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A B S T R A C T

Dealing with confounds is an essential step in large cohort studies to address problems such as unexplained
variance and spurious correlations. UK Biobank is a powerful resource for studying associations between imaging
and non-imaging measures such as lifestyle factors and health outcomes, in part because of the large subject
numbers. However, the resulting high statistical power also raises the sensitivity to confound effects, which
therefore have to be carefully considered. In this work we describe a set of possible confounds (including non-
linear effects and interactions that researchers may wish to consider for their studies using such data). We
include descriptions of how we can estimate the confounds, and study the extent to which each of these confounds
affects the data, and the spurious correlations that may arise if they are not controlled. Finally, we discuss several
issues that future studies should consider when dealing with confounds.
1. Introduction

UK Biobank (UKB) is a rich prospective epidemiological study. The
value of this resource is its size (as of early 2020, imaging data frommore
than 40,000 subjects has been processed and released), richness, and the
possibilities it offers to combine very different types of information such
as genetics, and brain structure and function (Elliott et al., 2018). The
UKB brain imaging component has been described in Miller et al. (2016),
and the processing and quality control described in Alfaro-Almagro et al.
(2018).

Dealing with this amount of information without careful treatment of
possible confounding factors is problematic for a number of reasons:
spurious associations can be induced between pairs of otherwise inde-
pendent variables if the unconfounding is not carried out correctly (e.g.,
if the confounds were not demeaned first); the significance of real asso-
ciations can be biased, and therefore their interpretability affected;
confounding factors can be erroneously estimated, and hence regressing
uk (F. Alfaro-Almagro).
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them out of the data can be ineffective (Westfall and Yarkoni, 2016);
finally, there can be instances of Berkson's paradox, where a variable is
incorrectly treated as representing a causal confounding process. While
confounds are a potential problem for datasets of any size, the large N
setting is particularly challenging due to even very small confounding
effects causing misleading results. For further discussion on the impor-
tance of confounds in imaging research, see (Smith and Nichols, 2018).

The consideration of a variable as a confound depends heavily on the
context; for example, age can be a confounding factor in some studies,
while being a variable of interest in others. Another example is sex, which
correlates with potential confounds (such as head size), and which can
also influence variables of interest in complex ways (e.g., trajectory of
bone density with aging). Complicated confounds such as sex may force
the researcher to carry out separate association analyses for the different
sexes (as opposed to simply regressing out the sex variable). Hence, this
paper is not attempting to address issues raised where variables can
contain both signal of interest and confounding factors (given that the
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answer will depend on the context of the biological question being
asked); instead, here we focus on investigating the extent to which
variance in the UKB brain imaging data is explained by potential con-
founding factors, and also the effects of unconfounding on correlations
between Imaging Derived Phenotypes (IDPs1) (Alfaro-Almagro et al.,
2018) and non-imaging variables (non-IDPs or nIDPs).

The question of how to deal with confounds after they have been
identified has been investigated in previous literature. Many studies
(Dukart et al. (2011), (Kostro et al., 2014), Rao et al. (2017)) either
regress out the confounds from the data, or use them as additional re-
gressors in their (e.g., multiple regression) analyses. Alternative methods
have been suggested, like restriction (i.e. limiting the study to subjects
with a certain feature, as shown in Zarnani et al. (2019) with a cohort
study centred on males with the same age and nationality), matching
subjects for a certain confound (e.g. sex and age Rosenbaum and Rubin
(1983), which can be done either a priori, before acquisition, or a pos-
teriori, by selecting certain subjects for the analysis), stratification (i.e.
dividing the data into different hierarchical levels, according to the
different features to unconfound), or representing the data in a way that
is insensitive to confounding factors Glastonbury et al. (2018). Due to the
large number of confounds that we are dealing with in the UKB data, our
general approach is to regress out the confounds from the data (and
model, where appropriate), although many of the results presented
below should be relevant in the context of other unconfounding strate-
gies. For further discussion, see Jager et al. (2008) and Snoek et al.
(2019).

In this work, we consider confounds related to the acquisition process
and scanner configuration, subject-specific biometric variables, motion
confounds, acquisition date/time confounds, and table position. We
model these confounds in a number of ways and explore how the data of
the first 40,000 subjects is affected by the modelling. We compare our set
of confounds with a more “traditional” smaller set of confounds. Finally,
we outline a set of recommendations on how to use this information
when running studies using UKB brain imaging data.

2. Methods

2.1. Linear model unconfounding & variance measures

Our unconfounding is performed simultaneously in this study (i.e., in
a single regression-based unconfounding using all confound variables
together) with a linear model. Let the N-vector Y be one variable of in-
terest, and X the N-by-P matrix of all confounds, then the confound-
adjusted variable is the residuals from the linear model fit of Y to X,
i.e. Y � XX�Y , where X� is the Moore-Penrose pseudo-inverse of X.
There is no intercept term in the model as all confound variables are
demeaned.

When measuring variance explained by a subset of confounds, say
matrix X1, where all confounds are X ¼ ½X1 X2�, we define percent
variance explained by X1

%VE¼ 100� bY 1
0
bY 1=Y 0Y ;

and percent unique variance explained, the additional variance
explained by X1 not already explained by X2,

%UVE¼ 100� ðbY 0
bY � bY 2

0
bY 2Þ = Y 0Y ;

where bY 2 ¼ X2X�
2 Y is the prediction using X2 alone, and bY ¼ XX�Y is
1 IDPs (imaging-derived phenotypes) are individual measures of brain struc-
ture and function, such as the volume of specific brain structures or the strength
of connectivity between pairs of brain regions. Non-IDPs (or nIDPs, non-
imaging-derived phenotypes) are other phenotypes not derived from the brain
imaging, such as body weight, specific cognitive test scores, or disease
diagnoses.
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the prediction using all confounds.
We did not seek to obtain fully unbiased estimates of the (potentially

biased, although minimally so due to the very large N) %VE by each type
of confound, e.g., through cross-validation. We simply use the all-data-
estimated %VE to rank and prioritise the many different possible con-
founds. Note that, even if cross validation was used to obtain non-circular
estimates of %VE, an arbitrary threshold would still have to be applied to
select included confounds.

2.2. Data description

This work used imaging and non-imaging data from UKB, accessed
under data access application 8107. The majority of the work reported
here was carried out using the 22,000 subject May 2019 data release, and
then the final results were updated using the 40,000 subject January
2020 data release.

The January 2020 data release includes 41,985 datasets from the first
three UKB sites: 25,962 from Stockport (Site 1), 10,560 from Newcastle
(Site 2), and 5,463 from Reading (Site 3). Scanning at the fourth site in
Bristol began in early 2020. Additionally, 1,587 subjects (1,117 from Site
1 and 470 from Site 2) have been scanned a second time (with a mean of
2 years difference between the two scans). Although this repeat-scan data
has been released, it was not used here, as study of the longitudinal data
is outside the scope of the present work.

After removing datasets that were deemed unusable by our QC pro-
cedure (for example, due to having incomplete brain coverage, or having
very severe MRI artefacts) (Alfaro-Almagro et al., 2018), the number of
subjects’ datasets that were analyzed in this work is 39,694 (21,005
females).

2.3. Overview of confound types

Fig. 1 shows how each group of confounds is related to each other
group by the percentage of variance that one explains in the other. Each
row/column relates to a single confound group (e.g., imaging site); a
given confound “group” might be implemented in the unconfounding as
multiple confound variables (e.g., a separate binary indicator variable for
each imaging site). This matrix of % variance explained is fairly sym-
metric, but not exactly (because different groups in general contain
different numbers of variables).

In order to help describe the confounds we have identified, we ar-
ranged the confound groups into 6 different families: general subject-
specific features, scanner/acquisition protocol/processing parameters,
head motion, scanner table position, non-linear and “crossed terms”
(interactions between different confounds), and acquisition date and
time.

We now describe the first four confound families in more detail
(noting that these four are also the “source data” for the last two
families).

2.4. Description of basic confound variables (80 variables)

2.4.1. Subject-specific confounds (4 variables)
The basic confounds in this family are age, sex, the product of age and

sex, and head size scaling. The first two are taken from UKB non-imaging
variables, while the latter was calculated with SIENAX (Smith et al.,
2002) as part of the UKB processing pipeline (Alfaro-Almagro et al.,
2018). It is defined as a ratio that shows the volumetric scaling from the
T1 head image to MNI standard atlas. This set of confounds is commonly
used in many brain imaging studies. A discussion about the type of
studies for which these confounds may be useful can be read in Barnes
et al. (2010).

2.4.2. Scanner/acquisition protocol/processing parameters (20 variables)
Any differences in scanner hardware, configuration, acquisition pro-

tocol or processing parameters can affect the imaging data, and should



Fig. 1. Matrix showing the percentage of variance of
each group of confounds explained by each other
group. Each row and column represents one group of
confounds. These groups can be organised into fam-
ilies: 1: Subject-specific confounds; 2: Scanner
acquisition protocol processing parameters; 3: Head
motion confounds; 4: Table-position-related con-
founds; 5: Nonlinearities and crossed terms; 6: Date/
time-related confounds. The site group was forced to
be independent from the other confound groups as
described in Section 2.5.1. This means that for later
analysis, the site group is only explaining variance
not already explained by other variables. Non-
linearities and cross terms are forced by definition to
be orthogonal to linear terms. Independence from all
other confound groups was also forced for acquisi-
tion time and date, but there may be some random
correlations with date because of the smoothing
described in Section 2.5.4. An interactive version of
this figure showing the actual values in each element
of the matrix can be found in LINK.

3 In this study, all sections in the Supplementary Material will have an S in
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therefore be modelled as confounds ((Focke et al., 2011), (Chen et al.,
2014), (Keenan et al., 2019)). UKB is using identical scanner hardware
and software in all sites (3T Siemens Skyra, 32-channel Siemens head RF
coil, software VD13), but having the acquisition site as a confound (SITE)
may be important, as there might be subtle differences (for example,
differences in different RF coils even of the same model).

Scanner servicing and minor changes in acquisition parameters may
also affect the data, and may therefore need to be considered in the
confound modelling. Therefore, we investigated the CMRR2 multiband
software version (8 versions, with minor version changes between these),
scanner Service Pack software version (2 versions), and hardware/
servicing events in the scanner. Previous studies show that such changes
may bias IDPs ((Krueger et al., 2012), (Noble et al., 2017)). These
hardware events are summarised in 4 different variables:

1 B0 field ramp-down/up events (SCAN RAMP): Four events in Site 1.
2 Head Coil replacements (SCAN HEAD COIL): Three events in Site 1

and one in Site 2.
3 Cold Head replacement: (SCAN COLD HEAD): One event in Site 1,

two events in Site 2.
4 Miscellaneous events (SCANMISC): Three events in Site 1, two events

in Site 2.

It has also recently become clear that there have been slowly-
changing heating-related effects in the extent of eddy currents in the
diffusion MRI (dMRI) data. This effect is now regularly checked for, and
the scanner recalibrated when appropriate, but it was necessary for
affected datasets to have a more robust version of eddy current correction
applied (primarily by increasing the search space for eddy currents when
using the Eddy preprocessing tool). A new confound variable reflecting
this effect has been created (NEW EDDY).

We also considered minor changes in the acquisition protocol that, in
2 CMRR: Centre for Magnetic Resonance Research (www.cmrr.umn.edu).
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principle, should not affect the data (6 phases described in Section S23 of
the Supplementary Material (SM)), and a temporary unintended protocol
change4 in the Susceptibility Weighted Images (SWI) acquisition that
affected 3,355 datasets (Variables PROTOCOL and FLIPPED SWI).

A few minor protocol parameter changes have been made in error at
the imaging sites for a small subset of subjects, in the process of
distributing the protocol across sites (fMRI echo times of 42.4 vs 39ms,
and overall global intensity scaling of images). Therefore, we included 6
variables (SCALING), one per modality, as confounds, and also the echo
times (TE) for resting state fMRI (rfMRI) and task fMRI (tfMRI). As seen
below, none of these has a large effect on derived IDPs.

Finally, the processing of the � 40; 000 subjects as described in
Alfaro-Almagro et al. (2018) was performed in six separate batches. Both
the operating system and the processing pipeline software used were kept
almost unchanged for each batch, but there were differences in the
processing hardware used across batches, so we wanted to make sure that
these differences did not affect the data in any way (BATCH).

Due to the absence of T2 FLAIR image in some subjects, FreeSurfer
was not processed in the same way for every dataset; 1,301 datasets were
processed using just the T1w images, while the vast majority of datasets
(38,173) used both T1 and T2 FLAIR in the FreeSurfer processing. A
confound variable (FS T2) describes whether the T2 FLAIR was used.

The numbers of subjects for all these parameters, as well as some
more details, are listed in SM Section S1.

2.4.3. Head motion (48 variables)
Four confound groups capture subject head motion during acquisi-

tion, both in the 4D modalities (task fMRI, resting fMRI and dMRI) and
structural modalities (e.g. T1w). The importance of head motion as a
their notation.
4 A change in phase encoding direction - not a minor thing for some acqui-

sitions, but quite minor for the SWI.

https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/CORR/corr_NORMAL.html
http://www.cmrr.umn.edu


5 All processing code used in this study is available online at www.fmrib.ox.
ac.uk/ukbiobank/confounds/.
6 Non-confound IDPs are used in this work both as part of generating con-

founds (see time and date drift confounds below) and in judging the effects of
unconfounding on IDPs. To reduce the effect of potential outliers and improve
the accuracy of associations, we applied rank-based inverse Gaussian trans-
formation (Quantile Normalisation, or QN) on all IDPs and nIDPs to impose
Gaussianity (Bolstad et al., 2003) and resulting in variables being zero mean,
before using them in any work described here.
7 For any given confound, we define outliers thus: First we subtract the me-

dian value from all subjects' values. We then compute the median-absolute-
deviation (across all subjects) and multiply this MAD by 1.48 (so that it is
equal to the standard deviation if the data had been Gaussian). We then
normalise all values by dividing them by this scaled MAD. Finally, we define
values as outliers if their magnitude is greater than 8.
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confound has been known for a long time (Friston et al., 1996). As noted
in Greve et al. (2013), some studies measure and compensate for motion
prospectively (i.e. before the analysis), while many others estimate it in a
post-acquisition phase, being a standard step in most MRI processing
packages. Most studies use these motion estimates as covariates in a GLM
analysis (Johnstone et al., 2006), as a criteria to remove certain volumes
from 4D images (Power et al., 2014) or to regress them out from the
global signal (Murphy and Fox, 2017). For interesting discussions on the
different methods of accounting for motion, see (Satterthwaite et al.,
2013) and (Murphy et al., 2013).

In our study, one approach we took to modelling head motion was to
estimate it from the structural images. Estimations of motion-induced
artefacts in structural images have been shown to be related to motion
estimates in temporal modalities in complex ways (Savalia et al., 2017),
but the existence of a strong relationship of some of these estimates with
valid non-artefactual structural measures of the brain (such as grey
matter volume) is a problem (Gilmore et al., 2019).

We estimated the structural motion by fitting a cross-validated linear
regression where the dependent variable was a manually evaluated QC
measure of motion in 871 T1w images and the independent variables
were a set of features that are related to structural motion and QC (e.g.
smoothness estimates in X, Y, and Z (Flitney and Jenkinson, 2000),
average Euler number of the FreeSurfer surfaces (Rosen et al., 2018),
Qoala-T quality metric of FreeSurfer output (Klapwijk et al., 2019), etc.).
This resulted in one variable (STRUCT MOTION) summarising the mo-
tion in the structural acquisition, to be included as a confound. More
details about how this metric was calculated can be found in Section S3 of
the SM; in terms of automatically predicting the expert-judged motion
QC score (on a scale of 1–4), the trained predictor had a MSE of 0.14
(predicting data of range 0:1) in the left-out set.

Many studies of head motion focus on “temporal” imaging modalities
(fMRI, dMRI, etc.). Hence, we obtained the motion estimates from FSL's
FEAT (Woolrich et al., 2001) and Eddy ((Andersson et al., 2016),
(Andersson et al., 2017)), and estimated the mean, median and 90th
percentile over time of the absolute and relative motion (averaged across
space) in the task fMRI, resting fMRI, and dMRI. We also included (as a
confound) the number of slices that Eddy estimated to be outliers in the
dMRI data (because of significant signal dropout which is largely due to
motion). This resulted in 19 confound variables (HEAD MOTION). A
second approach has been to calculate the same quantile summaries
(mean, median and 90th percentile) of the motion over space and time
calculated from FSL's FEATmotion estimationmatrices from resting fMRI
in a similar way as described in Satterthwaite et al. (2013) (HEAD MO-
TION ST, 10 variables). These might capture additional useful
motion-related confound information given that the amount of motion
varies across both space and time in general.

Finally, we calculated the mean, median and 90th percentile over
time of S-var and D-var normalised by A-var (variants of DVARS (Afyouni
and Nichols, 2018)) from both the original resting fMRI, and the resting
fMRI after removal of noise components using FIX (see (Griffanti et al.,
2014), (Griffanti et al., 2017)) (DVARS, 18 variables).

2.4.4. Table position (8 variables)
Early in the project, we detected that the head position and the

scanner-table position (meaning, in effect, the position of the RF head
coil within the scanner, relative to isocenter) were correlated with
several QC metrics and IDPs. It is clear that the most important factor is
the location of the coil/head in the scanner in the direction that the
scanner table moves in and out, although the precise cause of this effect
has not been established. Therefore, we included these parameters as
possible confounds.

The first set of confounds relates to positions of the head and RF coil
relative to the scanner (i.e., relative to the isocentre of the scanner). This
set consists of the Z-position of the coil (more specifically, the scanner
table on which the coil is positioned) within the scanner, as read from the
DICOM headers; the X and Z coordinates of the Centre Of Gravity of the
4

T1w brain mask; and the Y position of the most posterior part of the same
brain mask (TABLEPOS, 4 variables).

We also noted how measures from QUAD (a recent QC tool for dMRI
QC (Bastiani et al., 2019)) were highly non-linearly correlated with the
table position (See Fig. S4 in the SM). For this reason, 4 metrics from
QUAD were included as confounds (EDDY QC, 4 variables):

1 Standard deviation of X, Y, and Z volume-wise components of the
estimated eddy currents' linear field (columns 7, 8, and 9 from the
eddy parameters output file); these should primarily reflect eddy
currents

2 Standard deviation of Y volume-wise component of the translations
due to subject's head motion (column 2 from the eddy parameters
output file).
2.5. Processing of confound regressors (602 variables)

Table S23 in the SM contains a list of all confound groups, the
availability of the confound in UKB (see Section 4.6), the number of
variables in each group, the number of variables after expanding/pro-
cessing those confounds and an indication of the group being either
qualitative or quantitative.

2.5.1. Basic confounds (80 variables, expanded to 240)
The 80 basic confounds were partially processed to account for in-

teractions between site and other confounds, due to site potentially being
one of the most important confounds in any multi-site study.5 For
example, we might expect head size to act as a confound slightly differ-
ently in different sites, so we create separate head size confounds for the
different sites. This processing ends up expanding the initial set of con-
founds to a total of 240 confounds.6 The processing steps are as follows:

1 Separation by site, demedianing and outlier removal of quantitative con-
founds: All variables belonging to a given confound group (e.g. X, Y, Z
brain centre of gravity þ table position) are demedianed and nor-
malised (using the median absolute deviation) globally (i.e. across all
sites). Then, each variable is replicated as many times as sites we are
dealing with, but each copy only retains values for subjects which
were scanned at the corresponding site. The variable value for all
other subjects is replaced with 0s. Then, all outliers7 and all missing
values in each copy are replaced with the median value for the site.
Finally, each copy is normalised separately to have zero mean and
unit standard deviation.

Pseudo-code describing this step is included in the SM, Section S6.1.

2 Separation by site, binarisation and normalisation of qualitative con-
founds: For each categorical confound (such as CMRR version or
Service Pack), site-independence is enforced by first binarising and
expanding the original confound (a confound with n possible

http://www.fmrib.ox.ac.uk/ukbiobank/confounds/
http://www.fmrib.ox.ac.uk/ukbiobank/confounds/


8 We calculate the Unique Variance Explained (UVE), in the IDPs, by a group
of confounds X, by subtracting from the total variance explained by all con-
founds (602 variables) the variance explained by all confound groups other than
X.
9 For a discussion on the validity and reliability of UK Biobank cognitive tests,

see (Fawns-Ritchie and Deary, 2019).
10 FUNPACK v1.4.1 (MacCarthy, 2019) can be obtained from: git.fmrib.ox
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categorical values will be replaced by n-1 binary indicator variables)
and duplicating the resulting set by site, provided the site has more
than 1 different value for the confound. Finally, and as in the previous
case, each resulting variable is de-medianed by site.

Pseudo-code describing this step is included in the SM, Section S6.2.

2.5.2. Non-linear transformations (158 variables)
The existence of non-linear effects in confounding variables has been

discussed in previous studies. For example (Barnes et al., 2010), shows
that ratio-based or linear unconfounding for head size is not sufficient for
many studies, and (Smith and Nichols, 2018) suggest that ‘adding trans-
formed versions of confounding variables will allow more than just linear ef-
fects of confounds to be captured’.

We decided to perform three different non-linear transformations to
all quantitative confound variables to capture possible non-linear effects.
These transformations would be:

1 Squaring the centred confound.
2 Quantile Normalisation (QN) of the confound, forcing it to have a

Gaussian distribution (Bolstad et al., 2003).
3 Squaring the Quantile Normalisation.

These transformations were applied to the 183 quantitative confound
variables, resulting in a new confound group of 549 non-linear con-
founds. Nevertheless, not all these confounds are equally important, and
increasing the number of confounding variables is both inconvenient in
computational terms but can also unnecessarily remove too many
degrees-of-freedom from the data (confounds that are just random noise
explain a certain amount of variance of the IDPs, as described in Section
2.6). We estimated the amount of unique variance explained (in the IDPs)
in order to decide which non-linear confounds to keep, and ended up
retaining 158 confounds (NON LINEAR). The criteria that we used
(described in detail in the SM, Section S7.1) is that each non-linear
confound must pass at least one of two tests, to be included in the
confound list :

1 Average (across IDPs) of the % VE (percent variance explained) by the
non-linear confound must be higher than the 95th percentile of all
average % VEs (across IDPs).

2 Maximum (across IDPs) % VE by the confound must be higher than
the maximum of 0.75% VE and the 99.9th percentile of all VEs (across
IDPs).

The thresholds used here and in the next section are by necessity
empirically “expert” determined (and arguably arbitrary), but can of
course be changed if researchers use our unconfounding code and wish to
make unconfounding more or less aggressively conservative.

2.5.3. Crossed terms (confound interaction: A * B) (84 variables)
The confounds may interact with each other in a non-additive way.

Thus, products of pairs of confounds should be considered. Pairwise
products of the 398 confound variables (240þ 158) would produce 3982
new confound variables (79,003). Combinations of confounds from
different sites will be useless (the product of those will be 0), so we end
up evaluating 26,674 crossed-terms. As previously mentioned, not all
these confounds are useful, so we used a similar criteria as for non-linear
confounds to only keep the most important crossed-term confounds
(CROSSED TERMS, 84 confounds). The criteria that we used (described
in detail in the SM, Section S7.2) is that each non-linear confound must
pass at least one of two tests, to be included in the confound list:

1 Average (across IDPs) of the %VE by the non-linear confound must be
higher than the 99.9th percentile of all average % VEs (across
confounds).
5

2 Maximum (across IDPs) %VE by the confoundmust be higher than the
maximum of 1% VE and the 99.999th percentile of all VEs.

2.5.4. Date/time-related confounds (120 variables)
Both the acquisition date and time of day could be directly used as

confounds, but time or date might represent a confound where the effect
on IDPs is highly non-linear and non-monotonic (as a function of date or
time), and we are primarily interested in the effect that these variables
may have on the IDPs. Therefore, to identify time/date confounds that
are rich and flexible but representing average effects in the data, we
extracted a set of temporal confounds from the IDP data by: sorting the
data temporally; smoothing temporally; and performing a Principal
Component Analysis (PCA) across smoothed IDPs. This process was
performed separately for the acquisition date and for the time of day. We
now describe this process in a little more detail.

All previously calculated confounds (487) are first regressed out of each
IDP to ensure that we are focusing on time/date effects not already covered
by the known above confounds. After regressing out all the previously
mentioned confounds, there may still be some variance explained by the
acquisition date or its time of day (Karch et al., 2019). This kind of infor-
mation may be useful for some studies (e.g. drowsiness correlated with time
of day), but we would consider it to be a confounding factor in this study.

Next, each IDP is sorted subject-wise according to the corresponding
time criteria (either time of day or date), and the IDP values are smoothed
using Gaussian-kernel smoothing, with σ ¼ 0:1, where the units are
years for the date smoothing, and work-days (i.e., 13 h, 7am-8pm) for
time smoothing. We then apply PCA on the sorted and smoothed IDPs of
the subjects of each site. We retain the number of components that
explain 99% of the total variance. The IDP sorting, smoothing and PCA
reduction is applied separately for each scanning site.

This produced 61 components representing the acquisition time, and
59 components representing acquisition date. The only difference be-
tween the generation of the acquisition date and time variables is that the
generated acquisition time confounds were also regressed out of the IDPs
before generating the date confounds.
2.6. Null evaluations (random Gaussian confounds)

A certain amount of variance in a variable of interest will always be
explained by a random variable (i.e., the null scenario). The more vari-
ables we have, the more variance would be explained in our variables of
interest even by random chance.

Below, (Section 3.3), we evaluate how important a confound group is.
One way to do this is to calculate howmuch variance the confound group
explains in the IDPs, and also how much unique variance they explain
relative to other confound groups.8 We also check whether our confound
groups perform better than the same number of random null variables, as
a means to show where our confound groups are useful. These compar-
isons can be seen in several violin plots.
2.7. Correlations between IDPs and non-IDPs variables

In order to assess how unconfounding affects the correlations be-
tween IDPs and non-IDPs, we focused on a set of Body variables (224)
and Cognitive variables (909).9 We extracted this information from the
UK Biobank raw data files using FUNPACK10. The listing of the variables
.ac.uk/fsl/funpack/.

http://git.fmrib.ox.ac.uk/fsl/funpack/
http://git.fmrib.ox.ac.uk/fsl/funpack/
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in each of these 2 categories as well as the normalisation, parsing and
cleaning configuration for FUNPACK can be found online.11 We chose
these two categories of non-imaging variables as being highly contrasting
representative groups: many body variables have strong associations
with imaging, and the influence of confounding factors could also be
complex and strong; in contrast, associations of IDPs with cognitive
variables are much less strong, might easily be problematically domi-
nated by confounding effects, and are likely to be of high interest to re-
searchers using the brain imaging data.

We compared how each group of confounds affects the correlations
between IDPs and non-IDP variables (both Body and Cognitive) by
finding the P values of the correlations between each pair of IDP and non-
IDP in two settings:

1 Regressing out all confounds, other than the confound group in
question, from IDPs and non-IDPs.

2 Regressing out all confounds from both IDPs and non-IDPs.

We can then compare (Section 3.4) the P values obtained in each
setting: if the P value of the correlation for an IDP - non-IDP pair is higher
when a confound group is not used than when it is used, we can be more
certain about the importance of that confound group in avoiding spurious
correlations.

2.8. Additive vs non-additive confound effects

So far, we have only focused on additive confounding effects, but it
may be the case that, in addition to linear and non-linear components in a
confound, we may have non-additive effects, for example as shown in the
final term in the equation:

J ¼ I þ a � Aþ b � A2 þ c � A � I (1)

Where:

I is the true IDP (and our estimation of the true IDP)
J is the measured IDP
A is the confound
a, b, c are scalar factors determining the size of the different confound
effects relating to confound A12

Up to this point, we have only considered the first part of this equa-
tion: Iþ a*Aþ b*A2. If all terms are orthogonal, then setting E ¼ a* Aþ
b*A2 and assuming we have correctly estimated E, we can estimate c, that
is, we can estimate whether non-additive effects are important for our
confounds. If we perform iterative estimation of a, b and c, where cwould
be calculated from the residual of performing a linear regression, cAI
would provide an approximation of how much variance of the IDPs
would be explained by the non-additive term. A description of this iter-
ative estimation process can be found in the SM, Section S8.1.

Results of these analyses on confounds of interest (high % UVE -
percent unique variance explained - of IDPs) can be seen in Section 3.5.
The confounds selected for these analysis were Age, Head Size, and
Table Position (4) for subjects in Site 1, because these are in general the
most important confounds and hence most likely to result in non-
negligible interactions with IDPs. We also show results from two
motion-related confounds that are examples of smaller amounts of VE
11 [LINK] to code to generate non-IDPs.
12 So far, we have assumed that confound variable A was estimated perfectly,
but as discussed in Westfall and Yarkoni (2016), this may not be absolutely true.
Nevertheless, their proposed solution, Structural Equation Models Factor Anal-
ysis, requires having multiple measurements of the given confound, but that is
not the case in UK Biobank, as several measures of the same metrics were not
calculated in general. Therefore, the fact that A is a noisy measure of the true
“A” means that a, b, & c may be underestimated (i.e., regression dilution).
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and more modest non-additive effects.

2.9. Comparisons with other confound configurations (“conventional
simple” confounds)

As described above, we have generated a relatively large set of con-
founds (602 separate variables), which may seem excessive or even
impossible to use in small imaging studies. We wanted to compare our
proposed set of confounds with a more conventional set of confounds
used in typical imaging studies (similar sets of confounds have been used
and described in UK Biobank and Enigma Projects ((Miller et al., 2016),
(Stein et al., 2012)). Such conventional set of confounds could be:

1 Age (1 per site)
2 Age squared (1 per site)
3 Sex (1 per site)
4 Age * Sex (1 per site)
5 Head size (1 per site)
6 Site (2 variables)
7 Head motion (mean relative motion as calculated by FEAT) in

resting fMRI (1 per site)
8 Head motion (mean relative motion as calculated by FEAT) in task

fMRI (1 per site)
9 Date (number of days when the acquisition happened since the

acquisitions started) (1 per site).
10 Date squared (1 per site).

We compared this “simple” set of confounds with the same number
(29) of random confounds, as described in the previous section. Also, to
make a fair comparison with our proposed set of confounds (in the sense
that 602 confounds will inherently explain much more variance than 29),
we compared the simple set with the first 29 Principal Components of our
proposed confound set. Finally, we also compared the simple set of
confounds with the PCs explaining 90% and 99% of the variance of the
proposed set of confounds (170 and 322 PCs).

For this comparison, we calculated all possible univariate correlations
between IDPs and non-IDPs (3,913 IDPs x 7,247 non-IDPs¼ 28,357,511
pairs) after unconfounding both of them using the different sets of con-
founds: full set of 602 confounds (ALL), 29 “simple”confounds (SIMPLE),
29 PCs from ALL (PCA-MIN), 170 PCs that explain 90% of the variance of
the full set of confounds (PCA-90%), and 322 PCs that explain 99% of the
variance of the full set of confounds (PCA-99%).

We evaluated how much variance in the IDPs is explained by each set
of confounds. We also kept the P-values of those correlations and plotted
them in different Manhattan plots similar to (Miller et al., 2016). Finally,
we show with two Bland-Altman plots:

1 How the P-values of the correlations between nIDPs and IDPs are
reduced when using the full set of confounds (ALL) vs. without
unconfounding (NONE).

2 The difference in the P-values between unconfounding with ALL and
the 29 “simple” confounds (SIMPLE).

Results can be seen in Section 3.6.

3. Results

3.1. Non-linear confounds selection

For each of the 3,913 IDPs we calculated the % UVE by each of the
549 non-linear confounds described in Section 2.5.2. Here, the variance
is referred to as unique relative to the previous 240 basic confounds
(Section 2.5.1) that were regressed out of the IDPs (and not meaning
unique with respect to all other non-linear confounds). As can be seen in
Fig. 2, the % UVE by non-linear confounds is rather small on average (the
largest average %UVE across IDPs being 0.14%), but the maxima can be

https://git.fmrib.ox.ac.uk/falmagro/ukb_unconfound_v2/-/tree/master/generate_initial_data/gen_nonIDPs


Fig. 2. Top Distribution of the mean (across IDPs) % UVE for each non-linear confound. Centre Distribution of the max (across IDPs) % UVE for each non-linear
confound. Bottom Manhattan plot of the % UVE of each IDP by each non-linear confound, grouped by IDP modality. Calculation of thresholds (red lines in each
plot) is described in SM, Section S7.1. Interactive versions of these plots, with details of individual results, can be seen at: [Top] [Centre] [Bottom]. For Top and Centre
plots, the full list of non-linear confounds considered can be seen in [LINK].
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significantly larger for some combinations of non-linear confound and
IDP, e.g. non-linear transformations of age (2.25%), table position
(4.44%), or head motion (3.3%). It is also interesting to note that T1w,
dMRI and rfMRI Amplitude IDPs were more strongly affected in general
by non-linear transformations, compared with other classes of IDPs.

An evaluation of appropriate thresholds for these plots resulted in a
subset of 158 non-linear confounds from the original 549.

3.2. Crossed terms selection

As in the previous section, for each of the 3,913 IDPs we calculated
the % UVE (again, unique with respect to the original confounds) by each
of the 79,003 crossed-term confounds described in Section 2.5.3. Only
26,674 crossed-terms were considered, as the crossing of terms from
different sites produces empty confounds. Again, as Fig. 3 shows, the
average (across IDPs) % UVE by crossed-term confounds is small, but can
be important in some cases, where % UVE goes above 2%. It is also
interesting to note that T1w, dMRI, rfMRI Amplitude, and rfMRI Con-
nectivity IDPs have a higher % UVE for crossed-term confounds. An
evaluation of appropriate thresholds for these plots ended up with a
subset of 84 crossed-terms from the original 79,003.
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3.3. Variance of IDPs explained by confound groups

The percentage of variance explained (%VE) and unique variance
explained (%UVE) of the 3,913 IDPs by each group of confounds can be a
good indication of the importance of these groups. Fig. 4 shows UVE for
each group (top) or family (i.e., super-group, bottom), and also (in grey)
UVE with same-sized sets of random variables. The y axis is Log10 of %
UVE, and hence “1”means 10% variance of an IDP explained; the (violin-
plot) vertical histograms show the distributions across IDPs. VE and UVE
for groups/families relate to the variance explained by the relevant set of
individual variables considered as a whole together (i.e. are not gener-
ated by combining across individual variables’ VE/UVE).

In addition to the expected importance of age, head size and head
motion, table position is also notable. Non-linear and crossed-terms are
important for some IDPs, as are date and time. Because much of the sex-
related confound effects are due to head size, the unique (remaining)
effect of sex is smaller than more major confounds like age, head size and
head motion, and site effects are on average smaller still. The % UVE of
the whole set of 602 confounds is included. For a detailed comparison of
the 6 unconfounding schemes described in Section 2.9, see S12 or
[GLOBAL].

Finally, we also evaluated the % VE and % UVE of between-imaging-
site effects in a slightly different way to the above tests (by attempting to

https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/VE_GLOBAL/ALL_IDPs_Variance_Explained.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/NONLIN/MEAN_NON-LINEAR.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/NONLIN/MAX_NON-LINEAR.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/NONLIN/MNHT_NON-LINEAR.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/txt_2020_03_11/NONLIN_names.txt


Fig. 3. Top Distribution of the mean (across IDPs) % UVE for each crossed-term confound. Centre Distribution of the max (across IDPs) % UVE for each crossed-term
confound. Bottom Manhattan plot of the % UVE of each IDP by each crossed-term confound, grouped by IDP modality. Calculation of thresholds (red lines in each plot)
is described in SM, Section S7.1. [Top] [Centre] [Bottom]. For Top and Centre plots, the whole list of non-linear confounds considered can be seen in [LINK].
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adjust for known site effects). This did not give highly different results;
the tests and results are given in Section S9 of the Supplementary
Material.
3.4. Effect of unconfounding on IDP-nIDP correlations

For each confound group, we compared how the P values of the
correlations between IDPs and Cognitive and Body variables change
when unconfounding both IDPs and non-IDPs with all confounds, versus
unconfounding themwith all confounds except for the confound group of
interest. By doing this, we can see how each confound group “uniquely”
affects the correlations.

All Bland-Altman (BA) plots are shown in SM. In Fig. 5 we include a
few exemplar BA plots. AGE affects almost all correlations, as expected;
the same is true of HEADSIZE. Unconfounding TABLEPOS does not
strongly affect the correlations between Cognitive and IDPs, but has a
stronger effect on correlations between Body variables and IDPs. As
mentioned above, unconfounding CROSSED TERMS does not strongly
affect the correlations, although there is a small systematic (overall
trend) effect. There is almost no effect of SERVICE PACK, as one would
hope, as this refers to what should be very minor Siemens software up-
grades. Finally, we can see an example of Berkson's Paradox (discussed
further below) on how unconfounding for DVARS confounds increases
the significance of the correlations between Body variables and IDPs.
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3.5. Importance of non-additive terms

We evaluated the importance of non-additive terms as defined ac-
cording to equation (1). The results in Fig. 6 show how the non-additive
component of the 8 studied confounds have low importance to explain
the variance of some IDPs in terms of non-additive confound effects (all
distributions are across IDPs). For each confound, we can see correlation
between the measured IDP and the estimated IDP (left), % VE for the
linear, quadratic and non-additive terms. We also compare with the % VE
of a random variable (null). The non-additive term is generally smaller
than the quadratic term, but not by a large amount, and it is generally
larger than the null scenario (variance explained by a random regressor).
3.6. Effects of unconfounding with different sets of confounds

We found that different sets of confounds (except for PCA-MIN)
explained more variance of IDPs overall than the SIMPLE set of con-
founds (Fig. 7). Here, ALL had 11.14 mean %VE, SIMPLE had 4.38 mean
%VE, PCA MIN had 3.22 mean %VE, PCA 90% had 7.44 mean %VE, and
PCA 99% had 9.5 mean %VE. We also show the general reduction in P-
values of the correlations for IDPs vs. non-IDPs when unconfounding
with the full set of confounds (ALL) and the reduced set of confounds
(SIMPLE) with two Manhattan plots (Fig. 8). Similar plots can be seen in
Section S14 of the Supplemental material and we can see the different

https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/CT/MEAN_CROSSED-TERMS.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/CT/MAX_CROSSED-TERMS.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/CT/MNHT_CROSSED-TERMS.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/txt_2020_03_11/CT_names.txt


Fig. 4. Top Violin plots with % UVE of IDPs by each group of confounds described in Fig. 1 [UVE Top]. For a similar figure showing the VE instead of the UVE: [VE
Top]. Bottom Violin plots with the % UVE of the IDPs by each family of confounds described in 1 [UVE Bottom]. For a similar figure showing the VE instead of the UVE:
[VE Bottom]. SM (Section S11) shows the same data detailing the variables by IDP modality. Light grey violin plots show the % VE or % UVE explained by the same
number of random variables (each set of matched-size random null variables is generated uniquely, hence the small variations between same-sized RAND groups). An
interactive version of all these violin plots where the reader can verify the exact VE and UVE of each IDP explained by each confound group or family, in total or by IDP
modality, is available at [LINK].
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number of associations passing Bonferroni correction for each set of
confounds:

� No unconfounding: 1,665,274
� PCA MIN: 984,142
� PCA 90%: 140,963
� SIMPLE: 105,122
� PCA 99%: 58,949
� ALL: 53,995

Finally, we compared those two unconfounding settings directly via a
Bland-Altman plot (Fig. 9a); this suggests that for many cases, more
“complete” unconfounding improves sensitivity for finding significant
associations.
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3.7. Date and time confounds

Section S10 of the SM shows the generated Acquisition Date and
Acquisition Time confounds. Interpretation of the meaning of these data-
driven confounds may be complicated, but in some cases possible. One
clear example is the first temporal component (See Fig. 10A). This
component was highly correlated (Fig. 10B) with one of the resting fMRI
Node Amplitude IDPs (Fig. 10D) which are known to correlate with
drowsiness ((Stoffers et al., 2015) and (Bijsterbosch et al., 2017)). The
periodicity (6 events per day) can be analyzed in light of the number of
subjects per day that are scanned in each site (roughly, 18 per day, being
Site 1 the most consistent). This periodicity may be related to how much
the subjects have rested and how this is only noticeable after the heavy
smoothing applied prior to PCA (Fig. 10D: The periodicity is hard to see
in pre-smoothed IDP data).

According to the UKB imaging centre workflow, participants circulate
around the imaging centre in triplets, and in each triplet the three

https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/VE_NORMAL/ALL_IDPs_Unique_Variance_Explained.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/VE_NORMAL/ALL_IDPs_Variance_Explained.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/VE_NORMAL/ALL_IDPs_Variance_Explained.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/VE_REDUCED/ALL_IDPs_Unique_Variance_Explained.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/VE_REDUCED/ALL_IDPs_Variance_Explained.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/index.html


Fig. 5. We show here a subset of all the Bland-Altman (BA) plots produced, which illustrate how correlations of IDPs with Body and Cognitive variables are affected
very differently by the unconfounding. In these plots, a situation where a confound group does not strongly affect the correlations would appear as a horizontal cloud
of points around y¼ 0 (meaning no substantial difference between A and B). Where the cloud of points leans heavily towards negative y, this means that using that
confound group reduces the significance of correlations (implying that the correlations were spurious). If the cloud of points leans heavily towards positive y, this
implies a case of Berkson's Paradox, particularly where values in A are close to zero. The remaining BA plots can be found in the SM (Section S12). Interactive versions
of all BA plots, where the reader can verify the exact change in P values and the IDP/non-IDP pair that each point represents can be found in [LINK].

F. Alfaro-Almagro, P. McCarthy, S. Afyouni et al. NeuroImage 224 (2021) 117002
subjects perform different activities in different orders (e.g. subject 1 is
being scanned in the brain MRI while subject 2 is performing physical
exercise and subject 3 is being scanned in the cardiac/abdomen MRI).
Therefore, one subject out of three will have their brains scanned
immediately after doing exercise, while another will be scanned after
“resting” in the cardiac scanner; this may affect the results.

4. Discussion

4.1. General considerations

In this study we have confirmed the importance of known confounds
such as age, sex, head size and head motion, while also showing that in
the UK Biobank imaging data, the position of the scanner table, as well as
many other acquisition parameters and configurations, have a non-trivial
influence on the data. Although UK Biobank brain imaging data is of high
overall quality and homogeneity, the extremely high subject numbers
means that even small confounding effects can cause statistical problems
(in particular, raising the danger of finding false positive associations).
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In developing this set of confounds, we considered including different
quality metrics, such as the “Entropy” of the T1; however, we chose to
omit these here because they could be closely entangled with related
IDPs such as WMH volume (and other valid “signal” effects). Similarly,
we initially included a binary variable called “Repeated T1”, indicating
whether the acquisition of the T1 image was repeated more than once.
We initially speculated that this could be used as a proxy for structural
head motion, but we instead decided to represent structural motion more
thoroughly in the STRUCTMOTION variable, explained in Section S3 of
the SM.

Some considerations may need to be made regarding the basic con-
founds that we studied. For example, we considered whether it would be
more appropriate to use brain size instead of head size as a possible
confound. This is a complex question that may deserve exploration in the
future. It may also be interesting to include FreeSurfer-head/brain size
scaling in this analysis, as these are calculated in a different way than we
have done here.

It is also important to note that most IDPs have not been normalised
for head size prior to unconfounding. In general, it is only sensible to

https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/index.html


Fig. 6. Effect of modelling non-additive terms. Each panel shows for a different confound: (Left) Correlation for the measured IDP (J in equation (1)) with the
estimation of the true IDP (I in equation (1)). The boxplot distributions are across IDPs. (Right) Histograms (distributions across IDPs) of the % Variance explained for
IDPs by the Linear term, the quadratic term, the non-additive term and a random variable for null comparison.
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scale IDPs by a head size scaling factor when the IDP in question is a raw
volumetric measure. For other types of IDPs, normalising (scaling) by
non-demeaned head size is likely to induce head size confounds in the
data (this is similar to the general danger of inducing confound effects
when regressing out confounds that have not been demeaned). In gen-
eral, the safer way to approach unconfounding is to regress out demeaned
confound regressors.

The generation and processing of non-linear confounds and crossed
terms shown in this work is not necessarily intended to be the exact rigid
recommendation for future studies. Some of the % VE thresholds
described in Section S5, though driven by inspecting data distributions,
11
are somewhat arbitrary. It may be that cross-validation (or other methods
for model-order selection) should be used to obtain more objective se-
lection of confounds to keep, but the presence of complicated patterns of
shared variance between different confounds would complicate efficient
application of such methods, given the large number of potential con-
founds. Our main intention here was to show how these terms may be
important, and illustrate their effect on downstream analyses. In the same
way, we have shown that non-additive terms may also play a non-trivial
role, but finding the optimal way to identify and deal with these will
depend on the research question being asked, and the level of uncon-
founding conservativeness desired.



Fig. 7. Top Violin plot with the amount of variance of all IDPs explained by different sets of confounds: ALL (the full set of 602 confounds that we have developed in
this work), SIMPLE (a more common set of confounds used in most studied and described in Section 2.9), PCA-MIN, PCA-90% and PCA-99%: Three sets of Principal
Components described in Section 2.9) obtained from ALL. The first has as many components as confounds in SIMPLE (29), the second has the number of components
that explain 90% of the variance of ALL (170), and the third has the number of components that explain 99% of the variance of ALL (322). Each of these sets of
confounds is compared with a set of random confounds of the same size. An interactive plot (where the reader can check how much variance is explained by each
confound in each set) can be seen in [GLOBAL_ALL]. Bottom Violin plots showing the distributions of paired-differences in VE of all IDPs, comparing the SIMPLE set of
confounds and the other sets of confounds.
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Finally, some of the results presented here may have been affected by
the fact that we have only included subjects that passed the QC process
described in Alfaro-Almagro et al. (2018) (i.e., subjects with a T1 deemed
“unusable”were already excluded). Confounds such as STRUCTMOTION
and HEAD MOTION may have been found to be significantly more
important to the unconfounding process, had those subjects not been left
out.

4.2. Confounds and non-IDP variables

The rich relationships (in terms of VE and UVE) of the confounds with
non-IDPs are beyond the scope of this study, although we have illustrated
in many Bland-Altman plots how the confounds affect associations be-
tween IDPs and non-IDPs. For example, the importance of head motion as
a confound cannot be overstated for most studies, but this confound may
also be correlated with important effects of interest. Correlations
12
between motion-related confounds and health-related variables are to be
expected, even in healthy subjects - for example (Bijsterbosch et al.,
2017), identified a relationship between head motion and sleep quality.
Our results show that DVARS metrics are correlated with ECG load
during exercise bike activity, and also with resting state fMRI node
amplitude. In fact, all resting state node amplitudes correlate somewhat
similarly with DVARS, but sensory motor nodes correlate more strongly
than cognitive nodes (consistent with (Bijsterbosch et al., 2017)). Hence,
there is possibly an underlying physiological factor which is manifesting
itself in health-related variables, and in resting state connectivity and
fMRI motion. Therefore, while in this study we are using DVARS metrics
as confounds, they could potentially find use as health biomarkers.

Some non-IDPs, such as blood pressure, bone density, height and
weight, can be strongly associated with IDPs ((Miller et al., 2016), (Smith
and Nichols, 2018)), and might be considered for use as confound vari-
ables. These are likely to correlate with confounding processes in the

https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/VE_GLOBAL/ALL_IDPs_Variance_Explained.html


Fig. 8. Top Manhattan plot showing how the correlations between IDPs and non-IDPs are affected by unconfounding with the whole set of confounds [Top]. Bottom
Manhattan plot showing results after unconfounding with the SIMPLE set of confounds [Bottom]. The main difference between the plots is that the number of
correlation tests between IDPs and nIDPs passing Bonferroni correction is greatly reduced using the full (ALL) unconfounding (53,995) than when using SIMPLE
unconfounding (105,122). This would imply that half of the significant (Bonferroni-passing) correlations using SIMPLE unconfounding may not be meaningfully
significant. Similarly: [No unconfounding] [PCA-MIN] [PCA-90%] [PCA-99%].
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https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/MNHT/MNHT_FULL_UNCONFOUNDING.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/MNHT/MNHT_SIMPLE_UNCONFOUNDING.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/MNHT/MNHT_NO_UNCONFOUNDING.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/MNHT/MNHT_PCA_UNCONFOUNDING.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/MNHT/MNHT_PCA90_UNCONFOUNDING.html
https://www.fmrib.ox.ac.uk/ukbiobank/confounds/plots_2020_03_11/MNHT/MNHT_PCA99_UNCONFOUNDING.html


Fig. 9. Top BA plot to show the difference in P-values for the correlations be-
tween IDPs (3,913) and non-IDPs (7,247) when using 2 different unconfounding
settings: full set of 602 confounds (ALL) and “common” set of 25 confounds
(SIMPLE). Bottom BA plot to show the difference in P-values for the correlations
for IDPs and non-IDPs when unconfounding with the full set of 602 confounds
(ALL) and without any unconfounding. The diagonal line (bottom-right) is due
to some correlations without any unconfounding (A) having a smaller P-value
than the numerical precision limit. Note that adding more confounds might
make P-values go in either direction: it might increase sensitivity to real effects
(which is likely what we are seeing in A, or it might decrease strength of cor-
relations because fake associations (caused by the confounds in the data) go
away (B).
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imaging (for example, weight correlates with head motion), but are also
likely to partially reflect physiological processes of interest. Subject age is
a complicated example of this, mediating large amounts of
between-subject variance that could be considered signal, noise or both.
Here we focused primarily on confounds that we could derive from the
imaging data (although some of our imaging-derived confounds are
obvious proxies for non-imaging measures e.g. head size is a proxy for
height).
4.3. Number of confounds

The motivation of this paper is to explore approaches to controlling
for confounds in large scale prospective brain imaging studies; we have
aimed to provide recommendations for the types of confounds that
should be used in such studies. For simple focussed correlation studies,
researchers may want to use simpler or more specific versions of the
confounds we have proposed; this raises the question of how we can
14
reduce the number of confounds a researcher should use.
As was shown in Section 3.6, using a small number of confounds may

suffice, especially if those confounds are specific enough. For example the
SIMPLE confound set explains more variance in IDPs than the PCA-MIN
confound set. This is due to the SIMPLE set being in general (almost by
definition) focusing on the strongest (most important) compact set of
confounds; ALL expands on this with a much larger number of (in many
cases more subtle) confounds, and PCA-MIN is an unsupervised reduction
of ALL, and hence is not expected to be as focussed at accounting for the
strongest confound effects as SIMPLE. Nevertheless, on the whole, the
SIMPLE confounds do not explain (on average) as much variance as the
ALL, PCA-90%, or PCA-99% sets (Fig. 7). These comparisons may be
different for different modalities, as can be seen in Section S13. For
example, the most important confounds for T1, T2 and FS are head size,
age and sex. Those are muchmore important than anything else, and they
are included in both ALL and SIMPLE. That is why for those modalities,
the %VE are not so different.

Although investigation of the effects of unconfounding on associa-
tions between IDPs and nIDPs can be informative (for example, this can
help eliminate confounds that make no difference), it can be hard to
judge whether changes in IDP-nIDP association P-values are beneficial or
detrimental, as there is in general no ground truth available. For example,
“good” unconfounding might reduce P (increase significance) by
correctly removing noise that is not shared between an IDP and a nIDP, or
could increase P by correctly removing noise that is shared. On the other
hand, “bad” unconfounding might increase P by over-aggressively
removing good signal, or might incorrectly decrease P by virtue of
Berkson's paradox (i.e., regressing out an inappropriate confound - see
below).

4.4. Berkson's paradox

One problem that may arise when applying unconfounding is known
as the Berkson's paradox ((Pearl et al., 2009), (Zhang, 2008)). This effect
occurs when we adjust two independent variables for a potential
confound that was actually a consequence of the independent variables.
In this case, a spurious association between the independent variables
can be incorrectly induced.

Even without this knownmathematical problem, such unconfounding
does not make sense to apply, if the “confound” factor was actually
caused by (and not a causal factor feeding into) the two variables being
tested for an association. Examples of largely safe confounds are age, sex,
and genetics, as these are “causal” factors unlikely to be “caused by”
other imaging and non-imaging variables of interest.

A possible illustrative example of Berksons's paradox in our results
could be when considering the association between the fMRI task acti-
vation (which involves visual cortex stimulation and button pushing) and
the body variable of waist size. With unconfounding that excluded head
motion confounds, the association was very weak (� log10 ðPÞ ¼ 0:55),
while after also unconfounding for head motion, the association was
stronger (� log10 ðPÞ ¼ 2:84). It seems quite plausible that both variables
have some “input into” head motion, and hence the unconfounding in-
creases the IDP-nIDP association from being close to zero to being
significant.

4.5. Sex-split unconfounding

As mentioned in Fig. 1 and detailed in Section 2.5.1, all confounds
were modelled to be orthogonal to site (i.e, a site-specific version of each
confound was created). There may be other cases where confounds need
to be split; for example, if a confound affects males and females differ-
ently (with different strengths of confounding effect), sex-split confounds
might be necessary.

There may be additional reasons why such splitting is necessary. For
example, in cases where the raw data (e.g. some disease outcomes) is all-
zeroes for one sex (either because one sex has all zeros “by definition” -



Fig. 10. A First Principal Component (PC) for the Acquisition Time confounds for Site 1, along with the histogram (in red) of the acquisition times of all Site 1 subjects,
where the main peaks (of “dominant” imaging start times) can be easily identified. The PCA component is the strongest time-drift effect (across all IDPs) that is not
already removed by other known confounds. B Plot of all the correlations between this first PC and each IDP. The two most strongly correlated sets of IDPs are rfMRI
node amplitudes, and T1 intensity contrast across the white-grey cortical boundary; IDP rfMRI Amplitude (ICA 100 node 32) is the most correlated. C Smoothed
(moving average with span of 1000) of just this IDP over time, which is clearly tending towards the first PC. D The same IDP, without temporal smoothing (one point
per subject).
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like for testicle-related disease in females, or because the subset of sub-
jects being processed happens to be all zeroes for one sex), then statistical
problems can arise. If a confound is not sex-separated, it is likely that the
all-zeroed-values (i.e., for one sex) will get the confound induced in them
(i.e. are no longer all zeros). Note those induced values are of course a
perfect copy of the confound. This becomes a problem if the study then
tries to correlate the unconfounded variable with something else which
has confounds in it (or if sex-split associations are tested for). The
problem is avoided by the use of split confounds.
4.6. Availability of the confounds

We define “source” confound variables as those fundamental vari-
ables (e.g., head size, age, sex, imaging site) from which the entire set of
confounds described in this work can be derived; ideally, the source
variables will all be UKB variables. They might have been derived from
image-level processing (i.e., requiring the NIFTI image-level downloads),
the DICOM headers, or other information from the imaging centres such
as scanner hardware service/change dates. We define “non-source”
confound variables to be those that are easily derived from the source
15
variables (for example, nonlinear versions of source variables, and
interaction terms). Our aim is for it to be easy for researchers to obtain
and work with the source variables, and then use our code from this work
(or their own alternative code) to derive non-source variables.

The most important “source” confound variables (including variables
needed to form the “SIMPLE” category) are already directly available
from UK Biobank (and we list these, along with their UKB variable ID
codings in Table S23 in the Supplemental Material). The remaining
source variables that have been identified in this work will be sent to UKB
to be made available for researchers shortly. These variables are also
listed in Table S23 in the Supplemental Material (with UKB variable
codings denoted with “TBD”, to be decided).

Source variables are therefore not already processed in all of the more
complex ways described in this paper (e.g., split to create site-specific
variables, quantile normalised, used to create higher-order/interaction
effects, with categorical confounds turned into multiple binary indica-
tor variables, and with date/time drift variables estimated). This is in part
because such derived, non-source, confounds depend on the specific set
of subjects that are used in a particular unconfounding process. To carry
out site-specific (etc) confound modelling will require the researcher to
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follow processing similar to that described here. We here provide freely
available code to both generate the source variables from all the different
sources13 and to process them to generate the confound sets used in this
paper.14

5. Conclusions

In this work, we have developed a set of brain imaging confounds and
have tested their importance in the context of their effect on IDPs and on
association studies between imaging and non imaging variables, through
investigation of the Variance Explained and the Unique Variance
Explained, as well as the way in which each group of confounds affects
the data. We have generated a large number of interactive plots that can
be explored in order to get a fine-grained idea about how each group of
confounds are related to each other, affect the IDPs, or affect the rela-
tionship between IDPs and non-IDPs. We have shown how to study the
importance of a possible confound, what confounds may be useful, and
possible ways of reducing their number. We have identified a set of
confounds that could be useful in the context of UK Biobank brain im-
aging data (which covers 6 structural and functional modalities, and
already has 40,000 participants' data released). A centralised description
of these imaging confounds (including code for generating the confounds
from the subject-level data disseminated by UKB, and code for applying
the confounds) is available at www.fmrib.ox.ac.uk/ukbiobank/confou
nds/and this will be updated as more subjects’ data are released (and
further confounds are identified) in an ongoing way.

CRediT authorship contribution statement

Fidel Alfaro-Almagro: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data curation, Writing -
original draft, Writing - review& editing, Visualization. Paul McCarthy:
Methodology, Software, Validation, Formal analysis, Investigation, Data
curation, Writing - review & editing. Soroosh Afyouni: Methodology,
Software, Writing - review & editing. Jesper L.R. Andersson: Method-
ology, Software, Writing - review & editing. Matteo Bastiani: Method-
ology, Software, Writing - review & editing. Karla L. Miller: Validation,
Writing - review & editing, Funding acquisition. Thomas E. Nichols:
Conceptualization, Methodology, Software, Validation, Formal analysis,
Investigation, Data curation, Writing - original draft, Writing - review &
editing, Visualization, Supervision. Stephen M. Smith: Conceptualiza-
tion, Methodology, Software, Validation, Formal analysis, Investigation,
Data curation, Writing - original draft, Writing - review & editing,
Visualization, Supervision, Project administration, Funding acquisition.

Acknowledgements

We are grateful to UK Biobank and the UK Biobank participants for
making the resource data possible. UK Biobank brain imaging and FAA
are funded by the UK Medical Research Council and the Wellcome Trust.
The authors gratefully acknowledge funding from theWellcome Trust UK
Strategic Award (098369/Z/12/Z). The Wellcome Centre for Integrative
Neuroimaging is supported by core funding from the Wellcome Trust
(203139/Z/16/Z). Additional input on methods and informatics: Mar-
tina Callaghan, Geoffrey Ferrari, Sean Fitzgibbon, David Flitney, Steve
Garratt, Ludovica Griffanti, Taylor Hanayik, Takuya Hayashi, Duncan
Mortimer, Niels Oesingmann, Usama Pervaiz, Chris Rorden, Matthew
Webster, and Anderson Winkler.

We are grateful for FreeSurfer quality-control contributions from:
Simon R Cox, Xueyi Shen, Lianne M Reus, Clara Alloza, Mathew A Harris,
Helen L Alderson, Stuart Hunter, Emma Neilson, Bruce Fischl, and
Douglas N. Greve.
13 Generation of source data.
14 Confound processing.

16
Thanks to Violinplot-Matlab at bastibe/Violinplot-Matlab.
Computation partially used the Oxford Biomedical Research

Computing (BMRC) facility, a joint development between the Wellcome
Centre for Human Genetics and the Big Data Institute supported by
Health Data Research UK and the NIHR Oxford Biomedical Research
Centre.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2020.117002.

References

Afyouni, S., Nichols, T.E., 05 2018. Insight and inference for DVARS. Neuroimage 172,
291–312.

Alfaro-Almagro, F., Jenkinson, M., Bangerter, N.K., Andersson, J.L.R., Griffanti, L.,
Douaud, G., Sotiropoulos, S.N., Jbabdi, S., Hernandez-Fernandez, M., Vallee, E.,
Vidaurre, D., Webster, M., McCarthy, P., Rorden, C., Daducci, A., Alexander, D.C.,
Zhang, H., Dragonu, I., Matthews, P.M., Miller, K.L., Smith, S.M., 02 2018. Image
processing and Quality Control for the first 10,000 brain imaging datasets from UK
Biobank. Neuroimage 166, 400–424.

Andersson, J.L.R., Graham, M.S., Drobnjak, I., Zhang, H., Filippini, N., Bastiani, M., 05
2017. Towards a comprehensive framework for movement and distortion correction
of diffusion MR images: within volume movement. Neuroimage 152, 450–466.

Andersson, J.L.R., Graham, M.S., Zsoldos, E., Sotiropoulos, S.N., Nov 2016. Incorporating
outlier detection and replacement into a non-parametric framework for movement
and distortion correction of diffusion MR images. Neuroimage 141, 556–572.

Barnes, J., Ridgway, G.R., Bartlett, J., Henley, S.M., Lehmann, M., Hobbs, N.,
Clarkson, M.J., MacManus, D.G., Ourselin, S., Fox, N.C., Dec 2010. Head size, age and
gender adjustment in MRI studies: a necessary nuisance? Neuroimage 53 (4),
1244–1255.

Bastiani, M., Cottaar, M., Fitzgibbon, S.P., Suri, S., Alfaro-Almagro, F., Sotiropoulos, S.N.,
Jbabdi, S., Andersson, J.L.R., 01 2019. Automated quality control for within and
between studies diffusion MRI data using a non-parametric framework for movement
and distortion correction. Neuroimage 184, 801–812.

Bijsterbosch, J., Harrison, S., Duff, E., Alfaro-Almagro, F., Woolrich, M., Smith, S., 10
2017. Investigations into within- and between-subject resting-state amplitude
variations. Neuroimage 159, 57–69.

Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P., Jan 2003. A comparison of
normalization methods for high density oligonucleotide array data based on variance
and bias. Bioinformatics 19 (2), 185–193.

Chen, J., Liu, J., Calhoun, V.D., Arias-Vasquez, A., Zwiers, M.P., Gupta, C.N., Franke, B.,
Turner, J.A., Jun 2014. Exploration of scanning effects in multi-site structural MRI
studies. J. Neurosci. Methods 230, 37–50.

Dukart, J., Schroeter, M.L., Mueller, K., 2011. Age correction in dementia–matching to a
healthy brain. PloS One 6 (7), e22193.

Elliott, L.T., Sharp, K., Alfaro-Almagro, F., Shi, S., Miller, K.L., Douaud, G., Marchini, J.,
Smith, S.M., 10 2018. Genome-wide association studies of brain imaging phenotypes
in UK Biobank. Nature 562 (7726), 210–216.

Fawns-Ritchie, C., Deary, I.J., 2019. Reliability and Validity of the uk Biobank Cognitive
Tests. medRxiv. URL. https://www.medrxiv.org/content/early/2019/07/15/
19002204.

Flitney, D.E., Jenkinson, M., 2000. Cluster analysis revisited. In: Tech. Rept. Oxford
Centre for Functional Magnetic Resonance Imaging of the Brain, Department of
Clinical Neurology, Oxford University, Oxford, UK. TR00DF1. Oxford Centre for
Functional Magnetic Resonance Imaging of the Brain, Department of Clinical
Neurology, Oxford University, Oxford, UK, p. 1.

Focke, N.K., Helms, G., Kaspar, S., Diederich, C., T�oth, V., Dechent, P., Mohr, A.,
Paulus, W., 2011. Multi-site voxel-based morphometry–not quite there yet.
Neuroimage 56 (3), 1164–1170.

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R., Mar, 1996.
Movement-related effects in fMRI time-series. Magn. Reson. Med. 35 (3), 346–355.

Gilmore, A., Buser, N., Hanson, J.L., 2019. Variations in Structural Mri Quality Impact
Measures of Brain Anatomy: Relations with Age and Other Sociodemographic
Variables. Biorxiv, p. 581876.

Glastonbury, C.A., Ferlaino, M., Nellåker, C., Lindgren, C.M., 2018. Adjusting for
confounding in unsupervised latent representations of images. Comput. Vis. Pattern
Recogn. arXiv preprint arXiv:1811.06498.

Greve, D.N., Brown, G.G., Mueller, B.A., Glover, G., Liu, T.T., Jul, 2013. A survey of the
sources of noise in fMRI. Psychometrika 78 (3), 396–416.

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M.F.,
Duff, E.P., Fitzgibbon, S., Westphal, R., Carone, D., Beckmann, C.F., Smith, S.M., 07,
2017. Hand classification of fMRI ICA noise components. Neuroimage 154, 188–205.

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C.F., Auerbach, E.J., Douaud, G.,
Sexton, C.E., Zsoldos, E., Ebmeier, K.P., Filippini, N., Mackay, C.E., Moeller, S., Xu, J.,
Yacoub, E., Baselli, G., Ugurbil, K., Miller, K.L., Smith, S.M., Jul 2014. ICA-based
artefact removal and accelerated fMRI acquisition for improved resting state network
imaging. Neuroimage 95, 232–247.

Jager, K., Zoccali, C., Macleod, A., Dekker, F., 2008. Confounding: what it is and how to
deal with it. Kidney Int. 73 (3), 256–260.

http://www.fmrib.ox.ac.uk/ukbiobank/confounds/
http://www.fmrib.ox.ac.uk/ukbiobank/confounds/
https://github.com/bastibe/Violinplot-Matlab/blob/master/README.md
https://doi.org/10.1016/j.neuroimage.2020.117002
https://doi.org/10.1016/j.neuroimage.2020.117002
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref1
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref1
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref1
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref2
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref3
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref3
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref3
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref3
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref4
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref4
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref4
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref4
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref5
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref6
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref7
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref7
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref7
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref7
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref8
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref8
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref8
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref8
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref9
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref9
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref9
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref9
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref10
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref10
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref10
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref11
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref11
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref11
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref11
https://www.medrxiv.org/content/early/2019/07/15/19002204
https://www.medrxiv.org/content/early/2019/07/15/19002204
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref13
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref14
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref15
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref15
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref15
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref16
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref16
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref16
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref17
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref17
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref17
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref18
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref18
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref18
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref19
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref19
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref19
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref19
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref20
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref21
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref21
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref21
https://git.fmrib.ox.ac.uk/falmagro/ukb_unconfound_v2/-/tree/master/generate_initial_data
https://git.fmrib.ox.ac.uk/falmagro/ukb_unconfound_v2/-/tree/master/confound_processing


F. Alfaro-Almagro, P. McCarthy, S. Afyouni et al. NeuroImage 224 (2021) 117002
Johnstone, T., Ores Walsh, K.S., Greischar, L.L., Alexander, A.L., Fox, A.S., Davidson, R.J.,
Oakes, T.R., Oct 2006. Motion correction and the use of motion covariates in
multiple-subject fMRI analysis. Hum. Brain Mapp. 27 (10), 779–788.

Karch, J.D., Filevich, E., Wenger, E., Lisofsky, N., Becker, M., Butler, O., M?rtensson, J.,
Lindenberger, U., Brandmaier, A.M., Kühn, S., 10 2019. Identifying predictors of
within-person variance in MRI-based brain volume estimates. Neuroimage 200,
575–589.

Keenan, K.E., Gimbutas, Z., Dienstfrey, A., Stupic, K.F., Dec 2019. Assessing effects of
scanner upgrades for clinical studies. J. Magn. Reson. Imag. 50 (6), 1948–1954.

Klapwijk, E.T., van de Kamp, F., van der Meulen, M., Peters, S., Wierenga, L.M., 04 2019.
Qoala-T: a supervised-learning tool for quality control of FreeSurfer segmented MRI
data. Neuroimage 189, 116–129.

Kostro, D., Abdulkadir, A., Durr, A., Roos, R., Leavitt, B.R., Johnson, H., Cash, D.,
Tabrizi, S.J., Scahill, R.I., Ronneberger, O., Kl?ppel, S., Sep 2014. Correction of inter-
scanner and within-subject variance in structural MRI based automated diagnosing.
Neuroimage 98, 405–415.

Krueger, G., Granziera, C., Jack, C.R., Gunter, J.L., Littmann, A., Mortamet, B.,
Kannengiesser, S., Sorensen, A.G., Ward, C.P., Reyes, D.A., Britson, P.J., Fischer, H.,
Bernstein, M.A., Nov 2012. Effects of MRI scan acceleration on brain volume
measurement consistency. J. Magn. Reson. Imag. 36 (5), 1234–1240.

MacCarthy, P., 2019. Funpack. https://doi.org/10.5281/zenodo.3371332. Zeonodo,
version 1.4.1. . (Accessed 10 December 2019).

Miller, K.L., Alfaro-Almagro, F., Bangerter, N.K., Thomas, D.L., Yacoub, E., Xu, J.,
Bartsch, A.J., Jbabdi, S., Sotiropoulos, S.N., Andersson, J.L., Griffanti, L., Douaud, G.,
Okell, T.W., Weale, P., Dragonu, I., Garratt, S., Hudson, S., Collins, R., Jenkinson, M.,
Matthews, P.M., Smith, S.M., 11 2016. Multimodal population brain imaging in the
UK Biobank prospective epidemiological study. Nat. Neurosci. 19 (11), 1523–1536.

Murphy, K., Birn, R.M., Bandettini, P.A., Oct 2013. Resting-state fMRI confounds and
cleanup. Neuroimage 80, 349–359.

Murphy, K., Fox, M.D., 07 2017. Towards a consensus regarding global signal regression
for resting state functional connectivity MRI. Neuroimage 154, 169–173.

Noble, S., Scheinost, D., Finn, E.S., Shen, X., Papademetris, X., McEwen, S.C.,
Bearden, C.E., Addington, J., Goodyear, B., Cadenhead, K.S., Mirzakhanian, H.,
Cornblatt, B.A., Olvet, D.M., Mathalon, D.H., McGlashan, T.H., Perkins, D.O.,
Belger, A., Seidman, L.J., Thermenos, H., Tsuang, M.T., van Erp, T.G.M., Walker, E.F.,
Hamann, S., Woods, S.W., Cannon, T.D., Constable, R.T., 02 2017. Multisite
reliability of MR-based functional connectivity. Neuroimage 146, 959–970.

Pearl, J., et al., 2009. Causal inference in statistics: an overview. Stat. Surv. 3, 96–146.
Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., Jan

2014. Methods to detect, characterize, and remove motion artifact in resting state
fMRI. Neuroimage 84, 320–341.
17
Rao, A., Monteiro, J.M., Mourao-Miranda, J., 04 2017. Predictive modelling using
neuroimaging data in the presence of confounds. Neuroimage 150, 23–49.

Rosen, A.F., Roalf, D.R., Ruparel, K., Blake, J., Seelaus, K., Villa, L.P., Ciric, R., Cook, P.A.,
Davatzikos, C., Elliott, M.A., et al., 2018. Quantitative assessment of structural image
quality. Neuroimage 169, 407–418.

Rosenbaum, P.R., Rubin, D.B., 1983. The central role of the propensity score in
observational studies for causal effects. Biometrika 70 (1), 41–55.

Satterthwaite, T.D., Elliott, M.A., Gerraty, R.T., Ruparel, K., Loughead, J., Calkins, M.E.,
Eickhoff, S.B., Hakonarson, H., Gur, R.C., Gur, R.E., Wolf, D.H., Jan 2013. An
improved framework for confound regression and filtering for control of motion
artifact in the preprocessing of resting-state functional connectivity data. Neuroimage
64, 240–256.

Savalia, N.K., Agres, P.F., Chan, M.Y., Feczko, E.J., Kennedy, K.M., Wig, G.S., 01 2017.
Motion-related artifacts in structural brain images revealed with independent
estimates of in-scanner head motion. Hum. Brain Mapp. 38 (1), 472–492.

Smith, S.M., Nichols, T.E., 2018. Statistical challenges in “big data” human neuroimaging.
Neuron 97 (2), 263–268.

Smith, S.M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P.M., Federico, A., De
Stefano, N., Sep 2002. Accurate, robust, and automated longitudinal and cross-
sectional brain change analysis. Neuroimage 17 (1), 479–489.

Snoek, L., Mileti, S., Scholte, H.S., 01 2019. How to control for confounds in decoding
analyses of neuroimaging data. Neuroimage 184, 741–760.

Stein, J.L., Medland, S.E., Vasquez, A.A., Hibar, D.P., Senstad, R.E., Winkler, A.M.,
Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., et al., 2012. Identification of common
variants associated with human hippocampal and intracranial volumes. Nat. Genet.
44 (5), 552–561.

Stoffers, D., Diaz, B.A., Chen, G., den Braber, A., van ’t Ent, D., Boomsma, D.I.,
Mansvelder, H.D., de Geus, E., Van Someren, E.J., Linkenkaer-Hansen, K., 2015.
Resting-state fMRI functional connectivity is associated with sleepiness, imagery, and
discontinuity of mind. PloS One 10 (11), e0142014.

Westfall, J., Yarkoni, T., 2016. Statistically controlling for confounding constructs is
harder than you think. PloS One 11 (3), e0152719.

Woolrich, M.W., Ripley, B.D., Brady, M., Smith, S.M., Dec 2001. Temporal
autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14 (6),
1370–1386.

Zarnani, K., Nichols, T.E., Alfaro-Almagro, F., Fagerlund, B., Lauritzen, M., Rostrup, E.,
Smith, S.M., 2019. Discovering markers of healthy aging: a prospective study in a
Danish male birth cohort. Aging (Albany NY) 11 (16), 5943.

Zhang, J., 2008. On the completeness of orientation rules for causal discovery in the
presence of latent confounders and selection bias. Artif. Intell. 172 (16-17),
1873–1896.

http://refhub.elsevier.com/S1053-8119(20)30488-2/sref22
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref22
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref22
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref22
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref23
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref23
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref23
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref23
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref23
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref24
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref24
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref24
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref25
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref26
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref27
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref27
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref27
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref27
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref27
https://doi.org/10.5281/zenodo.3371332
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref29
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref29
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref29
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref29
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref29
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref29
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref30
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref30
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref30
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref31
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref31
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref31
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref32
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref33
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref33
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref34
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref34
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref34
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref34
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref35
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref35
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref35
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref36
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref37
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref37
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref37
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref38
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref39
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref39
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref39
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref39
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref40
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref40
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref40
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref41
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref41
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref41
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref41
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref42
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref42
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref42
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref43
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref44
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref45
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref45
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref46
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref47
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref47
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref47
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref48
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref48
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref48
http://refhub.elsevier.com/S1053-8119(20)30488-2/sref48

	Confound modelling in UK Biobank brain imaging
	1. Introduction
	2. Methods
	2.1. Linear model unconfounding & variance measures
	2.2. Data description
	2.3. Overview of confound types
	2.4. Description of basic confound variables (80 variables)
	2.4.1. Subject-specific confounds (4 variables)
	2.4.2. Scanner/acquisition protocol/processing parameters (20 variables)
	2.4.3. Head motion (48 variables)
	2.4.4. Table position (8 variables)

	2.5. Processing of confound regressors (602 variables)
	2.5.1. Basic confounds (80 variables, expanded to 240)
	2.5.2. Non-linear transformations (158 variables)
	2.5.3. Crossed terms (confound interaction: A ∗ B) (84 variables)
	2.5.4. Date/time-related confounds (120 variables)

	2.6. Null evaluations (random Gaussian confounds)
	2.7. Correlations between IDPs and non-IDPs variables
	2.8. Additive vs non-additive confound effects
	2.9. Comparisons with other confound configurations (“conventional simple” confounds)

	3. Results
	3.1. Non-linear confounds selection
	3.2. Crossed terms selection
	3.3. Variance of IDPs explained by confound groups
	3.4. Effect of unconfounding on IDP-nIDP correlations
	3.5. Importance of non-additive terms
	3.6. Effects of unconfounding with different sets of confounds
	3.7. Date and time confounds

	4. Discussion
	4.1. General considerations
	4.2. Confounds and non-IDP variables
	4.3. Number of confounds
	4.4. Berkson's paradox
	4.5. Sex-split unconfounding
	4.6. Availability of the confounds

	5. Conclusions
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Supplementary data
	References


