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ABSTRACT: Combinatorial approaches to materials discovery offer promising potential for the rapid development of novel polymer 

systems. Polymer microarrays enable the high-throughput correlation of physical and chemical properties, such as surface chemistry, 
with polymer functionality, such as cell or protein adsorption. A limitation to this approach is the ability to accurately discriminate 

between highly similar polymers or identify heterogeneities within each individual polymer spot. Time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) offers unique potential in this regard, capable of describing the chemistry associated with the outermost 
layer of a sample with high spatial resolution and chemical sensitivity. However, this comes at the cost of generating large scale, 

complex hyperspectral imaging data. We have demonstrated previously that machine learning is a powerful tool for interpreting ToF-
SIMS images, describing a method for color-tagging the output of a self-organizing map (SOM). This reduces the entire hyperspectral 

data set to a single reconstructed color similarity map, in which the spectral similarity between pixels is represented by their color 
similarity. Here, we apply the same methodology to a ToF-SIMS image of a printed polymer microarray. We report complete, single-

pixel molecular discrimination of the 70 unique polymer spots in the array, while also identifying intra-spot heterogeneities thought 
to be related to polymer orientation. In this way, we show that the SOM can identify layers of similarity and clusters in the data, both 

with respect to polymer backbone structures and their individual side groups. Finally, we relate the output of the SOM analysis with 
fluorescence data from polymer-protein adsorption studies, highlighting how polymer functionality can be visualized within the con-

text of the global topology of the data set. 

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is 

an attractive technique for studying surface chemistry at the mo-
lecular scale, with a depth resolution of a few nanometers and 

excellent spatial resolution. ToF-SIMS has a broad range of ap-

plications for both organic and inorganic materials, including, 
chemical mapping of cells and tissue1-9, studying stress corro-

sion cracking in metal alloys and flexible optoelectronic de-
vices10, 11 and characterizing chemically similar polymeric ma-

terials. 12-18 The data produced by contemporary ToF-SIMS in-
struments is inherently hyperspectral, characterized by both x 

and y spatial information, with a mass spectrum associated with 
each pixel. When spatial information is not relevant to the ana-

lyst, the data can be summed to produce a single 1D spectrum 
containing the cumulative mass spectral information from 

across the analysis area. Alternatively, spatial coordinates can 
be used to produce 2D chemical maps of the surface, in which 

the distribution of intensities from a single peak, mass segment 
or group of peaks is visualized as an image. The latter approach, 

typically termed ToF-SIMS imaging, can provide unique in-

sights into how particular components are distributed on the 
surface. For example, in the field of bioimaging, a recent study 

investigated the distribution of zinc in the hippocampi of 

healthy and brain injured rats. 8 Other recent work has focused 
on imaging nanoparticles in cells and tissues, both organic5 and 

inorganic. 9, 19  

The size and complexity of ToF-SIMS imaging data 
are significant challenges impeding complete and robust inter-

pretation. A single ToF-SIMS spectrum can contain hundreds 
or sometimes thousands of identifiable mass peaks. This 

equates to the same number of individual molecular ion maps. 
Each map will typically contain tens of thousands of pixels, 

each of which could potentially contain analytically important 
information. Since it is not feasible to compare hundreds of im-

ages, or to analyze thousands of individual spectra, the use of 
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multivariate analysis (MVA) is essential and has proven inval-
uable in the accurate interpretation of ToF-SIMS hyperspectral 

images. 

Our previous work20-25 has focused on applying ToF-
SIMS and MVA in the study of printed polymer microarrays. 

Hook et al. 26 provide a comprehensive review of the develop-
ment, principles, applications and advantages of polymer mi-

croarray systems for high-throughput materials discovery. 
Briefly, polymer microarrays are prepared by printing a series 

of polymer spots onto glass slides, with diameters typically in 
the range of hundreds of micrometers. 20, 21, 24, 26 Such arrays 

have been successfully used to discover novel materials with 
useful biological properties, such as improved stem cell attach-

ment27-29 or resistance to bacterial biofilm formation. 30, 31 Once 
printed, the polymers can be subjected to a suite of characteri-

zation techniques, such as XPS, Raman spectroscopy, ToF-
SIMS and water contact angle (WCA) measurements. 26 The 

microarray thereby provides a platform for the high-throughput 
characterization of polymer materials. Beyond materials dis-

covery, the large number of material-biological interactions that 
can be assessed using this sample format makes it possible to 

identify structure-function relationships by correlating proper-
ties such as surface chemistry with functionality; for example 

protein adsorption or polymer wettability. ToF-SIMS, in com-
bination with MVA, has been particularly valuable in this re-

gard. 22-24 

Initially, MVA was used as a tool for evaluating the 
surface chemistries of different polymer and copolymer materi-

als, based on their summed 1D ToF-SIMS spectra. For example, 

Urquhart et al. 22 used principal components analysis (PCA) to 
analyze ToF-SIMS spectra from a 576 spot copolymer microar-

ray. The study demonstrated important insights into the similar-
ities between many of the polymers, highlighting specific frag-

ments that were identified as commonalities. The authors also 
demonstrated the use of partial least-squares (PLS) regression 

analysis for correlating ToF-SIMS spectra with surface wetta-
bility, via WCA measurements. Similar results were obtained 

by Celiz et al. 20 who, in addition to predicting the WCA of pol-
ymers based on their surface chemistry, identified correlations 

between ToF-SIMS data and stem cell adhesion. Analogous 
findings are reported by Yang et al. 23 regarding the adhesion of 

human embryoid body cells to acrylate polymers with differing 

surface chemistries.  

In addition to analyzing 1D spectra, recent research 

has focused on using MVA to evaluate ToF-SIMS hyperspec-
tral images of polymer microarrays. Hook et al.24 investigated 

the surface chemistry of 70 different poly(meth)acrylate spots 
in a printed microarray, using ToF-SIMS imaging and multivar-

iate curve resolution (MCR). Similar to the studies involving 
1D spectra, MCR revealed correlations between polymers using 

their associated spectra. However, in this case spectra were ex-
tracted from individual pixels, such that spatial information was 

retained. MCR scores were then used to reconstruct images of 
the surface, providing visualization of the spectral similarities 

between different spots in the array. Thereby, correlations re-
lated to both the polymer backbones and the extending side 

groups were revealed.  

Recently, we have demonstrated the power of ma-

chine learning for interpreting ToF-SIMS data, using a particu-
lar artificial neural network architecture known as Kohonen32 

self-organizing maps (SOMs). The design and function of the 
SOM in general is described elsewhere32-34 and in our previous 

works. 13-17, 35 For brevity, a detailed mathematical description 

of the underlying algorithm of the SOM is omitted here.  

SOMs are designed to reduce the dimensionality of a 

high dimensional dataset, usually producing a 2D model of the 
data. A key feature of the SOM is the ability to preserve the 

topology of the data during the non-linear mapping to a lower 
dimensional space. SOMs are supposed to mimic the action of 

biological networks of neurons, which share information and 
thus evolve over time. Neurons are typically organized in a 

square 2D space and associated with a vector of weights.  These 
weights are then updated iteratively on the basis of the input 

samples. Similar samples activate topologically close neurons 
in the network, and consequently SOMs are expected to learn 

and model patterns from the input data.  

We employ a toroidal topology for the SOM, in which 
neurons located on the edges of the lattice are neighbors to those 

on the opposite edge, forming a continuous surface in all direc-
tions. This is topologically equivalent to the surface of a toroid. 

Critically, toroidal SOMs have been shown to be superior in 
performance to planar SOMs.36 Specifically, planar SOMs suf-

fer from boundary effects associated with neurons on the edges 
of the lattice, due primarily to these neurons having fewer neu-

ron neighbors than those in the center of the lattice. 37, 38 

SOMs are better suited to handling non-linear ToF-
SIMS data than traditional linear approaches, such as PCA or 

MCR. 14-17 Recently, our group has presented a novel approach 
for applying toroidal SOMs in the analysis of ToF-SIMS hyper-

spectral images. 35 The output of the SOM is a 2D topology-
preserving map. In order to visualize this topology intuitively 

as a reconstructed image, it is useful to overlay a coloring 

scheme onto the SOM. In this way, the neurons are colored ac-
cording to their positions, such that adjacent neurons are as-

signed a similar color. The color-tagging is designed to match 
the toroidal topology, such that the color change is continuous 

across the boundaries of the SOM. Pixels in the original image 
can then be colored according to their winning neurons on the 

SOM, which enables the reconstruction of a single, color simi-
larity map of the analysis area in which pixels are colored ac-

cording to their spectral similarity. This process is described in 
more detail in the Experimental Methods section, and in our re-

cent work. 35  

Here, we present the application of color-tagged 
SOMs for the analysis of a ToF-SIMS hyperspectral image of a 

polymer microarray. Specifically, we use the same data set used 
for MCR analysis by Hook et al.,24 albeit processed differently. 

Results from this work are discussed and evaluated with two 
primary outcomes. First, we focus on the technique itself, 

demonstrating the power and robustness of the SOM for visual-
izing complex ToF-SIMS hyperspectral imaging data. Second, 

we provide strong justification for the use of ToF-SIMS and 
color-tagged SOMs in the analysis of polymer microarrays, spe-

cifically. In this regard, we show how ToF-SIMS and SOMs 
together offer unique potential for the continued advancement 

of combinatorial materials discovery using polymer microar-

rays.  

EXPERIMENTAL METHODS 

Microarray printing. Polymer microarray printing has been 

described elsewhere generally, and for this array specifically. 24 

Briefly, epoxy-functionalized glass slides (Genetix) were dip 
coated in 4% (w/v) poly(hydroxy ethylmethacrylate) (pHEMA) 

(Sigma) in ethanol. Polymerization solution – composed of 

75% (v/v) monomer (Sigma, dissolved in dimethylformamide  



 

 

 

Figure 1. (A) Schematic showing the layout of the 70 polymers in 
the microarray, in which each polymer is colored according to the 

broadly defined polymer groupings provided on the right. Spot 71 
contained only the solvent, DMF. (B) Total ion image of the 9.2 × 
9.2 mm analysis area obtained using negative ion mode. Figure 
adapted, with permission, from Hook et al. 24 

(DMF)) and 1% (w/v) photoinitiator 2,2-dimethoxy-2-phe-
nylacetophenone – was printed onto the pHEMA-coated slides, 

using an XYZ3200 dispensing workstation (Biodot). Slides 
were irradiated with a long wave UV source for 30 s after print-

ing each material, then for a further 10 min following comple-
tion of the array. Finally, the slides were vacuum extracted at 

<50 mTorr for 7 days. The CAS number and chemical name for 
each of the 71 spots is included in the Supplementary Infor-

mation (Table S-1). 

Protein adsorption and fluorescence microscopy. Protein ad-
sorption and fluorescence microscopy are described in Hook et 

al. 24 Briefly, polymer microarrays were immersed in a solution 
of 25 µg/ml tetramethylrhodamine isothiocyanate labeled albu-

min (Sigma) in phosphate buffered saline (Gibco; pH 7.4), then 
incubated for 1 h at 37 °C under stagnate conditions. Arrays 

were then washed for 1 min with ultrapure water, blotted and 
dried overnight. A Genepix fluorescence scanner was used for 

imaging, with a 532 nm laser and 5 µm pixel size. Images were 
captured before and after protein adsorption, to account for 

background fluorescence. The same procedure was applied to a 
control array – without any added protein – to quantify fluores-

cence. A total of eight replicates were measured. 

ToF-SIMS experimental. Hook et al. 24 describe the protocol 
used to acquire the ToF-SIMS data using an IONTOF (GmbH) 

TOF.SIMS 4 instrument. In brief, a 25 keV Bi3
+ primary ion 

source was scanned over a 9.2 × 9.2 mm analysis area, employ-

ing the macroraster scanning functionality. Negative ion mode 
was used, and a single scan performed using 15 pulses per pixel, 

with a pixel size of 10 × 10 µm. A low energy (~20 eV) electron 

flood gun was used for charge compensation.  

Data preprocessing, export and analysis using SOMs. Peaks 

were selected automatically using the spatially-summed spec-
trum with the peak search function in the SurfaceLab6 software 

package. A minimum threshold of >100 counts was used over 
the entire mass range, producing a peak list comprising 717 

mass peaks. Individual ion images were then exported as text 
files, compiled into a single data matrix and normalized to total 

ion intensity per pixel using in-house MATLAB scripts, as de-
scribed previously.35 SOM training was performed using the 

Kohonen and CP-ANN Toolbox33, 34 in MATLAB. A squared, 
toroidal topology was used for all analyses, as well as the batch 

training approach, whereby all samples are introduced to the 
SOM simultaneously. The analysis-specific data scaling proce-

dures, as well as SOM parameters used, are described in more 

detail in the Results and Discussion section. 

SOM visualization and analysis. The SOM output was visual-

ized using the color-tagging approach described in our previous 
work. 35 All steps were performed using in-house MATLAB 

functions. Briefly, the neurons of the toroidal SOM were 
mapped to the surface of a 3D torus from their positions within 

the 2D plane. The equations describing this mapping are pre-

sented in Gardner et al. 35 Neurons were then colored using a 
red-green-blue (RGB) color scheme according to their x-, y- and 

z-coordinates on the torus, respectively. For image reconstruc-
tion, pixels were assigned the color of their winning neuron, 

producing a similarity map in which similar pixels (according 

to their mass spectra) appear as a similar color.  

RESULTS AND DISCUSSION 

Background subtraction. SOM analysis of the ToF-SIMS im-

age was split into two parts: background pixel subtraction and 
sample training. Background subtraction was implemented due 

to the large size of the data set (920 × 920 pixels, with 717 mass 
peaks), with the goal of reducing computation time by the re-

moval of irrelevant data. The background subtraction workflow 
is illustrated by the flow chart in Fig 2 and visualized using the 

polymer microarray image in Fig 3. A 10 x 10 neuron rectangu-
lar SOM was initialized using the eigenvalue approach, 

whereby the neuron weights were assigned based on the eigen-
vectors associated with the first two principal components of 

the data set. 34 With this approach, data were initially clustered 
based on a linear PCA solution. Hence, we opted to first scale 

the ToF-SIMS data using Poisson scaling, which has been 
shown to improve PCA performance by accounting for Poisson 

noise. 39, 40 This scaling attempts to account for heteroscedastic 
noise by transforming the data into an alternate space in which 

the uncertainty in the data is more uniform. 39, 40 The SOM was 
trained for a nominal single epoch following initialization to 

produce the SOM output. Pixels representative of the back-
ground were then selected with regions of interest (ROIs), using 

the similarity map produced by the color-tagged SOM as a  



 

  

Figure 2. Flowchart outlining the data processing and analysis workflow. Note that in this work eigenvalue initialization of the small SOM 
was used in the first step. This was sufficient to distinguish background pixels. 

 

Figure 3. Applying the data processing workflow presented in Fig-
ure 2 to the ToF-SIMS image of the polymer microarray. (A) Se-
lection of three polygon ROIs representative of the entire set of 
background pixels, indicated by the white arrows. (B) The locali-
zation of the winning neurons associated with the pixels selected in 
(A) on the SOM, shown in black. This represents the cluster of neu-

rons that are modelling the set of background pixel spectra. (C) 
Subtraction of background pixels sharing the winning neurons dis-
played in (B). (D) The origin of the neuron colors, which are based 
on their positions in the toroidal SOM. RGB colors are proportional 
to the x-, y- and z-coordinates of the neurons on the 3D toroidal 
surface, respectively. 

guide (Fig 3A). Pixels within the ROIs were surveyed for their 
winning neurons, producing a list of neurons corresponding to 

the substrate (represented in black on the SOM in Fig 3B). Fi-
nally, all pixels sharing these neurons were identified in the 

original image and removed from the data matrix. Matrix indi-
ces corresponding to the location of non-background pixels 

were stored for future image reconstruction. Fig 3C shows the 
reconstructed image after background subtraction, while Fig 3D 

highlights the origin of the neuron colors according to their po-

sition on a 3D toroid. 

This workflow has the same analytical goals as the 

manual selection of ROIs for background removal, however is 
more objective, automated, data-oriented and not restricted to 

shapes that can be drawn manually. For example, background 
pixels were identified dispersed within the chemical leaching 

visible from spot 56, which would be impossible to locate and 
remove manually. This has the advantage of removing experi-

menter bias and avoiding the loss of important information or 
interesting pixels. The identification of background pixels is de-

termined by their spectral similarity, and is based on the com-
plete mass spectrum at each pixel rather than the intensity of an 

individually selected peak, set of peaks or total ion intensity. 
Here, we opted to use only the eigenvalue initialization of the 

SOM for background identification, as the polymer materials 

were clearly linearly separable from the substrate and this was 
the least time-consuming approach. However, it would be 

equally feasible to train the SOM for the required number of 
epochs to reach convergence, which would be necessary when 

there is a high level of spectral similarity between the sample 
and substrate. This would still reduce computation time, as a 

much smaller SOM can be used to complete a broad classifica-
tion of background and sample pixels. As we demonstrate, a 

larger SOM can then be trained using the collapsed data matrix. 
It should be noted that caution is required during background 

subtraction to avoid removing useful data by the misclassifica-
tion of pixels. Hence, it is recommended that this approach 

should only be used when the approximate layout of the image 
is known. In this case the dimensions and layout of the micro-

array were clearly defined. 

SOM visualization and analysis. Following background sub-
traction, the remaining pixels were used to train a new 40 × 40 

neuron SOM, in this instance for the 200 training epochs re-
quired to reach convergence. Using the stored background pixel 

indices, it was then possible to reconstruct the original image 
using the SOM output. Specifically, non-background pixels 

were assigned the RGB colors of their winning neurons, then 
reinserted into their original positions in the image according to 

their stored pixel indices. Background pixels were colored 



 

 

Figure 4. (A) Reconstructed RGB similarity map after background 
subtraction and subsequent training with a 40 × 40 SOM. Pixels are 
colored by their winning neuron colors, such that spectral similarity 
between pixels is captured by their color similarity. White pixels 
represent background-subtracted pixels. (B) Localization of the 
most abundant winning neuron from each of the 70 polymers on 

the color-tagged SOM. Numbers correspond to the polymer num-
bers shown in (A), and the datapoint colors represent to the broad 
polymer grouping scheme shown below.  

white, producing a color similarity map of non-background pix-

els only. This image is presented in Fig 4A. Note that Poisson 
scaling was not used for this SOM. Instead, we used the same 

preprocessing steps that we have reported previously,  13-17, 35 
which have consistently delivered positive analytical outcomes 

from the resulting SOM. 

Qualitatively, it is clear from Fig 4A that the SOM 

successfully discriminated many of the polymers based on their 
mass spectra, as evidenced by their respective coloring. Further-

more, most of the polymers exhibited high color uniformity, 

suggesting insensitivity to spectral noise and chemical homoge-
neity within each spot. Polymer spots showing variation in as-

signed color were those in which there appeared to be real het-
erogeneities across the spot (for example, spots 38, 48 and 53), 

likely associated with drying effects, incomplete/inconsistent 
polymerization, or some other phenomenon. The SOM also re-

vealed chemical leaching from several spots, especially from 
polymer 56. Note that the DMF spot (71) was almost entirely 

absent after background subtraction, suggesting minimal differ-
ence in composition relative to the substrate, at least according 

to the PCA-based separation. Hence this spot was excluded 

from further chemical analyses. 

Figure 4B shows the locations of the most abundant 

winning neurons from each of the 70 polymers, plotted on the 
color-tagged SOM. Briefly, each polymer was selected individ-

ually using the polygon ROI select tool in MATLAB (polygon 
selections are displayed in Fig S-1 in Supporting Information). 

For each polymer, a histogram of winning neuron frequency 
was then calculated, and the most abundant neuron was selected 

and plotted on the color-tagged SOM. Each data point was then 
colored by the polymer backbone categories, namely acrylates, 

diacrylates, triacrylates, methacrylates and dimethacrylates. 

These categories are shown in Fig 4B, as well as in Fig 1A.  

Figure 4B clearly illustrates the capabilities of the 

SOM in distinguishing each of the 70 polymers, at least with 
regards to their most abundant neurons. Only the top neurons 

are shown so that global performance can be visualized in a sin-
gle image. However, the individual winning neuron composi-

tions of all the polymers are also presented separately in Fig S-

2 in the Supporting Information. Together, these figures demon-
strate that the SOM distinguished most, if not all, of the poly-

mers on the basis of their underlying surface chemistry revealed 

by ToF-SIMS.  

It is important to reiterate that this result was achieved 

using an entirely unsupervised approach, including the peak se-
lection process. The only information that was required was the 

approximate layout of the array, for background subtraction. 
Hence, Figs 4A-B demonstrate the separation of 70 unique pol-

ymer structures without any prior knowledge of their surface 
chemistry. This exemplifies the power of the SOM in interpret-

ing complex ToF-SIMS image data with minimal user input or 
intervention. According to Fig 4B, polymers in the array were 

generally well clustered with regard to their backbone structure. 
In particular, the acrylates, methacrylates and dimethacrylates 

appeared separately clustered to well defined regions on the 
SOM, whereas the diacrylates and triacrylates were clustered 

together. There also appeared to be ordering on the SOM re-
flecting the side group moieties present within each polymer. 

For example, spots 21, 27, 34, 37, 42, 58 and 69 all contained 
aromatic functional groups (specifically phenol or benzyl) and 

are all adjacent on the SOM in Fig B. The only other polymer 
in the array in this category is spot 63 which, despite not being 

adjacent, also appeared in a similar region. This is strong evi-
dence that the SOM recognized the chemical commonality with 

the side groups and weighted the neurons accordingly. Looking 
more closely at the chemical structure of each polymer and their 

corresponding weights reveals this explicitly. 

Fig S-3 in the Supporting Information shows the mean 

weights (normalized to total peak weighting) associated with 
each of these 8 polymer spots. The weights can be used to infer 

which mass peaks were most important in distinguishing each 



 

polymer, according to the SOM algorithm. Note that the corre-
sponding normalized mean spectra from each polymer are in-

cluded in Fig S-4 in the Supporting Information. The C6H6O
- 

ion, relating to the phenol group, was the top weighted fragment 

in spots 27, 34 and 37, and ranked 8th in 58 (in which the top-
ranking weight is the similar phenolate ion, C6H5O

-). These pol-

ymers all contain phenol moieties situated at the end of their 
side groups, comprising a phenyl group with attached oxygen 

atom. Hence, the release of either of these ions is expected given 
this structure. 41 Similarly, the top weighted peak for both 21 

and 69 was C7H8O
-, which is the fragmented benzyloxy group 

characteristic of the side groups in these polymers. The benzo-

ate ion, C7H5O2
-, was the 2nd highest ranked weight for spot 63, 

which again is in direct agreement with the structure of this pol-

ymer. Finally, the phenyl group in spot 42 is part of a larger 
nonylphenyl functional group, containing a characteristic 9-car-

bon tail. The corresponding nonylphenol fragment ion, 
C15H24O

-, was ranked as the 15th highest weight for this poly-

mer. This lower ranking is consistent with the increased size of 
this moiety, which is expected to fragment more readily into its 

constituents.  

It is remarkable that, despite the different aromatic 
fragment ions produced by these eight polymers, they were still 

mostly grouped together on the SOM. This suggests that there 
were other, more subtle similarities in their spectra that corre-

lated with aromatic groups. Interestingly, this does not seem to 
be the phenyl anion itself, C6H5

-, which was ranked at 6th, 203rd, 

129th, 103rd, 174th, 149th, 3rd and 7th for spots 21, 27, 34, 37, 42, 
58, 63 and 69, respectively. It is more likely that the similarities 

detected by the SOM are distributed across a range of mass 

peaks – including many that do not exclusively originate from 
the aromatic groups – which would otherwise be a significant 

challenge or practically impossible to identify manually. As a 
reference, table S-2 in the Supporting Information shows 25 top 

weighted mass fragments corresponding to each spot.  

The ability of the SOM to detect subtle difference be-
tween individual pixels is exemplified in Fig 5. Here, it is clear 

that the SOM identified two distinct regions within spot 38, as 
highlighted in Fig 5A. This image was used as a guide to select 

a set of representative pixels from each region (Fig 5B). After 
ROI selection, pixels were surveyed for their winning neurons, 

similar to the process described earlier used to produce Fig 4. 
However, rather than only considering the most abundant neu-

ron in each ROI, the neurons accounting for > 95% of the pixel 
count were identified and included in the analysis. This ap-

proach was used to avoid including any outlier pixels in the se-
lection, which could have skewed the mean weights. Fig 5C 

shows the distribution of pixels with these same winning neu-
rons across the entire analysis area, demonstrating the precision 

of the SOM clustering with almost all of these pixels localized 
within polymer 38. This is further emphasized in the close-up 

of the spot, which reveals that the SOM clearly distinguished 
ROI 1 from ROI 2, with minimal shared neurons. This is ex-

plored further in Fig 5D, in which the SOM has been shaded in 
greyscale according to neuron abundance in each ROI, based on 

the corresponding pixel histograms. Visualizing the distribution 
on the SOM is useful to gauge the relatedness of the two ROIs. 

Here it is obvious that, while clearly distinct, ROI 1 and ROI 2 
were highly similar with slight overlaps. This is also visibly ev-

ident in the weights extracted from each ROI (Fig 5E and Table 

1).  

Table 1 shows the top 16 weights extracted from each 

ROI – according to their normalized weightings – and their re-
spective peak assignments. Also shown are the weights in the 

adjacent region, as well as the ratio between the two regions. 
The top weights provide insight into the mass peaks that best 

represented the underlying chemical composition of each re-
gion. In ROI 1, all of the weights shown correspond well with 

the chemical structure of the polymer, isodecyl acrylate. Fur-
ther, the ratios of these weights between ROI 1 and ROI 2 were 

relatively consistent, varying between 0.72 and 1.36. This is 
also true for 13 of the top 16 weights in ROI 2. However, the 

remaining three weights were much higher than in ROI 2, ex-
hibiting ratios between 4.00 to 9.24. Furthermore, these frag-

ment ions appear highly related and are seemingly indicative of 
the acrylate backbone. This suggests that the SOM identified 

differing orientations of the monomers between ROI 1 and ROI 
2. Specifically, an increase in signal from the polymer backbone 

implies that the side groups in ROI 2 were hidden in the poly-
mer bulk. This would indicate phase separation between the two 

regions, likely arising due to hydrophobic interactions between 
the long aliphatic chains of the monomers. This is further sup-

ported by the decreased abundance of highly weighted oxygen-
containing fragments in ROI 1 and the corresponding increase 

in hydrocarbons, which together provide strong evidence that 
the aliphatic side group was more exposed in ROI 1 than in ROI 

2. The differences between ROI 1 and ROI 2 in this regard are 

subtle, and only become apparent when considering the set of 
weights together. Nevertheless, by visualizing these differences 

using the color-tagged SOM, the two regions are clearly distin-
guishable by their unique color compositions. This exemplifies 

the ability of this approach to reveal minor chemical difference 
between highly similar regions. More importantly, this is 

achieved using an entirely unsupervised workflow, requiring no 

prior knowledge of the sample composition.  

Previous work has demonstrated how polymer micro-

arrays can be used for high-throughput materials discovery, by 
correlating multivariate ToF-SIMS data with univariate func-

tionality metrics, such as protein adsorption, surface wettability 
or cell proliferation rates. 20, 23, 24, 41 These studies have been suc-

cessful in identifying individual mass fragments that either pos-
itively or negatively correlated with a given indicator, using 

partial least squares (PLS) regression. However, the relation-
ship between ToF-SIMS data topology and functionality has not 

been thoroughly explored. This was the motivation for Fig 6, 
which presents protein adsorption levels for each of the 70 pol-

ymers in the microarray in the context of their topological ar-
rangement. Fig 6 was constructed in a similar fashion to Fig 4A, 

by considering the most abundant neuron associated with each 
polymer. However, rather than coloring the plot using the pol-

ymer categories, a heat map was used to display protein fluo-
rescence and hence adsorption levels. Exploring the relation-

ship between data topology and functionality in this way is  



 

 

Figure 5. Identification of intra-spot surface chemistry heterogeneity using the color-tagged SOM. (A) Reconstructed RGB similarity map 
of the polymer microarray, with a close-up of polymer spot 38 (isodecyl acrylate) illustrating the presence of two distinct regions. (B) Polygon 
selection of ROI 1 and ROI 2. (C) Distribution of the winning neurons in ROI 1 and ROI 2 across the entire analysis area, indicating 

localization within spot 38. Also shown is a close-up of spot 38, highlighting the separation of ROI 1 and ROI 2. (D) SOM localization for 
winning neurons located with ROI 1 and ROI 2, colored using a grey scale that represents relative neuron abundance within the ROI (with 
white equal to zero). (E) Weights extracted from each ROI using the winning neurons presented in (D), presented as a weighted mean (based 
on neuron abundance) and normalized to total weighting for each ROI. The labels show some of the prominently weighted fragments origi-
nating from the polymer structure, and the red bars refer to three of the major differences in peak weightings between the two ROI.

Table 1. Top weighted peaks from each ROI in spot 38 (isodecyl acrylate) with peak assignments and weighting ratios. 

Region 
Peak 

m/z 
Assignment 

Weight 

in ROI 1 

(%) 

Weight 

in ROI 2  

(%) 

Ratio Region 
Peak 

m/z 
Assignment 

Weight 

in ROI 2 

(%) 

Weight 

in ROI 1 

(%) 

Ratio 

ROI 1 

71.01 C3H3O2
- 2.91 2.35 1.24 

ROI 2 

71.01 C3H3O2
- 2.35 2.91 0.81 

81.04 C5H5O- 2.65 2 1.32 81.04 C5H5O- 2.00 2.65 0.76 

155.09 C9H15O2
- 2.62 1.92 1.36 155.09 C9H15O2

- 1.92 2.62 0.73 

41.01 C2HO- 2.02 1.69 1.19 85.04 C4H5O2
- 1.86 0.38 4.92 

67.02 C4H3O- 1.8 1.42 1.27 55.02 C3H3O- 1.77 1.28 1.38 

95.05 C6H7O- 1.42 1.16 1.22 41.01 C2HO- 1.69 2.02 0.84 

43.02 C2H3O- 1.39 1.27 1.1 67.02 C4H3O- 1.42 1.8 0.79 

51.02 C4H3
- 1.36 1.16 1.17 61.04 C2H5O2

- 1.34 0.15 9.24 

111.05 C6H7O2
- 1.33 1.17 1.14 59.02 C2H3O2

- 1.29 0.32 4.00 

69.04 C4H5O- 1.32 1.05 1.25 43.02 C2H3O- 1.27 1.39 0.91 

55.02 C3H3O- 1.28 1.77 0.72 111.05 C6H7O2
- 1.17 1.33 0.88 

49.01 C4H- 1.19 1.13 1.06 95.05 C6H7O- 1.16 1.42 0.82 

38.02 C3H2
- 1.06 1.00 1.06 49.01 C4H- 1.13 1.19 0.95 

79.02 C5H3O- 1.04 0.91 1.14 69.04 C4H5O- 1.05 1.32 0.8 

13.01 CH- 1.03 0.89 1.16 25.01 C2H- 1.04 1.22 0.85 

53.04 C4H5
- 1.00 0.79 1.27 45.00 CHO2

- 1.00 0.83 1.2 



 

Figure 6. Localization of the most abundant winning neuron from 
each of the 70 polymers on the color-tagged SOM, colored with a 
heat map that represents the mean protein binding (n = 8) for each 
polymer. The color bar on the right shows the arbitrary fluores-
cence scale. 

useful, as it reveals global trends in the influence of surface 
chemistry. This contrasts with techniques such as PLS, which 

provides information regarding which specific variables corre-
late with functionality. To demonstrate this, consider the bottom 

and top left of Fig 6. This region appears to be heavily populated 
with highly functional polymers, which suggests common un-

derlying mechanisms or properties that aid in protein binding. 
It is also useful to investigate polymers that appear to be highly 

similar according to their mass spectra, yet exhibit vastly differ-
ent protein binding. For example, polymers 10, 68 and 62 are 

adjacent on the SOM, yet were correlated with high, moderate 

and low protein binding, respectively.  

The advantages of the SOM are complementary to 

those of PLS, and hence combining these two approaches in the 

analysis is likely to provide unique insights into structure-func-
tion correlations. For example, applying PLS to this same da-

taset, Hook et al. 24 showed that C8H3O4
- and C6H3O

- ions cor-
related with high protein adsorption. It was then argued that 

these ions originated from the acrylate backbone and therefore 
that the backbone itself could promote protein adsorption. With 

regards to the SOM analysis, for spots 3, 5, 7, 10, 11, and 65 – 
which all exhibited moderate to high protein adsorption and are 

all clustered on the SOM – C8H3O4
- was ranked as the 2nd, 3rd, 

5th, 2nd, 17th and 2nd highest weighted fragment, respectively. 

These results are consistent with the PLS results.  

It is intriguing that the same fragment ion is also 
ranked as the 5th highest weight in the adjacent spot 62, which 

is correlated with poor protein adsorption. The weights associ-
ated with spot 62, comprising ethylene (glycol) diacrylate, are 

indeed very similar to those of the adjacent high-adsorbing 
spots. Using PLS analysis, Hook et al. presented the top frag-

ment ions that correlated – either positively or negatively – with 
protein adsorption. We considered how highly these fragments 

were weighted in spot 62, in comparison to the high-adsorbing 
spots. Interestingly, none of these peaks distinguished spot 62 

from the other spots, either alone or in combination. This sug-
gests that spot 62 did not fit well with the PLS results, which is 

not surprising considering its location on the SOM.  

We also considered the weights of spot 27, which ex-
hibited moderate protein adsorption yet was distinctly separated 

from the other high-adsorbing spots on the SOM (Fig 6). Con-
trary to the other spots, C8H3O4

- was ranked as the 207th highest 

weight for spot 27. However, C6H3O
- was ranked as 11th, 

whereas this fragment ranks between 17th – 34th for the other 

spots. Together, these results suggest that, while polymers 3, 5, 
7, 10, 11, 27 and 65 all exhibited moderate to high protein ad-

sorption, the binding mechanism for polymer 27 may be differ-

ent than that of the other six polymers. 

It is noteworthy that polymer 27 contains a phenol 

group, which distinguishes it from the other high-adsorbing pol-
ymers. Furthermore, there appears to be a cluster of moderate 

protein binding associated with most of the other polymers con-
taining aromatic functional groups (21, 34, 37, 42 and 58, as 

discussed earlier). Hence, this could suggest a weak correlation 
between the presence of an aromatic functional group and pro-

tein adsorption, although this is only a qualitative assessment. 
Regardless, it is clear that the SOM provides a unique perspec-

tive for investigating correlations between groups of polymers 

and their functionality that is not possible with PLS.  

CONCLUSION 

The study reported here builds on our previously published 

work, demonstrating the ability of color-tagged SOMs to inter-
pret complex ToF-SIMS hyperspectral images in an unsuper-

vised manner. The advantages in using a polymer microarray 
for this purpose are twofold: first, this type of system offers a 

unique opportunity for investigating the capabilities of the 
SOM. A broad range of surface chemistries can be included on 

a single chip, and hence captured within a single ToF-SIMS im-

age. This removes uncertainties associated with preparing mul-
tiple samples, as well as when acquiring data under slightly dif-

ferent instrument conditions. Further, the underlying composi-
tion of each spot is known, which enables direct comparison 

between ground truth information and the output from the 
SOM. As we have demonstrated, this is useful to clarify 

whether the SOM is revealing accurate information about the 
polymer surface chemistries, and hence demonstrate the suita-

bility of this approach for more complex samples with an un-

known chemical distribution.  

Color-tagged SOMs were demonstrably able to produce 

unique analytical outcomes, with respect to other multivariate 
approaches. The methodology described offers an intuitive ap-

proach for visualizing complex relationships between the spec-
tra of individual pixels. We have confirmed the accuracy of the 

output by considering not only how the polymers were clustered 
with regards to their polymer backbone, but also with respect to 

their individual side groups. Specifically, each of the 70 poly-
mers were successfully discriminated which, considering the 

high similarity in the spectra produced by many of the poly-
mers, is a nontrivial task. Further, polymers were clearly clus-

tered on a global scale on the basis of their backbone structures, 

while side groups were influencing their local arrangement.  

One of the most important applications of polymer microar-

rays is the identification of correlations between surface chem-
istry and polymer functionality. This has been demonstrated us-

ing PLS paired with ToF-SIMS. 22, 23, 25, 43 We have shown how 
SOMs can be used to visualize the functionality of individual 

polymers within the context of the topological relatedness of 

their surface chemistries. This provides a unique perspective 
that is complementary to the information provided by PLS and 

similar techniques – rather than focusing on specific fragment 



 

ions, the SOM can be used to identify entire subspaces in high 
dimensional space that correlate with high or low functionality. 

Further, polymers with surface chemistries that are adjacent 
topologically, yet exhibit entirely different properties, can be 

identified and studied. Coupled with PLS, this can provide the 
necessary information to unravel the complicated relationship 

between surface chemistry and functionality.  
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