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Controlling the outcome of SN2 reactions in ionic liquids: From 
rational data set design to predictive linear regression models†
Alexandra Schindl,a Rebecca R. Hawker,b,c Karin S. Schaffarczyk McHale,b Kenny T.-C. Liu,b

Daniel C. Morris,b,d Andrew Y. Hsieh,b Alyssa Gilbert,b Stuart W. Prescott,d Ronald S. Haines,b

Anna K. Croft,a,* Jason B. Harper,b,* and Christof M. Jäger a,*

Rate constants for a bimolecular nucleophilic substitution (SN2) process in a range of ionic liquids are correlated with 
calculated parameters associated with the charge localisation on the cation of the ionic liquid (including the molecular 
electrostatic potential).  Simple linear regression models proved effective, though the interdependency of the descriptors 
needs to be taken into account when considering generality.  A series of ionic liquids were then prepared and evaluated as 
solvents for the same process; this data set was rationally chosen to incorporate homologous series (to evaluate systematic 
variation) and functionalities not available in the original data set.  These new data were used to evaluate and refine the 
original models, which were expanded to include simple artificial neural networks.  Along with showing the importance of 
an appropriate data set and the perils of overfitting, the work demonstrates that such models can be used to reliably predict 
ionic liquid solvent effects on an organic process, within the limits of the data set.  

Introduction
Ionic liquid solvents affect the reaction outcome of organic 
reactions differently to the more commonly-used molecular 
solvents.1-6  Ionic liquids are composed of ions,7, 8 leading 
electrostatic interactions to dominate, often affording 
favourable effects on reaction rates and increased selectivity in 
the formation of products. In comparison to molecular solvents, 
however, the origin of reaction outcomes in ionic liquids is less 
well understood.2, 4, 9 In order to rationally select the 
appropriate ionic liquids as solvents for a given reaction, these 
solvent effects need to be both understood and, more 
importantly, predictable.

Systematic analysis of a variety of ionic liquids on a range of 
different reactions (examples include: alkyl substitution,10-20 
aromatic substitution,21-30 condensation31-33 and pericyclic34-40 
processes) has provided a greater understanding of the effects 

of ionic liquids on reaction outcomes. Analysis of similar 
reactions types has shown the solvent effects are predictable, 
with specific ionic liquids able to be chosen to control reaction 
outcome.25, 26, 41 These analyses have identified some key 
interactions of the components of ionic liquids with species 
along the reaction coordinate,3 involving both starting materials 
(aromatic systems24-26, 29, 30 and lone-pairs18, 19, 30, 31, 33, 42, 43) and 
transition states.16-20, 24

An example of a reaction that has been examined 
extensively in ionic liquids is the bimolecular nucleophilic 
substitution (SN2) reaction between benzyl bromide 1 and 
pyridine 2 (Scheme 1).41-47 When the commonly-used ionic 
liquid 1-butyl-3-methylimidazolium 
bis(trifluoromethanesulfonyl)imide ([bmim][N(SO2CF3)2]) was 
examined as a solvent in this reaction, a rate constant 
enhancement, ca. 2.5 times that of the molecular solvent, 
acetonitrile, was observed.46 Determination of the activation 
parameters for this reaction provided insight into the 
microscopic origin of the rate constant enhancement;46 the 
reaction was entropically driven and mediated by an interaction 
between the ionic liquid cation and the lone-pair on the 
nitrogen of the pyridine 2. This interaction with the lone-pair of 
the pyridine 2 was confirmed through a combination of 
deconvolution studies and molecular dynamics simulations.42

Scheme 1. The bimolecular nucleophilic substitution reaction between benzyl 
bromide 1 and pyridine 2 to give N-benzyl pyridinium bromide 3, which has been 
examined in ionic liquids and the molecular solvent, acetonitrile. 
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Examination of a wide range of ionic liquids revealed the 
interaction involving the lone-pair on the pyridine 2 was 
dependent on the extent of charge localisation and steric 
availability of the cationic charged centre(s); the more 
accessible the charged centre(s) on the ionic liquid cation, the 
larger the rate constant for the reaction.41, 44 Greater 
interaction between the ionic liquid cation and the pyridine 2 
led to a more substantial enthalpic cost, with this cost overcome 
by an even larger entropic benefit, resulting in the observed 
increased rate constants. Ionic liquids with cations that 
contained electronegative atoms also gave larger rate constants 
than those with cations that did not,41, 47 leading to the 
conclusion that the magnitude of the cationic charge density 
also has an effect on the rate constant observed. In order to 
determine the most favourable ionic liquids for this reaction, it 
was concluded that cations with accessible charges and/or 
containing electronegative atoms should be chosen.41

Whilst the qualitative understanding developed is useful 
and is similar to what is available in molecular solvents, the ideal 
would be a method to quantify the interaction identified and 
correlate it with the observed rate constants. Experimental 
methods, such as measuring diffusion constants,17 may provide 
such information.  Alternatively, correlation with solvent 
parameters, such as those developed by Kamlet and Taft, might 
be used to determine microscopic interactions; these solvent 
parameters give an indication of the properties of each 
component of the ionic liquid.  The typically used Kamlet-Taft 
solvent parameters are , the hydrogen bond donating ability 
of the solvent48 (often associated with the cation of the ionic 
liquid); , the hydrogen bond accepting ability of the solvent49 
(often associated with the anion of the ionic liquid); and *, the 
polarisability of the solvent50 (associated with both constituents 
of the ionic liquid).  These parameters have been correlated 
with reaction outcomes in ionic liquids previously19-21, 51-53 and 
in this case multivariate regression analyses (as described by 
Welton et al.,54 see ESI for discussion including Fig S1-S2) of the 
data presented in Table 1 (vida infra) with the limited solvent 
parameter data gave the most significant correlation with the  
and* parameters, as below.§

ln(k2) = 4.35 -10.35* (2)

This correlation is reasonable and further shows the 
importance of interactions of the cations and demonstrates 
that the polarizability of the solvent has a (negative) effect on 
reaction outcome.  However, the range of ionic liquids for which 
these data are reported is comparatively limited and 
determining them is non-trivial.55 Such restrictions make their 
utility for the rational design of new solvents limited.‡

Alternatively, computational methods might provide a 
simple measure that could be used to choose an ionic liquid 
solvent.  Based on the observations described above, the 
question arises whether reaction rate enhancements by 
different ionic liquids might be described simply by using the 
properties of the cations of the ionic liquids or, to be more 
precise, by investigating molecular surface properties that 
determine the nature of the interactions between the cations 

of the ionic liquid and pyridine 2. If such a quantitative 
correlation is possible, regression models might be trained on 
these data with the potential to predict the solvent effects of 
ionic liquids without the need for large-scale experimental 
analysis, and opening the way for more extensive 
machine-learning approaches with large experimental 
data-sets. 

The molecular electrostatic potential (MEP) and other local 
molecular properties derived from quantum chemical 
calculations have been proposed and tested for their 
applicability for predicting chemical reactivity.56, 57 These 
properties have been used for QSAR (quantitative 
structure-activity relationship) and 3D-QSAR studies in 
chemistry and medicinal research, with direct impact on drug 
and agrochemical discovery.58, 59 In a recent review, Brinck and 
Stenlid60 summarize the status and capacity of the molecular 
surface property approach (MSPA) for the prediction of 
intermolecular interactions and reactivity beyond the molecular 
level. Going beyond the molecular surface, we have further 
recently demonstrated the usability of local molecular 
properties for describing charge transport in molecular organic 
electronic devices.61, 62

Models using MEPs as a basis to describe site interaction 
points have been developed specifically for acetonitrile,63 and a 
more general approach to estimate solvent effects between 
solutes has been provided by Hunter.64 This approach obtained 
hydrogen bond parameters, that are in congruence with 
Abraham’s solvent parameters,65 from the maxima and minima 
of calculated MEPs and thereby demonstrated, that there is ‘a 
logarithmic relationship between the value of the surface 
electrostatic potential and the association constant for an 
intermolecular interaction’.64 The model has recently been 
extended to identify parameters for, and interactions with, 
selected ions.66-68 Similar to this, MEP maxima were used to 
describe the energetic ordering of equilibrium structures and 
the number of possible Lewis acid sites.69

In the study presented here, rather than considering directly 
the effects of varying surface properties on the reactivity of a 
given species, the direct interactions between the cations of the 
ionic liquid and pyridine 2 are examined as a surrogate for the 
entropically driven rate constant enhancement. These 
interactions are predominantly of electrostatic nature and 
therefore were expected to be described well by the molecular 
electrostatic potential. We investigate the local molecular 
properties of the cations of the different ionic liquids already 
considered experimentally as solvents for the reaction in 
Scheme 1, based on semiempirical quantum chemical 
calculations.  Relationships between these properties and the 
rate constant data are then elaborated. Based on these 
relationships we train a regression model to predict the effect 
of other ionic liquids on the reaction kinetics and discuss 
critically the strengths and limitations of the predictions. 
Subsequently, we use the prediction model to suggest and test 
new ionic liquid combinations to further evaluate and improve 
the model.
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Figure 1. The cations in the ionic liquids considered initially, based on their effects on the reaction shown in Scheme 1; the counterion in all cases is 
bis(trifluoromethanesulfonyl)imide ([N(SO2CF3)2]-).  The cations are numbered by group – I = imidazolium, BI = bis(imidazolium), P = pyridinium, A = ammonium, S = 
sulfonium and T = triazolium.  Other nomenclature used throughout is based upon common nomenclature for the 1-alkyl-3-methylimidazolium series; members of this 
series are frequently abbreviated [xmim]+, where x is the first letter of the name of the alkyl chain; a second letter is used when needed to distinguish systems. 
Abbreviations for other systems are determined in the same way. 

Results and Discussion
Initial considerations

The rate constant data for the reaction shown in Scheme 1 at 
295 K in mixtures containing the ionic liquids having the cations 
shown in Figure 1 are summarised in Table 1; these cations have 
been organised by structure to allow the effect of changes to 
structural features to be readily seen. Two key features are the 
importance of the extent of charge localisation as 
demonstrated, for example, through comparison of the effects 
of the [Fhxpy]+ P3 and [hxpy]+ P2 salts along with other cases 
such as [bmmo]+ A3 cf. [bmpi]+ A2 and [b45Cl2mim]+ I7 cf. 
[bm3im]+ I4) and accessibility of the charge ([btl]+ S1€ cf. 
[bmpyr]+ A1 cf. [TOA]+ A4). Generally, no co-solvent is present 
for the data given; exceptions include the pyridinium systems 
(the [Fhxpy]+ P3 and [hxpy]+ P2 salts) where solubility issues 
limited the maximum amount of ionic liquid that could be 
added.¢

It should be noted that, in all cases, the anion is 
bis(trifluoromethanesulfonyl)imide ([N(SO2CF3)2]-); the solvent 

effects on the reaction in Scheme 1 are known for a wide range 
of ionic liquids based on this anion, at least in part because it is 
it is relatively non-coordinating (as measured by, for example, 
the Kamlet-Taft  parameter70) and hence the cation is 
relatively 'available', maximising the key interaction responsible 
for rate constant enhancement.  Use of another anion might 
result in greater anion-cation interactions, reducing the 
observed solvent effects, along with introducing effects beyond 
simple ion-pairing (as has been observed previously45).

For the computational assessment of the relationship of 
molecular properties and reaction kinetics, all of the cations 
shown in Figure 1 (with rate constant data for the 
corresponding ionic liquids shown in Table 1) were optimised 
with the semiempirical Hamiltonian AM155 and the local 
molecular properties calculated. Besides the molecular 
electrostatic potential (MEP; for example see Figure 2a), for 
complete data see Table S1 in ESI),56 the local ionization 
potential,57 the local electron affinity (EAL),58 the local 
hardness,58 local electronegativity,58 and dipolar density59 have 
also been calculated, in addition to global properties such as 
polarizability,60 dipole moment, and globularity.61 From these 
properties, characteristic descriptors have been extracted on 
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Table 1. The bimolecular rate constants for the reaction shown in Scheme 1 at 295 K in 
reaction mixtures containing the specified ionic liquid at the mole fraction specified in 
acetonitrile.  Uncertainties are reported as the standard deviation of at least three 
replicate experiments.

Cation Ionic liquid SALT k2 / 10-4 L mol-1 s-1

I1 [bmim][N(SO2CF3)2]46 0.86 14.5 ± 0.5a

I2 [bm2im][N(SO2CF3)2]44 0.88 14.9 ± 1.3a

I3 [bm3im][N(SO2CF3)2]44 0.85 6.70 ± 0.62
I4 [bm4im][N(SO2CF3)2]44 0.85 5.4 ± 1.3b

I5 [b2Clmim][N(SO2CF3)2]47 0.86 13.1 ± 0.7
I6 [b4Clmim][N(SO2CF3)2]47 0.86 11.9 ± 1.2
I7 [b45Cl2mim][N(SO2CF3)2]47 0.85 17.0 ± 0.3

BI1 [(mim)2pe][N(SO2CF3)2]2
41 0.78 22.0 ± 1.1

P1 [bpy][N(SO2CF3)2]41 0.85 18.3 ± 1.0
P2 [hxpy][N(SO2CF3)2]41 0.36¢ 13.4 ± 0.3
P3 [Fhxpy][N(SO2CF3)2]41 0.36¢ 26.3 ± 0.7
A1 [bmpyr][N(SO2CF3)2]44 0.86 17 ± 1a

A2 [bmpi][N(SO2CF3)2]41 0.85 15.1 ± 0.2
A3 [bmmo][N(SO2CF3)2]41 0.70 32.8 ± 3.2
A4 [TOA][N(SO2CF3)2]44 0.74 2.9 ± 0.4b

S1 [btl][N(SO2CF3)2]41 0.86 38 ± 10
T1 [bmtr][N(SO2CF3)2]41 0.86 17.4 ± 1.6

aData interpolated from an Eyring analysis.  Uncertainties are compounded from 
uncertainties in activation parameters.
bData extrapolated from an Eyring analysis.  Uncertainties are compounded from 
uncertainties in activation parameters.

Figure 2. Representative Molecular Electrostatic potential (MEP) plots for compounds I1 
and I3. a) MEP (colour range blue-green-red, +50 to +110 kcal mol-1) mapped onto the 
molecular electronic isodensity surface (isovalue 0.02 e Å-3); b) MEP isosurface for values 
>100 kcal mol-1  represented superimposed with the electronic isodensity surface (white) 
indicating the area representing the MEParea100 descriptor.

the molecular surface as defined in the program Parasurf.63 A 
natural atomic orbital point charge (NAO-PC) model was 
obtained64 that describes the electrostatics of non-hydrogen 
atoms (valence-only s- and p-basis set) using the semi-empirical 
Hamiltonian AM1. These data include maximum, minimum, 
average and range values of the selected properties. (For a link 
to the full set of calculated descriptors, see the ESI page S13.)

Based on the relatively small experimental sample size, we 
subsequently used the whole data set of the properties for the 
17 cations to train regression models using the available local 
properties. In the first instance, a regression analysis was 
performed to find non-linear correlations between those 

experimentally-obtained rate constant data and the molecular 
descriptors, and deriving F-test and Mutual Information 
(MI)-test values, which show linear dependency and non-linear 
dependency, respectively (see Figure S3 and Table S3). The 
cross correlation of the data, perhaps unsurprisingly, showed 
higher correlation within the groups of MEP and EAL variables, 
but also correlations between EAL and MEP descriptors and 
between dipolar density (dipden) and MEP range.

Simple linear regression models

Following our hypothesis that the electrostatic interactions 
between the substrate and the cations of the ionic liquid were 
of significant importance, we trained polynomial and linear 
regression models on single or combinations of the available 
MEP data on all available 17 cations. Not surprisingly, 
polynomial fits result in good R2 values, however, showed clear 
signs of overfitting. 

In order to prevent similar overfitting for linear regression 
models, the number of chosen descriptors were limited to 
three. Initial models trained showed reasonable accuracy with 
one characteristic outlier [btl]+ (S1). Along with [btl] being a 
notable outlier from the model, it was the only IL that broke 
down under the experimental conditions.41 As such, the 
experimental data for the reaction in this ionic liquid needs to 
be treated with caution. A first linear regression model 
excluding S1 for the training (model A£) resulted in a good fit 
(R2 = 0.87; MAE = 2.19   10-4 L mol-1 s-1, Figure 3), verifying the 
importance of the electrostatic interactions between the cation 
of the ionic liquid and the pyridine 2, which lead to the 
previously observed entropically driven rate constant 
enhancement.46 (See Table S4, ESI for all models tested and 
compared initially.)
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Figure 3. Correlation of linear regression model A with experimentally observed kinetic 
data, using the descriptors MEPmax, MEPrange and meanMEP. TD: Training data; MAE: 
Mean absolute error; RC: Rank correlation.  Line shown is y = x, added as a guide only.
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This model demonstrates a very good correlation, however 
it is one that needs to be treated with care. The different MEP 
descriptors used for the model are not independent (they have 
a high correlation with each other). Therefore, it is questionable 
how good the predictive power of the model is outside the 
examples used to train the model. Thus, we investigated the 
possibility of defining a new MEP descriptor that might be used 
to predict rate constants for this reaction more effectively when 
combined with other independent descriptors. Keeping in mind 
that the accessible charged area of the ionic liquid will be 
important for interactions with the pyridine 2, we defined 
MEPsumx, MEPcountx, MEPareax (see Figure 2b)), 
MEPareasumx, and MEPtop25 (Table 2) as new MEP-based 
descriptors. These values were chosen as they all indirectly 
quantify a molecular surface area above a certain MEP value in 
different ways. Thus, they are linked to the area of highest 
electrostatic attraction to anions or nucleophiles. Different cut-
off values for the new MEP-derived values have been tested for 
best correlation with the experimental kinetic data (see ESI, 
Table S5). The new MEP descriptors have then been combined 
with other descriptors (based on strong correlations between 
descriptors found in the MI-test and F-test) for further 
regression models (see ESI, Table S6 for full list of tested 
combinations). Best correlations for combinations were 
achieved using MEPtotal100 in combination with either the 
dipole density (dipden), an EAL-derived descriptor, or an 
electronegativity-derived descriptor. The new linear regression 
models showed that besides ion S1, other singly-represented 
cation types in the data set were difficult to predict accurately. 
In particular, the bisimidazolium ion BI1 shows very different 
characteristics in the new descriptors.  Thus, final models have 
been trained without these ions, with the best model (model D) 
using MEPtotal100, EALbar, andENEGrange as descriptors (R2 = 
0.88, MAE = 1.45  10-4 L mol-1 s-1, Figure 4; see ESI Tables S7 
and S8 and Figures S4 and S5 for analysis of remaining models).

Expanding the data set and revision of the models

The above data was compiled from literature available at the 
start of this project on the solvent effects of ionic liquids on the 
reaction between benzyl bromide 1 and pyridine 2. Whilst there 
was rational choice behind the structures of the solvents 
considered (particularly in the work by Hawker et al.41), ionic 
liquids containing cations with structures unlike other series 
were present. Hence, a set of ionic liquids based on the cations 
shown in Figure 6 were specifically considered and their effects 
on the reaction between benzyl bromide 1 and pyridine 2 were 
analysed. This set included two homologous series of ionic 
liquids; one with cations involving 1-alkyl-3-methylimidazolium 
salts (building on the [bmim][N(SO2CF3)2] case introduced 
above) and another with doubly charged bis(imidazolium) 
cations (building on the [(mim)2pe][N(SO2CF3)2]2) case). Further, 
in the previous data set there was only one ionic liquid with a 
cation incorporating a fluorous side chain and only one ionic 
liquid with a non-cyclic cation; an additional member of each 
series has been included. In addition, it was of interest to 
incorporate different functionalities in the side chains of the 

Table 2. Definition of MEP-based parameters introduced in this work.

Parameter Description
MEPsumx Sum of MEP values above a certain threshold x

MEPcountx Total number of MEP values above a certain
threshold x

MEPareax Sum of corresponding areas of MEP values above a 
certain threshold x

MEPareasumx MEP values above a certain threshold x and their 
corresponding areas are summed

MEPtop25 Sum of highest 25 MEP values
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Figure 4. Correlation of linear regression model D with experimentally observed kinetic 
data, using the descriptors MEPtotal100, EALbar and ENEGrange. TD: Training data; 
MAE: Mean absolute error; RC: Rank correlation.  Line shown is y = x, added as a guide 
only.

ionic liquid, hence the introduction of the ether series. Finally, 
data on alternate types of cations that became available – 
particularly the lithium glyme solvate-based ionic liquids – 
provides a test for the versatility of the models determined. The 
rate constant data for the reaction shown in Scheme 1 at 295 K 
in mixtures containing ionic liquids shown in Figure 5 are 
summarised in Table 3. These data are, as previously, grouped 
by cation type.

Immediately apparent is the trend in the new data for the 
imidazolium series I; increasing the alkyl chain length on the 
cation decreases the rate constant for the process. These data 
are consistent with decreased interactions of the substrate 2 
with the cation of the ionic liquid and will be discussed further 
elsewhere.71 No equivalent trend is observed for the series of 
ionic liquids based on two linked imidazolium centres BI.  The 
difference between the series suggests that the linking alkyl 
chain adds some restriction to the interactions involving the 
pyridine 2; this is discussed in a separate report.72  The additions 
to existing series provided data that was not unexpected; the 
greater accessibility of charge in the case of the ionic liquid 
based on cation A5 results in a slight increase in rate constant 
compared to the A4 case. Likewise, inductive removal of 
electron density increases charge density on the cation, thus
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Table 3. The bimolecular rate constants for the reaction shown in Scheme 1 at 295 K in 
reaction mixtures containing the specified ionic liquid at the mole fraction specified.  
Uncertainties are reported as the standard deviation of at least three replicate 
experiments.

Cation Ionic liquid SALT k2 / 10-4 L mol-1 s-1

I8 [emim][N(SO2CF3)2] 0.81 17.9 ± 1.1
I9 [hxmim][N(SO2CF3)2] 0.79 12.1 ± 1.0

I10 [omim][N(SO2CF3)2] 0.80 10.5 ± 0.4
I11 [dmim][N(SO2CF3)2] 0.80 9.40 ± 0.11
I12 [ddmim][N(SO2CF3)2] 0.80 8.3 ± 0.6
I13 [Fhxmim][N(SO2CF3)2]2 0.80 38 ± 3
BI2 [(mim)2pr][N(SO2CF3)2]2 0.43$ 35.4 ± 1.9
BI3 [(mim)2b][N(SO2CF3)2]2 0.35$ 7.4 ± 0.3
BI4 [(mim)2hx][N(SO2CF3)2]2 0.76 19.6 ± 1.9
BI5 [(mim)2hp][N(SO2CF3)2]2 0.22$ 21 ± 4
BI6 [(mim)2o][N(SO2CF3)2]2 0.74 15.3 ± 1.1
BI7 [(mim)2n][N(SO2CF3)2]2 0.75 20.8 ± 2.2
BI8 [(mim)2d][N(SO2CF3)2]2 0.74 19.6 ± 1.9
BI9 [(mim)2u][N(SO2CF3)2]2 0.74 16.3 ± 1.9

BI10 [(mim)2dd][N(SO2CF3)2]2 0.72 16.2 ± 0.9
A5 [mTOA][N(SO2CF3)2]2 0.76 4.4 ± 0.7
E1 [(eOm)mim][N(SO2CF3)2]2 0.81 21.4 ± 1.1
E2 [(eOm)py][N(SO2CF3)2]2 0.82 21.3 ± 0.2
E3 [(eOm)mmo][N(SO2CF3)2]2 0.82 23.1 ± 1.1
G1 [Li(G3)][N(SO2CF3)2] 0.83 0.36 ± 0.0173

G2 [Li(G4)][N(SO2CF3)2] 0.82 0.51 ± 0.1173

resulting in a rate constant increase on moving from the ionic 
liquid based on the non-fluorinated anion I9 to that based on 
the fluorinated variant I13. The two additional series based on 
ether substituents E and glyme coordination compounds G, 
gave very similar data within these series. The values for the 
former series were comparable with data for the other ionic 
liquids considered, whilst the glyme-based systems gave 
notably lower rate constants; the origin of such was found to be 
a greater enthalpic cost offsetting the previously observed 
entropic benefit.73

Model validation and new regression models
The new experimental results have been taken as test data 

for the first set of linear regression models. All of the cations in 
Figure 2 were optimised as described above, with the same 
series of parameters determined (see Table S2). As predicted, 
the first model only based on MEP descriptors predicts the new 
rate constant data poorly with, particularly, data associated 
with additional classes of molecular ions being inadequately 
predicted.  Such poor prediction on incorporation of additional 
(physicochemical) features is well-known.74, 75 The other models 
generated also did not predict the new rate constant data well 
(see Tables S7 and S8, ESI). All of these examples demonstrate 
how narrow the ‘comfort zone’ of such simple predictive 
models are, when adding different chemical functionalities.

Subsequently, the models were retrained on the complete 
data set and a six-fold random cross validation has been applied 
to test their predictability. This process revealed two important 
observations. Firstly, model D was the best performing (R2 = 
0.82, rank correlation of 88%, MAE = 2.88 x 10-4 L mol-1 s-1, 
Figure 6). Its predictability is also of good quality with an R2 of 

0.69 for the cross validation. Secondly, all models showed poor 
predictability when bisimidazolium-based cations (the BI series) 
were included in the training set. This finding suggests that the 
interactions involving these cations might not be easily 
predictable based on parameters derived from singly charged 
cations; this point is elucidated further elsewhere.72  
Particularly, this work indicates that the model breaks down 
when effects beyond the electrostatics modelled by the 
parameters introduced here become important in determining 
the interaction between pyridine 2 and the cation of the ionic 
liquid, and hence the observed solvent effects.

Based on the new data, we have also evaluated new 
combinations of predictors that might work better for the 
chemically more diverse data set and additionally tested simple 
forward propagation artificial neural networks (ANNs), 
including cross-validations for all models. As summarized in the 
ESI (Table S7 and S8, Figures S6-S14), none of the new models 
was significantly superior to model D (Figure 6a). However, a 
neural network model based on the descriptors of model D, 
referred to here as model D', led to even better predictability 
(Figure 6b). Without the BI series, a R2 of 0.89 was achieved, and 
even when including the bisimidazolium ions the R2 remains at 
a high value of 0.82 together with a rank correlation of 90%. 
However, when examining the data closely it is apparent that 
the BI series is less correlated than the other series (for this 
series alone: R2 = 0.47, rank correlation = 28%, Figure 6c); this is 
in contrast to the correlation for the I series which improved 
notably on going from model D to D' (from R2 = 0.65, rank 
correlation = 80%, Figure 4, to R2 = 0.71, rank correlation = 90%, 
Figure 6b).  It should be noted that this specific neural network 
model was also more thoroughly validated against signs of 
overfitting (see Table S7, ESI) and that other models with a 
higher number of predictors very quickly showed overfitting. 

It is worth considering why the ionic liquids based on the 
bisimidazolium cations (the BI series) are not modelled well.  
Whilst the values of the local properties (particularly those that 
are MEP related) are outside the range of the other ions, it is 
likely that the linked nature of the di-cation systems is 
important.  Particularly, the results would be that interactions 
with the imidazolium centres are unlikely to be independent 
and hence features not incorporated in models here (such as 
the conformation about the linker) need to be considered. This 
argument is supported by recent analyses of temperature 
dependent kinetic data in these solvent systems.72

Conclusions
In the first instance, the work described here has substantially 
expanded the range of ionic liquids that have been considered 
for the impact of solvent effects on the rate constant of a 
representative SN2 organic process.  Importantly, these data 
provide a greater understanding of the effects of systematic 
changes to the cation structure, along with how the 
incorporation of new functionalities impacts on these solvent 
effects. Further, this expanded data set can be further applied 
to the development of models for predicting these effects.
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Figure 5. The cations in the ionic liquids considered in the second portion of this work, based on their effects on the reaction shown in Scheme 1; the counterion in all 
cases is bis(trifluoromethanesulfonyl)imide ([N(SO2CF3)2]-).  The cations are numbered by group and are continued from Figure 1; different groups included here are – 
E = ethers and G = glyme.  Once again, other nomenclature is based on the [xmim]+ series, noting that standard abbreviations for the glyme solvates are also used.  The 
representations of the glyme are what is commonly used though it should be noted that they can also exist either as complexes where multiples glymes complex to 
multiple lithium centres or as larger clusters.76
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Figure 6. Correlation of the linear regression model D (a) and the artificial neural network model D' (b, c) with experimentally observed kinetic data, with data sets and descriptors 
as listed. TD: Training data; MAE: Mean absolute error; RC: Rank correlation.  Lines shown are y = x, added as a guide only. For clarity, only ions not present in (b) are listed in (c)

Simple regression models have been critically investigated 
and assessed as predictors of solvent effects and shown to 
deliver very promising results. The initial qualitative assumption 
that the accessibility of high charge density on the cation of the 

ionic liquid critically influences the rate constant of the reaction, 
shown in Scheme 1, holds when evaluated quantitatively for 
this initial data set. Local molecular properties that include this 
and other information influencing intermolecular interactions 
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can successfully be used to train regression models, predicting 
the reaction kinetics in different ionic liquids. 

Perhaps unsurprisingly, the linear regression models fail to 
predict rate constant data well for systems outside their 
‘prediction comfort zone.’ The relatively small data set available 
at the beginning of this study was insufficient to train a robust 
predictive model. Further, the dataset design needs to 
accommodate a wide chemical variability, which we tried to 
achieve by targeted expansions to the initial data set and we 
contend should be considered explicitly in future studies, noting 
that care should be taken to ensure the microscopic origins of 
the rate constant enhancement do not change with the 
expansion of the data set. The expanded data set used here was 
found to be amenable to use of an artificial neural network, and 
retained excellent predictability even with the incorporation of 
series that were not modelled well by linear regression 
methods.  

This study also shows again how easy predictive regression 
models can tend to overfitting. Careful cross validation is 
therefore a vital inclusion to any process. It also demonstrated 
again the difficulty when dealing with an imbalanced data set 
with few data points to predict but many predictors. In order to 
reduce the tendency of overfitting a few predictors need to be 
selected for training the regression model. In this study three 
predictors were ideal for linear regression models that tended 
much less to overfitting.

It is worth finishing with a consideration of what these 
models allow. Consider the final example of the artificial neural 
network: it allows the rate constant for the process shown in 
Scheme 1 to be determined with a mean difference of < 10% 
between the predictions from the model and experimental 
data, allowing the effect of a given ionic liquid to be effectively 
predicted. Further, the ranking efficacy is such that whether one 
ionic liquid might result in a greater rate constant than another 
can be predicted with 90% accuracy.  This outcome is important 
as it allows a ‘choice’ of ionic liquid to begin to be made with 
rational selection, based on computable parameters for specific 
reactions. The clear opportunity to apply this to other reactions 
and systems, and compare models to uncover fundamentals 
about the underlying processes is tantalising, especially 
combined with new opportunities in high-throughput ionic 
liquid chemistry.77

Methodology
Computational methods

All cations in this study were geometry optimized using the 
semiempirical Hamiltonian AM1 with the program EMPIRE 
(lithium ion-containing structures used PM3).78-80 The local 
molecular properties were then calculated using the program 
Parasurf63 and the Marching-cube algorithm to generate 
surfaces with the local molecular properties.81 Calculated 
descriptors included MEP (molecular electrostatic potential), 
IEL (local ionisation energy), EAL (local electron affinity) and 
polarisability (aL). The newly defined MEP-based descriptors 

(MEPtop25, MEPcount, MEPsum, MEParea and MEPareasum) 
were generated using in-house written python scripts.

For initial correlation analysis of the descriptors, Python 
Packages numpy, pandas, matplotlib and seaborn were used to 
define a correlation matrix based on all descriptors (see Figure 
S3, ESI). Python packages were also used to perform the F-test 
and mutual information MI-test. Selected descriptors are 
shown in Table S3. For the F-test the correlation between each 
regressor and the target is computed as ((X[:, i] - mean(X[:, i])) * 
(y - mean_y)) / (std(X[:, i]) * std(y)), where X is defined as the set 
of regressors that will be tested sequentially [{array-like, sparse 
matrix} shape = (n_samples, n_features)] and Y as the data 
matrix [array of shape(n_samples)]. The function used for the 
mutual information test relies on nonparametric methods 
based on entropy estimation from k-nearest neighbors 
distances as previously described.82, 83

KNIME (KoNstanz Information MinEr)84 was used for all 
linear, polynomial, and artificial neural network (ANN)-based 
regression models. To prevent overfitting based on the 
imbalance between the number of descriptors and targets, the 
number of descriptors was limited to 3-5 and selected based on 
the preceding correlation analysis. Polynomial regression 
models were disregarded after demonstrating strong 
overfitting tendencies. Linear regression models were trained 
on the whole first data set without explicit cross validation due 
to the small number of target values. When data was trained 
including the second data set, a 6-fold random cross-validation 
was applied to all models.

Artificial neural network (ANN)-based models were trained 
using a multilayer feedforward neural network applying the 
RProp algorithm as implemented in KNIME. Different 
combinations of the number of hidden layers (between 1 and 
3), number of hidden neurons (4 to 20) and number of earning 
iterations (50 to 1000) have been tested and optimized along 
6-fold random cross validation to balance prediction and fitness 
of prediction of the model. This optimization has been carried 
out for model D’ and has been repeated with narrower 
parameter variation for the other models.

Experimental methods

Benzyl bromide 1 and pyridine 2 were distilled85 and stored over 
activated molecular sieves (3 Å) at 4 ºC prior to use. Acetonitrile 
distilled85 and stored over activated molecular sieves (3 Å) at 
room temperature under nitrogen. All other chemicals were 
purified through literature methods85 and used immediately.  
The ionic liquids used were generally prepared through the 
N-alkylation of the appropriate precursor, followed by anion 
metathesis (complete synthetic procedures are given in the 
ESI).

All kinetic measurements were obtained by monitoring 
reaction progress using 1H NMR spectroscopy with either a 
Bruker Avance III 400, 500 or 600 NMR spectrometer equipped 
with either a BBO, BBFO or TBI probe; results were shown to be 
reproducible regardless of either the spectrometer or the probe 
used. The temperature of the NMR spectrometer was calibrated 
using a thermocouple containing ethanol.
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The reaction mixtures for the kinetic studies were prepared 
under pseudo first order conditions such that they contained at 
least a 10-fold excess of pyridine 2 relative to benzyl bromide 1. 
Reaction progress was monitored to >95% completion using 1H 
NMR spectroscopy, following depletion of the signal 
corresponding to the benzylic protons of benzyl bromide 1 at 
approximately 4.0 ppm. The exception was the kinetic data 
determined with the ionic liquid [Fhxmim][N(SO2CF3)2] where 
reaction progress was monitored (again to >95% completion) 
using 1H NMR spectroscopy following formation of the signal 
corresponding to the benzylic protons of the product 3 at 
approximately 5.6 ppm.
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An iterative, combined experimental and computational approach towards predicting reaction rate 
constants in ionic liquids is presented.  
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