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Abstract 16 

Due to its high environmental impact and energy intensive production, the cement 17 

industry needs to adopt more energy efficient technologies to reduce its demand for fossil 18 

fuels and impact on the environment. Bearing in mind that cement is the most widely used 19 

material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy 20 

and Ecological Footprint of different cement manufacturing processes for a particular cement 21 

plant. There are several mitigation measures that can be incorporated in the cement 22 

manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 23 

emissions. The mitigation measures considered in this paper were the use of alternative fuels 24 

and a more energy efficient kiln process. In order to estimate the sustainability effect of the 25 

aforementioned measures, Emergy and Ecological Footprint were calculated for four different 26 

scenarios. The results show that Emergy, due to the high input mass of raw material needed 27 

for clinker production, stays at about the same level.  However, for the Ecological Footprint, 28 

the results show that by combining the use of alternative fuels together with a more energy 29 

efficient kiln process, the environmental impact of the cement manufacturing process can be 30 

lowered.  31 

*
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1. Introduction 4 

Climate change problems are addressed by two major international agreements: the 1992 5 

United Nations Framework Convention on Climate Change (UNFCCC) and the 1997 Kyoto 6 

Protocol (IPCC, 2013). The ultimate objective of these agreements is to stabilise greenhouse 7 

gas - GHG concentrations in the atmosphere at a level that would prevent dangerous 8 

anthropogenic interference with the global climate system. The latest report from the scientific 9 

panel on anthropogenic global warming indicates that substantial and joint global action is 10 

required to reduce carbon dioxide - CO2 emissions. Meaning the longer we wait to address 11 

this issue, the more difficult, technologically challenging and expensive it becomes (IPCC, 12 

2014).  13 

It is well known that over 80 % of global CO2 emissions are caused by transport activities 14 

and industry due to this reason, there is a need to decarbonize transport and industrial 15 

production (Klemeš et al., 2012). In 2008, the electricity and heat generation sector was 16 

responsible for 41 %, transport sector for 22 %, and industry for 20 % of anthropogenic CO2 17 

emissions (Benhelal et al., 2013). From these 20 % of global CO2 emissions related to 18 

industry, the cement industry accounts for approximately a quarter of total CO2 emissions in 19 

industry (Marques and Neves-Silva, 2015). This means that cement industry as an energy 20 

intensive industrial sector, alone generates approximately 5 % of anthropogenic CO2 in the 21 

world, and this figure is given in several studies (Mikulčić et al., 2013a; Usón et al., 2013). 22 

Due to its significant environmental impact, over the past decades several CO2 emissions 23 

mitigation measures have appeared. The main objective of these measures is environmental 24 

conservation in terms of reducing CO2 emissions.  25 

In recent years, there have been numerous studies worldwide discussing energy 26 

conservation policies, estimating the CO2 mitigation potential, and considering technology 27 

evaluation for the cement industry. Some of these studies investigated the effect of mitigation 28 

measures at the global level, such as the study conducted by the International Energy Agency 29 

- IEA (IEA, 2009). However, the majority of these studies evaluated the environmental impact 30 

of cement production at national and regional levels. The effect of mitigation measures on the 31 

regional level, like those in the European Union - EU were analyzed in Pardo et al. (2011) and 32 

Moya et al. (2011). The United States’ cement industry was analysed in the study by Xu et al. 33 
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(2013). However due to the rapid economic growth and vast urbanization, the majority of the 1 

studies related to the cement industry are for the developing countries like China (Li et al., 2 

2014; Wang et al., 2014; Xu et al., 2014 ), South Africa (Swanepoel et al., 2014), Turkey 3 

(Ekincioglu et al., 2013), Iran (Ostad-Ahmad-Ghorabi and Attari, 2013),  India (Morrow et al., 4 

2014), Thailand (Hasanbeigi et al., 2010), and Vietnam (Nguyen and Hens, 2013). The reason 5 

for these is most easily seen in Table 1 where the global cement production for 2012 is given. 6 

Table 1 shows that the vast majority of cement production is located in developing countries, 7 

especially in Asia. The importance of cement production in these developing economies can 8 

also be observed when comparing the annual CO2 emissions from cement production in 9 

industrialised countries and developing countries. In the EU, the cement industry contributes 10 

to about 4.1 % of total CO2 emissions (Mikulčić et al., 2013b). This share varies from one EU 11 

country to another, in EU’s most developed country Germany, this share is even lower, and 12 

the cement industry accounts for 2.9 % of Germany’s CO2 emissions (Brunke and Blesl, 13 

2014). This is similar for the cement industry in United States, where cement production is 14 

responsible for about 2 % of total CO2 emissions (Worrell and Galitsky, 2008). Whereas in 15 

China, the world’s largest cement producing country and the world’s largest emitter of GHG 16 

emissions, 15 % of total CO2 emissions are related to cement production (Chen et al., 2014; 17 

Wang et al., 2013). All of these studies stated that there is a great challenge in attempting to 18 

approach sustainability in the cement industry. Due to this reason and the increased social 19 

awareness in fighting climate changes, eco-labelling of companies, products, lifestyle, 20 

services, etc., is becoming an element of decision making (Čuček et al., 2012a).  21 

 22 

Over the years, Ecological Footprint has arisen as a simple, yet effective tool that can 23 

serve as an indicator of environmental impact, and eco-labelling (Cagiao et al., 2011; Čuček et 24 

al., 2012b). However, Huijbregts et al. (2008) in their study show that the usefulness of the 25 

Ecological Footprint as a stand-alone indicator for the environmental impact is limited. Based 26 

on their observations, they concluded that the Ecological Footprint should be used together 27 

with other indicators to estimate in detail the impact of human activities on the environment. 28 

This observation was even more highlighted recently by Rugani et al. (2013), where it was 29 

concluded that the use of the Carbon Footprint in combination with other single-issue 30 

indicators would be recommended to increase transparency and impacts coverage.  31 

 As cement manufacturing is an energy intensive process, Emergy was used as an 32 

indicator for sustainability in some studies. Pulselli et al. (2008) in their study through an 33 

Emergy evaluation assessed the sustainability of building materials, including cement. Zhang 34 
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et al. (2011) showed that Emergy analysis provides results that measure the resource input in 1 

the cement industry. These results can be further used for process performance analysis. Liu et 2 

al. (2014) used emergy analysis and evaluated the environmental effect of using sewage 3 

sludge as an alternative raw material or fuel in clinker production. The study showed that the 4 

use of emergy accounting may provide quantitative metrics of eco-industrial sustainability. In 5 

a recent study by Jamali-Zghal et al. (2013), Emergy and Carbon Footprint were used together 6 

to study to which extent, replacing fossil fuel with biomass for heating is an environmentally 7 

friendly solution. In relation to this study, Andrić et al. (2014) using the same approach for 8 

electricity production determined the maximum supply distance of biomass that allows the co-9 

firing of coal and biomass to be more environmentally efficient than the pure coal 10 

combustion. The study showed that the Carbon Footprint and Emergy method are used 11 

together to cover all, or at least most, of the significant aspects of the electricity production 12 

process that may influence the environment. 13 

To date, to the knowledge of the authors, there have been no studies that used the Emergy 14 

and Ecological Footprint together as environmental indicators, to investigate the sustainability 15 

of cement manufacturing processes. For that reason in this study, in order to help cement 16 

manufactures to operate in a more environmental friendly way, and to assess which 17 

manufacturing process is more sustainable, the environmental impact of four different cement 18 

manufacturing processes is estimated. Actual cement plant data is used in order to correctly 19 

study the impact of different processes. The results shown in this study highlight potential 20 

modifications and improvements in the manufacturing process, regarding its sustainability. 21 

 22 

2. Methodology 23 

Sustainability is essentially about finding ways to meet the material and energy needs of 24 

human society within the limits of planet Earth over the long term (WCED, 1987). In the case 25 

of manufacturing activities, sustainability goes beyond pollution prevention by extending the 26 

time frame and the functional scope of the analysis. Extending the time frame implies that 27 

processes must be capable of functioning in an environmentally acceptable manner for a very 28 

long time. Extending the functional scope of the analysis means that the manufacturing 29 

activity must be able to function without seriously impairing the natural processes of the 30 

environment in which it is imbedded. These natural processes include things such as waste 31 

dissipation, nutrient cycling, oxygen production, and many others. For these processes to 32 

function there are some conditions that must be maintained such as having: (1) as small of a 33 
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footprint on the environment as possible and (2) as small of an appropriation of the energy 1 

resources of the environment as possible. These two are not necessarily the only two issues of 2 

concern. But they are important for technological processes, and they can be expressed quite 3 

generally as will be shown shortly. They also can inherently incorporate many specific 4 

sustainability issues such greenhouse gas emissions, land use, and water depletion.  5 

It is very important, however, that environmental issues not be ported from one media or 6 

area to another. For example, reducing energy consumption at the cost of increased water 7 

usage, thus reducing one kind of environmental impact only to increase another. To mitigate 8 

this problem, we use integrated sustainability metrics where many effects across the life-cycle 9 

are incorporated into common measures. Hence, we account for the use of land with the 10 

Ecological Footprint – EF (Wackernagel and Rees, 1996) and for energy resources using 11 

Emergy Analysis - Em (Odum and Nilsson, 1996) as will be discussed further in the following 12 

sections. The application of Ecological Footprint (Vance et al., 2013) and Ecological 13 

Footprint and Emergy Analysis (Vance et al., 2015) to the design of energy supply chains can 14 

be found in the literature. 15 

Ecological Footprint and Emergy Analysis speak to sustainability because, when 16 

comparing two options, the more sustainable one is the one with the smallest Ecological 17 

Footprint and the lowest input of Emergy. Further, for an option to be considered more 18 

sustainable, it must meet both criteria simultaneously. In mathematical form the criteria 19 

indicate that option one is more environmentally sustainable than option two when: EF1 ≤ EF2 20 

and Em1 ≤ Em2. 21 

  22 

2.1. Emergy 23 

Emergy is generally meant to represent the sum total of the thermodynamic work done in 24 

producing a product or maintaining an operation using solar energy along with tidal and 25 

geothermal energy as energy sources. Note that solar energy input is by far the largest 26 

contributor to Emergy. For purposes of this work, Emergy is the sum of the total 27 

thermodynamic work done in producing a specific mass of cement. Emergy is expressed in 28 

solar energy Joules or seJ. The conversion factor between different kinds of energy in Joules 29 

or J and Emergy in seJ is called a transformity. The application of Emergy theory also known 30 

as Energy Systems Theory is often known as Emergy accounting. In essence, Emergy 31 

accounting tries to transform all mass and energy flows into solar energy Joules. 32 

Transformities are in general very specific to the material, e.g. the seJ of, for example, a 33 

kilogram of a particular type of coal. For practical use, it is easier to rely on unit Emergy 34 
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values which can often be found in the literature (Rugani et al., 2011). These are 1 

proportionality constants which convert a defined unit of a substance or a form of energy 2 

produced at a specific location by a particular process into the equivalent seJ. For example, 3 

the unit Emergy value of hard wood in Europe is approximately 141.16 10  seJ/m
3
 where the 4 

unit of wood is meters cube (Rugani et al., 2011). Unit Emergy values aggregate most of the 5 

contributions from the lifecycle of the product or process, and they differ in that respect from 6 

transformities which do not attempt to integrate the over life-cycle. For a product, for example 7 

cement, the Emergy is calculated from the expression, 8 

, ,CP m CP e CP

m e

Em Em Em            (1.) 9 

where EmCP is the Emergy in seJ needed to produce cement “C” by process “P,” Emm,CP is the 10 

Emergy of material input m  in seJ into process “P”, Eme,CP is the Emergy of energy input “e”  11 

in seJ into process “P”, and the sum “m” is taken over all of the material inputs and the sum 12 

“e” is taken over all energy inputs into the process. 13 

The Emergy of each material input is computed from,  14 

, , ,m CP m S m SEm b K                (2.) 15 

where bm,S is the unit Emergy in seJ of one kilogram of input “m” obtained or produced from 16 

source “S”, and Km,S is the necessary number of kilograms of input “m”. Input “m” can be any 17 

material input needed, including manufactured products, e.g. chemicals, metals, waste, or 18 

agricultural products, e.g. wood, agricultural residue. However, care must be taken to match 19 

as closely as possible the actual process under study to the process used to derive the unit 20 

Emergy values. This includes matching as well as possible the geographical location, raw 21 

materials and their sources, technology used, etc. 22 

When the input is a type of energy, the form of the expression is the same, but the 23 

interpretation of the terms is now different. For example, 24 

, , ,e CP e S e SEm b K               (3.) 25 

  26 

where be,S is the unit Emergy in seJ of one kilowatt hour of energy of form “e” obtained or 27 

produced from source “S”, and Ke,S is the necessary number of kilowatt hours of energy “e”. 28 

The energy “e” can be any form of energy, e.g. electricity, heat, mechanical energy, generated 29 

by any process, e.g. solar electricity, thermo-electric generation, and waste heat. However, 30 
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again, care must be taken to match as closely as possible the energy generation processes to 1 

geographical location, raw materials and their sources, technology used, etc. 2 

2.2. Ecological Footprint 3 

Ecological Footprint theory attempts to estimate the area needed to support a given human 4 

population or human activity such as a manufacturing process. This is the area needed to 5 

provide the required resources and dissipate the resulting waste. Ecological Footprint is 6 

measured in global hectares or gHa. For this purpose the required land area is divided into six 7 

kinds of land: arable land, forest land, pasture land, sea, energy land, and built land. The 8 

procedure to compute the Ecological Footprint is basically to estimate the amount of land area 9 

needed for each type of land and sum them up to obtain the Ecological Footprint. As Emergy 10 

accounting attempts to estimate the solar energy Joules corresponding to different products or 11 

to maintain processes, the Ecological Footprint tries to estimate the area in global hectares 12 

needed for producing different products or maintaining different processes. 13 

As already mentioned, cement production is an energy intensive process, and the dominant 14 

component of the Ecological Footprint is due to the area needed to absorb the carbon dioxide 15 

emitted by the process. It is assumed that the carbon dioxide is absorbed by forest and the 16 

ocean. Hence, the Ecological Footprint EFC for cement production is calculated from: 17 

 1C Ocean

C

C

P S
EF EQF

Y

 
                 (4.) 18 

where PC is the kilograms of carbon dioxide emitted by the cement production process, SOcean 19 

is the fraction of the carbon dioxide sequestered by the ocean, Yc is the average global yield of 20 

forest land sequestration in kilograms per hectare, and EQF is the equivalence factor. This 21 

factor has units of maximum productivity of forest land sequestration in kilograms divided by 22 

the average productivity of all land types in kilograms as well. It is used to convert hectares of 23 

forest land to global hectares (Ewing et al., 2010; Galli, 2015). Lastly, it is assumed that the 24 

ocean can sequester about 28 % of the carbon dioxide so that SOcean=0.28. Global yields Yc 25 

and equivalence factors can be obtained from the Global Footprint Network – GFN (GFN, 26 

2008; GFN, 2015) or from the literature (Hopton and White, 2012). 27 

3. Mitigation scenarios 28 

Due to the energy intensity involved in cement manufacture, we focus on mitigation efforts 29 

that reduce CO2 emissions. However, for the reduction in CO2 emissions to represent an 30 
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improvement towards sustainability, the aforementioned criteria of reducing the Ecological 1 

Footprint and Emergy input must also be met. There are different effective mitigation 2 

measures to reduce CO2 emissions from cement manufacturing (Mikulčić et al., 2013b): (1) 3 

carbon capture and storage (CCS) technology; (2) reduction of clinker to cement ratio with the 4 

addition of different additives; (3) improving the energy efficiency of the kiln process; and (4) 5 

replacing fossil fuels with alternative fuels of predominately biomass origin. As most of the 6 

named measures are to a large extent affected by environmental policy and legal frameworks, 7 

the integration of these measures will only be possible under incentives and policies that 8 

foster the deployment of these measures in cement manufacturing. This applies in particular to 9 

carbon CCS technology due to its high cost.  10 

The projected cement production of a particular cement plant is presented through four 11 

different scenarios. The first scenario, business-as-usual or BAU, can be considered as a 12 

reference scenario since the actual cement plant Emergy and Ecological Footprint are 13 

calculated. The other three are mitigation scenarios that integrate appropriate measures that 14 

will lower the fuel consumption and lessen CO2 emissions from cement production. 15 

In these four scenarios an assumption was made that the same amount of cement is 16 

produced with the same hydraulic quality, meaning that the reduction of clinker to cement 17 

ratio with the addition of different additives is not considered as a mitigation measure in these 18 

scenarios. The improvement of the energy efficiency of the kiln process, and the replacement 19 

of fossil fuels with alternative fuels of predominately biomass origin are the two mitigation 20 

measures considered in the four scenarios. In this study, the CO2 emissions from the cement 21 

production have been calculated according to the IPCC methodology (IPCC, 2001). 22 

3.1. Business as usual scenario 23 

The BAU scenario is based on the exploitation of existing resources, needed for stable 24 

cement production. The studied cement plant uses a dry kiln with a four stage preheating 25 

tower. The specific thermal energy consumption of this cement plant is 3.67 GJ/t clinker. The 26 

BAU scenario does not include the implementation of any mitigation measure beyond those 27 

already in use. This scenario represents a reference level for the Emergy and Ecological 28 

Footprint analysis. This includes alternative fuels, such as discarded tyres, already used in the 29 

production process. The list of fuels can be found in Table 2. 30 

3.2. Scenario 1 – Energy Efficient Kiln Process 31 

This first scenario assumes the inclusion of the most energy efficient kiln process in the 32 

cement manufacturing industry. Currently, the most energy efficient technology for cement 33 
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production is a dry rotary kiln process with a multi-stage preheater and a cement calciner, which 1 

has a specific energy consumption of 3 GJ per ton of clinker (Mikulčić et al. 2015). Here as in 2 

the BAU scenario, alternative fuels already used are included. 3 

3.3. Scenario 2 – Alternative Fuel 4 

In this second scenario, the assumption is made that the fraction of thermal energy 5 

produced by alternative fuels is 30 %. The value of 30 % is chosen since no major capital 6 

investments are needed to substitute fossil fuels with alternative fuels up to this level. The 7 

alternative fuel considered in this scenario, in addition to those already used, is solid 8 

recovered fuel (SRF). SRF is defined as solid fuels prepared from non-hazardous waste 9 

materials intended for firing in industrial furnaces. The assumption is made that 60 % of SRF 10 

is of biogenic origin, i.e. CO2 neutral (Mikulčić et al. 2014).  11 

3.4. Scenario 3 – Alternative Fuel and Efficient Kiln 12 

In this third scenario both the energy improvement of the kiln process and the use of 13 

increased share of SRF are considered. An assumption is made that the most energy efficient 14 

kiln process together with 30 % of thermal energy fraction produced by SRF is used in the 15 

manufacturing process. 16 

4. Results and discussion 17 

In Table 2 the actual plant data and the corresponding calculated Emergy values for the 18 

BAU scenario are shown. The unit Emergy values listed in the table were taken from 19 

literature (Rugani et al. 2011). It can be observed that 60 % of input Emergy ends up in the 20 

final product, i.e. cement. Furthermore, from the table, it can be seen that the biggest 21 

contributor (~ 44 %) to the input Emergy of the overall cement manufacturing process comes 22 

from the high and low grade marl.  This is due to their large input mass - several orders of 23 

magnitude higher than of other input materials - and relatively large unit emergy values. In 24 

Table 3 the Emergy values for three mitigation scenarios are shown. As already discussed, it 25 

can be observed that Emergy values do not differ much. This presents a challenge to 26 

sustainability improvements because marl, a calcium carbonate sedimentary rock which 27 

contains variable amounts of clays, is not easy to substitute in cement production.  This brings 28 

up the possibly obvious but very important point that when attempting to improve the 29 

sustainability of the process by reducing the input of emergy, one has start with the 30 

numerically largest contribution, then the second largest, and so on down.  This focuses 31 
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attention on the inputs that really matter.  For instance, taking the otherwise intuitive step of 1 

reducing the input of coal and petrol coke is likely to lead only to a modest reduction in 2 

Emergy input, because the total Emergy values of both are almost two orders of magnitude 3 

smaller than the total Emergy input.  Lastly, it should be noted that the calculated Emergy of 4 

cement corresponds well to the value reported in the literature (Pulselli et al. 2008) giving 5 

credence to our calculation procedure. 6 

 7 

 8 

In Table 4 the calculated masses of different fuels for all four scenarios are given. For the 9 

BAU scenario, the actual mass of the used fuels is given. For three other scenarios, masses of 10 

the fuels were calculated according to the previously specified assumptions.  Again, Scenario 11 

1 involves the use of the most efficient kiln process in the industry, Scenario 2 involves the 12 

production of 30 % of the thermal energy from alternative fuels, and Scenario 3 uses an 13 

efficient kiln and alternative fuels both exactly as in Scenarios 1 and 2.  As expected, the 14 

thermal energy needed is reduced only by the use of a more efficient kiln process.  However, 15 

the consumption of coke and coal is significantly reduced by both the use of the more efficient 16 

kiln process and alternatives fuels, with the greatest reduction in Scenario 3 where both are 17 

combined.  Compared to BAU, Scenario 3 reduces thermal energy needs by -18 %, the 18 

thermal energy produced from coke by -32 %, and the thermal energy produced from coal by -19 

32 % as well.  This is significant, because under the assumption that alternative fuels are 20 

carbon neutral, this represents very roughly a 1/3 reduction in carbon dioxide emissions. 21 

Alternative fuels are often, in any case, low value materials with low economic value and not 22 

too many other uses.  Hence, their use in this application is probably environmentally and 23 

economically advantageous (Benhelal et al., 2013; Andrić et al., 2014). 24 

 25 

 26 

In Table 5 the CO2 emissions and the Ecological Footprint for all four scenarios are 27 

shown. As can be seen the Ecological Footprint, as opposed to the Emergy, is a better 28 

indicator of the influence that different cement manufacturing processes have on the 29 

environment. This probably indicates the fact that for cement production the ecological 30 

footprint is dominated by the land area required to sequester carbon dioxide emissions.  31 

Further, as already discussed, cement production is an energy intensive process that is heavily 32 

dependent on fossil fuels.  Hence, a reduction in fossil fuel use is most likely to be seen first 33 

in the ecological footprint rather than the emergy. The reduction in the ecological footprint 34 
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compared to the BAU Scenario is as follows: Scenario 1 with the more efficient kiln 1 

approximately -8 %, Scenario 2 with the use of alternative fuels approximately -4 %, and 2 

Scenario 3 using both the more efficient kiln and alternative fuels approximately -10 %.  As 3 

expected, the lowest Ecological Footprint, and thus the lowest environmental impact 4 

corresponds to Scenario 3. Note, however, that the reductions are not quite additive, i.e. a 5 

more efficient kiln plus alternative fuels does not give about a 12 % reduction in the 6 

ecological footprint.  The complete explanation can be complex, but basically the more 7 

efficient kiln reduces the need for energy so there is opportunity to reduce the foot print with 8 

an alternative fuel. 9 

 10 

5. Conclusion 11 

In this study a combined Emergy and Ecological Footprint analysis along with an effort 12 

to reduce CO2 emissions was investigated. The combination of these two environmental 13 

indicators is used, in order to explore improving of the sustainability of cement manufacturing 14 

processes. Reduction of CO2 emissions was considered due to concerns over the exacerbation 15 

of climate change. To assess which manufacturing process is more sustainable at the lowest 16 

level of CO2 emissions, the environmental impact of four different cement manufacturing 17 

scenarios was considered: business as usual BAU, Scenario 1 - energy efficient kiln process, 18 

Scenario 2 – 30 % of thermal energy produced by alternative fuel, and Scenario 3 - energy 19 

efficient kiln process together with 30 % of thermal energy produced by alternative fuel. 20 

Actual cement plant data were used to correctly study the environmental impact of these four 21 

processes. The input of Emergy did not vary significantly among the four scenarios, but it 22 

certainly did not increase. Hence, the criterion that Emergy input should not increase for 23 

sustainability was met. The Ecological Footprint did decrease from the BAU scenarios by 8 % 24 

for Scenario 1, 4 % for Scenario 2, and 10 % for Scenario 3. The emissions of CO2 25 

correspondingly decreased by 8 %, 4 %, and 10 % respectively. Note that due to the 26 

dominance of CO2 emissions in the Ecological Footprint calculation, reductions in the 27 

Ecological Footprint mirror decreases in CO2 emissions, but this should by no means be taken 28 

as anything other than incidental event and certainly not a general rule. Finally, it can be 29 

argued that all three alternative scenarios are more sustainable than the BAU case. However, 30 

it seems clear that Scenario 3, the combination of a more energy efficient kiln process together 31 

with the increased use of solid recovered fuel, is more sustainable, decreasing most significantly 32 

the impact that cement production has on the environment.   33 
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Another important point when assessing sustainability and changes in the sustainability of 1 

manufacturing processes is the need to use multiple and reasonably independent metrics rather 2 

than combining everything into a single quantity.  There are two reasons for this: (1) different 3 

metrics have different sensitivity to specific changes on the process, and (2) not all changes map 4 

with equal fidelity into different metrics.  In our case for cement manufacturing, the ecological 5 

footprint directly translates the changes in the manufacturing process into a land area, and the 6 

signal from this metric is clear.  On the other hand, emergy is dominated by the emergy in the 7 

marl which came from the sun long ago.  Hence we see little change with our modifications of 8 

the manufacturing process. This does not mean that emergy is unimportant, rather it means that it 9 

is insensitive to these specific set of changes. It also illustrates the principle that less 10 

sustainability with respect to any single metric usually implies that the process is less sustainable 11 

with respect to the other metrics, even though for some metrics the signal may not observable 12 

because it does not rise above the uncertainty. 13 

Lastly, the sustainability improvements that were explored in the present work are based 14 

on accessible modifications to an existing cement plant.  As mentioned, much more could be 15 

achieved with the consideration of novel or revolutionary technologies, albeit at substantially 16 

higher capital investment.  It is important, however, that the methodology being present here 17 

for the quantitative assessment of sustainability improvements is applicable regardless of the 18 

technology being used.  It is, therefore, a generic and scientifically based assessment method 19 

useful beyond the current specific case. 20 

Acknowledgements 21 

The authors wish to thank Drs. Wesley Ingwersen, Xin “Cissy” Ma, Matthew Hopton, 22 

and Leisha Vance of the U.S. Environmental Protection Agency, Office of Research and 23 

Development for useful discussions and assistance with the Emergy and Ecological Footprint 24 

calculations. Heriberto Cabezas is grateful for the Embassy Science Fellowship with the U.S. 25 

Embassy in Zagreb, Croatia under which the present work was conducted. 26 

References 27 

Andrić, I., Jamali-Zghal, N., Santarelli, M., Lacarrière, B., Le Corre, O., 2014. Environmental 28 

performance assessment of retrofitting existing coal fired power plants to co-firing with 29 

biomass: carbon footprint and emergy approach. J. Clean. Prod. doi: 30 

10.1016/j.jclepro.2014.08.019 31 



13 

 

Benhelal, E., Zahedi, G., Shamsaei, E., Bahadori, A., 2013. Global strategies and potentials to 1 

curb CO2 emissions in cement industry. J. Clean. Prod. 51, 142-161. 2 

Brunke, J.-C., Blesl, M., 2014. Energy conservation measures for the German cement industry 3 

and their ability to compensate for rising energy-related production costs. J. Clean. Prod. 4 

82, 94-111. 5 

Cagiao, J., Gómez, B., Doménech, J.L., Mainar, S.G., Lanza, H.G., 2011. Calculation of the 6 

corporate carbon footprint of the cement industry by the application of MC3 methodology. 7 

Ecol. Indic. 11, 1526-1540. 8 

Chen, W., Hong, J., Xu, C., 2014. Pollutants generated by cement production in China, their 9 

impacts, and the potential for environmental improvement. J. Clean. Prod. doi: 10 

10.1016/j.jclepro.2014.04.048 11 

Čuček, L., Klemeš, J.J., Varbanov, P.S., Kravanja, Z., 2012a. Total footprints-based multi-12 

criteria optimisation of regional biomass energy supply chains. Energy 44, 135-145. 13 

Čuček, L., Klemeš, J.J., Kravanja, Z., 2012b. A review of footprint analysis tools for 14 

monitoring impacts on sustainability. J. Clean. Prod. 34, 9-20. 15 

Ekincioglu, O., Gurgun, A.P., Engin, Y., Tarhan, M., Kumbaracibasi, S., 2013. Approaches 16 

for sustainable cement production – A case study from Turkey. Energy Build. 66, 136-142. 17 

Ewing, B., Reed, A., Galli, A., Kitzes, J., Wackernagel, M., 2010. Calculation Methodology 18 

for the National Footprint Accounts. 2010 Edition. Global Footprint Network, Oakland, 19 

CA. 20 

Galli, A., 2015. On the rationale and policy usefulness of ecological footprint accounting: the 21 

case of Morocco. Environ. Sci. Policy 48, 210-224. 22 

Global Footprint Network - GFN. National Footprint Accounts 2008 Partner Edition with 23 

2005 data. Global Footprint Network: Oakland, CA, 2008.  24 

Global Footprint Network - GFN, www.footprintnetwork.org/en/index.php/GFN/, accessed 25 

February 24, 2015. 26 

Hasanbeigi, A., Menke, C., Price, L., 2010. The CO2 abatement cost curve for the Thailand 27 

cement industry. J. Clean. Prod. 18, 1509-1518. 28 

Hopton, M.E., White, D., 2012. A simplified ecological footprint at a regional scale. J. 29 

Environ. Manag. 111, 279-286. 30 

Huijbregts, M.A.J., Hellweg, S., Frischknecht, R., Hungerbühler, K., Hendriks, A.J., 2008. 31 

Ecological footprint accounting in the life cycle assessment of products. Ecol. Econ. 64, 32 

798-807. 33 

www.footprintnetwork.org/en/index.php/GFN/


14 

 

IEA (International Energy Agency) Cement Technology Roadmap 2009: Carbon emissions 1 

reductions up to 2050. http://www.iea.org/publications/freepublications/publication/ 2 

Cement_Roadmap.pdf, accessed February 24, 2015. 3 

IPCC, 2001. Good Practice Guidance and Uncertainty Management in National Greenhouse 4 

Gas Inventories. www.ipcc-nggip.iges.or.jp/public/gp/english/, accessed February 24, 5 

2015. 6 

IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working 7 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 8 

[Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. 9 

Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United 10 

Kingdom and New York, NY, USA, 1535 pp. 11 

IPCC Press Release, 2014/19/PR, 2014. http://www.ipcc.ch/pdf/ar5/pr_wg3/20140413 12 

_pr_pc_wg3_en.pdf, accessed February 24, 2015. 13 

Jamali-Zghal, N., Amponsah, N.Y., Lacarriere, B., Le Corre, O., Feidt, M., 2013. Carbon 14 

footprint and emergy combination for eco-environmental assessment of cleaner heat 15 

production. J. Clean. Prod. 47, 446-456. 16 

Klemeš, J.J., Varbanov, P.S., Huisingh, D., 2012. Recent cleaner production advances in 17 

process monitoring and optimization. J. Clean. Prod. 34, 1–8. 18 

Li, C., Nie, Z., Cui, S., Gong, X., Wang, Z., Meng, X., 2014. The life cycle inventory study of 19 

cement manufacture in China. J. Clean. Prod. 72, 204-211. 20 

Liu, G., Yang, Z., Chen, B., Zhang, J., Liu, X., Zhang, Y., Su M., Ulgiati S., 2014. Scenarios 21 

for sewage sludge reduction and reuse in clinker production towards regional ecoindustrial 22 

development: a comparative emergy-based assessment. J. Clean. Prod. doi: 23 

10.1016/j.jclepro.2014.09.003 24 

Marques, M., Neves-Silva, R., 2015. Decision support for energy savings and emissions 25 

trading in industry. J. Clean. Prod. 88, 105-115. 26 

Mikulčić, H., von Berg, E., Vujanović, M., Priesching, P., Tatschl, R., Duić, N., 2013a. 27 

Numerical analysis of cement calciner fuel efficiency and pollutant emissions. Clean. 28 

Techn. Environ. Policy 15, 489–499. 29 

Mikulčić, H., Vujanović, M., Duić, N., 2013b. Reducing the CO2 emissions in Croatian 30 

cement industry. Appl. Energy 101, 41-48. 31 

Mikulčić, H., Vujanović, M., Duić, N., 2015. Improving the Sustainability of Cement 32 

Production by Using Numerical Simulation of Limestone Thermal Degradation and 33 

Pulverized Coal Combustion in a Cement Calciner. J. Clean. Prod. 88, 262-271. 34 

http://www.iea.org/publications/freepublications/publication/%0bCement_Roadmap.pdf
http://www.iea.org/publications/freepublications/publication/%0bCement_Roadmap.pdf
file:///C:/Users/User/Documents/Posao/Journals/JCLEPRO/Paper%202%20-%202015/Final%20version%201/www.ipcc-nggip.iges.or.jp/public/gp/english/
http://www.ipcc.ch/pdf/ar5/pr_wg3/20140413%0b_pr_pc_wg3_en.pdf
http://www.ipcc.ch/pdf/ar5/pr_wg3/20140413%0b_pr_pc_wg3_en.pdf


15 

 

Mikulčić, H., von Berg, E., Vujanović, M., Duić, N., 2014. Numerical study of co-firing 1 

pulverized coal and biomass inside a cement calciner. Waste Manag. Res. 32, 661-69. 2 

Morrow, W.R, Hasanbeigi, A., Sathaye, J., Xu, T., 2014. Assessment of energy efficiency 3 

improvement and CO2 emission reduction potentials in India’s cement and iron & steel 4 

industries. J. Clean. Prod. 65, 131-141. 5 

Moya, J.A., Pardo, N., Mercier, A., 2011. The potential for improvements in energy efficiency 6 

and CO2 emissions in the EU27 cement industry and the relationship with the capital 7 

budgeting decision criteria. J. Clean. Prod. 19, 1207–1215. 8 

Nguyen, Q.A., Hens, L., 2013. Environmental performance of the cement industry in 9 

Vietnam: the influence of ISO 14001 certification. J. Clean. Prod. doi: 10 

10.1016/j.jclepro.2013.09.032 11 

Odum, H.T., Nilsson, P.O., 1996. Environmental accounting: emergy and environmental 12 

decision making. Wiley, New York.  13 

Oh, D.-Y., Noguchi, T., Kitagaki, R., Park, W.-J., 2014. CO2 emission reduction by reuse of 14 

building material waste in the Japanese cement industry. Renew. Sustain. Energy Rev.  38, 15 

796–810. 16 

Ostad-Ahmad-Ghorabi, M.J., Attari, M., 2013. Advancing environmental evaluation in 17 

cement industry in Iran. J. Clean. Prod. 41, 23-30. 18 

Pardo, N., Moya, J.A., Mercier, A., 2011. Prospective on the energy efficiency and CO2 19 

emissions in the EU cement industry. Energy 36, 3244–3254. 20 

Pulselli, R.M., Simoncini, E., Ridolfi, R., Bastianoni, S., 2008. Specific emergy of cement and 21 

concrete: An energy-based appraisal of building materials and their transport. Ecol. Indic. 22 

8, 647-56. 23 

Rugani, B., Huijbregts, M.A., Mutel, C., Bastianoni, S., Hellweg, S., 2011. Solar energy 24 

demand (SED) of commodity life cycles. Environ. Sci. Techn. 45, 5426-5433. 25 

Rugani, B., Vázquez-Rowe, I., Benedetto, G., Benetto, E., 2013. A comprehensive review of 26 

carbon footprint analysis as an extended environmental indicator in the wine sector. J. 27 

Clean. Prod. 54, 61-77. 28 

Swanepoel, J.A., Mathews, E.H., Vosloo. J., Liebenberg, L., 2014. Integrated energy 29 

optimisation for the cement industry: A case study perspective. Energy Convers. Manag. 30 

78, 765-775. 31 

Usón, A.A., López-Sabirón, A.M., Ferreira, G., Sastresa, E.L., 2013. Uses of alternative fuels 32 

and raw materials in the cement industry as sustainable waste management options. Renew. 33 

Sustain. Energy Rev. 23, 242-260. 34 



16 

 

Vance, L., Cabezas, H., Heckl, I., Bertok, B., Friedler, F., 2013. Synthesis of sustainable 1 

supply  chain by the p-graph framework. Ind. Eng. Chem. Res. 52, 266-274. 2 

Vance, L., Heckl, I., Bertok, B., Cabezas, H., Friedler, F., 2015. Designing sustainable energy 3 

supply chains by the p-graph method for minimal cost, environmental burden, energy 4 

resources input. J. Clean. Prod. doi: 10.1016/j.jclepro.2015.02.011 5 

Wackernagel, M., Rees, W., 1996. Our Ecological Footprint. New Society Publishers, 6 

Gabriola Island, BC and Stony Creek, CT. 7 

Wang, Y., Höller, S., Viebahn, P., Hao, Z., 2014. Integrated assessment of CO2 reduction 8 

technologies in China’s cement industry. Int. J. Greenh. Gas Control 20, 27-36. 9 

Wang, Y., Zhu, Q., Geng, Y., 2013. Trajectory and driving factors for GHG emissions in the 10 

Chinese cement industry. J. Clean. Prod. 53, 252-260. 11 

World Commission on Environment and Development (WCED). Our Common Future. 12 

Oxford University Press, Oxford. 1987. 13 

Worrell, E., Galitsky, C., 2008. Energy Efficiency Improvement and Cost Saving 14 

Opportunities for Cement Making, An ENERGY STAR
®
 Guide for Energy and Plant 15 

Managers. Lawrence Berkeley National Laboratory: Berkeley, CA (LBNL-54036-16 

Revision).  17 

Xu, J.-H., Fleiter, T., Fan, Y., Eichhammer, W., 2014. CO2 emissions reduction potential in 18 

China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050. 19 

Appl. Energy 130, 592–602. 20 

Xu, T., Galama, T., Sathaye, J., 2013. Reducing carbon footprint in cement material making: 21 

Characterizing costs of conserved energy and reduced carbon emissions. Sustain. Cities 22 

Soc. 9, 54-61. 23 

Zhang, B., Chen, G.Q., Yang, Q., Chen, Z.M., Chen, B., Li, Z., 2011. How to guide a 24 

sustainable industrial economy: Emergy account for resources input of Chinese industry. 25 

Procedia Environ. Sci. 5, 51-59. 26 

 27 

Table captions 28 

Table 1 Global cement production in 2012 (Oh et al., 2014). 29 

Table 2 Emergy calculation for the BAU scenario. 30 

Table 3 Emergy calculation for the three mitigation scenarios. 31 

Table 4 Calculation of the fuel masses according to the thermal energy need for three mitigation 32 

scenario. 33 

Table 5 CO2 emissions and Ecological Footprint calculation. 34 



Table 1  
Global cement production in 2012 (Oh et al., 2014). 

Country 

Production  

(million metric 

tonnes) 

Share in the  

world production 

China 2150  58.1% 

India  250 6.7% 

United States 74  2.0% 

Brazil  70  1.9% 

Iran 65  1.8% 

Vietnam 65 1.8% 

Turkey 60 1.6% 

Russian Federation 60 1.6% 

Japan 52 1.4% 

South Korea 49 1.3% 

Egypt 44 1.2% 

Saudi Arabia 43 1.2% 

Mexico 36 1.0% 

Germany 34 0.9% 

Thailand 33 0.9% 

Pakistan 32 0.9% 

Italy 32 0.9% 

Indonesia 31 0.8% 

Spain 20 0.5% 

Other (rounded) 500 13.5% 

World total (rounded) 3700 - 

 

 



Table 2 
Emergy calculation for the BAU scenario.* 

Cement plant technical data for BAU scenario 

 
Quantity Unit 

Unit Emergy 
Values 

Units & Details Emergy Calculation Units & Details 

MAIN DATA 

Clinker Production 3.15E+05 t 1.28E+13 seJ/kg (Switzerland) 4.02E+21 seJ 

Specific Thermal Energy 
Consumption 

3.67E+03 MJ/t clinker 
    

Cement Production 3.91E+05 t 1.07E+13 seJ/kg (Switzerland)  4.17E+21 seJ (Cement produced) 

Specific Electrical Energy 
Consumption 

9.03E+01 
kWh/t 
cement     

Total Electrical Energy 
Consumption 

3.82E+07 kWh 8.43E+11 seJ/kWh (Austria mix) 3.22E+19 seJ 

Electrical Energy per Ton of Clinker 121 kWh/t clinker 
    

INPUT 

Raw Materials for clinker production 

High grade marl 1.90E+05 t 7.61E+12 seJ/kg (Switzerland) 1.45E+21 seJ 

Low grade marl 3.18E+05 t 7.61E+12 seJ/kg (Switzerland) 2.42E+21 seJ 

Quartz sand 1.89E+03 t 1.13E+14 seJ/kg (subsoil) 2.14E+20 seJ 

Iron oxide 1.78E+03 t 1.06E+13 
seJ/kg (Iron, element mass ratio in Taconite minerals; 
{Fe2O3, Fe3+2Fe2+O4, and Fe2+CO3}; 0.1 g/g in ground) 

1.88E+19 seJ 

Fuels for clinker production 

Coal 2.16E+04 t 3.74E+12 seJ/kg (Austria Hard Supply Mix) 8.06E+19 seJ 

Petrol Coke 1.36E+04 t 6.57E+12 seJ/kg (Europe petroleum coke at refinery) 8.92E+19 seJ 

Heavy fuel oil 369 t 5.76E+12 seJ/kg (Europe regional storage) 2.13E+18 seJ 

Tyres 2.59E+03 t 3.39E+12 seJ/kg (Switzerland rubber municipal incineration) 8.79E+18 seJ 

Waste Oil 1.29E+03 t 9.07E+12 seJ/kg (Europe lubricating oil at plant) 1.18E+19 seJ 

SRF 4.18E+03 t 9.45E+11 
seJ/kg (Europe 60% paper @ 3.11E5 SEJ/kg + Switzerland 
40% mixed platics @ 1/2[2.46E5+1.69E6]) 

3.95E+18 seJ 

Mineral components for cement production 



Chemical Gypsum 1.33E+04 t 1.65E+14 seJ/kg  (Switzerland, mineral at mine) 2.19E+21 seJ 

Blast Furnace Slag 2.34E+04 t 5.98E+12 seJ/kg  (Switzerland, blast funance cement plant) 1.40E+20 seJ 

Limestone 2.51E+04 t 9.09E+12 seJ/kg (Switzerland milled loose at plant) 2.29E+20 seJ 

Fly ash 4.87E+04 t 4.66E+11 seJ/kg (Austria disposal of hard coal ash to landfill) 2.27E+19 seJ 

Fuel for drying in cement production 

Light oil 459 t 5.88E+12 seJ/kg (Europe light fuel oil at regional storage) 2.70E+18 seJ 

Air mass 

Air for burning 5.27E+05 t 2.58E+07 seJ/kg 1.36E+16 seJ 

Air excess at preheater outles 6.41E+05 t 2.58E+07 seJ/kg 1.65E+16 seJ 

Water mass 

Water for cooling of hot gases 
before main filter 

4.42E+04 t 1.22E+09 seJ/kg (Europe completely softened at plant) 5.40E+16 seJ 

Water for equipment cooling 2.50E+03 t 1.22E+09 seJ/kg (Europe completely softened at plant) 3.05E+15 seJ 

 
6.85E+21 seJ (Sum of input) 

OUTPUT 

Air mass 

Air at chimney 1.12E+06 t 1.29E+09 seJ/kg 1.44E+18 seJ 

Absolute Gross CO2 Emissions 2.78E+05 t 6.26E+07 seJ/kg  1.74E+16 seJ 

Thermal loses 

Radiation loses 173 MJ/t clinker 9.90E+11 seJ/kg clinker 3.12E+20 seJ 

 
3.14E+20 seJ (Sum of output) 

 

* To simplify the formatting of tables, in Tables 2-5 the E is used as a replacement for 10, meaning that if as an example a value of 2.58E+07 is 

given in the table, the actual value is 72.58 10 . 

 



Table 3 
Emergy calculation for the three mitigation scenarios. 

 

 

Scenario 1 Scenario 2 Scenario 3  Scenario 1 Scenario 2 Scenario 3 

Quantity Unit Emergy Calculation (seJ) 

MAIN DATA 

Clinker Production 3.15E+05 t 4.02E+21 

Specific Thermal Energy Consumption 3.00E+03 3.67E+03 3.00E+03 MJ/t clinker 
 

Cement Production 3.91E+05 t 4.18E+21 (Cement produced) 

Specific Electrical Energy Consumption 90.3 kWh/t cement 
 

Total Electrical Energy Consumption 3.82E+07 kWh 3.22E+19 

Electrical Energy per Ton of Clinker 121 kWh/t clinker 
 

INPUT 

Raw Materials for clinker production 

High grade marl 1.90E+05 t 1.45E+21 

Low grade marl 3.18E+05 t 2.42E+21 

Quartz sand 1.89E+03 t 2.14E+20 

Iron oxide 1.78 E+03 t 1.88E+19 

Fuels for clinker production 

Coal 1.68E+04 1.79E+04 1.46 E+04 t 6.27E+19 6.69E+19 5.45E+19 

Petrol Coke 1.06E+04 1.13E+04 9.19E+03 t 6.94E+19 7.41E+19 6.04E+19 

Heavy fuel oil 369 t 2.13E+18 

Tyres 2.59E+03 t 8.79E+18 

Waste Oil 1.29E+03 t 1.18E+19 

SRF 4.18E+03 1.37E+04 9.90E+03 t 3.95E+18 1.30E+19 9.36E+18 

Mineral components for cement production 

Chemical Gypsum 1.33E+04 t 2.19E+21 

Blast Furnace Slag 2.34E+04 t 1.40E+20 



Limestone 2.51E+04 t 2.29E+20 

Fly ash 4.87E+04 t 2.27E+19 

Fuel for drying in cement production 

Light oil 459 t 2.70E+18 

Air mass 

Air for burning 5.27E+05 t 1.36E+16 

Air excess at preheater outles 6.41E+05 t 1.65E+16 

Water mass 

Water for cooling of hot gases before 
main filter 

4.42E+04 t 5.40E+16 

Water for equipment cooling 2.50E+03 t 3.05E+15 

 
6.82E+21 (Sum of input) 6.82E+21 (Sum of input) 6.80E+21 (Sum of input) 

OUTPUT 

Air mass 

Air at chimney 1.12E+06 t 1.44E+18 

Absolute Gross CO2 Emissions 2.56E+05 2.67E+05 2.42E+05 t 1.60E+16 1.67E+16 1.52E+16 

Thermal loses 

Radiation loses 173 MJ/t clinker 3.12E+20 

 
3.14E+20 (Sum of output) 

 

 



Table 4 
Calculation of the fuel masses according to the thermal energy need for three mitigation 

scenario. 

 

 
BAU Scenario Scenario 1 Scenario 2 Scenario 3 

Clinker production (t/y) 3.15E+05 

Specific Thermal Energy Consumption (GJ/t) 3.67 3.00 3.67 3.00 

Thermal energy needed (GJ/y) 1.16E+06 9.46E+05 1.16E+06 9.46E+05 

Petrol coke - NCV (GJ/t) 31.8 

Petrol coke - used (t/y) 1.36E+04 1.056E+04 1.13E+04 9.18E+03 

Thermal energy produced from Petrol coke 
(GJ/y) 

4.32E+05 3.36E+05 3.58E+05 2.92E+05 

Coal - NCV (GJ/t) 24.3 

Coal - used (t/y) 2.16E+04 1.68E+04 1.79E+04 1.46E+04 

Thermal energy produced from Coal (GJ/y) 5.25E+05 4.08E+05 4.36E+05 3.55E+05 

Heavy fuel oil - NCV (GJ/t) 40.8 

Heavy fuel oil - used (t/y) 369 

Thermal energy produced from Heavy fuel oil 
(GJ/y) 

1.51E+04 

Tyres - NCV (GJ/t) 26.4 

Tyres - used (t/y) 2.59E+03 

Thermal energy produced from Tyres (GJ/y) 6.84E+04 

Waste Oil - NCV (GJ/t) 35.9 

Waste Oil - used (t/y) 1.29E+03 

Thermal energy produced from Waste oil (GJ/y) 4.66E+04 

SRF - NCV (GJ/t) 16.9 

SRF - used (t/y) 4.18E+03 1.37E+04 9.90E+03 

Thermal energy produced from SRF (GJ/y) 7.11E+04 2.33E+05 1.68E+05 

 



Table 5 
CO2 emissions and Ecological Footprint calculation. 

 

 
BAU Scenario Scenario 1 Scenario 2 Scenario 3 

Petrol coke - used (t/y) 1.36E+04 1.06E+04 1.13E+04 9.19E+03 

Petrol coke - NCV (GJ/t) 33.5 

Emission factor (kgCO2/GJ) 94.0 

Oxidation factor 1.00 

CO2 Emissions Petrol coke - calculated (kg/y) 4.27E+07 3.33E+07 3.55E+07 2.89E+07 

Coal - used (t/y) 2.15E+04 1.68E+04 1.79E+04 1.46E+04 

Coal - NCV (GJ/t) 24.3 

Emission factor (kgCO2/GJ) 9..3 

Oxidation factor 1.00 

CO2 Emissions Coal - calculated (kg/y) 5.16E+07 4.01E+07 4.28E+07 3.49E+07 

Heavy fuel oil - used (t/y) 369 

Heavy fuel oil - NCV (GJ/t) 40.8 

Emission factor (kgCO2/GJ) 77.4 

Oxidation factor 1.00 

CO2 Emissions Heavy fuel oil - calculated (kg/y) 1.17E+06 

Tyres - used (t/y) 2.59E+03 

Tyres - NCV (GJ/t) 35.9 

Emission factor (kgCO2/GJ) 85.0 

Oxidation factor 1.00 

CO2 Emissions Tyres - calculated (kg/y) 7.92E+06 

Waste Oil - used (t/y) 1.29E+03 

Waste Oil - NCV (GJ/t) 35.9 

Emission factor (kgCO2/GJ) 80.0 

Oxidation factor 1.00 

CO2 Emissions Waste Oil - calculated (kg/y) 3.73E+06 



SRF - used (t/y) 4.18E+03 4.18E+03 1.37E+04 9.90E+03 

SRF - NCV (GJ/t) 16.9 

Emission factor (kgCO2/GJ) 95.7 

Biogenic fraction (%) 60.0 

Oxidation factor 1.00 

Fossil Fraction Emission factor (kgCO2/GJ) 37.4 

CO2 Emissions SRF - calculated (kg/y) 2.66E+06 2.66E+06 8.71E+06 6.29E+06 

Total Fuel CO2 Emissions - calculated (kg/y) 1.10E+08 8.89E+07 9.99E+07 8.29E+07 

Process Plant CO2 Emissions - given from plant (kg/y) 1.67E+08 

Annual Plant CO2 Emissions (kg) [PC] 2.78E+08 2.56E+08 2.67E+08 2.50E+08 

Fraction of CO2 sequestered by the ocean [SOcean] 0.28 

Average global yield (kg/gHa) [YC] 3.59 

Equivalence factor [EQF] 1.26 

Ecological Footprint (gHa) [EFC] 7.01E+04 6.47E+04 6.75E+04 6.32E+04 

 




