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!e control and elimination of the zoonotic neglected tropical disease (zNTD) Taenia solium taeniasis/cyst-
icercosis, presents a substantial public health challenge. !e two-host T. solium lifecycle comprises de"nitive 
human hosts and intermediate pig  hosts1. Humans become infected and develop taeniasis following ingestion 
of larval-stage metacestode cysts in under-cooked pork. Cysts evaginate in the intestine and develop into adult 
tapeworms containing immature, mature and gravid proglottid segments, with the gravid proglottids harbouring 
large numbers of eggs (3900–126,520)2. Release of gravid proglottids in human faeces exposes pigs to eggs either 
directly, by coprophagia, or indirectly, through environmental contamination by mechanical vectors or other 
dispersal  mechanisms3. Ingestion of eggs by pigs enables mature oncospheres to migrate to internal organs and 
tissues, resulting in porcine cysticercosis (PCC). Humans can become accidental intermediate hosts, developing 
cysticercosis and speci"cally neurocysticercosis (NCC) through consumption of eggs by the faecal-oral route. 
NCC is one of the leading preventable causes of epilepsy and seizures in endemic  settings4 across Meso and 
South America, sub-Saharan Africa, and Central and East  Asia5. Surveys suggest that PCC prevalence ranges 
from 3 to 75%6,7 based on antibody detection (which measures exposure), 5–55%8,9 based on antigen detection 
(which measures active infection), and 0.1–29%10,11 (upper value from a survey in slaughter-age animals) based 
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on direct observation of cysts through tongue inspection or necropsy/meat inspection. Human taeniasis preva-
lence, which is mainly measured by detection of antigen in stools, is generally low (on average less than 3%), with 
estimates ranging between 0 and 17% in endemic  settings12, while human cysticercosis prevalence ranges from 4 
to 7% based on antigen and 13–17% based on antibody  detection12. In terms of disease burden related to NCC-
associated epilepsy, a median of 2.8 million (95% uncertainty interval: 2.1–3.6 million) Disability-Adjusted Life 
Years (DALYs) was estimated globally in 2010 for T.  solium13, although this "gure is likely to be an underestima-
tion as other neurological sequelae resulting from NCC are not  considered14.An increasing, rapidly urbanizing 
and more a#uent world population is driving demand for animal-source protein, and much of the ongoing and 
future demand will be met by meat from monogastric animals, particularly poultry and  pigs15. Pigs have been a 
traditional component of household livelihoods across Latin America and South-East Asia and are playing an 
increasingly important role in the livelihoods of communities across endemic settings in sub-Saharan Africa 
(SSA)16. In these regions, smallholder and subsistence farmers o$en prefer pigs over other livestock because of 
their high fecundity and fast growth  rates17,18. Pigs are also generally cheaper to purchase than other livestock 
with little or no additional feeding costs to the farmer (given pigs natural ability to scavenge)19. Pigs o%er, there-
fore, an excellent investment, or source of emergency cash reserve. However, the free-roaming behaviour of 
pigs facilitates T. solium transmission where open defecation is common, o$en because of low or zero access to 
latrines. In SSA it is estimated that only 28% of the population have access to basic or safely managed sanitation 
 facilities20. Even when latrine coverage is high, open defecation may still be  practised21. Other practices such as 
direct feeding of human faeces to pigs may further increase  exposure22

!e identi"cation of optimal and validated strategies for T. solium taeniasis/cysticercosis control and elimi-
nation, called for in the 2012 World Health Organization (WHO) roadmap on  NTDs23, would be aided by a 
comprehensive global picture of T. solium transmission dynamics, aimed to understand whether and where geo-
graphical heterogeneity in transmission will require tailored setting-speci"c interventions. One crucial parameter 
is the Force-of-Infection (FoI), the average rate at which susceptible individuals become infected. !e FoI can be 
estimated from the rate of seroconversion where a relationship exists between host age and  seroprevalence24. An 
age-strati"ed seroprevalence survey in Ecuador was used to estimate the annual rate at which humans develop 
cysticercosis  antibodies25. Although literature is available on age-seroprevalence patterns in pigs, FoI estimates 
for PCC are lacking.

Pig populations studied in Mozambique, Bolivia and Peru, have demonstrated an approximately linear 
relationship between cysticercosis seroprevalence and pig  age7,26–28. !is suggests that pigs may be exposed to 
T. solium eggs at a relatively constant rate in these settings. Pigs that have previously tested antibody-positive 
may, however, serorevert, with one study in Peru estimating that 20% of animals became antibody seronega-
tive over a 4-month  period29. !ese dynamics may result from waning maternal immunity, exposure without 
establishment of infection or through aborted mild  infection30. In contrast to the variable antibody dynamics, it 
is generally assumed that the larval-stage metacestode infection in pigs is life-long, especially over the relatively 
short lifespans of pigs in endemic settings, as pigs are o$en slaughtered at an early age without chance to develop 
immunity and clear  infection31. Non-viable, degenerated cysticerci have been found in necropsied  pigs32,33, which 
may indicate that acquired protective immunity is possible from continued exposure to the parasite over a pig’s 
life-time. !ere is also evidence of immunity-mediated regulation in other Taeniidae species in their intermedi-
ate hosts. For example, sheep become resistant to Taenia hydatigena with age and maintain immunity by the 
‘boosting e%ect’ of constant  exposure34.

!is study presents estimates of PCC FoI across a range of epidemiological and geographical settings, by 
conducting a systematic review of publicly (and solicited from authors) available data, and applying Bayesian 
methods to "t (simple and reversible) catalytic models to these data incorporating diagnostic uncertainty. !e 
results improve understanding of geographical variation in transmission and will contribute to re"ning T. solium 
transmission models (e.g.  cystiSim35,  EPICYST36) by facilitating setting-speci"c model parameterisations to better 
re&ect local epidemiological conditions. Ultimately, this will assist in the design of e%ective intervention strategies 
that are tailored to speci"c settings. !e underlying epidemiological processes that shape age-(sero)prevalence 
relationships, including the potential role of acquired immunity and exposure heterogeneity are discussed.

�������
���������������Ǥ� A$er title, abstract and full-text eligibility screening of 1809 studies initially identi"ed 
in the search, a total of 15 studies were included in the analysis (Supplementary File Figure S1), originating 
from Latin America, Africa and Asia (Supplementary File Figure S2). Age-(sero)prevalence data were available 
directly from 12 published articles and data were obtained a$er contacting the authors of a further 3 articles. 
Eight studies used serology to detect PCC antibodies, four studies used serology to detect PCC antigen (Kungu 
et al.37 in Uganda strati"ed their data into urban and rural production systems using two di%erent Ag-ELISA 
diagnostics), and the 3 remaining studies used necropsy to identify metacestode cysts. !e sampling strategies in 
the various studies, where detailed information was available, indicated that pigs were either selected randomly 
(individual pigs or households), or all eligible pigs in a survey area were sampled in serological surveys (Sup-
plementary File Table S1). For the 3 necropsy-based surveys, where information was available, sampling was 
based on pig age, which was either slaughter-age or pre-slaughter-age (Supplementary File Table S1). Models 
(see “Methods” for schematic representation of catalytic model structure, Fig. 1) were "tted to observed (sero)
prevalence data using a Bayesian framework, integrating prior (published) information on the sensitivity and 
speci"city of each diagnostic test. Where the same diagnostic was used across multiple surveys, the diagnostic 
parameters were jointly "tted across datasets (estimating a single posterior distribution for sensitivity and speci-
"city across datasets), while FoI parameters (λ and ρ) were estimated for each dataset.
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!e deviance information criterion (DIC) was used to compare model "ts for individually- or jointly-"tted 
datasets. For the purpose of this analysis, we de"ne studies with overall observed pig cysticercosis (sero)preva-
lence as hypoendemic (0–9.99%), mesoendemic (10–24.99%) or hyperendemic (≥ 25%) transmission settings. 
Supplementary File Table S1 details included studies, sampling strategies, diagnostics used and construction of 
priors.

A more intuitive approach to understanding the FoI parameter λ is to consider its reciprocal which here 
corresponds to the average time until pigs become antibody seropositive or infected (measured by antigen or 
necropsy data). Equally, the reciprocal of parameter ρ relates to the average duration that pigs remain antibody 
positive or infected. !ese values, obtained from selected models (based on the DIC), are compared across set-
tings (by all-age (sero)prevalence of each dataset and by country).

b Reversible model (antibody seroconversion with seroreversion or infec tion acquisition with infection loss)

For antibody: 

For antigen/ necropsy: 

For antibody: 

For antigen/ necropsy: 

a Simple model (antibody serocon version or infection acquisition only)

λ (month-1) ρ (month-1) 
Force of seroconversion: rate
at which pigs an
seroconvert following 
exposure to Taenia solium

es (direct 

indirect environmental 
transmission) and/or

T. solium
metacestode 

ody 
seroreversion 

No

and 
necropsy

rate at which pigs acquire 
viable T. solium metacestode 

Rate at which pigs
clear viable T. solium
metacestode 

Yes, fo ity possible 
from 2-6 weeks post-exposure 
[66], therefore age-truncated at
0.5 months. 
For necropsy, a viable
metacestode can develop 60-70 
days post-exposure [31], therefore 
age-truncated at 1.5 months. 

Figure 1.  Simple and reversible catalytic model structure and equations of the models "tted to data on the 
age (a)-speci"c (sero)prevalence (p(a)), where λ is the force-of-infection (rate of seroconversion or infection 
acquisition) and ρ the rate of seroreversion or infection loss. !e general mathematical form of the catalytic 
models "tted to the antibody ("rst equation in 1a and 1b), antigen and necropsy prevalence (second equation 
in 1a and 1b) datasets to estimate the prevalence (p) at pig age (a). Setting a0 = 0 yields the non-truncated model 
variant and setting ρ = 0 yields the non-reversible, simple catalytic model. !e saturating (sero)prevalence is 
given by λ/(λ + ρ) which for the simple model is 100%, if the pigs lived su)ciently long. !e accompanying 
tables provide information on the de"nitions of the catalytic model parameters depending on the diagnostic 
method used to detect positivity.
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�����������������������Ǥ� Table 1 presents the results of the best model "ts, either including (reversible 
model) or excluding (simple model) seroreversion. For the jointly-"tted datasets (all using the antibody lentil 
lectin-puri"ed glycoprotein enzyme-linked immunoelectrotransfer blot (LLGP-EITB)  assay38,39), the antibody 
seroconversion with seroreversion model provided a more adequate "t according to the DIC (Table 1, Fig. 2a). 
!ese studies were found across hypo- (all-age seroprevalence of 5.3% in  Mexico40), meso- (all-age seropreva-
lence of 20.7% in  Peru41), and hyperendemic settings (all-age seroprevalence of 26.2–58.8% in  Peru7,42,43). For the 
individually-"tted datasets, antibody seroconversion-only models were preferred (Table 1, Fig. 2b), with all stud-
ies found in the mesoendemic range (all-age seroprevalence of 15.9–23% for  Myanmar44,  Brazil45 and  Mexico46). 
In the case of Sarti et al.40 and Rodriguez et al.46 data, both collected in Mexico, the estimated average time until 
becoming antibody seropositive (1/λ) exceeded the maximum expected natural lifespan of pigs (180 months for 
Sus scrofa47). !is indicates that it was not possible to distinguish true positives from false positives in these low 
endemic settings (i.e. the data are consistent with a negligibly low FoI) and the FoI estimates are, therefore, not 
presented. Supplementary File Table S2 presents all model "ts and DIC scores for each dataset. 

����������������������Ǥ� Infection acquisition with viable T. solium metacestode infection (simple model) 
provided a more adequate "t (Table 2, Fig. 3a) for the jointly-"tted datasets (based on using the HP10 Antigen- 
enzyme-linked immunosorbent assay, Ag-ELISA48), with studies found across hypoendemic (all-age seropreva-
lences of 8.1–9.8% in a Ugandan rural and urban production  system37), mesoendemic (all-age seroprevalence 
of 18.8% in  Kenya49) and hyperendemic settings (all-age seroprevalence of 37.4% in  Bolivia27). Jointly-"tted 
datasets based on the B158/B60 Ag-ELISA50 or commercial B158/B60 Ag-ELISA (apDia, Turnhout, Belgium) 
indicate that the infection acquisition and loss of viable T. solium metacestode infection (reversible) model is 
preferred (Table 2, Fig. 3b) for hypoendemic (all-age seroprevalence of 2.9–9.8% in a Ugandan rural and urban 
production  system37), and hyperendemic settings (all-age seroprevalence of 32.6% in  Mozambique51). !e aver-
age time until becoming infected (1/λ) exceeded the maximum expected natural lifespan of pigs for the Ugandan 
rural production system that used the HP10 Ag-ELISA37 and B158/B60 Ag-ELISA37 assays. Supplementary File 
Table S3 presents all model "ts and DIC scores for each dataset.

��������Ǥ� Across meso- and hyperendemic transmission settings (all-age prevalence settings of 10.3–32.7% 
in  India52,  Nepal32 and  Mexico53), infection loss following viable T. solium metacestode infection (reversible 
model) was identi"ed as the best-"tting model (Table 3, Fig. 4). !ere was very similar support (less than 1 DIC 
unit di%erence) for both (simple and reversible) models in a hyperendemic setting in  Nepal32 (all-age prevalence 
of 28.4%). Supplementary File Table S4 presents all model "ts and DIC scores for each dataset.

	����Ǧ��Ǧ���������� ������� ��������Ǥ� Figure  5a illustrates an overall decline in the average time until 
pigs become antibody seropositive or infected with increasing all-age (sero)prevalence, with average estimates 
of < 10.7  months in hyperendemic settings, < 36.2  months in mesoendemic settings, and < 91.8  months in 
hypoendemic settings. In mesoendemic settings, one estimate (from  Mexico46), and in hypoendemic settings, 3 

Table 1.  Seroprevalence and parameter estimates for the best-"t catalytic models "tted to each observed 
antibody age-seroprevalence dataset (ordered by decreasing all-age seroprevalence). Parameter median 
posterior estimates are presented with 95% Bayesian credible intervals (95% BCI). Supplementary File 
Table S1 provides full (location, diagnostics) details of studies. NA not applicable. a Diagnostic sensitivity and 
speci"city for the antibody lentil lectin-puri"ed glycoprotein enzyme-linked immunoelectrotransfer blot (Ab 
LLGP-EITB)  assay38,39 were jointly "tted across datasets. b Best-"tting model determined by DIC (jointly-"tted 
dataset). c Best-"tting model determined by DIC (individually-"tted dataset).

Dataset, country
All-age observed sero-
prevalence (%) Best-"t catalytic model

Diagnostic sensitivity 
(95% BCI)

Diagnostic speci"city 
(95% BCI)

λ = seroconversion rate, 
 month−1 (95% BCI)

ρ = seroreversion rate, 
 month−1 (95% BCI)

Jointly-"tted datasetsa

Garcia et al.  20037

Peru 58.8

Reversibleb 0.889 (0.749–0.991) 0.936 (0.925–0.946)

0.207 (0.147–0.318) 0.042 (0.004–0.124)

Jayashi et al.42

Peru 45.2 0.104 (0.085–0.133) 0.024 (0.004–0.049)

Lescano et al. 43

Peru 26.2 0.247 (0.116–0.387) 0.746 (0.280–0.986)

Taico et al.41

Peru 20.7 0.152 (0.063–0.269) 0.692 (0.209–0.984)

Sarti et al.40

Mexico 5.3 0.001 (0.00006–0.007) 0.63 (0.022–0.980)

Individually-"tted datasets
Rodriguez-Canul et al.46

Mexico 23.02 Simplec 0.940 (0.806–0.990) 0.790 (0.765–0.82) 0.001 (0.0001–0.006) NA

Gottschalk et al.45

Brazil 20.5 Simplec 0.349 (0.297–0.403) 0.921 (0.868–0.963) 0.078 (0.035–0.146) NA

Khaing et al.44

Myanmar 15.9 Simplec 0.940 (0.888–0.973) 0.958 (0.915–0.985) 0.028 (0.015–0.040) NA
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Figure 2.  !e relationship between antibody seroprevalence and pig age (in months) for each dataset. 
Antibody seroconversion (simple) or seroconversion with seroreversion (reversible) catalytic models for (a) 
individually-"tted datasets and (b) jointly-"tted datasets (single diagnostic sensitivity and speci"city values 
estimated; dataset-speci"c λ and ρ estimates obtained), including 95% con"dence intervals associated with 
observed antibody seroprevalence point estimates. Bayesian Markov chain Monte Carlo methods were used 
to "t the models to data, with the parameter posterior distributions used to construct predicted (all age) 
seroprevalence curves and associated 95% Bayesian credible intervals (BCIs). Best-"tting model selected by 
deviance information criterion (DIC); both models presented if di%erence between DIC < 2 (both models have 
similar support based on the data); a di%erence > 10 units indicates that the models are signi"cantly di%erent and 
therefore only superior "tting model (lowest DIC) is presented). !e non-zero predicted seroprevalence at age 
0 is due to less than 100% speci"city for all tests. !e 95% con"dence intervals (95% CI) for age-seroprevalence 
data-points are calculated by the Clopper-Pearson exact method.

Table 2.  Seroprevalence and parameter estimates for the best-"t catalytic models "tted to each observed 
antigen age-seroprevalence dataset (ordered by decreasing all-age seroprevalence). Parameter median posterior 
estimates are presented with 95% Bayesian credible intervals (95% BCI). Supplementary File Table S1 provides 
full (location, diagnostics) details of studies. NA Not applicable. a Diagnostic sensitivity and speci"city for 
the HP10 antigen- enzyme-linked immunosorbent assay (Ag-ELISA)  test48 was jointly "tted across datasets. 
b Diagnostic sensitivity and speci"city for the B158/B60 Ag-ELISA50 or commercial B158/B60 Ag-ELISA 
(apDia, Turnhout, Belgium) was jointly "tted across datasets. c Best "tting model determined by DIC (jointly-
"tted dataset).

Dataset, country
All-age observed sero-
prevalence (%) Best-"t catalytic model

Diagnostic sensitivity 
(95% BCI)

Diagnostic speci"city 
(95% BCI)

λ = rate of infection 
acquisition,  month−1 
(95% BCI)

ρ = rate of infection 
loss,  month−1 (95% 
BCI)

Jointly-"tted datasetsa

Carrique-Mas et al.27

Bolivia 37.4

Simplec 0.488 (0.376–0.650) 0.927 (0.907–0.949)

0.254 (0.109–0.836) NA

Fèvre et al.49

Kenya 18.8 0.042 (0.016–0.105) NA

Kungu et al.37

(urban) Uganda HP10: 9.8 0.011 (0.0015–0.029) NA

Kungu et al.37

(rural) Uganda HP10: 8.11 0.003 (0.0004–0.011) NA

Jointly-"tted datasetsb

Pondja et al.51

Mozambique 32.6

Reversiblec 0.685 (0.552–0.815) 0.970 (0.956–0.981)

0.093 (0.067–0.143) 0.009 (0.0005–0.042)

Kungu et al.37

(urban) Uganda B158/B60: 9.8 0.079 (0.020–0.186) 0.677 (0.112–0.984)

Kungu et al.37

(rural) Uganda B158/B60: 2.85 0.005 (0.0003–0.024) 0.733 (0.122–0.988)
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estimates (from  Uganda37 and  Mexico40) exceeded the expected natural lifespan of pigs, 180 months (not shown 
in Fig. 5a) . !ere is no clear trend between an increasing all-age (sero)prevalence and the average duration that 
pigs remain antibody positive or infected (Fig. 5b). Higher average estimates (> 30.8 months) were found in the 
upper end of hyperendemic settings (> 33% all-age (sero)prevalence), but six, considerably smaller estimates 
(1.2–1.5 months) were found across hypo-, meso-, and hyperendemic settings (9.8–32.7% all-age (sero)preva-
lence). !e reciprocals of λ and ρ estimates are presented in Supplementary File Tables S2–S4.

Across countries, there was signi"cant variation in the duration until pigs become antibody positive or 
infected (Supplementary Figure S3). Within-country estimates were similar (likely due to using the same assays), 
as in  Peru7,41–43 from reversible models (Supplementary Figure S3a). Two estimates in Uganda from the urban 
production systems, showed large variation between the reversible model (B158/B60 Ag-ELISA37) and the sim-
ple, no infection loss, model (HP10 Ag-ELISA37). (Note that the rural production system provided estimates 
exceeding pig life expectancy and are not presented.) For the average duration of being seropositive or infected 
(Supplementary Figure S3b), there was consistency across most countries with very low estimates, but higher 
estimates were identi"ed in three settings for  Mozambique51 and  Peru7,42.

Figure 3.  !e relationship between antigen seroprevalence and pig age (in months) for (a) Carrique-Mas 
et al.27 in Bolivia; Pondja et al.51 in Mozambique; Fèvre et al.49 in Kenya; and (b) Kungu et al.37 in urban- and 
rural-production systems in Uganda. Viable Taenia solium metacestode infection acquisition models with 
(reversible) or without (simple) infection loss jointly-"tted to antigen seroprevalence datasets (single diagnostic 
sensitivity and speci"city values estimated; dataset-speci"c λ and ρ estimates obtained) for (a) HP10 Ag-ELISA 
and (b) B158/B60 Ag-ELISA or commercial B158/B60 Ag-ELISA (apDia, Turnhout, Belgium), including 95% 
con"dence intervals associated with observed antigen seroprevalence point estimates. Bayesian Markov chain 
Monte Carlo methods were used to "t the models to data, with the parameter posterior distributions used to 
construct predicted prevalence curves and associated 95% Bayesian credible intervals (BCI). Best-"tting model 
selected by deviance information criterion (DIC); both models presented if di%erence between DIC < 2 (both 
models have similar support based on the data); a di%erence > 10 units indicates that the models are signi"cantly 
di%erent and therefore only superior "tting model (lowest DIC) is presented). In Kungu et al.37 (Uganda) 
model-predicted prevalence is presented based on the urban- and rural-strati"ed data. !e non-zero predicted 
seroprevalence at age 0 is due to less than 100% speci"city for all tests. !e 95% con"dence intervals (95% CI) 
for age-seroprevalence data-points are calculated by the Clopper-Pearson exact method.

Table 3.  Prevalence and parameter estimates for the best-"t catalytic models "tted to each observed necropsy 
age-prevalence dataset (ordered by decreasing all-age prevalence). Parameter estimates are summarized by 
the median and 95% Bayesian credible interval (95% BCI) of the posterior distribution. Supplementary File 
Table S1 provides full (location) details of the studies. Diagnostic sensitivity and speci"city parameter estimates 
are not shown because "tting to uncertainty in necropsy diagnostic characteristics was not required (sensitivity 
and speci"city were assumed to be 100%). a Best "tting model determined by DIC (individually-"tted dataset).

Dataset, country All-age observed prevalence (%) Best-"t catalytic model
λ = rate of infection acquisition,  month−1 
(95% BCI)

ρ = rate of infection loss,  month−1 (95% 
BCI)

de Aluja et al.53

Mexico 32.7 Reversiblea 0.529 (0.245–0.896) 0.700 (0.163–0.986)

Sah et al.32

Nepal 28.4 Reversiblea 0.276 (0.058–0.515) 0.684 (0.133–0.980)

Sasmal et al.52

India 10.3 Reversiblea 0.097 (0.052–0.137) 0.801 (0.418–0.986)
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!is paper presents the "rst estimates of the FoI of T. solium PCC across a range of epidemiological settings. 
Catalytic models to estimate FoI from age (sero)prevalence pro"les have been used in other NTDs (e.g. Chagas 
disease, trachoma) to investigate spatial heterogeneity and temporal incidence trends (secular or elicited by 
interventions)55–57. !e FoI estimates in this study show variation among settings (between and within coun-
tries), reinforcing the importance of understanding local epidemiological dynamics for the parameterisation of 
mathematical transmission  models58 and the implementation of tailored, setting-speci"c intervention  strategies59. 
A preliminary characterisation of di%erent endemicity settings is also postulated, identifying that PCC FoI 
estimate ranges based on observed data are 0.0009–0.077 month−1 for hypoendemic settings (0–9.99% all-age 
(sero)prevalence); 0.002–0.276 month−1 for mesoendemic settings (10–24.99% all-age (sero)prevalence), and 
0.097–0.529 month−1 for hyperendemic settings (≥ 25% all-age (sero)prevalence). More work is required to build 
a consensus towards characterising di%ering endemic settings for T. solium. In other NTDs, these are linked to 
morbidity for onchocerciasis (e.g. prevalence of blindness for onchocerciasis)60, and of trachomatous in&amma-
tion–follicular and trichiasis for trachoma  prevalence61). !is is an important next step for the T. solium research 
and implementation community given that the new WHO post-2020 NTD goals are stated in terms of achieving 
intensi"ed control in “hyperendemic”  settings62.

For PCC, an age-independent FoI was assumed given the observation of an approximately linear relation-
ship between seroprevalence and (typically young) pig  age7,26–28, although it has been noted that older pigs may 
have a higher chance or frequency of accessing human faeces due to hierarchal population  structures63,64. !e 
age-prevalence pro"les from antibody-, antigen-, and necropsy-based datasets collated for this study generally 
suggested that a constant FoI was a reasonable, simplifying assumption. !e range of surveys based on di%erent 
diagnostics represents measurement of di%erent epidemiological processes, with antibody positivity indicating 
exposure, given the di)culty in relating antibody responses to active cysticercosis infection in pigs. Validation 
studies using the LLGP-EITB  assay38,39 to detect antibodies against larval antigen have indicated that identi"ca-
tion of multiple bands are required for “ruling in” the presence of  infection65. However, most historical surveys 
using the LLGP-EITB assay use the threshold of one diagnostic band to measure positivity, including the surveys 
incorporated in this analysis.

Figure 4.  !e relationship between necropsy prevalence and pig age (months) for each dataset. Viable Taenia 
solium metacestode infection acquisition models with (reversible) or without (simple) infection loss "tted to 
each necropsy age-prevalence dataset, including 95% con"dence intervals associated with observed prevalence 
point estimates. Bayesian Markov chain Monte Carlo methods were used to "t the models to data, with the 
parameter posterior distributions used to construct predicted prevalence curves and associated 95% Bayesian 
credible intervals (BCI). Best-"tting model selected by deviance information criterion (DIC); both models 
presented if di%erence between DIC < 2 (both models have similar support based on the data); a di%erence > 10 
units indicates that the models are signi"cantly di%erent and therefore only superior "tting model (lowest 
DIC) is presented). !e 95% con"dence intervals (95% CI) for age-prevalence data-points are calculated by the 
Clopper-Pearson exact method.
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Another key element of this study was to investigate whether there was a strong signal for seroreversion (in 
the case of antibody-based surveys), and for infection loss (antigen- or necropsy-based surveys) across surveys. 
While antigen-based FoI estimates are interpreted as representing infection acquisition and infection loss in 
this analysis, it should be noted that antigen positivity can result from the presence of excretory/secretory (ES) 
products from immature metacestodes (developing from 2–6 weeks post-infection66) which may not establish 
as a fully viable infection, thus potentially representing a transient response to exposure rather than infection. 
!e relative magnitude of seroreversion compared to seroconversion can provide insight into the stability of 

Figure 5.  Average time (months) until pigs become antibody seropositive/infected (1/λ), or remain antibody 
seropositive or infected (1/ρ) vs. overall (all age) prevalence (percent). !e relationship between (a) the 
average time until pigs become antibody seropositive or infected (1/λ) and overall (all-age) prevalence, and 
(b) the average time pigs remain antibody seropositive or infected (1/ρ) and overall (all-age) prevalence. !e 
plot is strati"ed by proposed endemicity levels de"ned as hypoendemic (0–9.99% all-age (sero)prevalence), 
mesoendemic (10–24.99% all-age (sero)prevalence) and hyperendemic (≥ 25% all-age (sero)prevalence). 
Only λ median estimates are presented where 1/λ (average duration of susceptibility in months) is less 
than life expectancy of pigs; horizontal (grey) dashed line represents maximum life expectancy of pigs: 
15 years × 12 months = 180  months47. !e y-axis is in log scale for both panels.
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antibody responses, which in turn can begin to illuminate the underlying biological mechanisms governing 
parasite establishment and immunity. We did not test an age-dependent seroreversion assumption in our models, 
as processes such as immunosenescence in older individuals (suggested for human cysticercosis)25,67 would be 
minimal at a population level because pigs are o$en slaughtered at < 1 year of age. Moreover, a more complex 
age-dependent infection loss model, which would capture increased resistance in older animals resulting from 
repeat exposures (as explored for other cestodes such as Echinococcus granulosus)34 would likely be challenging 
to "t to limited datasets. Poudel et al.11, using necropsy data from Nepal suggest that pigs older than 1 year of 
age are relatively resistant to infection; however, to test this hypothesis with the datasets presented here would be 
di)cult given the paucity of data and small sample sizes for older animals. Disentangling exposure heterogeneity 
from immunity is also challenging, as older pigs, particularly sows may be less mobile and therefore less exposed 
compared to younger animals (UC Braae, personal communication).

In the antibody serology-based datasets analysed in this paper, antibody seroreversion (reversible models) 
was a component of the best-"tting model for the jointly-"tted LLGP-EITB antibody  datasets7,41–43 in Peru and 
 Mexico40. In hyperendemic  settings7,42,43, parameter ρ had well-de"ned posterior distributions, providing an aver-
age duration of pigs remaining antibody positive ranging from 1.4–41.1 months (Fig. 5b), suggesting that some 
antibody seroreversion may be occurring. In these settings therefore, intense exposure may manifest as transient 
antibody (or antigen for antigen-serology) responses, underpinned by the presence of partial establishment of 
infection as proposed by Nguekam et al.66. For the remaining hypo- or mesoendemic settings, characterised by 
&atter, less well-de"ned age-prevalence pro"les, and when the model with antibody seroreversion was preferred, 
very large ρ estimates were obtained, with poorly-de"ned posterior distributions pushing against the upper limit 
of 1 month–1 (pigs are not expected to be seropositive for less than 1 month i.e. 1/ρ). Substantial uncertainty was 
associated with the ρ posterior distributions especially in these hypo- and mesoendemic settings , indicating 
that there is little information in the datasets to clearly determine the ρ parameter. Robust sampling at the lower 
pig age-range to characterise a distinct age-(sero)prevalence pro"le would be essential for informing model "ts. 
Sampling across age ranges was generally sparse (and seroprevalence uncertain due to small sample sizes) in 
the obtained studies, making it di)cult to clearly di%erentiate between the simple and reversible models and to 
identify seroreversion rates in some datasets.

For certain transmission (hypoendemic) settings characterised by &at age-(sero)prevalence pro"les, espe-
cially where the FoI/seroconversion is low (Sarti et al.40 in Mexico; Kungu et al.37 in rural Ugandan production 
systems), it is not possible to be certain that pigs were exposed at all due to the likelihood of substantial numbers 
of false positives (not being possible to distinguish the infection model/process with only false-positives driving 
the model "t to observable data). Current serology-based diagnostics su%er from reduced speci"city due to the 
presence of cross-reactions to T. hydatigena with the Ag-ELISA  tests68,69 and speci"cally to the GP50 band in 
the antibody LLGP-EITB  assay70,71. !e modelling approach in this paper is based on "tting directly to observed 
data, rather than "tting to adjusted data, to allow incorporation of uncertainty associated with the sensitivity 
and speci"city of the respective diagnostics into the relationship between the true prevalence (a function of the 
catalytic models) and the observed data. FoI and (sero)reversion estimates therefore re&ect additional uncertainty 
generated by the limitation in the diagnostics. However, it is clear in hypoendemic settings, and even in settings 
with higher all-age seroprevalence, that suboptimal performance, especially surrounding assay speci"city is a 
major barrier to understanding FoI dynamics.

Sensitivity of serological diagnostics can also be in&uenced by intensity of infection, as demonstrated for the 
B158/B60 Ag-ELISA in  Zambia72. A mathematical relationship can be shown to exist between the prevalence and 
intensity of infection by assuming an overdispersed (negative binomial) distribution of T. solium larvae in pig 
populations. To potentially characterise this relationship, and derive an expression relating sensitivity to preva-
lence, matched data on infection prevalence and intensity across a wide range of settings would be needed with 
which to estimate the overdispersion parameter. Current estimates of overdispersion in the parasite distribution 
among pig hosts (k = 0.23–0.37) come from a single and small-scale study in  Mexico73. In addition, aggregated 
seroprevalence estimates obtained from systems where pigs are kept in di%erent ways, such as in  Uganda37, where 
pigs are kept either as “tethered” or “free-range”, could mask speci"c age-seroprevalence pro"les. Clustering 
of PCC infection has also been documented in  SSA74 and Latin American  settings75, further highlighting that 
population prevalence surveys may miss these dynamics in the absence of additional spatial analysis.

Inclusion of prevalence data obtained from necropsy studies, considered the most accurate diagnostic for 
PCC, is an important aspect of our study. All three necropsy-based studies suggested that the best-"t model 
included infection loss, particularly (according to the DIC) the data from  India52. For antigen-based data, best 
"t models including infection loss were identi"ed for 3 datasets (jointly-"tted B158/B60 Ag-ELISA datasets 
in  Mozambique51 and rural and urban production system strati"ed data for  Uganda37). Our model assumed a 
constant rate of infection loss, so we cannot say whether age-dependent resistance potentially acted as a driving 
mechanism following repeat exposures. As previously described, insu)cient resolution in the datasets, particu-
larly necropsy-based datasets, prevents testing of this hypothesis. While necropsy is considered the most accurate 
diagnostic method, it is still imperfect, particularly because small cysts and light infections can be  missed76. It 
is also di)cult to determine the completeness of necropsy/dissection protocols in older studies. Additionally, 
sampling limitations due to cost and logistical barriers mean that age ranges of necropsied pigs are not neces-
sarily representative, as younger pigs may be missed when sampling pigs close to slaughter age or  weight32,52, or 
conversely, when it is di)cult to purchase older pigs from farmers as they near slaughter  age53. Limitations with 
the current necropsy-based datasets in particular highlight the need to collect age-prevalence and intensity data 
which are more representative across age groups and include larger sample sizes, such as the datasets obtained 
for other cestode  infections77. !is will facilitate "tting models of greater complexity, such as those including 
acquired  immunity77. Not only will be a quanti"cation of immunity important when modelling the impact of 
interventions, but also omission of immunity, if present, may lead to an underestimation of the  FoI34.
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!e results presented here synthesize available literature and data to estimate the FoI of PCC across a variety 
of geographical and epidemiological settings globally, alongside preliminary construction of characteristics that 
could be used to de"ne di%erent endemicity levels for T. solium. !ere is support for transient antibody serologi-
cal responses, and evidence for loss of viable cyst infection; however, limitations associated with the available data 
and sub-optimal diagnostics pose signi"cant constraints to PCC FoI estimation and model testing. While the age-
(sero)prevalence pro"les are not suggestive of speci"c age-infection dynamics, transmission dynamics models 
still require age-structured pig populations to investigate realistic "eld-interventions (e.g. TSOL18 vaccination 
scheduling and minimal intervention  strategies31). Modelling the potential impact of such interventions, in a vari-
ety of geographical and epidemiological settings, is a critical step to supporting the development and monitoring 
of post-2020 WHO NTD goals for T. solium, in particular the prospective goals of achieving “intensi"ed control 
in hyperendemic areas”. !erefore, this analysis does not only suggest that di%erent epidemiological settings will 
likely require tailored interventions, but it may be possible to identify di%erent T. solium endemicity zones based 
on understanding the FoI trends (and hence characterising “hyperendemic areas”). Complementing this work 
with FoI estimation in human taeniasis and cysticercosis will also facilitate parameterisation of pig-to-human 
and human-to-pig transmission coe)cients for mathematical models of T. solium taeniasis/cysticercosis35,36.

�������
�������������������������������ǡ���������������������������������Ǥ� Published articles with PCC age-
(sero)prevalence or age-infection data suitable for constructing age-strati"ed pro"les were identi"ed through a 
systematic search conducted following the PRISMA  guidelines78, adapted from a previous systematic review 
which gathered human T. solium cysticercosis and taeniasis serological  data12. Dates for the literature search 
spanned between 31/12/1988 and 30/04/2018. PRISMA &owchart and search results are in Supplementary Fig-
ure S1. Identi"ed studies are summarized in Supplementary Table S1; the geographical distribution of the data 
is presented in Supplementary Figure S2. !e observed age-(sero)prevalence pro"les were extracted from the 
articles identi"ed from the systematic literature search or calculated from individual-level pig infection datasets 
a$er successful contact with study authors.

	����Ǧ��Ǧ�������������������Ǥ� !e FoI describes the average (per capita) rate at which susceptible indi-
viduals become infected. Multiplying this quantity by the total number of susceptible individuals in a population 
gives the incidence rate. !e catalytic family of models, originally described by  Muench79, considers the rate of 
conversion from susceptible to infected, and has been used to estimate the FoI by quantifying the rate of change 
in the proportion of infected individuals with age, using age-speci"c seroprevalence or infection  data80. An 
important assumption for the simplest model is that this rate remains constant with respect to age (although 
age-varying FoI can also be implemented)81,82.

Catalytic models (Fig. 1) were used to estimate either the rate of antibody seroconversion (λ) and serorever-
sion (ρ) from the antibody age-seroprevalence data, or the rate of acquisition (λ) and loss of viable T. solium 
metacestodes (ρ) from the antigen and necropsy data (note that the de"nitions of λ and ρ vary only in the context 
of the di%erent types of data). For antibody seroprevalence data, two variants of the catalytic model were "tted 
to data, one incorporating seroconversion only (top equation in Fig. 1a) and the other including both antibody 
seroconversion and seroreversion (top equation in Fig. 1b). In addition, the lack of sampling in younger ages 
(i.e. pigs < 6 months old) in the antibody datasets also precluded testing models including the presence/waning 
of maternal antibodies, which Gonzalez et al.83 demonstrated as persisting for up to 27 weeks a$er weaning. !e 
true (unobserved) prevalence p(a) is a function of the catalytic models, given respectively by the equations for 
the simple and reversible models as

!e catalytic models were modi"ed to include an age-shi$ model  variant84 for models "tted to necropsy and 
antigen datasets. For necropsy datasets prevalence in ages < a0were truncated at zero given that younger animals 
will not have established, true infection. More speci"cally, the catalytic models were truncated at ages < a0 at the 
age of 1.5 months for models "tted to necropsy data to re&ect (conservatively) that cysticerci are able to mature 
from 60–70 days a$er  infection31. For antigen datasets, catalytic models were truncated at ages < a0 at the age of 
0.5 months given that antigen positivity is possible from 2 weeks post-exposure66. !e age-shi$ catalytic models 
are given by the equations for the simple and reversible models (second equation in both Fig. 1a,b) respectively as,

Further details regarding interpretation of the parameters are provided in Fig. 1.

������Ƥ��������������������Ǥ� All analyse and modelling were performed in R (https ://www.r-proje 
ct.org/)85. A likelihood was constructed assuming that the observed data (representing a binary presence/
absence of markers related to exposure or infection) are a realization of an underlying binomial distribution 

(1)p(a) = 1− e−!(a)

(2)p(a) = !

!+ρ

[

1− e−(!+ρ)(a)
]

(3)p(a) = 1− e−!(a−a0)

(4)p(a) =
!

!+ ρ

[

1− e−(!+ρ)(a−a0)
]
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with probability p(a) (the true (unobserved) prevalence), given by the catalytic model as previously described 
and adjusted to give the observed or apparent prevalence, p’(a), by the sensitivity (se) and speci"city (sp) of the 
diagnostic used in the respective datasets. !e adjustment is based on the  equation86,

!erefore, the likelihood of the data on the number of observed seropositive or infected pigs of age a, r(a), 
from n(a) animals tested is,

 where θ denotes the parameters of the catalytic models and diagnostic performance (i.e. sensitivity and speci-
"city). Where the same diagnostic was applied across surveys, the test speci"city and sensitivity were jointly 
"tted to obtain a single posterior distribution for diagnostic sensitivity and speci"city, and a setting-speci"c FoI 
(λ and ρ) posterior distribution. !is approach assumes that sensitivity and speci"city are uncertain but do not 
vary substantively by setting. We acknowledge this as a limitation of our work since, in reality, these parameters 
may vary among locations, partly because of other cross-reactive Taenia species (such as T. hydatigena68–71). 
However, in the absence of information on the prevalence of such  species87—or on the relative contribution of 
within- and between-location variability in diagnostic  performance88,89—we were unable to either construct 
location-speci"c priors or to estimate location-speci"c e%ects on diagnostic performance. A Bayesian Markov 
chain Monte Carlo (MCMC) Metropolis–Hastings sampling algorithm was implemented to obtain the parameter 
posterior distribution f(θ|r, n) , assuming a &at uniform prior for λ, and a &at uniform prior including limits (0,1) 
for ρ. A limit of 1 month–1 was used for ρ as this represents a minimum duration (the reciprocal of the rate) of 
at least 1 month that a pig can be seropositive, antigen positive or infected. Informative beta distribution priors 
for the diagnostic sensitivity and speci"city were "tted to published estimates of the mean and 95%CIs for these 
parameters (noting that α and β shape parameters characterise the beta distribution, whereby α/(α + β) gives the 
mean of the distribution). Supplementary Table S1 and Supplementary Figure S4 show the informative beta prior 
distributions for diagnostic sensitivity and speci"city. For jointly-"tted datasets based on the same diagnostic 
used between surveys, we estimated a single posterior distribution for diagnostic sensitivity and speci"city, but 
dataset-speci"c FoI parameter values (λ and ρ) were estimated.

A maximum of 20,000,000 iterations were run for models "tted simultaneously to multiple (jointly-"tted) 
datasets, given that substantial subsampling was required to reduce autocorrelation, and a maximum of 1,000,000 
iterations were run for individually-"tted datasets, with the "rst 10% of runs being discarded as burn-in in both 
cases. !e parameter posterior distributions, used to generate predicted prevalence curves and associated uncer-
tainties for each dataset, were summarised using the median and 95% Bayesian credible intervals (95% BCIs).

Model "ts were compared between the simple and reversible catalytic models for individually- and jointly- 
"tted datasets using the deviance information criterion (DIC)90, with the model generating the smallest DIC 
score being selected.

�����������������
Aggregated level data used in this study, obtained from the literature, can be found in a data repository through 
the following link: https ://doi.org/10.14469 /hpc/7447. Individual-level data additionally availability for speci"c 
studies as follows: Kungu et al.37: “!e datasets generated during and/or analyzed during the current study are 
available from the corresponding author on reasonable request.” Sarti et al.40 : “!e datasets generated during 
and/or analysed during the current study are available from the corresponding author on reasonable request”. 
Khaing et al.49: “!e datasets generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.” Aggregated level data obtained through other data repositories 
(outside of journal publication): Fèvre et al.49: “!e datasets generated during and/or analysed during the current 
study are available in the open access repository held by the University of Liverpool, [https ://dx.doi.org/10.17638 
/datac at.liver pool.ac.uk/352].

�����������������
 Model code available from the following GitHub repository: https ://githu b.com/Mad20 6/FoI_bayes ian.
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