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Abstract— Pulsed eddy curent (PEC) technique provides a means to inspect struc-
tures without surface contact. It is particularly useful when the structure’s surface
is rough or inaccessible, such as insulated pipes in pipeline. Probe parameters of a
PEC system, especially the sensing and excitation coil diameters, can significantly
affect the PEC system’s performance. Thus, detailed analysis of these parameters
is paramount in developing a PEC system. Currently, this is accomplished by
establishing the trend of features with respect to the analyzed variables, e.g. sample
thicknesses. However, prior to extracting these features, a number of configuration
parameters have to be determined. For this reason, analyzing PEC performance over
a range of coil diameter values is rather time-consuming as both the sensing and ex-
citation coil diameters significantly affect the received signals. Principal component
analysis (PCA) is proposed as an alternative to the feature extraction. The work here
analyzes the trends contributed by the PCA scores for different values of sensing and excitation coil parameters. Results
from both numerical simulations and experiments suggest that the sensitivity of the PEC probe is highly correlated with
the excitation coil diameter, while the excitation-sensing coil distance is not significant in determining the sensitivity of
the PEC probe. These findings are consistent with those reported in the literature, suggesting the potential of adopting
PCA for an automated PEC performance analysis process.

Index Terms— parameter analysis, pipeline inspection, principal component analysis, pulsed eddy current

I. INTRODUCTION

G IVEN that is a non-invasive and non-contacting non-
destructive testing (NDT) technique, pulsed eddy current

(PEC) has been widely used in pipeline inspection and aircraft
industries. Similar to other NDT methods, the performance of
PEC depends on many factors. The sensitivity of a PEC probe,
for example, is proportional to its diameter [1]. Meanwhile, the
same configuration parameter is inversely proportional to the
range of measurement, or the depth of penetration [2]. Varying
the coil height and width, on the other hand, has been proven to
offer better sensitivity [3]. These influences of parameters are
only applied under the condition where the excitation current
is kept unchanged. Varying the excitation current parameters,
through its excitation frequency and edge time of the pulse
wave, have negative effects on the depth of penetration [4].
Because of such high dependency of PEC performance on
various variables, parameter analysis plays a critical role in
the design process of a PEC system.

The work here aims to facilitate the automation of the
design process of PEC probe, specifically for pipeline inspec-
tion, by virtue of simplifying the feature extraction process.
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The scope here is limited to ferromagnetic material appli-
cation, specifically carbon steel, since feature interpretation
for ferromagnetic material is different from non-ferromagnetic
material. However, it is believed that the approach proposed
here can still be applied to non-ferromagnetic materials. PEC
architecture under study is the pancake-type transmit-receive
coil configuration, since this configuration has been common
in quantifying pipe wall thickness [5]. The design process
of a PEC probe for pipeline inspection needs to consider
the influences of probe parameters with respect to the test
specimen thickness. Conventionally, the process of assessing
the performance of a PEC system is generally accomplished
by evaluating the trend of features with respect to wall
thicknesses [6], [7]. However, particularly in case of pipeline
inspection, the conventional decay transition time, τ0, which is
used for thickness quantification, possesses several challenges.
The extraction of τ0 from PEC measurement signals requires
determining multiple parameters in order to establish the
reference line [8], [9]. This requires strict analysis of the
shape of the reference signal. This process is heuristic, making
the assessment to be rather qualitative. At the same time, the
reference line has to be re-established whenever the analyzed
parameters are changed, preventing the performance analysis
process of a PEC system to be automated. Although a feature
extraction based on the signal gradient [5], [10] has recently
been proposed, it still requires establishing the amplitude-
gating parameters by monitoring the segment where the PEC
signal behaves linear-like in a semi-logarithmic plot. This
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poses a problem when dealing with different probe parameters,
e.g. outer diameter, as the amplitude of the received PEC signal
can change in accordance with the probe parameter. In return,
amplitude-gating parameters have to be carefully determined
for each set of PEC signal received from each analyzed
parameter, thus complicating the performance analysis of a
PEC probe.

Although the use of optimization algorithm for eddy current
testing (ECT) has been reported in the literature, to the
authors’ knowledge, only Faurschou et al. [11] have proposed
a performance analysis tool for PEC. They have proposed a
hybrid use of projection to latent structure (PLS) and variable
importance in the projection (VIP) to provide a quantitative
analysis of the influences of probe parameters on the received
PEC signals [11].

This paper opens up the use of principal component analysis
(PCA) as a means of feature extraction to eliminate the need to
declare preliminary configuration parameters. This, in return,
enables the performance analysis of PEC to be automated to
ease the PEC probe design process. Although the use of PCA
is not new in the area of PEC [12]–[15], it has not been used
for pipeline inspection, nor for performance analysis. PCA is
capable of assessing the variations between the dimensions
of a given data set. Thus, the paper presents an attempt to
exploit this PCA characteristic for variation quantification of
different data sets, given different values of probe parameters,
e.g. sensing and excitation coil outer diameter.

II. BACKGROUND KNOWLEDGE

A. PEC Principle
PEC operates by exciting rectangular-shaped current into a

coil placed over a test piece. This supplies magnetic field to the
test piece, which consequently results in an induction of eddy
current in the test piece, occurring during the falling/rising
edge of the coil current. The eddy current is then diffused over
time due to the test piece’s resistance. This effect can be ob-
served from the changes in the PEC sensing responses. For fer-
romagnetic material, the diffusion effect is more pronounced
when using a sensing coil instead of a magnetic sensor due to
the low dynamic range of most magnetic sensors [16]. Typical
PEC signal for a ferromagnetic material application is plotted
in semi-logarithmic plot, as shown in Fig. 1(b) (transformed
using bi-symmetric logarithmic transformation).

B. Problem Formulation
In the design stage of a PEC probe for pipeline inspection,

performance analysis is typically carried out for a specific
range of analyzed probe parameters. The parameter focused
upon here is the coil diameter, since it shows the most signifi-
cant influence of the probe performance, in terms of sensitivity
and depth of penetration [1], [11]. Both excitation and sensing
coil diameters are considered. Since the excitation coil is
positioned within the sensing coil, changing the diameter of
one coil should change the diameter of another. To avoid
the co-dependency of the two parameters, when changing the
excitation coil diameter, all parameters of the sensing coil
as well as the excitation coil width are fixed. The excitation

Fig. 1. Plot of raw PEC signals in a (a) linear plot, and (c) bi-symmetric
transformed PEC signals (equivalent to semi-logarithmic plot).

coil diameter is re-phrased as ’excitation-sensing coil distance’
(δexc−sen). On the other hand, when changing the diameter of
the sensing coil, δexc−sen and ws are fixed, so that the outer
diameters of both excitation and sensing coils are varied. For
ease of reading, sensing coil outer diameter is denoted as OD.
Figure 2 shows a visualisation of the probe for clearer explana-
tion of these two parameters. As seen in the figure, both coils
share the same parameters: inner diameter, di, outer diameter,
do, width w, and height, h. The subscripts notations, e and
s, represent the excitation coil and sensing coil, respectively.
The unit used here is millimeter (mm). The width, w, can be
represented by the equation w = do−di. The value of δexc−sen
can be defined as δexc−sen = die − dos. When varying the
value of δexc−sen, the parameters doe, die, we, and ws are
kept constant at their respective reference values, while dos
is varied using the equation dos,(ref) − δexc−sen (hereinafter,
subscript ref represents the reference value of the parameter).
Since ws is kept constant, dis is also varied by using the
equation dis,(ref)−δexc−sen. On the other hand, in varying the
value of OD, we, ws, and δexc−sen are kept constant at their
respective reference values. Increasing the value of OD by a
certain amount, for example x mm, will make doe, die, dos,
and dis parameters to change in accordance to these relations,
respectively: doe,(ref) + x, die,(ref) + x, dos,(ref) + x, and
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dis,(ref) + x. Throughout the analysis, the excitation current
parameters are fixed to only allow the OD and δexc−sen to
influence the performance.

For each analyzed value of OD and δexc−sen, a set of
PEC signals are obtained, where each PEC signal corresponds
to different wall thickness. Performance analysis is made by
evaluating the degree of dissimilarity between the signals in
each signal set. In this study, a set of PEC signals obtained
by varying the pipe wall thickness with a probe parameter
q containing N number of p-samples of signals (represented
by the row vector v(n)(q)) is assigned as V(q). From this,
the assumed quantified value of the degree of dissimilarity
corresponding to each v(n)(q) as compared with the other
signals in the data set is given as θ[v(n)(q)], while the
collective degree of dissimilarity for the PEC signals set V(q)
can be formulated as Θ[V(q)]. Note that the functional form
of θ[v(n)(q)] does not necessarily need to be the same as the
formulation of Θ[V(q)], but can be related by Θ[V(q)] =
f{θ[v(n)(q)]}, where f(∗) is an arbitrary function. Various
choices of quantifying the degree of dissimilarity for both
θ[v(n)(q)] and f(·) lead to different quantification capability
and analysis, but the value of q that gives the maximum probe
performance has to satisfy

q̂ = arg max
q

Θ[V(q)]. (1)

In the conventional method of using feature extraction [1],
[6], feature is extracted for each v(n)(q) to provide the value
of θ[v(n)(q)], while the measure of relative variation of the
features corresponding to different sample thicknesses pro-
vides the value of Θ[V(q)]. From (1), it is also evident that in
deriving the PEC probe performance, the PEC signals obtained
using the chosen value of either OD and δexc−sen have to
be processed to derive the corresponding feature values, such
as the decay transition time, τ0 and the signal gradient for
ferromagnetic application. As these features require multiple
parameters to be determined, where each parameter also plays
a vital role in contributing to the PEC performance, PCA is
proposed here to eliminate the need to deliberately establish
the optimal configuration parameters in the feature extraction
stage.

C. Feature Extraction Using PCA

The proposed feature extraction method applies PCA to
each data set. For each change in the value of the probe
parameter, one data set V(q) is obtained. The projected data
samples of each row vector v(n) of V(q) onto the new
subspace (commonly known as PCA scores) are given as
u(n) = (u1, ..., ul)(n), where l < p so that the dimension
of the reproduced data point is significantly reduced. A p-
dimensional weight vector of the k-th component, w(k) =
(w1, ..., wp)(k) is assigned to project each row vector v(n)

onto the new subspace using

uk(n) = v(n) ·w(k)

∣∣
n=1...N
k=1...l

. (2)

Only the direction of the vector is important for w, not
its length. Hence, ‖w‖= 1. In most PCA implementations,

the signal average is subtracted out of the matrix before
covariance matrix calculation, as was first applied by [17],
[18]. The obtained PCA scores with this approach give the
relative distinction of each signal to the projected subspace.
This subsequently provides a relative performance assessment
of the probe parameters without the need to transform the
obtained data, such as normalisation or percentage difference,
as was done in the conventional parameter analysis such as in
[1].

The value of the first weight w(1) is obtained by maximising
the variance of the projected data samples. Mathematically,
this can be expressed as

w(1) = arg max
‖w‖=1

{∑
n

(v(n) ·w)2
}
. (3)

Considering the unit vector property of w(1), (3) can be
rewritten in matrix form as

w(1) = arg max

{
wTV(q)>V(q)w

wTw

}
. (4)

From (4), the term in the curly bracket can be maximised by
finding the largest eigenvalue of the matrix V(q)>V(q), which
incidentally makes w to be the corresponding eigenvector.
Interested reader can derive the expressions for further com-
ponents, but as the work here aims at finding the separation
measure between each response, only the first component is
considered. In making sense of PCA scores, u(n) can also be
interpreted as the value the new projected data samples possess
in the new principal component coordinate system.

PCA is proposed as a means to transform the original
signal into a number of uncorrelated variables. These variables
account for as much of the variability in all of the PEC
signals as possible, which can be useful to measure how
distinct PEC signals are from the reference signal. A compre-
hensive explanation of PCA can be obtained elsewhere (see
for example [19]), while the explanation here is focusing on
how maximising the projections of the original data samples
onto the new subspace can be utilised to find the degree of
separation between received signals and the reference signal.
From (2), given the formulation of w(1) in (4), the respective
signals dissimilarity measures of θ[v(n)(q)] in Section II-
B can then be formulated as u1. As mentioned before, the
interpretation provided by u1 should therefore provide the
optimal probe parameter values, which should eventually serve
the purpose of maximising Θ[V(q)] shown in (1).

Data pre-processing is essential prior to PCA, as the dif-
fusion and decay phases of the raw received signals are not
derivable in Cartesian domain. As can be seen from the raw
signal in Fig. 1(a), the received signals in Cartesian domain
are not discriminable for different sample thicknesses, without
closer inspection into the gradient of the trailing parts of the
responses. To pre-process the signals, they are transformed
using bi-symmetric logarithmic transformation, using

V bi−symlog(t) = sgn[V (t)] · log10[1 + |(V (t)|/10C ], (5)

where sgn(∗) is the standard mathematical Sign (or Signum)
function and C is a scaling constant to smoothly transform
the region near zero so that it remains finite. In this case, C is
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chosen to be -15, which equals to the lowest order observed
in the acquired signals in the numerical models. Admittedly,
analysis of the signals obtained through experiment would
not be possible to be carried out in such voltage range
(10−15 V−101 V). However, this bi-symmetric transformation
requires the lowest order of the signal to be identified and
used in (5) in order to appropriately transform the PEC signals.
This transformation is also utilised instead of the conventional
logarithmic transformation to avoid negative values in the
signals to be treated as infinite, which conveniently allows the
analysis of noise margin and probe vibration. The outcomes
of these signal pre-processing steps are provided in Fig. 1(b).
The signal pre-processing amplifies the differences caused by
the diffusion of eddy current, represented at only the trailing
part of the received signal in Cartesian domain.

III. MODELLING AND EXPERIMENTAL SETUP

The structure of the test sample considered in this work was
a carbon steel plate with a layer of insulation. 2D axisym-
metric COMSOL Multiphysics models were developed, with
the reference configurations: excitation coil outer diameter,
doe = 80 mm, excitation coil inner diameter, die = 58 mm,
excitation coil height, he = 12.5 mm, excitation coil offset,
Oe = 2 mm, sensing coil outer diameter, dos = 105 mm,
sensing coil inner diameter, dis = 83 mm, sensing coil height,
hs = 12.5 mm, sensing coil offset, Os = 2 mm, 2 A supply
current, and number of turns of 210 for both excitation and
sensing coil. The carbon steel test sample has the following
parameters: relative permeability, µ = 100, and conductivity,
σ = 5.5 MS/m. The thickness, d is varied from 4 mm to 12
mm, at an increment of 2 mm. Fig. 2 provides the visualisation
of the aforementioned parameters. In this implementation, only
the rising edge of the whole pulse period was considered.
Transient analysis was carried out in the range of 0 ms ≤
t ≤ 300 ms, to allow the complete decay of the eddy current
in the sample. In the case of a finite element model, since
the rate of the decay is exponential, the PEC signals were
considered to reach 0 V when it became asymptotic towards
the x-axis (at 10−15 V).

For the purpose of experimental validation, a PEC system
consisting of a PEC probe, excitation circuit and a data
acquisition DAQ system was developed. The parameters of
the PEC probe were the same as those in the numerical
model. The supplied excitation voltage was set at 10 V, with
8 Hz frequency. A total of 16 signals were acquired for each
data acquisition, and averaged for white noise suppression.
Similar signal transformation as (5) was later carried out,
with C = −4.5, which equals to the smallest order of the
PEC signals. The obtained PEC signals were then gated,
in the range of 1.5 ms ≤ t ≤ 50 ms. Arguably, this step
requires two configuration parameters to be determined, which
defeats the main objective of using PCA. However, the step
is common in interpreting PEC signals for ferromagnetic
application, where the time range can be easily determined
to avoid the unnecessary peak in the early part of the signal
that contains high frequency components and the later part
that is highly affected by the switching on/off of the excitation

Fig. 2. Cross sectional image of the PEC setup.

current. Moreover, the PEC signal peak is typically clamped
to a certain voltage level based on the DAQ device saturation,
which can be used as a threshold value in data post-processing.
This time-gating step, nonetheless, can still be omitted as the
peak of the PEC signal can be made insignificant by the
bi-symmetric logarithmic transformation step. Each test was
repeated five times, where the results for these showed good
repeatability in all cases.

IV. RESULTS

A. Effects of Excitation-sensing Coil Distance

The excitation-sensing coil distance, δexc−sen was varied
over the range of 1.5 mm to 9.5 mm, at intervals of 2 mm. As
explained in Section II-B, since the variation of the parameter
δexc−sen affects other probe parameters, the variations of other
parameters followed the premise described in the section. The
responses for 4, 6, 8, 10, and 12 mm pipe thicknesses were
obtained for each excitation-sensing coil distance. PCA was
applied separately on the five different data sets obtained from
the models. The PEC signals and scores for different pipe wall
thicknesses obtained are shown in Fig. 3(a)-(b).

Selective assessments of PEC signals for δexc−sen of 1.5
mm and 9.5 mm are indicated in Fig. 3(a). Decreasing
δexc−sen allows less coupling between the excitation and
sensing coil, thus providing smaller amplitudes in the PEC
signals. However, this probe parameter does not appear to
contribute to separation of the PEC signals, and this can be
evaluated from the trivial differences in the PEC signals for
δexc−sen = 1.5 mm as compared to δexc−sen = 9.5 mm.

The PCA scores for different δexc−sen values with varying
sample thicknesses are shown in Fig. 3(b), based on which the
PCA scores can be claimed to provide meaningful attribute in
relation to the sample thickness. As noted, increasing sample
thickness increases the PCA score. However, varying this
parameter does not affect the sensitivity of the probe across
all thicknesses, where the slope of the PCA score for each
δexc−sen does not show any significant difference between
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Fig. 3. (a) PEC responses of different sample thicknesses, d, for dif-
ferent δexc−sen values (after bi-symmetric logarithmic transformation),
and (b) their corresponding PCA scores.

each other. This essentially provides information regarding the
minimal contributions of δexc−sen towards the sensitivity of
the PEC system.

A further notable observation is the values of the PCA
scores, which are approximately consistent throughout the
different δexc−sen values, even though the signals’ amplitudes
are different for different values of δexc−sen. As previously
mentioned, the assessment, however, represents the relative
differences between the PCA scores for each δexc−sen, without
information on the absolute values of the PEC signals’ ampli-
tudes. Further evaluation of the amplitudes of PEC signals
corresponding to different δexc−sen values can be carried out
by examining the PEC signals in Fig. 3(a).

B. Effects of Sensing Coil Outer Diameter

To establish the effects of the sensing coil outer diameter,
this parameter was changed from 75 mm to 105 mm, at
intervals of 10 mm. While doing so, δexc−sen was kept
constant at 1.5 mm. Similar to the methodology used in the
previous section, in varying OD, the same premise explained
in Section II-B was applied. The corresponding results from
the numerical modelling are presented in Fig. 4.

The responses of two different sensing coils, OD, cor-
responding to different sample thicknesses are shown in

Fig. 4. (a) PEC responses of different sample thicknesses, d, for
differentOD values (after bi-symmetric logarithmic transformation), and
(b) their corresponding PCA scores.

Fig. 4(a). The signal amplitude evidently increased with re-
spect to OD. Although it should be noted that the numerical
models did not consider the effect of the DC resistance of
the sensing coil, this relationship is expected to be consistent
in the experiment. Bigger coil allows bigger volume to be
subjected to changes in magnetic field, which allows more
electromotive force (emf) generation. The responses for outer
diameter of 105 mm probe also appeared to exhibit higher
deviations across the sample thicknesses, as compared to
their counterparts for 75 mm. It should further be noted that
the simulation did not consider ’lossy’ characteristics of the
inspected sample and the limit of depth of penetration, where
these two attributes might contribute to different results in the
experiments.

Quantitative analysis can be seen in the results of the PCA
scores in Fig. 4(b). Unlike δexc−sen, the results clearly show
the higher variances obtained for PEC signals of bigger coils.
This is because, bigger coil supplies magnetic field that is more
diverged as compared to the supplied magnetic field by smaller
coil. Further observation into this phenomenon is provided in
Fig. 5, where the distribution of induced eddy current within
the 12 mm sample is visualised for OD of 75 mm and 105 mm
at 2 ms (before eddy current diffuses to the inner specimen’s
surface). It is clearly shown that the distribution of the induced
eddy current in the sample for coil of 75 mm OD is more



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

converged than that of coil of 105 mm OD. This essentially
proves the higher sensitivity of bigger coils towards changes in
the sample parameters. Hence, it is more favourable to design
the coil to have as large diameter as possible, while at the same
time, careful consideration is given to not allow the footprint
size to be considerably larger than the expected size of defect.

C. Experimental Validations

The results show that the δexc−sen contributes to relatively
negligible variations to the separation of the PEC signals.
Comparatively, OD parameter shows significance for the
sensitivity of the PEC system, so this parameter was varied
in the experimental analysis. The acquired signals are shown
in Fig. 6. The differences in the PEC signals amplitudes for
different OD are expected, as inferred in Section IV-B. As
noted, the amplitudes of the responses from experiment did not
match the ones from the numerical modelling, attributed by the
difference in the inductance value and the wire resistance that
are not considered in the numerical modelling. Nevertheless,
the trends of the signals show good agreement between the
experimental and numerical model results.

What stands out in the experimental results is the smaller
variances in the signals acquired by 75 mm probe, as compared
to 105 mm probe. The signals for thicker samples (10 mm
and 12 mm) for 75 mm probe are also not easy to be
differentiated, making it difficult for thickness interpretation.
This is because, comparatively, the supplied magnetic field
for smaller probes is more convergent, allowing the field
to only travel to a shallow depth within the samples. This
effect due to penetration depth limitation is not obvious in the
modelling results, as the mathematical models try to approach
the specified convergence tolerance, making the signals to
be discriminable in the logarithmic scale. At the same time,
limitations in the experimental setup (e.g. lossy medium,
discretisation limits in analog-to-digital convertor, high white
noise margins) are inevitable and provide more constraint to
the data acquisition accuracy.

Following the approaches taken in obtaining the simulation
results, the scores obtained are presented in Fig. 7. The scores,
against the sample thickness, confirms the recognised trends

Fig. 5. The distributions of induced eddy current in azimuthal direction
for (a) coil of 75 mm OD and (b) coil of 105 mm OD at 2 ms.

Fig. 6. PEC responses of different sample thicknesses, d, for OD of
75 mm and 105 mm from experiments (after bi-symmetric logarithmic
transformation).

Fig. 7. PCA scores for differentOD corresponding with different d from
experiments.

in the simulation study. Discrepancies in the graph can be
observed, due to the aforementioned depth of penetration
limitations and noises. Compared to the simulation results, ex-
perimental results also exhibit higher separation between each
score, which was potentially contributed by the differences
in the inductance values of both coils. Another significant
difference observed is by comparing the trends in experimental
results with those of simulation results. In general, both
experimental and simulation results exhibit an increasing trend
of scores with respect to thickness, but the slopes are different.
Simulation results, despite the probe diameters, have more
linear slopes when compared to the experimental results. For
experimental results, the scores for smaller probes (especially
75 mm) depreciate in their capabilities to differentiate thick
samples. The slope across 8 mm to 12 mm for 75 mm
probe gradually declines, representing the limit of the depth
of penetration. It is thus evident to suggest that the 75 mm
probe is limited to thin samples. Nevertheless, this parametric
study still suggests higher variances for larger probe diameter,
which again adheres to the results simulated in Section IV-B.
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V. CONCLUSION

A new feature extraction method using PCA has been inves-
tigated. The PCA scores obtained from the simulation results
show that the distance between the excitation-sensing coil is
not imperative in determining the sensitivity of the probe.
The excitation coil diameter, however, contributes largely to
the sensitivity of the PEC probe. Moreover, the results have
demonstrated the quantitative capability of the PCA technique.
Experimental validations have further substantiated the use of
PCA in the design stage of a PEC probe. The application of
this proposed technique is certainly not limited to the two
probe parameters studies, but can be extended to evaluate
further parameters such as the width and height of coils as
well as excitation current parameters.
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