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1 SUMMARY

This paper presents detailed validation and verifica-
tion study for the KCS in calm water conditions. Vali-
dation is performed by comparing the resistance, sink-
age and trim with experimental data for six Froude
numbers, while verification is performed for each case
by assessing grid and iterative uncertainties. A sin-
gle set of governing equations for water and air is
used where jump conditions at the free surface are
used to discretise discontinuous density and dynamic
pressure fields. Volume of Fluid (VOF) method is
used for interface capturing, and the k—w SST model
is used for turbulence modelling. Ship motion is
solved with quaternion based six degrees—of—freedom
(6 DOF) rigid body motion equations. The method is
implemented in the Naval Hydro pack based on foam—
extend, a community driven fork of OpenFOAM soft-
ware.

2 INTRODUCTION

Accurate and efficient assessment of the resistance
of a ship in calm water is one of the fundamental
problems in naval hydrodynamics, traditionally dic-
tated by industrial needs. Most present day CFD
algorithms are well established and thoroughly val-
idated for such applications [5]. On the other side,
verification studies are equally important in order to
assess uncertainties associated with complex CFD al-
gorithms. Only with detailed validation and verifica-
tion, a CFD algorithm is considered reliable and can
used reliably in a design process.

This paper briefly outlines a mathematical and nu-
merical model based on embedding technique, while
the emphasis is given to detailed validation and veri-
fication studies.

3 MATHEMATICAL MODEL

In this section mathematical model of incompressible
two-phase free surface flow is presented. Two—phase

model is based on a single set of mixture equations
taking into account jump conditions at the free sur-
face implicitly [2]. This embedded free surface ap-
proach correctly models density and dynamic pressure
discontinuities and thus resolves the problem of par-
asitic air velocities. The volumetric continuity equa-
tion for continuous velocity field u reads:

Veu = 0. (1)

Phase momentum equation for an individual phase,

assuming constant density and presence of a sharp
free surface reads:

%tl + Ve((u—upy)u) = Ve (v.Vu) = —%Vpd , (2)
where p is the two—phase discontinuous density field,
pq is the dynamic pressure, and v, stands for effec-
tive kinematic viscosity, allowing for general turbu-
lence modelling [I1]. wujs is the relative grid motion
velocity accounting for the moving grid according to
the Space Conservation Law [IJ.

In the present embedded free surface approach, den-
sity discontinuity is taken into account exactly, yield-
ing first jump condition:

Py —py =—(p” +p)gex, (3)

where p; and p:}' denote dynamic pressure infinitesi-
mally close to the free surface from water and air side,
respectively. p~ and p* denote constant densities of
water and air. This condition arises from the conti-
nuity of the pressure at the free surface: p~ —pt =0,
which takes the form of equation when the decom-
position of the pressure into dynamic and static part
is applied: p = pg + pgex. In order to facilitate im-
plementation of the second jump condition, tangential
stress balance is approximated by usual smearing of
the kinematic viscosity across the free surface. Sur-
face tension effects are also neglected. Inspecting the
jump of the momentum equation at the free surface
[10], a second jump condition arises:
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pTVp; - (4)
which balances the density and pressure gradient
jump at the free surface. This approach is justified for
large scale two—phase problems encountered in naval
hydromechanics [2].
Jump conditions and are used to embed
the free surface into a single momentum and
(1) continuity equation. This is achieved by deriv-
ing interface—corrected interpolation schemes for dy-
namic pressure near the free surface.
VOF transport equation with additional compression
term used in this study reads [7]:

1
vpt =
pt Py =0,

8704 + V-((ll — uM) a) + V.(ura(l - Ol)) =0,

o ()

where « is the volume fraction and u, is the com-
pressive velocity field oriented towards the interface
in the normal direction. The last convective terms
serves to prevent excessive smearing of the interface
which only affects the effective viscosity field.

4 NUMERICAL MODEL

Numerical model is based on second—order accurate
polyhedral FV method used in foam-extend [4]. Rigid
body motion is solved using quaternion based 6 DOF
equations. Mesh motion is modelled as a rigid body
motion with special boundary conditions. Coupling
of pressure, velocity, free surface and 6 DOF equa-
tions is performed in a segregated manner using the
PIMPLE algorithm.

As the steady state solution is sought, first—order ac-
curate implicit Euler scheme is used for temporal dis-
cretisation, while only one motion corrector is used
per time—step. Grid motion is under-relaxed with 0.5
in order to damp out oscillatory convergence of sink-
age and trim and to achieve the steady state solution
faster.

5 VALIDATION AND VERIFICATION

In this section numerical results are presented. A set
of simulations with at least 3 grids is carried out for
each of the six Froude numbers. Grid uncertainty Ug
and iterative uncertainty U; are determined follow-
ing Stern et al. (2001) [9]. Iterative uncertainty Uy is
calculated as the largest amplitude of oscillatory con-
verging signal in last few hundreds iterations (time
steps):

U1 = |3 (50 = 511, )
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Figure 1: Example of iterative uncertainty determi-
nation for trim in F,. = 0.282 case on the finest grid.

where Sy and Sy, stand for the maximum and mini-
mum value of the oscillating result, as shown in[Fig. 1
Determining the grid uncertainty Ug depends on the
observed grid convergence type. In the case of mono-
tone convergence grid uncertainty is calculated using
the achieved order of spatial accuracy. Order of accu-
racy is determined using Richardson extrapolation:

1H(€k32 /€k21 )
ln(rg)

(7)

where €, = S3 — Sy is the difference between the
result obtained with the coarsest grid (S5) and the
medium grid (S2), and €x,, = So —S7, where Sy is the
finest grid solution. r¢ is the average grid refinement
ratio. Grid uncertainty for monotone convergence is
finally obtained as:

pc =

€koy
yJdel :
rag —1

Ug = (8)

In the case of oscillatory grid convergence, Ug is de-
termined as:

1

Ug = ‘ (Seu — Sar)

; , ©)

where Sy stands for the maximum result among the
grid solutions, and Sg the minimum result. In the
case of non—converging behaviour, Ug is calculated
following Simonsen et al. [] as:

Simulation numerical uncertainty is calculated as:

Usn = \/U?*FU%. (11)

Finally, following guidelines at the Workshop’s web-
site [6], total validation uncertainty can be calculated



using the experimental data uncertainty Up and nu-
merical simulation uncertainty Ugy as:

Uy = /0B + Uiy

presenting overall estimate of the uncertainty which
includes simulation and experimental uncertainties.

(12)

5.1 Simulation set—up

This section presents the summary of the CFD simu-
lation set—up, while details concerning the model and
experimental set—up can be found on the Workshop’s
website [6]. Domain spans 4.5 ship lengths in the
longitudinal direction and 11 ship breadths in the
transversal direction. Only half of the ship is sim-
ulated using symmetry boundary condition. Forward
speed of the ship is modelled using constant current,
thus the ship does not move in the longitudinal direc-
tion. Wave relaxation zone [3] is placed in the outlet
region of the domain, where calm water surface is en-
forced to prevent possible wave reflection. Maximum
Courant-Friedrichs-Lewy (CFL) number ranges from
10 to 50, allowing large time steps. Lower Froude
number cases demanded lower CFL numbers to en-
sure convergence. Four grids that are used have ap-
proximately 600000, 950 000, 2600 000 and 4 600 000
cells. As constant grid refinement ratio is nearly im-
possible to achieve for unstructured grids, an average
refinement ratio of r¢ = 1.28 is used in uncertainty
estimate for monotone grid convergence. Maximum
grid non—-orthogonality is approximately 80°, while
the maximum aspect ratio is 760. Grids are com-
posed mostly of hexahedral cells further away from
the hull, with prismatic and polyhedral cells used to
form the boundary layer refinement.

The simulations are performed with Intel Core i5-
3570K CPU processor at 3.40GHz on a desktop com-
puter using 4 cores. As an example, for the highest
Froude number F,. = 0.282 on the finest grid, conver-
gence is reached after 2380 time-steps, which took
70 hours of CPU time. For the second finest grid it
took 3950 time-steps in 58 hours of CPU time. The
600 000 and 950 000 cells grids took ~ 1 800 time-steps
to converge, requiring 6.5 and 10 hours of CPU time,
respectively.

5.2 Total resistance

shows result comparison for total resistance
coefficient C;. Uncertainty intervals are also pre-
sented with horizontal bars, where EFD stands for
Experimental Fluid Dynamics (experimental data),
while CFD denotes present simulation results. It

can be seen that uncertainty generally reduces for
larger Froude numbers. Such trend is expected as
the boundary layer and free surface resolution of the
grids is optimal for the design Froude number, thus
making the grids unsuitable for lower Froude num-
bers.

[Table Tl shows validation data for the total resistance.
ec, stands for the relative error, while E¢,. is the ab-
solute error. Grid number 4 denotes the coarsest grid,
while number 1 denotes the finest grid. Relative er-
rors on the finest grids are smaller than 2%, except for
the two smallest Froude number cases where the error
remains within 5%. Relative error obtained with the
finest grid for the deisgn Froude number is 0.4%. The
errors are generally reducing for higher Froude num-
bers, which is expected, considering boundary layer
and free surface resolution with respect to the flow
field.

Verification results are shown in [Table 2| where S;
stands for the finest grid solution. For three cases
the grid uncertainty is smaller than 3%. For Froude
numbers F,. = 0.108 and 0.195 total resistance does
not converge with grid refinement and uncertainty is
calculated as the largest difference between the solu-
tions, following Simonsen et al. [§]. Grid uncertain-
ties remain lower than 6% for all cases, except for the
design Froude number F,. = 0.260. High uncertainty
in this case is caused by the low order of accuracy pg,
since monotone convergence has been achieved. The
rate of change of the relative error for the three grids
is close to linear, causing the low order of accuracy.
Reason for this could be that the converged solution
is not in the asymptotic range [5], as well as the use of
unstructured, non—systematically refined grids. Iter-
ative uncertainty U; is expectedly small for all cases,
except in the case of F, = 0.227, where the larger
value is caused by the very small normalisation value

€koq -

5.3 Dynamic sinkage

Comparison of dynamic sinkage o for a range of
Froude numbers is shown in Positive sinkage
denotes upward displacement of the centre of gravity.
It can be seen that the trend of change of sinkage for
different Froude numbers is well described. Individual
values also compare well with experimental results, as
also can bee seen in [Table 3l It can be seen that the
error is consistently reducing for higher Froude num-
bers. For the three largest Froude numbers relative
errors obtained with the finest grid are smaller than
4%. Relative error for the F, = 0.195 case is ~ 15%,
and it further increases for smaller Froude numbers.
The smallest Froude number case has a relative error
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Figure 2: COmpariSOn of total resistance coefficient Figure 3: Dynamic Sinkage Comparison with error

with error bars.

Table 1: C; validation results.

F, Grid No. | €¢,,% | Fcy - 103
3 -11.8 -0.446
0.108 2 -9.1 -0.345
1 -4.6 -0.175
3 -9.1 -0.331
0.152 2 -6.5 -0.237
1 -4.9 -0.178
3 -7.0 -0.244
0.195 2 -6.2 -0.216
1 -1.5 -0.051
4 -5.9 -0.205
3 -4.8 -0.168
0.227 2 -2.1 -0.071
1 -2.0 -0.069
4 -7.3 -0.270
3 -5.4 -0.199
0.260 2 -2.6 -0.097
1 -0.4 -0.015
4 -7.5 -0.336
3 -5.2 -0.236
0.282 2 -2.4 -0.107
1 -1.3 -0.059

Table 2: C; verification results.

F, PG Ur/érs, | Uc/S1,% | Uy
0.108 | N/A | -9.36-1077 6.8 0.2734
0.152 | 1.85 [ -5.82.10~2 2.7 0.1096
0.195 | N/A | -5.18-1072 5.5 0.1964
0.227 | 16.0 -5.09 0.0 0.0359
0.256 | 0.86 | -3.15-107T 9.4 0.3528
0.282 | 3.98 | -1.79-10~! 0.6 0.0541

bars.

of approximately 100%, however the absolute magni-
tude of the error is very small, and we do not expect
to resolve such a small sinkage with relatively coarse
grid. Absolute error is ~ 0.1mm, while the cell height
at the free surface is = 0.5mm. Dynamic sinkage is
largely influenced by the wave pattern generated by
the ship. For lower Froude numbers, generated waves
are smaller, and thus they are less accurately resolved
since the same grids are used for all Froude numbers.
This is most likely the main reason for the larger rela-
tive errors of sinkage for lower Froude numbers. This
relation can also be used in the opposite direction,
to state an assumption that the wave pattern is well
predicted for higher Froude numbers.

Sinkage verification is outlined in[Table 4 Grid uncer-
tainty is often smaller than ~ 1%. For the two lowest
Froude numbers grid uncertainty is 3% to 4%. As for
the total resistance coefficient, sinkage at the design
Froude number exhibits the largest grid uncertainty.
Again, this is caused by the low order of spatial ac-
curacy as the monotone convergence is achieved. It-
erative uncertainty is negligibly small in all cases.

5.4 Dynamic trim

shows the comparison of dynamic trim 7 for a
range of Froude numbers. Positive trim is defined for
bow up motion. As shown in rate of change
of trim over different Froude number values is well
captured by CFD simulations. shows valida-
tion results for trim. In most cases the relative error
is smaller than 10%, while the relative error for the
design Froude number is 1%. In most cases the er-
ror is not changing significantly with respect to grid
refinement. For example, absolute error for the high-
est Froude number changes only 0.0002 degrees from



Table 3: Sinkage validation results.

F, | Grid No. | €,% | Ey,cm
3 -122.1 | -0.110

0.108 2 -115.6 | -0.104
1 -109.0 | -0.098

3 -53.7 | -0.148

0.152 2 -50.4 -0.139
1 -40.4 -0.112

3 -18.4 -0.110

0.195 2 -16.4 | -0.098
1 -15.3 -0.092

4 -6.8 -0.064

3 -4.7 -0.044

0.227 2 -4.6 -0.043
1 -4.3 -0.041

4 1.3 -0.017

3 3.0 -0.042

0.260 2 3.3 -0.045
1 3.5 -0.049

4 2.2 -0.037

3 3.1 -0.052

0.282 —— 58 | -0.017
1 2.9 -0.049

Table 4: Sinkage verification results.

F, PG Ur/ery, | Uc/S1,% | Uy
0.108 | N/A [ 1.98:107° 6.3 0.0139
0.152 [ N/A | 1.05-107° 9.2 0.0392
0.195 | 2.57 | 3.29-10° 1.1 0.0245
0.227 | 3.7 | 7.64-107* 0.4 0.0265
0.256 | 0.13 | 4.00-10~3 7.6 0.1056
0.282 [ N/A | 2.59-10~* 0.2 0.0233

the smallest to the largest error. The smallest Froude
number case suffers larger relative errors due to the
extremely small trim measured in experiments, which
is comparable to the magnitude of absolute errors in
most cases. Thus, the relative error is not a good
measure for assessing the accuracy in this case. It
can be concluded from this observation that all grids
used in this study are too coarse for more accurate
trim calculation at very low Froude numbers. For ex-
ample, the largest trim causes only 1mm of vertical
displacement at the front and aft perpendicular of the
ship. Unlike the resistance and sinkage results, trim
results do not show the consistent deterioration for
lower Froude numbers.

[Table 6 shows the verification data for trim. Grid
uncertainty is fairly small for most cases, not exceed-
ing 1.2% for the largest three Froude number cases.
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Figure 4: Comparison of dynamic trim with error
bars.

The three smaller Froude number cases show larger
uncertainty, which is expected. Only the largest
Froude number case exhibits monotonic convergence,
while the rest show oscillatory convergence or non—
converging behaviour. For all Froude numbers, itera-
tive uncertainty is negligibly small compared to grid
uncertainty.

Table 5: Trim validation results.

E, Grid No. | e,% | E.°
3 -106.1 | 0.018
0.108 2 -97.2 0.017
1 -74.8 0.013
3 -14.7 | 0.008
0.152 2 -12.0 0.006
1 -7.5 0.004
3 -10.7 0.010
0.195 2 -2.8 0.003
1 -5.1 0.005
4 -14.6 0.019
3 -8.3 0.011
0.227 2 -10.8 0.014
1 -9.6 0.012
4 -3.2 0.005
3 -0.9 0.001
0-260 2 -0.3 0.000
1 -1.0 0.002
4 8.8 -0.014
3 7.3 -0.012
0.282 2 7.9 -0.012
1 8.0 -0.013




Table 6:

Trim verification results.

F jZe] Ur/€ks, Ug/S1,% | Uy
0.108 | N/A | 4.62:107° 17.9 0.003
0.152 | N/A | 1.05107° 6.7 0.005
0.195 | N/A | -1.69-10~% 3.8 0.006
0.227 | N/A | -5.04-10~7 1.2 0.004
0.256 | N/A | -7.65-10~3 0.4 0.0039
0.282 | 6.21 | 2.57-1073 0.04 0.0028

6 CONCLUSION

A detailed numerical study concerning steady resis-
tance of the KCS model with dynamic sinkage and
trim is performed. Simulation are performed for
six Froude numbers on at least three grid (for each
Froude number). Grid convergence study is per-
formed to determine uncertainties of the numerical
simulations. The embedded free surface approach in-
side the Naval Hydro pack is used.

For steady resistance, monotone grid convergence is
achieved for four cases, while two cases did not con-
verge with grid refinement. Average grid uncertainty
is 3.5%. The resistance is well predicted, average rel-
ative error being less than 2.5% on the finest grids,
and only 0.4% for the design Froude number.
Sinkage shows overall good agreement with experi-
mental data, with only 3.5% average error for the
three higher Froude numbers. Lower Froude numbers
suffer larger relative errors, mainly due to insufficient
grid resolution for small motions. Monotone grid con-
vergence is achieved for half of the cases, one case ex-
hibited oscillatory convergence, and for the two low-
est Froude number cases non—convergent behaviour
occurred with grid refinement. However, average grid
uncertainty is 2.6%.

Taking into account relative grid resolution in re-
spect to trim magnitudes, results show good agree-
ment with experimental data. Average relative er-
ror obtained on the finest grid is ~ 6.2%, excluding
the lowest Froude number case. Average grid un-
certainty is =~ 3.4%, however monotone convergence
is seldom achieved. Three cases exhibited oscilla-
tory convergence, and the two lowest Froude number
cases did not achieve grid convergence. Grid conver-
gence difficulties are probably caused by the narrow—
boundedness of trim results, where a small perturba-
tion causes oscillatory convergence or lack of conver-
gence.

Overall, the measured items are well predicted with
CFD for a range of Froude numbers, yielding small
errors and numerical uncertainties. For a more accu-
rate study from the trim and sinkage point of view,

finer grids should be used.
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