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As a continuation of our previous research [J. Mićić, J. Pečarić and Y. Seo, Con-
verses of Jensen’s operator inequality, accepted to Oper. Matrices 4 (2010), 3,
385–403], we discuss order among quasi-arithmetic means of positive operators
with fields of positive linear mappings (φt)t∈T such that

∫
T

φt(1) dµ(t) = k1 for
some positive scalar k.
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1. INTRODUCTION

We recall some definitions. Let A be a C∗-algebra of operators on a
Hilbert space H and B(H) be the C∗-algebra of all bounded linear operators
on H. A real valued function f is said to be operator convex on an interval I
in R if

f (λA+ (1− λ)B) ≤ λf(A) + (1− λf(B)
holds for each λ ∈ [0, 1] and every pair of self-adjoint operators A,B in A with
spectra in I. A real valued function f is said to be operator monotone on I if

A ≤ B implies f(A) ≤ f(B)

for every pair of self-adjoint operators A,B in A with spectra in I.
Let T be a locally compact Hausdorff space. We say that a field (xt)t∈T

of operators in A is continuous if the function t 7→ xt is norm continuous on T .
If in addition µ is a bounded Radon measure on T and the function t 7→ ‖xt‖
is integrable, then we can form the Bochner integral

∫
T xt dµ(t), which is the

unique element in the multiplier algebra

M(A) = {a ∈ B(H) | ∀x ∈ A : ax+ xa ∈ A}
such that

(1) ϕ

(∫
T
xt dµ(t)

)
=

∫
T
ϕ(xt) dµ(t)
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for every linear functional ϕ in the norm dual A∗.
Let A and B be unital C∗-algebras on Hilbert spaces H and K. Assume

furthermore that there is a field (φt)t∈T of positive linear maps φt : A → B.
We say that such a field is continuous if the function t 7→ φt(x) is continuous
for every x ∈ A.

We denote by Pk[A,B] the set of all fields (φt)t∈T of positive linear maps
φt : A → B, such that the field t→ φt(1) is integrable with

∫
T φt(1) dµ(t) = k1

for some positive scalar k.
Recently, J. Mićić, J. Pečarić and Y. Seo in [6] gave a general formula-

tion of Jensen’s operator inequality and its converses shown in the next two
theorems:

Theorem A ([6, Theorem 2.1]). Let A and B be unital C∗-algebras on
a Hilbert spaces H and K. Let (xt)t∈T be a bounded continuous field of self-
adjoint elements in A with spectra in an interval I and (φt)t∈T ∈ Pk[A,B] for
some positive scalar k. If f : I → R is an operator convex function defined on
I, then the inequality

(2) f

(
1
k

∫
T
φt(xt) dµ(t)

)
≤ 1
k

∫
T
φt(f(xt)) dµ(t)

holds. In the dual case (when f is operator concave) the opposite inequality
holds in (2).

Theorem B ([6, Theorem 2.2]). Let A and B be unital C∗-algebras on
a Hilbert spaces H and K. Let (xt)t∈T be a bounded continuous field of self-
adjoint elements in A with spectra in [m,M ] and (φt)t∈T ∈ Pk[A,B] for some
positive scalar k. Let f : [m,M ] → R, g : [km, kM ] → R and F : U×V → R be
functions such that (kf) ([m,M ]) ⊂ U , g ([km, kM ]) ⊂ V and F is bounded.
Let {conx.} (resp. {conc.}) denotes the set of operator convex (resp. operator
concave) functions defined on [m,M ]. Let f : [m,M ] → R, g : [km, kM ] → R
and F : U × V → R be functions such that (kf) ([m,M ]) ⊂ U, g ([km, kM ]) ⊂
V and F is bounded. If F is operator monotone in the first variable, then

inf
km≤z≤kM

F

[
k · h1

(
1
k
z

)
, g(z)

]
1 ≤(3)

≤ F

[∫
T
φt (f(xt)) dµ(t), g

(∫
T
φt(xt)dµ(t)

)]
≤

≤ sup
km≤z≤kM

F

[
k · h2

(
1
k
z

)
, g(z)

]
1

holds for every operator convex function h1 on [m,M ] such that h1 ≤ f and
for every operator concave function h2 on [m,M ] such that h2 ≥ f .
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The goal of this paper is to examine the order among the following ge-
neralized quasi-arithmetic operator means

(4) Mϕ(x, φ) = ϕ−1

(∫
T φt (ϕ(xt)) dµ(t)

k

)
,

under these conditions: (xt)t∈T is a field of positive operators in B(H) with
spectra in [m,M ] for some scalars 0 < m < M , (φt)t∈T ∈ Pk[B(H), B(K)] for
some positive scalar k and ϕ ∈ C[m,M ] is a strictly monotone function.

We denote Mϕ(x, φ) shortly with Mϕ. Also, we use the notation

ϕm = min{ϕ(m), ϕ(M)}, ϕM = max{ϕ(m), ϕ(M)}
for a strictly monotone function ϕ ∈ C[m,M ].

Since m1 ≤ xt ≤ M1 for every t ∈ T and ϕ is monotone, then ϕm1 ≤
ϕ (xt) ≤ ϕM1. Applying a positive linear map φt and integrating, it fol-
lows that

ϕmk1 ≤
∫
T
φt (ϕ(xt)) dµ(t) ≤ ϕMk1,

since
∫
T φt(1) dµ(t) = k1. Then the spectrum of

∫
T φt (ϕ(xt)) dµ(t)

/
k is a

subset of [ϕm, ϕM ]. Hence, the mean Mϕ is well-defined with (4).
As a special case of (4), we may consider the power operator mean, see

e.g. [6],

(5) Mr(x, φ) =


(∫

T φt (x
r
t ) dµ(t)
k

)1/r

, r 6= 0,

exp
(

1
k

∫
T
φt (lnxt) dµ(t)

)
, r = 0.

2. INEQUALITIES INVOLVING THE ORDER
OF QUASI-ARITHMETIC MEANS

In this section we study the monotonicity of quasi-arithmetic means.

Theorem 2.1. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4). Let ψ,ϕ ∈ C[m,M ] be strictly monotone functions.
If one of the following conditions is satisfied:

(i) ψ ◦ ϕ−1 is operator convex and ψ−1 is operator monotone,
(i′) ψ ◦ ϕ−1 is operator concave and −ψ−1 is operator monotone,

then

(6) Mϕ ≤Mψ.

If one of the following conditions is satisfied:
(ii) ψ ◦ ϕ−1 is operator concave and ψ−1 is operator monotone,
(ii′) ψ ◦ ϕ−1 is operator convex and −ψ−1 is operator monotone,
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then the reverse inequality is valid in (6).

Proof. (i): If we put f = ψ ◦ ϕ−1 and I = [ϕm, ϕM ] in Theorem A, we
obtain

(7) ψ ◦ ϕ−1

(
1
k

∫
T
φt (ϕ(xt)) dµ(t)

)
≤ 1
k

∫
T
φt (ψ(xt)) dµ(t).

Since ψ−1 is operator monotone, it follows that

ϕ−1

(
1
k

∫
T
φt (ϕ(xt)) dµ(t)

)
≤ ψ−1

(
1
k

∫
T
φt (ψ(xt)) dµ(t)

)
,

which is the desired inequality (6).
(i′): Since ψ ◦ ϕ−1 is operator concave, we obtain the reverse inequality

in (7). Now, applying an operator monotone function −ψ−1, we obtain (7) in
this case too.

In cases (ii) and (ii′), the proof is essentially the same as in previous
cases. �

We can give the following generalization of the previous theorem.

Corollary 2.2. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4). Let ψ,ϕ ∈ C[m,M ] be strictly monotone functions and
F : [m,M ]× [m,M ] → R be a bounded and operator monotone function in its
first variable, such that F (z, z) = C for all z ∈ [m,M ].
If one of the following conditions is satisfied:

(i) ψ ◦ ϕ−1 is operator convex and ψ−1 is operator monotone,
(i′) ψ ◦ ϕ−1 is operator concave and −ψ−1 is operator monotone,

then

(8) F [Mψ,Mϕ] ≥ C1.

If one of the following conditions is satisfied:
(ii) ψ ◦ ϕ−1 is operator concave and ψ−1 is operator monotone,
(ii′) ψ ◦ ϕ−1 is operator convex and −ψ−1 is operator monotone,

then the reverse inequality is valid in (8).

Proof. Suppose (i) or (i′). Then by Theorem 2.1 we have

Mϕ ≤Mψ.

Using assumptions about function F , it follows

F [Mψ,Mϕ] ≥ F [Mϕ,Mϕ] ≥ inf
m≤z≤M

F (z, z)1 = C1.

In the remaining cases the proof is essentially the same as in previous cases. �
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Theorem 2.3. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ψ,ϕ ∈ C[m,M ] be strictly monotone functions.

(i) If ϕ−1 is operator convex and ψ−1 is operator concave, then

(9) Mϕ ≤M1 ≤Mψ.

(ii) If ϕ−1 is operator concave and ψ−1 is operator convex then the reverse
inequality is valid in (9).

Proof. We prove only the case (i): Using Theorem A for a operator
convex function ϕ−1 on [ϕm, ϕM ], we have

Mϕ = ϕ−1

(
1
k

∫
T
φt (ϕ(xt)) dµ(t)

)
≤ 1
k

∫
T
φt (xt) dµ(t) = M1,

which gives LHS of (9). Similarly, since ψ−1 is operator concave on I =
[ψm, ψM ], we have

M1 =
1
k

∫
T
φt (xt) dµ(t) ≤ ψ−1

(
1
k

∫
T
φt (ψ(xt)) dµ(t)

)
= Mψ,

which gives RHS of (9). �

Theorem 2.4. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ψ,ϕ ∈ C[m,M ] be strictly monotone functions.

(i) If ϕ = Aψ +B, where A,B are real numbers, then Mϕ = Mψ.
(ii) If ψ ◦ ϕ−1 is an operator convex function and

Mϕ = Mψ for all (xt)t∈T and (φt)t∈T ,

then ϕ = Aψ +B for some real numbers A and B.

Proof. The case (i) is obvious.
(ii) Let

ϕ−1

(
1
k

∫
T
φt (ϕ(xt)) dµ(t)

)
= ψ−1

(
1
k

∫
T
φt (ψ(xt)) dµ(t)

)
for all (xt)t∈T and (φt)t∈T . Setting yt = ϕ(xt) ∈ B(H), ϕm1 ≤ yt ≤ ϕM1, we
obtain

(10) ψ ◦ ϕ−1

(∫
T

1
k
φt (yt) dµ(t)

)
=

∫
T

1
k
φt

(
ψ ◦ ϕ−1(yt)

)
dµ(t)

for all (yt)t∈T and (φt)t∈T . As in [4, the proof of Theorem 2.1] we consider
C∗-algebra CB(T,B(H)) of bounded continuous functions on T with values
in B(H) by applying the point-wise operations and the norm ‖(yt)t∈T ‖ =
supt∈T ‖yt‖. Also, f((yt)t∈T ) = (f(yt))t∈T . Since the integral is an element
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in the multiplier algebra M(B(K)) = B(K), we can consider the mapping
π : CB(T,B(H)) → B(K) defined by

π ((yt)t∈T ) =
1
k

∫
T
φt(yt) dµ(t),

and obviously that it is a unital positive linear map. Setting y = (yt)t∈T ∈
CB(T,B(H)) and f = ψ ◦ ϕ−1 we get from (10)

f(π(y)) = f (π ((yt)t∈T )) = π ((f(yt))t∈T ) = π
(
f
(
(yt)t∈T

))
= π(f(y)).

M.D. Choi states in [2, Theorem 2.5] that a Schwarz inequality f(Φ(y)) ≤
Φ(f(y)) may became an equality for all self-adjoint y in the extraordinary
cases: f is affine or Φ is homomorphism. In the case (10), this means that
f = ψ ◦ ϕ−1 is affine, i.e., ψ ◦ ϕ−1(u) = Au+B for some real numbers A and
B, which gives the desired connection: ψ(v) = Aϕ(v) +B. �

There are many results about operator monotone or operator convex
functions. E.g., using [3, Section 1.2], [1, Chapter V], we can obtain the fol-
lowing corollary.

Corollary 2.5. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ϕ, ψ be continuous strictly monotone functions from
[0,∞) into itself.
If one of the following conditions is satisfied:

(i) ψ ◦ ϕ−1 and ψ−1 are operator monotone,
(i′) ϕ ◦ ψ−1 is operator convex, ϕ ◦ ψ−1(0) = 0 and ψ−1 is operator

monotone,
then

Mψ ≤M1 ≤Mϕ.

Specially, if one of the following conditions is satisfied:
(ii) ψ−1 is operator monotone,
(ii′) ψ−1 is operator convex, ϕ(0) = 0,

then

M1 ≤Mψ.

Proof. (i): We use the statement: a bounded below function f ∈ C([α,∞))
is operator monotone iff f is operator concave and we apply Theorem 2.1(ii).

(i′): We use the statement: if a function f : [0,∞) → [0,∞) such that
f(0)=0 is operator convex, then f−1 is operator monotone and Theorem 2.1(ii).

(ii) or (ii′): We put that ϕ is an affine function in (i) or (i′), respec-
tively. �



7 Order among quasi-arithmetic means 77

Example 2.6. If we put ϕ(t) = tr, ψ(t) = ts or ϕ(t) = ts, ψ(t) = tr in
Theorem 2.1 and Theorem 2.3, then we obtain (cf. [5, Theorem 11], [6, Re-
mark 4.4])

Mr(x, φ) ≤Ms(x, φ)

for either r ≤ s, r 6∈ (−1, 1), s 6∈ (−1, 1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤ −1 ≤ s ≤
−1/2.

3. COMPLEMENTARY INEQUALITIES

In this section we study inequalities complementary to the order of quasi-
arithmetic means.

First, we will give a complementary result to (i) or (i)′ of Theorem 2.1
under the assumption that ψ ◦ϕ−1 is only convex or concave, respectively. In
the following theorem we give a general result.

Theorem 3.1. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4). Let ψ,ϕ ∈ C[m,M ] be strictly monotone functions and
F : [m,M ]× [m,M ] → R be a bounded and operator monotone function in its
first variable.
If one of the following conditions is satisfied:

(i) ψ ◦ ϕ−1 is convex and ψ−1 is operator monotone,
(i′) ψ ◦ ϕ−1 is concave and −ψ−1 is operator monotone,

then

F [Mψ,Mϕ] ≤(11)

≤ sup
0≤θ≤1

F
[
ψ−1 (θψ(M) + (1− θ)ψ(m)) , ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

]
1.

If one of the following conditions is satisfied:
(ii) ψ ◦ ϕ−1 is concave and ψ−1 is operator monotone,
(ii′) ψ ◦ ϕ−1 is convex and −ψ−1 is operator monotone,

then the opposite inequality is valid in (11) with inf instead of sup.

Proof. We prove only the case (i): Since the inequality

f(z) ≤ f(M)− f(m)
M −m

(z −m) + f(m), z ∈ [m,M ],

holds for any convex function f ∈ C[m,M ], then we have that inequality

f(ϕ(z)) ≤ f(ϕM )− f(ϕm)
ϕM − ϕm

(ϕ(z)− ϕm) + f(ϕm), z ∈ [m,M ],
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holds for any convex function f ∈ C[ϕm, ϕM ]. Then for a convex function
ψ ◦ ϕ−1 ∈ C[ϕm, ϕM ], we obtain

ψ(z) ≤ ψ(ϕ−1(ϕM ))− ψ(ϕ−1(ϕm))
ϕM − ϕm

(ϕ(z)−ϕm)+ψ(ϕ−1(ϕm)), z ∈ [m,M ].

Thus, using the functional calculus,

ψ(xt) ≤
ψ(ϕ−1(ϕM ))− ψ(ϕ−1(ϕm))

ϕM − ϕm
(ϕ(xt)− ϕm) + ψ(ϕ−1(ϕm)), t ∈ T.

Applying the positive linear map 1
kφt and integrating, we obtain∫

T

1
k
φt (ψ(xt)) dµ(t) ≤

≤ ψ(M)− ψ(m)
ϕ(M)− ϕ(m)

(∫
T

1
k
φt (ϕ(xt)) dµ(t)− ϕm1

)
+ ψ(ϕ−1(ϕm))1.

Then, applying the operator monotone function ψ−1, it follows

Mψ ≤ ψ−1

(
ψ(M)− ψ(m)
ϕ(M)− ϕ(m)

(ϕ(Mϕ)− ϕm1) + ψ(ϕ−1(ϕm))1
)
.

Finally, operator monotonicity of F (· , v) give

F [Mψ,Mϕ] ≤

≤F
[
ψ−1

(
ψ(M)− ψ(m)
ϕ(M)− ϕ(m)

(ϕ(Mϕ)−ϕm1)+ψ(ϕ−1(ϕm))1
)
, ϕ−1 (ϕ(Mϕ))

]
≤

≤ sup
ϕm≤z≤ϕM

F

[
ψ−1

(
ψ(M)− ψ(m)
ϕ(M)− ϕ(m)

(z − ϕm) + ψ(ϕ−1(ϕm))
)
, ϕ−1 (z)

]
1 =

= sup
0≤θ≤1

F
[
ψ−1 (θψ(M) + (1− θ)ψ(m)) , ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

]
1,

which is the desired inequality (11). �

Remark 3.2. We can obtain similar inequalities as in Theorem 3.1 and
Corollary 3.3 when F : [m,M ] × [m,M ] → R is a bounded and operator
monotone function in its second variable.

It is particularly interesting to observe difference and ratio type inequa-
lities when the function F in Theorem 3.1 has the form F (u, v) = u − v and
F (u, v) = v−1/2uv−1/2 (v > 0). In these cases we have a generalization of [7,
Theorem 3.5 and Theorem 4.4].

Corollary 3.3. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4). Let ψ,ϕ ∈ C[m,M ] be strictly monotone functions and
let one of the following conditions is satisfied:

(i) ψ ◦ ϕ−1 be convex (resp. concave) and ψ−1 is operator monotone,



9 Order among quasi-arithmetic means 79

(i′) ψ ◦ ϕ−1 be concave (resp. convex) and −ψ−1 is operator monotone.
Then

Mψ≤Mϕ+ max
0≤θ≤1

{
ψ−1 (θψ(M)+(1− θ)ψ(m))−ϕ−1 (θϕ(M)+(1− θ)ϕ(m))

}
(
resp.

Mψ≥Mϕ + min
0≤θ≤1

{
ψ−1(θψ(M)+(1−θ)ψ(m))− ϕ−1(θϕ(M)+(1−θ)ϕ(m))

} )
.

If in addition ϕ > 0 on [m,M ], then

Mψ ≤ max
0≤θ≤1

{
ψ−1 (θψ(M) + (1− θ)ψ(m))
ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

}
Mϕ.

(
resp. Mψ ≥ min

0≤θ≤1

{
ψ−1 (θψ(M) + (1− θ)ψ(m))
ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

}
Mϕ

)
.

We will give a complementary result to (i) or (i)′ of Theorem 2.1 under
the assumption that ψ ◦ ϕ−1 is operator convex and ψ−1 is not operator
monotone. In the following theorem we give a general result.

Theorem 3.4. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4). Let ψ,ϕ ∈ C[m,M ] be strictly monotone functions and
F : [m,M ]× [m,M ] → R be a bounded and operator monotone function in its
first variable.
If one of the following conditions is satisfied:

(i) ψ ◦ ϕ−1 is operator convex and ψ−1 is increasing convex,
(i′) ψ ◦ ϕ−1 is operator concave and ψ−1 is decreasing convex,

then

(12) F [Mϕ,Mψ] ≤ sup
0≤θ≤1

F [θM + (1− θ)m,ψ−1(θψ(M) + (1− θ)ψ(m))]1.

If one of the following conditions is satisfied:
(ii) ψ ◦ ϕ−1 is operator convex and ψ−1 is decreasing concave,
(ii′) ψ ◦ ϕ−1 is operator concave and ψ−1 is increasing concave,

then the opposite inequality is valid in (12) with inf instead of sup.

Proof. Let ψ ◦ ϕ−1 be operator convex. By using Theorem A, we have
(13)

ψ(Mϕ) = ψ ◦ ϕ−1

(
1
k

∫
T
φt (ϕ(xt)) dµ(t)

)
≤ 1
k

∫
T
φt (ψ(xt)) dµ(t) = ψ(Mψ).
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(i): Since ψ−1 is increasing, then ψ(m)1 ≤ ψ(Mϕ) ≤ ψ(M)1, and since
ψ−1 is also convex we have

Mϕ = ψ−1(ψ(Mϕ))

≤ M −m

ψ(M)− ψ(m)
(ψ(Mϕ)− ψ(m)) +m by convexity of ψ−1

≤ M −m

ψ(M)− ψ(m)
(ψ(Mψ)− ψ(m)) +m by increase of ψ and (13).

Now, operator monotonicity of F (· , v) give

F [Mϕ,Mψ] ≤ F

[
M −m

ψ(M)− ψ(m)
(ψ(Mψ)− ψ(m)) +m, ψ−1 (ψ(Mψ))

]
≤ sup

ψ(m)≤z≤ψ(M)
F

[
M −m

ψ(M)− ψ(m)
(z − ψ(m)) +m, ψ−1 (z)

]
1

= sup
0≤θ≤1

F
[
θM + (1− θ)m, ψ−1 (θψ(M) + (1− θ)ψ(m))

]
1,

which is the desired inequality (12).
(ii): Since ψ−1 is decreasing, then ψ(M)1 ≤ ψ(Mϕ) ≤ ψ(M)1, and since

ψ−1 is also concave we have

Mϕ = ψ−1(ψ(Mϕ))

≥ m−M

ψ(m)− ψ(M)
(ψ(Mϕ)− ψ(m)) +m by concavity of ψ−1

≥ m−M

ψ(m)− ψ(M)
(ψ(Mψ)− ψ(m)) +m by decrease of ψ and (13).

Now, operator monotonicity of F (· , v) give

F [Mϕ,Mψ] ≥ F

[
M −m

ψ(M)− ψ(m)
(ψ(Mψ)− ψ(m)) +m,ψ−1 (ψ(Mψ))

]
≥ inf

ψ(M)≤z≤ψ(m)
F

[
M −m

ψ(M)− ψ(m)
(z − ψ(m)) +m,ψ−1 (z)

]
1

= inf
0≤θ≤1

F
[
θM + (1− θ)m,ψ−1 (θψ(M) + (1− θ)ψ(m))

]
1,

which is the desired inequality.
In cases (i′) and (ii′), the proof is essentially the same as in previous

cases. �

Remark 3.5. Similar to Corollary 3.3, we have the following results by
using Theorem 3.4.

Let one of the following conditions be satisfied:
(i) ψ ◦ ϕ−1 is operator convex and ψ−1 is increasing convex,
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(i′) ψ ◦ ϕ−1 is operator concave and ψ−1 is decreasing convex.
Then

Mϕ ≤Mψ + max
0≤θ≤1

{
θM + (1− θ)m− ψ−1 (θψ(M) + (1− θ)ψ(m))

}
1,

and if, additionally, ψ > 0 on [m,M ], then

Mϕ ≤ max
0≤θ≤1

{
θM + (1− θ)m

ψ−1 (θψ(M) + (1− θ)ψ(m))

}
Mψ.

Let one of the following conditions be satisfied:
(ii) ψ ◦ ϕ−1 is operator convex and ψ−1 is decreasing concave,
(ii′) ψ ◦ ϕ−1 is operator concave and ψ−1 is increasing concave.

Then

Mϕ ≥Mψ + min
0≤θ≤1

{
θM + (1− θ)m− ψ−1 (θψ(M) + (1− θ)ψ(m))

}
1,

and if, additionally, ψ > 0 on [m,M ], then

Mϕ ≥ min
0≤θ≤1

{
θM + (1− θ)m

ψ−1 (θψ(M) + (1− θ)ψ(m))

}
Mψ.

There are a generalization of some results from [7, Theorem 3.1 and Theo-
rem 3.3] and the proof given in them is different than one in Theorem 3.4.

In the following theorem we give the complementary results to those
given in the above remark.

Theorem 3.6. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ψ,ϕ ∈ C[m,M ] be strictly monotone functions.
Let one of the following conditions be satisfied:

(i) ψ ◦ ϕ−1 is operator convex and ψ−1 is decreasing convex,
(i′) ψ ◦ ϕ−1 is operator concave and ψ−1 is increasing convex.

Then

(14) Mψ ≤Mϕ + max
0≤θ≤1

{
θM + (1− θ)m− ψ−1 (θψ(M) + (1− θ)ψ(m))

}
1,

and if, additionally, ψ > 0 on [m,M ], then

(15) Mψ ≤ max
0≤θ≤1

{
θM + (1− θ)m

ψ−1 (θψ(M) + (1− θ)ψ(m))

}
Mϕ.

Let one of the following conditions be satisfied:
(ii) ψ ◦ ϕ−1 is operator convex and ψ−1 is increasing concave,
(ii′) ψ ◦ ϕ−1 is operator concave and ψ−1 is decreasing concave.

Then

Mψ ≥Mϕ + min
0≤θ≤1

{
θM + (1− θ)m− ψ−1 (θψ(M) + (1− θ)ψ(m))

}
1,
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and if, additionally, ψ > 0 on [m,M ], then

Mψ ≥ min
0≤θ≤1

{
θM + (1− θ)m

ψ−1 (θψ(M) + (1− θ)ψ(m))

}
Mϕ.

Proof. The proof is essentially the same as the proof of [7, Theorem 3.1].
We prove only the case (i): Mond-Pečarić [8] showed that if A is a self-

adjoint operator on H such that m1 ≤ A ≤ M1 for some scalars m ≤ M ,
f ∈ C[m,M ] is convex, then every unit vector x ∈ H

f((Ax, x)) ≤ (f(A)x, x) ≤(16)

≤ max
m≤z≤M

{
f(M)− f(m)

M −m
(z −m) + f(m)− f(z)

}
+ f((Ax, x))

and if, additionally, f > 0 then

f((Ax, x)) ≤ (f(A)x, x) ≤(17)

≤ max
m≤z≤M

{
f(M)−f(m)

M−m (z −m) + f(m)
f(z)

}
f((Ax, x)).

Also, since ψ ◦ ϕ−1 is operator convex, then ψ(Mϕ) ≤ ψ(Mψ). Then for
every unit vector x ∈ H
(Mϕx, x) = (ψ−1 ◦ ψ(Mϕ)x, x)

≥ ψ−1(ψ(Mϕ)x, x) by convexity of ψ−1 and (16)

≥ ψ−1(ψ(Mψ)x, x) by decrease of ψ−1 and operator convexity ψ ◦ ϕ−1

≥ (Mψx, x)− max
ψ(M)≤z≤ψ(m)

{
m−M

ψ−1(m)−ψ−1(M)
(z−m) + ψ−1(m)− ψ−1(z)

}
1

by convexity of ψ−1 and (16)

= (Mψx, x)− max
0≤θ≤1

{
θM + (1− θ)m− ψ−1 (θψ(M) + (1− θ)ψ(m))

}
1

and hence we have the desired inequality (14).
Similarly, for every unit vector x ∈ H

(Mϕx, x) ≥ ψ−1(ψ(Mψ)x, x)

≥ 1

/
max

ψ(M)≤z≤ψ(m)

{
m−M

ψ−1(m)−ψ−1(M)
(z −m) + ψ−1(m)

ψ−1(z)

}
(Mψx, x)

by convexity of ψ−1 and (17)

= 1
/

max
0≤θ≤1

{
θM + (1− θ)m

ψ−1 (θψ(M) + (1− θ)ψ(m))

}
(Mψx, x)

and hence we have the desired inequality (15). �
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We will give a complementary result to Theorem 2.3. In the following
theorem we give a general result. In [7, Theorem 3.4] a different proof was
given for ratio cases.

Theorem 3.7. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ψ,ϕ ∈ C[m,M ] be strictly monotone functions and
F : [m,M ]× [m,M ] → R be a bounded and operator monotone function in its
first variable.

(i) If ϕ−1 is operator convex and ψ−1 is concave, then

(18) F [Mϕ,Mψ] ≤ sup
0≤θ≤1

F
[
θM+(1− θ)m,ψ−1 (θψ(M)+(1− θ)ψ(m))

]
1.

(ii) If ϕ−1 is convex and ψ−1 is operator concave then

(19) F [Mψ,Mϕ] ≥ inf
0≤θ≤1

F
[
θM+(1− θ)m,ϕ−1 (θϕ(M)+(1− θ)ϕ(m))

]
1.

Proof. (i): Using LHS of (9) for a operator convex function ϕ−1 and
then operator monotonicity of F (· , v) we have

(20) F [Mϕ,Mψ] ≤ F [M1,Mψ].

If we put ψ = I the identity function and replace ϕ by ψ in (11), then

(21) F [M1,Mψ] ≤ sup
0≤θ≤1

F
[
θM+(1− θ)m,ψ−1 (θψ(M)+(1− θ)ψ(m))

]
1.

Combining two inequalities (20) and (21), we have the desired inequality (18).
(ii): We have (19) using a similar method as in (i). �

Corollary 3.8. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ψ,ϕ ∈ C[m,M ] be strictly monotone functions. If ϕ−1

is convex and ψ−1 is concave, then

Mϕ ≤Mψ + max
0≤θ≤1

{
θM + (1− θ)m− ψ−1 (θψ(M) + (1− θ)ψ(m))

}
1(22)

+ max
0≤θ≤1

{
ϕ−1 (θϕ(M) + (1− θ)ϕ(m))− θM − (1− θ)m

}
1,

and if, additionally, ϕ > and ψ > 0 on [m,M ], then

Mϕ ≤ max
0≤θ≤1

{
θM + (1− θ)m

ψ−1 (θψ(M) + (1− θ)ψ(m))

}
×(23)

× max
0≤θ≤1

{
ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

θM + (1− θ)m

}
Mψ.

Proof. If we put F (u, v) = u− v and ϕ = I in (18), then for any concave
function ψ−1 we have

(24) M1 −Mψ ≤ max
0≤θ≤1

{
θM + (1− θ)m− ψ−1 (θψ(M) + (1− θ)ψ(m))

}
1.
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Similarly, if we put ψ = I in (19), then for any convex function ϕ−1 we have

(25) M1 −Mϕ ≥ min
0≤θ≤1

{
θM + (1− θ)m− ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

}
1.

Combining two inequalities (24) and (25), we have the inequality (22).
We have (23) by a similar method. �

If we directly use conversions of Jensen’s operator inequality (2) given in
Theorem B when the function F has the form F (u, v) = u − v or F (u, v) =
v−1/2uv−1/2 (v > 0), then we obtain the following two corollaries.

Corollary 3.9. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ψ,ϕ ∈ C[m,M ] be strictly monotone functions. Let
ψ ◦ ϕ−1 be convex (resp. concave).

(i) If ψ−1 is operator monotone and operator subadditive (resp. operator
superadditive) on R+, then

(26) Mψ ≤Mϕ + ψ−1(β)1
(
resp. Mψ ≥Mϕ + ψ−1(β)1

)
,

(i′) if −ψ−1 is operator monotone and operator subadditive (resp. opera-
tor superadditive) on R+, then the opposite inequality is valid in (12),

(ii) if ψ−1 is operator monotone and operator superadditive (resp. oper-
ator subadditive) on R, then

(27) Mψ ≤Mϕ − ϕ−1(−β)1
(
resp. Mψ ≥Mϕ − ϕ−1(−β)1

)
,

(ii′) if −ψ−1 is operator monotone and operator superadditive (resp. op-
erator subadditive) on R, then the opposite inequality is valid in (27), where

(28) β = max
0≤θ≤1

{
θψ(M) + (1− θ)ψ(m)− ψ ◦ ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

}
(
resp. β= min

0≤θ≤1

{
θψ(M)+(1− θ)ψ(m)− ψ ◦ ϕ−1 (θϕ(M)+(1− θ)ϕ(m))

} )
.

Proof. (i): We will prove only the case when ψ ◦ ϕ−1 is convex. Putting
F (u, v) = u − v and f = g convex in Theorem B, we have (cf. also [6, Corol-
lary 2.5], [5, Corollary 1]):

1
k

∫
T
φt (f(xt)) dµ(t) ≤ f

(
1
k

∫
T
φt(xt)dµ(t)

)
+

+ max
m≤z≤M

{
f(M)− f(m)

M −m
(z −m) + f(m)− f(z)

}
1.

Since ψ ◦ ϕ−1 is convex, it follows

(29) ψ(Mψ) =
∫
T

1
k
φt

(
ψ ◦ ϕ−1 (ϕ(xt))

)
dµ(t) ≤ ψ ◦ ϕ−1 (ϕ(Mϕ)) + β1,
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where

β = max
ϕm≤z≤ϕM

{
ψ(M)− ψ(m)
ϕ(M)− ϕ(m)

(z − ϕm) + ψ ◦ ϕ−1(ϕm)− ψ ◦ ϕ−1(z)
}

which gives (28). Since ψ−1 is operator monotone and subadditive on R+,
using (29) we obtain

Mψ ≤ ψ−1 (Mϕ + β1) ≤Mϕ + ψ−1(β)1.

In the remaining cases the proof is essentially the same as in the previous
case. �

Corollary 3.10. Let (xt)t∈T , (φt)t∈T be as in the definition of the quasi-
arithmetic mean (4) and ψ,ϕ ∈ C[m,M ] be strictly monotone functions. Let
ψ ◦ ϕ−1 be convex and ψ > 0 (resp. ψ < 0) on [m,M ].

(i) If ψ−1 is operator monotone and operator submultiplicative on R+,
then

(30) Mψ ≤ ψ−1(α)Mϕ,

(i′) if −ψ−1 is operator monotone and operator submultiplicative on R+,
then the opposite inequality is valid in (30),

(ii) if ψ−1 is operator monotone and operator supermultiplicative on R,
then

(31) Mψ ≤
[
ψ−1(α−1)

]−1
Mϕ,

(ii′) if −ψ−1 is operator monotone and operator supermultiplicative on
R, then the opposite inequality is valid in (31), where

α = max
0≤θ≤1

{
θψ(M) + (1− θ)ψ(m)

ψ ◦ ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

}
(32)

(resp. α = min
0≤θ≤1

{
θψ(M) + (1− θ)ψ(m)

ψ ◦ ϕ−1 (θϕ(M) + (1− θ)ϕ(m))

}
).

The proof is essentially the same as that of Corollary 3.9 and we omit it.

Remark 3.11. We note that we can obtain similar inequalities as in Corol-
lary 3.10 when ψ ◦ ϕ−1 is a concave function, in the same way as we did in
Corollary 3.9. E.g. if ψ > 0 (resp. ψ < 0) on [m,M ] is operator monotone and
supermultiplicative on R+, then

Mψ ≥ ψ−1(α)Mϕ,

with min instead of max in (32).

Example 3.12. If we put ϕ(t) = ts and ψ(t) = tr in inequalities involv-
ing the complementary order among quasi-arithmetic means, we can obtain
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the complementary order among power means. E.g. using Corollary 3.3, we
obtain that

Ms(x, φ) ≤ max
0≤θ≤1

{
r
√

(θM r + (1− θ)mr)
s
√

(θM s + (1− θ)ms)

}
Mr(x, φ) = ∆(h, r, s)Mr(x, φ)

holds for r ≤ s, s ≥ 1 or r ≤ s ≤ −1, where ∆(h, r, s) is the generalized Specht
ratio defined by (see [3, (2.97)])

∆(h, r, s) =
{

r(hs − hr)
(s− r)(hr − 1)

} 1
s

{
s(hr − hs)

(r − s)(hs − 1)

}− 1
r

, h =
M

m
.

We obtain the same bound as in [5].
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Inequalities. Monographs in Inequalities 1, Element, Zagreb, 2005.
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