
Digital Object Identifier 10.1109/ACCESS.2017.DOI

Single- and Multi-Distribution
Dimensionality Reduction Approaches
for a Better Data Structure Capturing
LAURETA HAJDERANJ1,DAQING CHEN2, ENRICO GRISIAN3, AND SANDRA DUDLEY4
1,2,3,4School of Engineering, London South Bank University, London, UK, SE1 0AA

Corresponding author: Laureta Hajderanj (e-mail: hajderal@lsbu.ac.uk)

This study was supported under a joint scholarship by London South Bank University and Acctive Systems, Ltd
(http://www.acctive.co.uk/).

ABSTRACT In recent years, the huge expansion of digital technologies has vastly increased the volume
of data to be explored, such that reducing the dimensionality of data is an essential step in data exploration.
The integrity of a dimensionality reduction technique relates to the goodness of maintaining the data
structure. Dimensionality reduction techniques such as Principal Component Analyses (PCA) and Multidi-
mensional Scaling (MDS) globally preserve the distance ranking at the expense of neglecting small-distance
preservation. Conversely, the structure capturing of some other methods such as Isomap, Locally Linear
Embedding (LLE), Laplacian Eigenmaps t-Stochastic Neighbour Embedding (t-SNE), Uniform Manifold
Approximation and Projection (UMAP), and TriMap rely on the number of neighbours considered. This
paper presents a dimensionality reduction technique, Same Degree Distribution (SDD) that does not rely on
the number of neighbours, thanks to using degree-distributions in both high and low dimensional spaces.
Degree-distribution is similar to Student-t distribution and is less expensive than Gaussian distribution.
As such, it enables better global data preservation in less computational time. Moreover, to improve the
data structure capturing, SDD has been extended to Multi-SDDs (MSDD), which employs various degree-
distributions on top of SDD. The proposed approach and its extension demonstrated a greater performance
compared with eight other benchmark methods, tested in several popular synthetics and real datasets such as
Iris, Breast Cancer, Swiss Roll, MNIST, and Make Blob evaluated by the co-ranking matrix and Kendall’s
Tau coefficient. For further work, we aim to approximate the number of distributions and their degrees in
relation to the given dataset. Reducing the computational complexity is another objective for further work.

INDEX TERMS dimensionality reduction, global structure, local structure, visualization, structure captur-
ing.

I. INTRODUCTION

H IGH dimensional data are prone to the curse of dimen-
sionality problem, and analysing them can be compu-

tationally expensive. Curse of dimensionality occurs when
the dimensionality of data increases and the available data
become sparse. On the other hand, sparse data can be a
problem if a machine learning/data mining algorithm to be
applied requires that the number of samples must be much
larger than the data dimensionality to ensure reliable results.
To solve this problem, two options could be considered: 1)
increase data samples, or 2) reduce the data dimensionality.
Increasing the data samples may not always be possible,
and as a result, reducing the data dimensionality could be a
crucial step to be considered.

Dimensionality reduction is a process of converting data
from a high dimensional space to a lower dimensional space
with the aim of preserving meaningful information from the
original data. Dimensionality reduction can be applied in
any field that has high dimensional data (a large number of
variables) such as signal processing [1], speech recognition
[2, 3], neuroinformatics [4, 5], bioinformatics [6, 7], social
media [8, 9], telecom [10], and computer vision [11], for data
visualization, data exploration, noise reduction or as a pre-
processing step to support classification models.
An appropriate dimensionality reduction technique is related
to the goodness of preserving the geometry (structure) of
data of interest. Maintaining the data structure means that
close (faraway) points in the original space are embedded
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closely (faraway) in the low dimensional space. Addition-
ally, dimensionality reduction techniques favour either local
structure, that means capturing the distances of close points,
or the global structure, that means the preservation of the
distances of faraway points. In general, Principal Compo-
nent Analyses (PCA) [12] and Multidimensional Scaling
(MDS) [13] are linear dimensionality reduction techniques
that favour capturing the global structure of the data. By
contrast, Sammon mapping [14] is nonlinear dimensionality
reduction technique that favour the preservation of the local
data structure. Conversely, the scale of data structure to
be captured by nonlinear manifold learning methods1 such
as, Isomap [16], Locally Linear Embedding (LLE) [17],
Laplacian Eigenmaps (LE) [18,19], t-Stochastic Neighbour
Embedding (t-SNE) [20], Uniform Manifold Approximation
and Projection (UMAP) [21], and TriMap [22] relates to
the number of neighbours considered by each method. The
smaller the number of neighbours selected means a more lo-
cal data structure to be captured by the method, at the expense
of neglecting some global information. On the contrary, the
higher the number of the selected neighbours, the greater
the improvement in capturing global structure but at the
expense of possibly local information losses. Additionally,
when tuning the number of neighbours k, where k : N−1 and
N represents the number of samples, the user must consider
the computational time of each algorithm, as the algorithm
needs to be run N − 1 times with the different number
of neighbours, to generate the best embedding in terms of
structure capturing.

This research aims to present a nonlinear dimensionality
reduction (manifold learning) approach, named Same Degree
Distribution (SDD), and its extension Multi-Same Degree
Distributions (MSDD), to better preserve the data structure
within less computational time compared to the other mani-
fold learning methods. SDD and MSDD do not rely on the
number of neighbours to tune the scale of the structure to
be preserved; but instead, they tune the degree of degree-
distribution. The degree of the degree-distribution is respon-
sible for the scale of the data structure to be maintained. By
using degree-distribution(s), SDD and MSDD give priority to
the local structure of the data. However, a degree-distribution
with a low degree is more sensitive to large distances than
a degree-distribution with a high degree. In other words,
a degree-distribution with a low degree can capture more
global structure of data than a degree-distribution with a high
degree, but at the expense of losing some local informa-
tion. Note that a degree-distribution with a high degree can
improve the maintenance of the local data structure (small
distances); however, it will fail to maintain the global data
structure (large distances). As such, to find the best low
dimensional data representation in terms of local and global
structure capturing, we need to tune the degree of degree-
distribution.

1Manifold learning methods are the dimensionality reduction methods
that try to learn the manifold hidden in high dimensional data [15].

There does not exist an upper limit for the degree of
the degree-distribution; however, the degree-distribution with
degree 15 is sharp enough to capture the structure of the
data having a large fraction of short distances. Note that
the data distances will be scaled by their maximum value,
as such, the scaled distance will range between 0 to 1.
Because of this, tuning the degree of degree-distribution in
the range from 1 to 15 will be sufficient to capture the best
structure of data. Therefore, SDD and MSDD require fewer
iterations than other manifold learning methods to find the
best representation in a low dimensional space in relation to
the maintained data structure.

Additionally, as a nonlinear method, SDD (MSDD) is
expected to better capture the structure of nonlinear data than
linear methods since the low dimensional representation of
nonlinear data is located in nonlinear manifolds2. Further-
more, SDD employs degree-distribution, which is less expen-
sive than Gaussian distribution, and as a consequence, the
proposed approach is expected to be quicker than the other
three Gaussian distribution-based methods: t-SNE, UMAP,
and TriMap.

The proposed SDD (MSDD) method has been tested with
different datasets and demonstrates its ability to usefully
maintain the data structure. It has been shown itself to outper-
form eight other dimensionality reduction methods including
MDS, PCA, Isomap, LLE, LE, t-SNE, UMAP, and TriMap
in terms of structure maintaining and finds the best structure
captured within a superior computational time compared
with t-SNE, UMAP, and TriMap. In datasets with a large
number of samples, MSDD better captures the data structure
within less computational time compared with all considered
manifold learning methods such as t-SNE, UMAP, TriMap,
LE, LLE, and Isomap.

In this paper, a high dimensional dataset X is considered
a table with N observations and D attribute (columns). The
embedding process requires embedding the dataset XNxD

into a new dataset Y Nxd, where d << D. The ith observa-
tion in the high and the low dimensional spaces are repre-
sented by xi and yi, respectively. dis(xi, xj) and dis(yi, yj)
denote the Euclidean distance between xi and xj in the high
dimensional space and Euclidean distance between yi and yj
in the low dimensional space. Additionally, the term distance
indicates the Euclidean distance, n indicates the number of
distributions employed, deg denotes the degree-distribution
degree, and with pr denotes the perplexity used in t-SNE.

The remainder of this paper is organized as follows; Sec-
tion II presents the related works and a detailed discussion
on their strengths and limitations with the case identified.
The proposed approach is presented in Section III, followed
by implementation in Section IV, experimental settings and
results in Section V. Conclusions and further work conclude
the paper in Section VI.

2Manifold can be considered as the surface of objects such as a sphere,
plane.
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II. RELATED WORKS
In this section, we briefly discuss some of the dimensionality
reduction methods and underlying causes in terms of data
structure capturing.

A. PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a standard dimensionality reduction method widely
applied in data analysis. It tries to approximate the data
by projecting them on a subspace formed by the largest
eigenvectors. PCA makes use of matrix factorization to de-
termine a linear mapping matrix M ∈ RNxd (formed by d
eigenvectors) to maximize the cost function:

max trace(MT cov(X)M) (1)

where cov(x) ∈ RNxN is the covariance matrix of the data
X . The low dimensional representation of the data is calcu-
lated using the linear mapping M ∈ RNxd and the original
data through the formula Y = XM . PCA can capture the
global structure very well (i.e., maintain large distances);
however, if the fraction of large distances is much higher
than small distances, the cost function will be more focused
to maintain the large distances at the expense of neglecting
the small distance preservation. Furthermore, PCA assumes
that the low dimensional representation of high dimensional
data lies on a linear submanifold. As a result, PCA does not
effectively capture the structure of nonlinear data.

B. MULTIDIMENSIONAL SCALING (MDS)
MDS is also a widely used dimensionality reduction tech-
nique that minimizes the cost function as expressed in (2),

min

√√√√√√
∑
i,j

((dis(xi, xj)− dis(yi, yj))2∑
i,j

(dis(xi, xj))
(2)

where B = XX ′ = − 1
2JD

2J and J = I − 1
N 11 and

D2 = [dis2ij ]. Determine with d the largest eigenvalues and
with B the corresponding eigenvectors. Ed is the matrix of d
eigenvectors and V

1
2

d is the diagonal matrix of d eigenvalues,
whereas the new space calculates through Y = EdV

1
2

d . MDS
is an excellent method in maintaining global data structure;
however, like PCA, it also is prone to neglect the maintenance
of small distances and it is less useful in capturing the
structure of nonlinear data.

C. SAMMON MAPPING
The problem caused by MDS has been addressed by the
Sammon mapping method, which adapts weight scaling to
the classical cost function as in (3).

min(
1∑

i,j

dis(xi, xj)

√√√√√√
∑
ij

((dis(xi, xj)− dis(yi, yj))2∑
i,j

(dis(xi, xj))
)

(3)

The main weakness of Sammon mapping is that it boosts the
contribution of very close points of the cost function in (3))
[20]. Thus, PCA and MDS are expected to perform better in a
dataset with a relevant fraction of large distances among data
points. By contrast, Sammon mapping is expected to usefully
perform in datasets with a large fraction of small distances.

D. ISOMAP
Isomap is a method that tries to exploit the geometry of
nonlinear data by employing the Geodesic distance computed
as the sum of the shortest path between two data points in the
neighbourhood graph [16]. In theory, Isomap has been de-
signed to discover the global structure of the data; however, it
requires tuning the number of neighbours, and this increases
the computational time exponentially. Additionally, Isomap
is prone to produce error embedding even when there exists
a small short-circuit 3 error is in the data.

E. LOCALLY LINEAR EMBEDDING (LLE)
LLE is a nonlinear dimensionality reduction method, which
embeds high dimensional data points into a lower dimen-
sional space by assuming that every point and its nearest
neighbours are located in a linear manifold. And that, each
point xi is defined as a linear combination of its k nearest
neighbours [23] as follows:

x̂i =

N∑
j=1

wijxj (4)

subject to
∑
j

wij = 1, i = 1 : n.

LLE seeks to optimize the weights wij by solving

Ŵ = argmin

N∑
i=1

‖xi − x̂i‖2 (5)

subject to
∑
j

wij = 1, i = 1 : n.

The low dimensional representation Ŷ is produced by op-
timizing the following cost function (6) with the weights
obtained from (5).

Ŷ = argmin

N∑
i=1

∥∥∥∥∥∥yi −
N∑
j=1

wijyj

∥∥∥∥∥∥
2

(6)

The structure capturing of LLE is related to the number of
neighbours k. If k is large, then LLE can be considered as
a linear dimensionality reduction method, as it assumes that
every point and its neighbours are located in linear manifolds.

F. LAPLACIAN EIGENMAPS (LE)
LE is a nonlinear dimensionality reduction technique that
embeds high dimensional data with a focus in maintaining

3Distances of data in a neighbourhood are more significant than the
distance between folds (regions) in manifolds [20].
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their local structure [18]. The similarity wij between xi and
xj has been determined as:

wij =

{
exp(−dis(xi,xj)

2)
2σ2 ) if xj ∈ Neigi
0 otherwise

}
(7)

Assume that the number of neighbours k ≤ N and let
Neigki denote the neighbourhood of xi with k neighbours.
Let D = (dij) be a N × N diagonal matrix with elements
dii =

∑
i∈Ni

wij . The matrix L = D − W is a symmetric

matrix with N × N dimensions known as graph Laplacian.
The low dimensional representation Y = (y1, ..., yd) defines
by minimizing the objective function (8)

argmin trace(Y LY T ) (8)

, where
∑
i

∑
j

wijdis(yi, yj) = Y LY T . For a small k, since

the weight is zero for points outside the neighbourhood, the
global data structure is not captured. On the other hand, if
the number of neighbours k is large, the method favors the
preservation of more global information. Thus, the structure
capturing of LE is related to tuning the number of neighbours
k, which increases the computational time.

G. T- STOCHASTIC NEIGHBOUR EMBEDDING (T-SNE)
t-SNE is a nonlinear dimensionality reduction technique
which calculates the conditional probability pi|j between
samples xi and xj using the Gaussian distribution centred
at xj with the variance σi as in (9).

pi|j =
exp(

−dis(xi,xj)
2

2σ2
i

)∑
k 6=i

exp(−dis(xi,xk)2

2σ2
i

)
(9)

The high dimensional space similarity pij is calculated as
pij =

pi|j+pj|i
2N , whereas, the low dimensional similarity

calculates as in (10).

qij =
(1 + dis(xi, xj)

2)−1∑
k 6=l

(1 + dis(xi, xj)2)−1
(10)

t-SNE tries to makes the low dimensional similarity qij as
similar as possible to its corresponding high dimensional
similarity pij . Consider (9), t-SNE builds n-Gaussian distri-
butions, which are related to density σi, and to the distance
of each sample xi to its neighbours. If the distance between
the sample xi and its neighbours is small, then the Gaussian
distribution is sharp; otherwise, it broadens. However, there
might be some scenarios in which different variables in-
volved in different Gaussian distributions might produce the
same probability (similarity), the so-called confusing sam-
ples problem. In other words, points with different Euclidean
distances in the high dimensional space might be mapped in
such a way that they have the same Euclidean distance in
the low dimensional space, resulting in a failure with regards
to the data structure capturing. Besides, the goodness of the

captured structure of low dimensional data generated by t-
SNE relies on perplexity, as an indication of the number of
neighbours.

To also capture a more global structure of the data, Zhou
and Sharpee [24] presented the Global method t-SNE. Global
t-SNE suggests using an exponential distribution in addition
to Gaussian distribution. If Gaussian distribution is sensitive
to smaller distances, the exponential distribution is unstable
to larger distances thanks to its heavy tail. However, in
the same way of t-SNE, and in addition to the more extra
time needed to tune the parameter k, Global t-SNE fails to
maintain distances of the confusing samples.

H. MULTISCALE SNE
One possible solution to the problem mentioned of t-SNE
and Global t-SNE could be to employ multi-perplexities in
high dimensional space as in [25] to maintain small and
large distances. In fact, Multiscale SNE is an extension of
Stochastic Neighbour Embedding (SNE) [26], using Gaus-
sian distributions in high and low dimensional spaces to
maintain the data structure, it defines the probabilities as
follows:

phij =
exp(

−rhidis(xi,xj)
2

2 )∑
k 6=i

exp(
−rhidis(xi,xj)2

2 )
(11)

qhij =
exp(

−shidis(xi,xj)
2

2 )∑
k 6=i

exp(
−shidis(xi,xj)2

2 )
(12)

pij =
1

L

Lmax∑
h=Lmin

phij (13)

qij =
1

L

Lmax∑
h=Lmin

qhij (14)

where rhi and shi denote the precision in high and low di-
mensional spaces, respectively, and 1 ≤ Lmin ≤ h ≤ Lmax
where L = Lmax − Lmin + 1 is considered the number
of scales (number of different perplexities employed). In
[25] it is suggested that Lmin = 2 and Lmax = log2

N
2 .

Multiscale SNE improves capturing a more global structure,
but it increases the computational complexity by log2

N
2 .

Tuning the scale parameter determines the efficiency of the
algorithm, and this makes multiscale SNE more complex and
costly.

I. UNIFORM MANIFOLD APPROXIMATION AND
PROJECTION (UMAP)
UMAP, a similar method to t-SNE is a useful technique for
capturing the local structure of the data. For each xi let define
ρi and σi where

ρi = min (dis(xi, xj), 1 ≤ j ≤ k, dis(xi, xj) ≥ 0) (15)
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k∑
j=1

exp(
−max 0, dis(xi, xj)− ρi

σi
) = log2 k (16)

and the similarity function is defined as in (17).

wij = exp(
−max 0, dis(xi, xj)− ρi

σi
) (17)

Based on (17), UMAP gives more importance to the local
structure capturing than the global structure of the data,
and it requires tuning the parameter k to generate the best
embedding in terms of preserving the data structure.

J. TRIMAP
To capture a more global structure of the data, Amid and War-
muth presented a method called TriMap, which considers the
similarities of three points (triplets) instead of a pair of points.
TriMap defines a set of triplets T = {(i, j, k) : pij > pik}
where the satisfaction probability of the triplet (i, j, k) is
defined as in (18).

Prijk =
qij

qij + qik
=

1

1 + qik
qij

(18)

The low dimensional representation can be calculated by
minimizing the cost function

min
{yn}
−

∑
(i,j,k)∈T

wi,j,k logPrijk (19)

, where wijk =
pij
pik

is the weight of the triplet (i, j, k). The
probability pij in the high dimensional space is calculated as:

pij = exp(−dis(xi, xj)
2

σ2
ij

) (20)

where σ2
ij = σiσj and σi is set to the average distance of xi

to its 10th to 20th nearest neighbours. TriMap proposes using
the function in (21) as a function for calculation similarities
in the low dimensional space.

qt
′

ij =

{
exp(−dis(yi, yj)2) if t′ = 1

1 + (1− t′)(−dis(yi, yj)2)
1

1−t′ otherwise

}
(21)

TriMap, similarly to t-SNE, employs Gaussian distribution
in the high dimensional space and Student-t distribution in
the low dimensional space. As demonstrated with t-SNE,
using different Gaussian distributions in the high dimensional
space and one Student-t distribution in the low dimensional
space cause the so-called confusing sample problem, which
also occurred to TriMap.

K. AUTOENCODERS AND RESTRICTED BOLTZMANN
MACHINE (RBM)
Autoencoders4 are neural networks composed of two parts
encoder and decoder. The encoder uses φ function (22) to

4Autoencoders are neural networks composed of one input layer, one
output layer and one hidden layer, whereas deep autoencoders are multi-
layered neural networks composed of one input layer, one output layer and
many hidden layers.

embed the original high dimensional data X to the low
dimensional data Y . In contrast, the decoder uses the function
ψ (23) to embed the low dimensional data Y to the output
data X ′, where X ′ is the reconstructed data of the original
data X by minimizing the cost function in (24).

φ : X → Y (22)

ψ : Y → X (23)

φ, ψ = arg min
φ,ψ
||X − (ψ ◦ φ)X ′||2 (24)

Deep autoencoders [27, 28, 29, 30, 31] are multi-layered
neural networks, where each pair neighbourhood-layers is
considered to be an RBM. However, like all neural networks,
it is difficult to find the optimal parameters for RBMs; and
as such, their selection is heuristic or based on previous
experiments [32]. Above all, most of the methods afore-
mentioned disregard the preservation of the data manifold
structure [33]. Hence, to improve RBM and to capture the
local data structure, neighbourhood graphs has been used
[33]. However, it is complex to implement this approach
since it requires to tune not only the number of neighbours,
but also the number of hidden layers, the number of nodes in
each hidden layer, the number of epochs, and the batch size.

In summary, MDS, PCA, and Isomap concentrate on the
maintenance of the global structure of data, whereas LE,
LLE, t-SNE, UMAP, and TriMap favour the maintenance of
the local structure of data. Furthermore, the scale of main-
tained data structure by Isomap, t-SNE, LLE, LE, UMAP,
and TriMap relates to the number of neighbours considered
by each method. Note that, tuning the number of neighbours
will inevitably increase the computational time of the meth-
ods mentioned above. Contrastingly, PCA and MDS do not
require parameter tuning, and therefore can save computa-
tional time. However, they neglect the maintenance of local
information of data and fail to capture the structure of nonlin-
ear data. Sammon mapping has been proposed as a nonlinear
version of PCA and MDS, but it focuses on short-distance
preservation, at the expense of global information losses. t-
SNE, UMAP, and TriMap have proposed using Gaussian and
Student-t distributions to provide a softer border between
local and global structure maintenance; however, as men-
tioned above, they require tuning the number of neighbours
to generate the best low dimensional representation in terms
of maintained data structure. Multiscale approaches such as
Multiscale-SNE attempted to overcome this shortcoming;
however, it still is a costly method due to both the multiscale
calculations and the utilization of Gaussian distribution, and
it is much slower than using Student-t distribution. Overall,
the above-mentioned dimensionality reduction techniques
favour either local or global data structure. For some meth-
ods, parameter tuning, which increases the computational
cost and complicates the applicability of the methods, has a
significant impact on the maintenance of the data structure.
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This paper proposes the Same Degree Distribution (SDD)
method for dimensionality reduction, together with Multi
Same Degree Distributions (MSDD), aiming to capture
the geometry of data by employing the same degree-
distribution(s) in the high and the low dimensional spaces.
SDD and MSDD use degree-distribution(s), in which degree-
distribution (deg = 1) is the same as Student-t (deg = 1),
and for greater degrees, degree-distributions (deg > 1) are
sharper than Student-t distributions (deg > 1). Note that the
scale of the maintained data geometry relates to the degree
of the degree-distribution. A degree-distribution with a high
degree is highly sensitive to small distances and the lower
the degree, the more sensitive to large distances the degree-
distribution becomes, at the expense of losing some local
information. As such, to find the best low dimensional rep-
resentation of data, tuning the degree of degree-distribution
is essential. Because we scale the distances of data by their
maximum value, tuning the degree of degree-distribution in
the range from 1 to 15 will be sufficient to capture the
structure of data, even when data has a large fraction of short
distances. As a result, SDD (MSDD) requires fewer iterations
to find the best representation in the low dimensional space
in terms of structure capturing compared to other methods
such as Isomap, LLE, LE, t-SNE, UMAP, and TriMap, which
require to tune the number of neighbours up to the number of
samples (N)− 1. Furthermore, SDD (MSDD) values have a
smooth difference between faraway and close points, which
is an advantage over MDS, PCA, and Isomap, where errors
generated by embedding faraway points have a higher impact
than errors generated by embedding closer points.

However, SDD (MSDD) is expected to perform less fa-
vorably with datasets that have high negative skewness in
distance distribution, due to a large number of records located
in the tail of degree-distribution(s). Note that in this case,
the tail of a degree-distribution is not sharp enough, and as
such, large differences between any two large distances are
reflected in small differences between the two corresponding
degree-distribution similarities.

III. PROPOSED APPROACH
A. SAME DEGREE DISTRIBUTION (SDD) APPROACH
SDD is a nonlinear dimensionality reduction technique with
pseudocode as shown in Algorithm 1. It employes degree-
distribution in the high (27) and the low (28) dimensional
spaces to capture the local and global data structure. Degree-
distribution is Student-t distribution when the degree of
freedom is 1, and for greater degrees, it looks as sharper
Student-ts. SDD intends to find a suitable degree to best
capture the structure of the data. Degree-distributions are
more sensitive to small distances than large distances, and
the greater the distance, the less sensitive degree-distribution
becomes, and such that, scaling the pairwise distances of high
dimensional data into the range between 0 and 1 would be an
essential step in the performance of the proposed approach
in terms of capturing the data structure. As a result, high
dimensional space similarities of a degree-distribution will

be calculated using the scaled Euclidean distances instead
of Euclidean distances. Kullback-Leibler is the loss function
used in SDD to approximate the degree-distribution in the
low dimensional space with the degree-distribution in the
high dimensional space as:

C1 =
∑
i 6=j

(pdegm)ij log(
(pdegm)ij
(qdegm)ij

(25)

where degm is the degree of degree-distribution m, m = 1 :
n. SDD intends to minimize the cost function C1 as (26):

loss1 = min (C1) (26)

where

(pdegij )ij =
(1 + dis(xi, xj))

−degm∑
k 6=l

(1 + dis(xk, xl))−degm
(27)

(qdegij )ij =
(1 + dis(yi, yj))

−degm∑
k 6=l

(1 + dis(yk, yl))−degm
(28)

However, the minimal loss function value of (26) does not

Algorithm 1 SDD

Require: Input :
X ∈ RNxD, number of iterations H , learning
rate η, momentum α, number of degree-
distributions n, degree degm, initial low dimensional
data Y 0 = y1, ..., yN ∈ N(0, 10−4I).

Step 1 :
Compute the high dimensional space
similarities (pdegm)ij using (27).

Step 2 :
Compute the low dimensional space
similarities (qdegm)ij using (28).

Step 3 :
Compute the gradient δC

δ yi where C1 is defined in (25).

Step 4 :
Minimize the objective function using the
Gradient Descent optimization algorithm:
Y h = Y h−1 + η δC2

δyi
+ α(Y h−1 − Y h−1).

Output :
Low dimensional space represenation Ybestdegm .

reflect how good the data structure is captured. Thus, to have
a better indication of the goodness of a dimensionality re-
duction method, we propose to use Kendall’s Tau correlation
coefficient (τ ). τ measures the correlation between distance
rank of the high and the low dimensional data as in (29):

τ =
C −D√

((C +D + T ) ∗ (C +D + U))
(29)
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where the number of concordant pairs is denoted with C, and
the number of discordant pairs is denoted with D, while T
and U are the numbers of ties in pairwise distance matrices
of the high and the low dimensional spaces DIS and dis,
respectively. If a tie occurs for the same pair in both DIS
and dis, it will not be added to either T or U , and the input
of the data should be in a one-dimensional array. Therefore,
the pairwise distance matrixes in both the high dimensional
space (DIS) and the low dimensional space (dis) will be
flattened to a one-dimensional array. The value of τ ranges
between -1 and 1. If τ is close to 1, it means that there is
a high correlation between ranks. On the other hand, if τ is
close to -1 or 0, it means there is no relation or negative rela-
tion between ranks. Ranks of distances between the high and
the low dimensional spaces represent the ranks of neighbours
for both spaces, respectively. As a consequence, a high value
of τ means that the neighbour’s rank is captured. In terms of
comparison, the best dimensionality reduction method is the
method with the highest value of τ . For some datasets, one
degree-distribution is not sufficient to capture enough data
structure, and therefore more degree-distributions are needed
to be applied. To deal with, we present a multi-distribution-
based approach Multi SDD (MSDD), which is discussed
below.

B. MULTI SAME DEGREE DISTRIBUTION (MSDD)
APPROACH
MSDD involves multi degree-distributions instead of one
degree-distribution that SDD does, to better capture the data
structure; such that, MSDD can be described as an extension
of SDD. The pseudocode of MSDD is demonstrated below
in Algorithm 2. MSDD employs n degree-distributions, as
such n-objective functions need to be optimized. Multi-
objective optimization problems are classically solved using
scalarization techniques [34, 35]. MSDD will be optimized
using the composed Kullbak-Leibler (s) as in (30) via the
scalarization techniques [34]:

C2 = a1
∑
i 6=j

(p1)ij log(
(p1)ij
(q1)ij

+ ...+ an
∑
i 6=j

(pn)ij log(
(pn)ij
(qn)ij

(30)

To simplify the problem, we allocate to each degree-
distribution the same influence (weight am = 1, m = 1 : n)
in (30). So, the parameters that need to be tuned are the
number of degree-distributions n and the degree of each
degree-distribution degm,m = 1 : n. The problem can be
formulated as below:

C2 =

n∑
m=1

∑
i 6=j

(pdegm)ij log(
(pdegm)ij
(qdegm)ij

(31)

loss2 = min (C2) (32)

The performance of SDD and MSDD and other dimensional-
ity reduction methods will be tested and compared using two
different quality measures: co-ranking matrix and τ .

Algorithm 2 MSDD

Require: Input :
X ∈ RNxD, number of iterations H , learning rate
η, momentum α, number of degree-distributions
n, degree degm, Degrees = bestdegm from
Algorithm I, τactual = max(τ), initial low
dimensional data Y 0 = y1, ..., yN ∈ N(0, 10−4I).

Step 1 :
Compute the high dimensional space
similarities (pdm)ij using (27).

Step 2 :
Compute the low dimensional space
similarities (qdegm)ij using (28).

Step 3 :
Compute the gradient δC2

δ yi where C2

defined in (31) is reformulated as:
C2 =

∑
m/∈Degrees

∑
i 6=j

(pdegm)ij log(
(pdegm )ij
(qdegm )ij

+∑
m∈Degrees

∑
i 6=j

(pdegm)ij log(
(pdegm )ij
(qdegm )ij

.

Step 4 :
Minimize the objective function using the
Gradient Descent optimization algorithm:
Y h = Y h−1 + η δC2

δyi
+ α(Y h−1 − Y h−1).

Step 5 :
Add more degrees in cases: ifτnew < τactual,
Degrees = Degrees

⋃
degmwith τnew

, τactual = τnew.

Output :
Low dimensional space represenation YDegrees.

C. QUALITY ASSESSMENT
In addition to Kendall’s Tau (τ ) (29), we also use the co-
ranking matrix [36] to measure the quality of each dimen-
sionality reduction method. Let us define DISN×N and
disN×N the matrixes of pairwise distances in the high and
low dimensional spaces, respectively. In both spaces the
rank matrices RNXN and rNXN of the distance matrixes
DISNXN and disNXN are calculated as follows:

Rij = |{k : DISik < DISij}| (33)

rij = |{k : disik < disij}| (34)

where |·| defines the set of cardinality. The co-ranking matrix
Q is defined by

Qkl = |{(i, j) : Rij = k and rij = l}| (35)

Errors generated by a dimensionality reduction method cor-
respond to off-diagonal entries of the co-ranking matrix [36].
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A diagonal co-ranking matrix represents a perfect dimension-
ality reduction method.

D. COMPLEXITY ANALYSIS

SDD needs to create two matrixes with N × N to store
distances in both high and low dimensional spaces and an-
other matrix that stores the difference P − Q with N × N .
In total, the complexity of SDD is 3N2. MSDD computa-
tional complexity is higher and is related to the number of
degree-distributions involved. The computational complexity
is 3nN2, where n is the number of degree-distributions,
and hence it requires n times more than SDD. Because
the number of degree-distributions affects the computational
complexity, we suggest starting from one degree-distribution
and then increasing the number of degree-distributions. The
number of degree-distributions used in MSDD will be that
number that produces the highest value of the correlation
coefficient τ .

IV. IMPLEMENTATION GUIDANCE OF SDD AND MSDD

In this Section, we present some guidance on the imple-
mentation of the SDD and MSDD approaches. The per-
formance of SDD is related to the degree(s) of degree-
distribution(s), and the selection of the degree of degree-
distribution associates with 1) the high dimensional data
distance distribution and 2) the dimensionality reduction
purpose. In the case of data with a large fraction of large
distances and small fractions of small distances, as shown
in Fig. 1(a), employing small degree degree-distribution(s)
is suggested. Degree-distributions with a small degree (i.e.
deg 1, 2), has heavy tails, which means high sensitivity to
large distances. High degree (deg>5) degree-distribution(s)
is suggested to be employed in datasets that have a large
fraction of small distances (Fig. 1(c)), and medium degree
degree-distribution(s) should be employed in datasets with a
large fraction of medium distances (Fig. 1(b)). However, this
is an intuitive judgement, and the simulations provided later
will generate precise results. If for a user, the local structure
of the data is more important than the global structure, we
suggest employing high degree degree-distribution(s); oth-
erwise, employing low degree degree-distribution(s) might
be more beneficial. The degree of degree-distribution which
captures the best structure of the data we have named best
degree. If we add degree-distribution(s) with degree(s) far
from the best degree, then we might lose some local or global
structure of the data. The degree(s) close to the best degree
might contribute to maintaining better the data structure by
not affecting the actual maintained data structure.

Defining the degree of a degree-distribution also depends
on the distance range, and it has to be noted that degree-
distributions are less sensitive to large distances. To solve
this problem, we propose scaling the distance ranges to the
interval range from 0 to 1.

(a)

(b)

(c)

FIGURE 1: Three distance distributions.

A. SCALING THE DISTANCE RANGE

To scale the pairwise distance range, we propose di-
viding every single distance on pairwise distances with
a decent positive number. The Euclidean distance be-
tween x1, y1 is calculated as dist(x1, y1) =

√
x21 + y21 ,

whereas the Euclidean distance between αx1, αy1 is
calculated: dist(αx1, αy1) =

√
(αx1)2 + (αy1)2 =√

(α)2(x1)2 + (α)2(y1)2 =
√

(α)2((x1)2 + (y1)2) =
α
√
((x1)2 + (y1)2) = αdist(x1, y1). As such, it is proved

that if all sample values are scaled by a positive number
α, the Euclidean distance calculated between the scaled
samples also scales by the positive number α. Distributions
of Euclidean distance and the scaled Euclidean distance can
be visually seen in Fig. 3(a) and Fig. 3(b), respectively. In
SDD(MSDD), α = 1

max dis(xi,xj)
, due to the high sensitivity

of the degree-distribution(s) in value range between 0 and 1.
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FIGURE 2: Scaled Euclidean distance.

(a)

(b)

FIGURE 3: Distributions of Euclidean distances(a) and scaled
Euclidean distances (b) of Make Blob data with 500 samples.

V. EXPERIMENTAL SETTINGS AND RESULTS
In this Section, the proposed method and its extension tes-
tified and compared with several benchmark dimensionalitiy
reduction techniques such as PCA, MDS, Isomap, LLE, t-
SNE, UMAP, and Trimap, using several typical benchmark
datasets including Iris, Breast Cancer, Swiss roll, MNIST,
and Make Blob. All algorithms were implemented in Python
with the same number of iterations (2000). PCA, MDS,
Isomap, LLE, LE, and t-SNE, were implemented using their
Sklearn versions, and for UMAP5 and Trimap6, their GitHub
versions were applied. For Isomap, LE, UMAP, and t-SNE,
the parameter k (pr for t-SNE) was tuned in the range

5https://github.com/lmcinnes/umap
6https://github.com/eamid/trimap

(1, N − 1), to find an appropriate number of neighbours
which could produce the best low dimensional representation
in relation to the structure capturing. For LLE, in MNIST
dataset, the number of neighbours k was tuned up to 1000,
due to the memory problem. TriMap also failed to get a
number of neighbours of more than 199, so the number of
neighbours was tuned up to 198.

The effectiveness of each method was evaluated using the
co-ranking matrix and τ (Kendall’s Tau). Co-ranking matrix
indicates a perfect mapping if the matrix is diagonal, and the
off-diagonal entries are the errors. τ takes values between -1
and 1, and when τ is 1, then there exists a perfect correlation
between ranks and correspondingly an ideal mapping. The
performance of each method in terms of Kendall’s Tau τ
is presented in Table 1 along with the computational time
t (in second) and the number of neighbours k (perplexity pr
for t-SNE). The two-dimensional data representations of the
methods are presented in Fig. 9 and Fig. 10, and their co-
ranking matrixes are presented in Fig. 11 and Fig. 12.

A. IRIS
The first dataset considered is Iris with 4 dimensions (at-
tributes) and 150 samples, with distance distribution shown
in Fig. 4. Based on the distance distribution in Fig. 4, the

FIGURE 4: Euclidean distance distribution of Iris dataset.

largest fraction of samples has relatively short and medium
distances, in which, our proposed approach is expected to
perform better than others. From the simulation results, the
best method with the highest τ of 0.967347 (Table 1) was
MSDD (deg: 8). Its co-ranking matrix is shown in Fig. 11(a)
has fewer off-diagonal entries in the top-centre sections,
which indicates a good short and medium distance preser-
vations. However, the co-ranking matrix of MSDD (deg: 8)
has more off-diagonal entries than the co-ranking matrixes of
Isomap shown in Fig. 11(p) and PCA showed in Fig. 11(k),
in their bottom right sections. Thus, for Iris dataset, MSDD
(deg: 8) performed better than the other methods in terms
of local structure capturing, and it performed similarly with
Isomap and PCA for global structure preserving. Considering
the computational time, as shown in Table 1, MSDD was
more expensive than PCA, MDS, Isomap, and LE; however,
it outperformed t-SNE, UMAP, and TriMap. MSDD (deg:
8) achieved the highest τ for the Iris dataset, and adding
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more degree-distributions did not help with improving the
data structure capturing, but instead, it could make it worse.
As shown in Table 1, MSDD (degs: 7 and 8), MSDD (degs:
8 and 9), and MSDD (degs: 7, 8 and 9) generated lower τ ,
and as a result, less data structure was maintained.

B. BREAST CANCER
Breast cancer dataset7 with 30 attributes is the second
datasets considered. The distance distribution of breast can-
cer data is shown in Fig. 5, where the majority of samples
have relatively short distances, in which MSDD is expected
to maintain better the data structure. MSDD (degs: 9 and 10)

FIGURE 5: Euclidean distance distribution of Breast Cancer
dataset.

and MSDD (degs: 10 and 11) were the dimensionality re-
duction approaches that produced the highest τ of 0.998125,
as shown in Table 1. However, MSDD (deg: 10) achieved a
similar τ (0.998122) within less computational time. Analyz-
ing the co-ranking matrixes of Breast Cancer dataset in Fig.
11, and Fig. 12, we can see that MSDD (deg: 10) performed
better than other methods in maintaining the short, medium
and large distance (less off-diagonal entries of the co-ranking
matrix of MSDD in Fig. 11(b) than the rest of the co-ranking
matrixes). Considering the computational time, MSDD was
more expensive than PCA, MDS, LE; however, it was more
useful than t-SNE, LLE, and UMAP, TriMap in both, higher
structure maintaining and less computational time.

C. SWISS ROLL
Swiss Roll data with 1600 samples and 3 attributes is shown
in Fig. 6(a) and its distance distribution is shown in Fig. 6(b),
is the third dataset considered. By examining the co-ranking
matrixes in Fig. 11 and Fig. 12, it can be seen that MSDD
(deg: 1), PCA and Isomap performed better than the other
methods in preserving the data structure. More specifically,
MSDD (deg: 1) produced the highest τ was MSDD (deg: 1)
of 0.914619 followed by Isomap and PCA with τ of 0.912133
and 0.911537, respectively, as shown in Table 1. Although
MSDD was more expensive than two linear dimensionality
reduction methods PCA and MDS, it performed better than
t-SNE, Isomap, LE, LLE, TriMap, and UMAP in terms of

7Load breast cancer from sklearn, Python.

(a)

(b)

FIGURE 6: Swiss Roll data (a) and its Euclidean distance distribu-
tion (b).

structure maintaining and computational time, as shown in
Table 1.

D. MNIST
MNIST with 2500 samples and 784 attributes is the fourth
dataset considered, with distance distribution as shown in
Fig. 7, dominated by entries with medium large distances.
MSDD (deg: 1) achieved the highest τ of 0.606540, followed

FIGURE 7: Euclidean distance distribution of MNIST data.

by t-SNE (0.549509) and LE (0.523077), as shown in Table
1. As we can see, MSDD hugely improved the structure
preserving over the other considered methods. Furthermore,
MSDD was less expensive in relation to computational time
compared with Isomap, t-SNE, UMAP, Trimap LE, and LLE.
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Although PCA and MDS were faster than MSDD, their
performances in terms of τ were low. Therefore, the usage
of MSDD has been beneficial with MNIST dataset in terms
of both structure maintaining and computational time.

E. MAKE BLOB
Make Blob with 40 attributes and with distance distribution
as shown in Fig. 8 is the last dataset considered. As we can
see, the majority of samples have a distance between 40 to
70, whereas a small fraction has a distance around 10. As

FIGURE 8: Euclidean distance distribution of Make Blob data.

we can also see from Table 1, MSDD (deg: 1) has been less
useful in maintaining the data structure evaluated by τ of
0.572387. The main cause of that has been the largest fraction
of data located in the tail sections of degree-distributions. The
method that performed the best in this dataset was t-SNE with
the highest τ of 0.651567 shown in Table 1 and its respective
co-ranking matrix demonstrated in Fig. 11 and Fig. 12, which
has illustrated fewer off-diagonal entries than other methods.
However, t-SNE and LE, were the most expensive methods
although they had the highest performances. Furthermore, it
should be noted that generating the best representative low
dimensional data in terms of structure maintaining rely on the
number of neighbours for methods such as Isomap, LLE, LE,
t-SNE, UMAP, and TriMap. As a result, these methods chal-
lenge with data that have a large number of samples, because
they require tuning the number of neighbours from 1 toN−1.
Contrarywise, to tune the degree on SDD takes maximum of
15 steps. Although MSDD is more expensive than SDD, its
computational complexity does not significantly increase if
following the guidance provided in Section IV.

TABLE 1: THE PERFORMANCE OF METHODS (ROWS) IN
DATASETS (COLUMNS) IN TERMS OF KENDALL’S TAU CO-
EFFICIENT AND COMPUTATIONAL TIME

Datasets
(number of attributes (dimensions) is the original space)

Iris
(4)

Breast Cancer
(30)

Swiss Roll
(3)

MNIST
(784)

Make Blob
(40)

M
SD

D

degbest 8 10 1 1 1
τ 0.967347 0.998122 0.914619 0.606540 0.572387
t 14.23 278.41 1361.60 8194.18 778

deg 8 and 9 10 and 11 1 and 2 1 and 2 1 and 2
τ 0.967309 0.998125 0.914541 0.598577 0.510645
t 4.06 34.22 167.140 4177.75 44.91

deg 7 and 8 9 and 10 0 and 1 0 and 1 0 and 1
τ 0.967316 0.998125 0.914574 0.600533 0.503434
t 3.04 25.82 193.64 3080.225 36.76

deg 7,8 and 9 9,10 and 11 0, 1 and 2 0, 1 and 2 0,1 and 2
τ 0.967334 0.998122 0.914541 0.598738 0.513616
t 7.61 44 250 8086 50

M
D

S τ 0.956922 0.997012 0.904167 0.505223 0.593932
t 1.26 87 194 5387 42

PC
A τ 0.962634 0.997255 0.911537 0.369035 0.580076

t 0.35 0.21 0.67 4 0.5

Is
om

ap k 146 515 1447 2222 94
τ 0.962676 0.997687 0.912133 0.469043 0.599908
t 2.38 243 15855 77957 608

L
L

E k 32 556 975 5 487
τ 0.681920 0.972837 0.857109 0.243375 0.560708
t 7 1524 118088 114478 906

L
E

k 65 426 1000 1972 290
τ 0.646008 0.726745 0.812276 0.523077 0.602445
t 6.72 190 4698 42696 127

t-S
N

E pr 135 501 1507 2216 168
τ 0.925155 0.815006 0.868323 0.549509 0.651567
t 263 5952 75437 295591 86351

U
M

A
P k 65 5 3 1384 153

τ 0.871688 0.709309 0.042234 0.307098 0.400109
t 554 6105 58097 236665 8037

Tr
iM

ap k 146 1 12 194 25
τ 0.852019 0.693643 0.464367 0.364343 0.551976
t 992 3888 10385 17508 6695
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(a) Iris-MSDD (deg: 8) (b) Breast Cancer-MSDD (deg: 10) (c) Swiss Roll-MSDD (deg: 1) (d) MNIST-MSDD (deg: 1) (e) Make Blob-MSDD (deg: 1)

(f) Iris-MDS (g) Breast Cancer-MDS (h) Swiss Roll-MDS (i) MNIST-MDS (j) Make Blob-MDS

(k) Iris-PCA (l) Breast Cancer-PCA (m) Swiss Roll-PCA (n) MNIST-PCA (o) Make Blob-PCA

(p) Iris-Isomap (k: 146) (q) Breast Cancer-Isomap (k: 515) (r) Swiss Roll-Isomap (k: 1447) (s) MNIST-Isomap (k: 2222) (t) Make Blob-Isomap (k: 94)

FIGURE 9: The visualisation of the two-dimensional representation of the Iris (4 attributes), Breast Cancer (30 attributes), Swiss Roll (3 attributes), MNIST (784 attributes) and Make
Blob (40 attributes) generated by MSDD, MDS, PCA, and Isomap.
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(a) Iris-LLE (k: 32) (b) Breast Cancer-LLE (k: 556) (c) Swiss Roll-LLE (k: 975) (d) MNIST-LLE (k: 5) (e) Make Blob-LLE (k: 487)

(f) Iris-LE (k: 65) (g) Breast Cancer-LE (k: 426) (h) Swiss Roll-LE (k: 1000) (i) MNIST-LE (k: 1972) (j) Make Blob-LE (k: 290)

(k) Iris-t-SNE (pr: 135) (l) Breast Cancer-t-SNE (pr: 501) (m) Swiss Roll-t-SNE (pr: 1507) (n) MNIST-t-SNE (pr: 2216) (o) Make Blob-t-SNE (pr:168)

(p) Iris-UMAP (k:65) (q) Breast Cancer-UMAP (k: 5) (r) Swiss Roll-UMAP (k: 3) (s) MNIST-UMAP (k: 1384) (t) Make Blob-UMAP (k: 153)

(u) Iris-TriMap (k: 146) (v) Breast Cancer-TriMap (k: 1) (w) Swiss Roll-TriMap (k: 12) (x) MNIST-TriMap (k: 194) (y) Make Blob-TriMap (k: 25)

FIGURE 10: The visualisation of two-dimensional representation of the Iris (4 attributes), Breast Cancer (30 attributes), Swiss Roll (3 attributes), MNIST (784 attributes) and Make Blob
(40 attributes) generated by LLE, LE, t-SNE, UMAP, and TriMap.
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(a) Iris-MSDD (deg: 8) (b) Breast Cancer-MSDD (deg: 10) (c) Swiss Rol-MSDD (deg: 1) (d) MNIST-MSDD (deg:1) (e) Make Blob-MSDD (deg: 1)

(f) Iris-MDS (g) Breast Cancer-MDS (h) Swiss Roll-MDS (i) MNIST-MDS (j) Make Blob-MDS

(k) Iris-PCA (l) Breast Cancer-PCA (m) Swiss Roll-PCA (n) MNIST-PCA (o) Make Blob-PCA

(p) Iris-Isomap (k: 146) (q) Breast Cancer-Isomap (k: 515) (r) Swiss Roll-Isomap (k: 1447) (s) MNIST-Isomap (k: 2222) (t) Make Blob-Isomap (k: 94)

FIGURE 11: The co-ranking matrixes of the Iris (4 attributes), Breast Cancer (30 attributes), Swiss Roll (3 attributes), MNIST (784 attributes) and Make Blob (40 attributes) generated by
MSDD, MDS, PCA, and Isomap.
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(a) Iris with LLE (k: 32) (b) Breast Cancer-LLE (k: 556) (c) Swiss Roll-LLE (k: 975) (d) MNIST LLE (k: 5) (e) Make Blob-LLE (k: 487)

(f) Iris-LE (k: 65) (g) Breast Cancer-LE (k: 426) (h) Swiss Roll-LE (k: 1000) (i) MNIST-LE (k: 1972) (j) Make Blob-LE (k: 290)

(k) Iris-t-SNE (pr: 135) (l) Breast Cancer-t-SNE (pr: 501) (m) Swiss Roll-t-SNE (pr: 1507) (n) MNIST-t-SNE (pr: 2216) (o) Make Blob-t-SNE (pr: 168)

(p) Iris-UMAP (k: 65) (q) Breast Cancer-UMAP (k: 5) (r) Swiss Roll-UMAP (k: 3) (s) MNIST-UMAP (k: 1384) (t) Make Blob-Umap (k: 153)

(u) Iris-TriMap (k: 146) (v) Breast Cancer-TriMap (k: 1) (w) Swiss Roll-TriMap (k: 12) (x) MNIST-TriMap (k: 194) (y) Make Blob-TriMap (k: 25)

FIGURE 12: The co-ranking matrixes of the Iris (4 attributes), Breast Cancer (30 attributes), Swiss Roll (3 attributes), MNIST (784 attributes) and Make Blob (40 attributes) generated by
LLE, LE, t-SNE, UMAP, and TriMap.
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VI. CONCLUSION AND FURTHER WORK
This paper proposes SDD and MSDD for the dimension-
ality reduction of data to better preserve the data structure
within less computational time compared to other manifold
learning methods. SDD employs one degree-distribution,
whereas MSDD adds various degree-distributions on top
of SDD, aiming to improve the data structure capturing.
Due to the high sensitivity of degree-distribution(s) in small
and medium distance sections, SDD (MSDD) can usefully
capture the structure of data that has a large fraction of small
and medium distances. Conversely, it performs less favorable
in datasets with a large fraction of large distances, due to
the large number of samples placed in the low sensitivity
section(s) (tail(s)) of degree-distribution(s). Overall, SDD
(MSDD) outperforms in terms of structure capturing bench-
marks methods such as t-SNE, UMAP, Isomap, PCA, MDS,
Trimap, LLE, and LE in data which dominates by small and
medium distances. Additionally, the structure capturing of
SDD (MSDD) does not rely on the number of neighbours,
but it instead tunes the degree of degree-distribution, which
relatively ranges from 1 to 15 instead of 1 to N − 1. As a
result, SDD (MSDD) can be more useful than other mani-
fold learning in reducing the data dimensionality of datasets
having a large number of samples.

In the experiments conducted, in most of the scenarios
employing one degree-distribution has produced the best
low dimensional data representation in terms of structure
maintaining. The addition of a degree below or above the best
degree has resulted in the deterioration of the maintained data
structure achieved. For Breast Cancer, where the best result
was achieved by the combination of two degree-distributions,
the improvement was not notable. In conclusion, we suggest
that using one degree-distribution can be efficient in captur-
ing data structure. However, if preserving the data structure
is crucial, then we suggest adding more degree-distributions
on top of the best degree degree-distribution.

For further work, we aim to approximate the number of
degree-distributions and their degrees in relation to the data.
Reducing the computational complexity is another objective
for further work.
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