this procedure analytically and271

furthermore, extend them to more general cases than a failure threshold, where272

there is uncertainty regarding how events are triggered.273

3.2.4. Simulation Results274

Let us consider that predictions begin at the cycle number kp = 100, at275

which an initial crack is detected and whose length is negligible (considered as276

xkp = e−10 for simulations) and, additionally, a cycle number kh = 1000 at277

which simulations are stopped. Fig. 4 shows an example of how it would look278

like to simulate one hundred random crack growth trajectories. However, the279

Monte Carlo method described in Section 3.2.3 to approximate P(τE = k) with280

k ∈ N requires the amount of simulations to be such that N → +∞, which is281

not feasible in practice, but good approximations can be obtained when N is282

a “sufficiently large” (where “sufficiently large” depends on dimension of the283

state vector, uncertainty sources, complexity of the model, among others). In284
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Figure 4: Example of 100 realizations of the crack growth model. The dashed horizontal line

depicts a crack length of around x̄ = 100 at which the material would become useless, though

there is uncertainty about it (see Section 3.2.2).

this regard, the results of performing a total amount of N = 107 Monte Carlo285

simulations for each of the α parameters explained in Section 3.2.3 are shown286

in Table 3 and Fig. 5. Higher values of N were discarded as they produce287

negligible effects on the results.288

α1 α2 α3 α4 α+∞

E{τE} 660.8835 766.3128 783.6094 786.7342 787.4333

Std{τE} 102.6699 82.0342 82.7552 82.9145 82.9521∑kh
k=kp

P(τE = k) 1.0000 0.9988 0.9970 0.9964 0.9962

Table 3: Results in terms of expected values, standard deviations and probability mass within

a cycle span between kp and kh. The information is provided for each of the values considered

for the parameter α in the definition of the uncertain event likelihood P(Ek = E|x) of Eq.

(79), which are shown in Table 2.

The probability distributions for τE depicted in Fig. 5 are quite illustrative289

regarding how uncertainty on the relationship between actual crack lengths and290

the occurrence of critical failures may be expressed in terms of τE statistics.291

As the shape of the failure probability distributions is similar to a Gaussian292

bell, the expected values and standard deviations presented in Table 3 condense293
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Figure 5: Computation of time probability distributions for the first occurrence of uncertain

future events under different definitions of uncertain event likelihood function P(Ek = E|x),

which varies according to the different values of the parameter α (see Eq. (79)) shown in

Table 2. The parameter value α+∞ depicts the behaviour of the function when α→ +∞ (see

Eq. (80)). The less the value of the parameter α, the higher the uncertainty about the cycle

at which critical cracks could lead to critical failures.

roughly all their information required to properly analyze the results.294

The current standard approach of threshold crossing found in the litera-295

ture is exactly represented by α+∞. By taking it as point of comparison, it296

is straightforward to note from the expected values that, as α decreases, the297

probability distributions of τE are shifted to left. In parallel, the standard devi-298

ations increase, spreading probabilities over a wider cycle span. This behaviour299

is naturally produced by any uncertainty source suggesting probability of earlier300

events. Indeed, the definition of uncertain event likelihood function (see Section301

3.2.2) suggests that critical failures in mechanical components are likely to oc-302

cur for crack lengths lower to x̄, which is considered as threshold in the case of303

α+∞. This means that it is probably to experience critical failures in a smaller304

amount of loading cycles, which explains the behaviour of the expected values305

in Table 3. The standard deviations, on the other hand, are obtained just as306

an outcome of incorporating a new uncertainty source in the study. Finally, the307

similar results obtained with α3, α4 and α+∞ are consistent with the fact that308

their uncertain event likelihood functions are strongly similar as well, as shown309
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in Fig. 3.310

4. Conclusion311

For more than fifty years, researchers from several disciplines have approached312

the problem of predicting the time of occurrence of events in the future. For313

this reason, they have explored this idea assuming a wide variety of types of314

stochastic process. However, the common approach has always been to trigger315

an event once a particular threshold or specific zone in a higher dimensional316

space, is reached. The underlying reason is mainly based on an aiming at317

achieving closed-form mathematical expressions. In this regard, uncertainty on318

this threshold or higher dimensional zone has been addressed just for a reduced319

quantity of stochastic processes.320

In this paper it has been introduced a new notion of uncertain event that321

generalizes the standard way of event definition for predicting its first time of322

occurrence in the future. Although this idea is not new, one of the greatest con-323

tributions presented in this paper is the formalization of this concept throughout324

a rigorous approach from Probability Theory. Moreover, the concept of hazard325

zone known in the discipline of Prognostics and Health Management has finally326

got formalized as well. On the other hand, the second –and no less important–327

contribution is to show its straightforward applicability with a simple example328

of fatigue crack growth, where practical guidelines and implications of the new329

concepts introduced have been provided and discussed.330
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