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Available at: http://www.pmf.ni.ac.rs/filomat

Inequalities among quasi-arithmetic means
for continuous field of operators
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Abstract. In this paper we study inequalities among quasi-arithmetic means for a continuous field of
self-adjoint operators, a field of positive linear mappings and continuous strictly monotone functions
which induce means. We present inequalities with operator convexity and without operator convexity of
appropriate functions. Also, we present a general formulation of converse inequalities in each of these
cases. Furthermore, we obtain refined inequalities without operator convexity. As applications, we obtain
inequalities among power means.

1. Introduction

We recall some notations and definitions. Let T be a locally compact Hausdorff space and let A be a
C∗-algebra of operators on some Hilbert space H. We say that a field (xt)t∈T of operators inA is continuous
if the function t 7→ xt is norm continuous on T. If in addition µ is a Radon measure on T and the function
t 7→ ∥xt∥ is integrable, then we can form the Bochner integral

∫
T xt dµ(t), which is the unique element in A

such that

φ

(∫
T

xt dµ(t)
)
=

∫
T
φ(xt) dµ(t)

for every linear functional φ in the norm dualA∗.
Assume furthermore that there is a field (Φt)t∈T of positive linear mappings Φt : A → B from A to

another C∗-algebra B of operators on a Hilbert space K. We recall that a linear mapping Φt : A→ B is said
to be a positive mapping if Φt(xt) ≥ 0 for all xt ≥ 0. We say that such a field is continuous if the function
t 7→ Φt(x) is continuous for every x ∈ A. Let the C∗-algebras include the identity operators and the field
t 7→ ϕt(1H) be integrable with

∫
T ϕt(1H) dµ(t) = k1K for some positive scalar k.

Let B(H) be the C∗-algebra of all bounded linear operators on a Hilbert space H. We define bounds of a
self-adjoint operator x ∈ B(H) by

mx = inf
∥ξ∥=1
⟨xξ, ξ⟩ and Mx = sup

∥ξ∥=1
⟨xξ, ξ⟩ (1)
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for ξ ∈ H. If Sp(x) denotes the spectrum of x, then Sp(x) ⊆ [mx,Mx].
For an operator x ∈ B(H) we define operators |x|, x+, x− by

|x| = (x∗x)1/2, x+ = (|x| + x)/2, x− = (|x| − x)/2.

Obviously, if x is self-adjoint, then |x| = (x2)1/2 and x+, x− ≥ 0 (called positive and negative parts of
x = x+ − x−).

We define a generalized quasi-arithmetic operator mean by

Mφ ≡ Mφ(x,Φ) := φ−1

(
1
k

∫
T
Φt

(
φ(xt)

)
dµ(t)

)
, (2)

where (xt)t∈T is a bounded continuous field of self-adjoint operators in a C∗-algebra B(H) with spectra in
[m,M] for some scalars m < M, (Φt)t∈T is a field of positive linear mappings Φt : B(H) → B(K), such that∫

T Φt(1H) dµ(t) = k1H for some positive scalar k and φ ∈ C[m,M] is a strictly monotone function.
As a special case of the quasi-arithmetic mean (2) we can study the operator power mean

M[r](x,Φ) :=


(∫

T

1
k
Φt

(
xr

t
)

dµ(t)
)1/r

, r ∈ R\{0},

exp
(∫

T

1
k
Φt (ln(xt)) dµ(t)

)
, r = 0,

(3)

where (xt)t∈T is a bounded continuous field of strictly positive operators in a C∗-algebra B(H), (Φt)t∈T is a
field of positive linear mappings Φt : B(H)→ B(K), such that

∫
T Φt(1H) dµ(t) = k1K for some k > 0.

The first result on studying some inequalities such as the Jensen inequality without operator convexity
is obtained in [10]. In [21] some techniques are used while one manipulates some inequalities related to
continuous fields of operators. There is extensive literature devoted to quasi-arithmetic means, see, e.g.
[1]–[5], [7]–[9], [19], [20].

In this paper we present inequalities with operator convexity and without operator convexity of func-
tions which induce means. Also, we present a general formulation of converse inequalities in each of these
cases. Furthermore, we obtain refined inequalities without operator convexity. As applications, we obtain
inequalities among power means. These results are generalizations of our previous results obtained in a
series of articles [10, 11, 13, 14, 16, 17]. The interested reader will find in [12, 15] extensions of inequalities
among quasi-arithmetic means in the discrete case T = {1, . . . ,n}.

2. Inequalities with operator convexity

We recall some classical results about quasi-arithmetic means. A result with the monotonicity is given
in the next theorem.

Theorem 2.1. ([17, Theorem 2.1 and Theorem 2.3]) Let (xt)t∈T, (Φt)t∈T be as in the definition of the quasi-arithmetic
mean (2). Let ψ,φ ∈ C[m,M] be strictly monotone functions.

If one of the following conditions
(i) ψ ◦ φ−1 is operator convex and ψ−1 is operator monotone,
(i’) ψ ◦ φ−1 is operator concave and −ψ−1 is operator monotone,
(ii) φ−1 is operator convex and ψ−1 is operator concave,
is satisfied then

Mφ(x,Φ) ≤ Mψ(x,Φ). (4)

But, if one of the following conditions
(iii) ψ ◦ φ−1 is operator concave and ψ−1 is operator monotone,
(iii’) ψ ◦ φ−1 is operator convex and −ψ−1 is operator monotone,
(iv) φ−1 is operator concave and ψ−1 is operator convex,
is satisfied then the reverse inequality is valid in (4).
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Proof. We shall give the proof for the convenience of the reader. We will prove only the case (i).
We put f = ψ ◦ φ−1 in the generalized Jensen’s inequality [6, Theoem 2.1]

f
(

1
k

∫
T
ϕt(xt) dµ(t)

)
≤ 1

k

∫
T
ϕt( f (xt)) dµ(t),

thereafter replace xt with φ(xt) and finally we apply the operator monotone function ψ−1.

Next we give inequalities complementary to the ones in Theorem 2.1. In the following theorem we give
a general result. We obtain some better bounds than the ones given in [17, Theorem 3.1]).

Theorem 2.2. Let (xt)t∈T, (Φt)t∈T, m and M be as in the definition of the quasi-arithmetic mean (2). Let ψ,φ ∈
C[m,M] be strictly monotone functions and F : [m,M]× [m,M]→ R be a bounded and operator monotone function
in its first variable. Let mφ and and Mφ, mφ < Mφ, are bounds of the meanMφ(x,Φ).

If one of the following conditions
(i) ψ ◦ φ−1 is convex and ψ−1 is operator monotone,
(i’) ψ ◦ φ−1 is concave and −ψ−1 is operator monotone,
is satisfied then

F
[
Mψ(x,Φ),Mφ(x,Φ)

]
(5)

≤ sup
mφ≤z≤Mφ

F
[
ψ−1

(
φ(M) − φ(z)
φ(M) − φ(m)

ψ(m) +
φ(z) − φ(m)
φ(M) − φ(m)

ψ(M)
)
, z

]
1K

≤ sup
m≤z≤M

F
[
ψ−1

(
φ(M) − φ(z)
φ(M) − φ(m)

ψ(m) +
φ(z) − φ(m)
φ(M) − φ(m)

ψ(M)
)
, z

]
1K.

But, if one of the following conditions
(ii) ψ ◦ φ−1 is concave and ψ−1 is operator monotone,
(ii’) ψ ◦ φ−1 is convex and −ψ−1 is operator monotone,
is satisfied then the reverse inequality is valid in (5) with inf instead of sup.

Proof. We will prove only the case (i).
Replacing z by φ(z) and f by ψ ◦ φ−1 in the inequality f (z) ≤ M−z

M−m f (m) + z−M
M−m f (M), z ∈ [m,M], and then

using the functional calculus and operator monotonicity of ψ−1 we obtain

Mψ ≤ ψ−1

(
φ(M)1K − φ(Mφ)
φ(M) − φ(m)

ψ(m) +
φ(Mφ) − φ(m)1K

φ(M) − φ(m)
ψ(M)

)
. (6)

Now, by using operator monotonicity of F(·, v) and m1K ≤ mφ1K ≤ Mφ ≤Mφ1K ≤M1K, we obtain

F
[
Mψ,Mφ

]
≤ F

[
ψ−1

(
φ(M)1K − φ(Mφ)
φ(M) − φ(m)

ψ(m) +
φ(Mφ) − φ(m)1K

φ(M) − φ(m)
ψ(M)

)
,Mφ

]
≤ sup

mφ≤z≤Mφ

F
[
ψ−1

(
φ(M) − φ(z)
φ(M) − φ(m)

ψ(m) +
φ(z) − φ(m)
φ(M) − φ(m)

ψ(M)
)
, z

]
1K,

which give the desired sequence of inequalities (5).

If we put F(u, v) = u − v and F(u, v) = v−1/2uv−1/2 (v > 0) in Theorem 2.2, then we obtain the difference
and the ratio type inequalities among quasi-arithmetic means as follows.
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Corollary 2.3. Let the assumptions be as in Theorem 2.2.
If one of the conditions (i) or (i’) in Theorem 2.2 is satisfied then

Mψ(x,Φ) ≤ Mφ(x,Φ) + max
mφ≤z≤Mφ

{
ψ−1

(
φ(M) − φ(z)
φ(M) − φ(m)

ψ(m) +
φ(z) − φ(m)
φ(M) − φ(m)

ψ(M)
)
− z

}
1K. (7)

If in addition ψ−1 > 0 on [mψ,Mψ], then

Mψ(x,Φ) ≤ max
mφ≤z≤Mφ

ψ
−1

(
φ(M)−φ(z)
φ(M)−φ(m) ψ(m) + φ(z)−φ(m)

φ(M)−φ(m) ψ(M)
)

z

 Mφ(x,Φ). (8)

But, if one of the conditions (i) or (i’) in Theorem 2.2 is satisfied then the reverse inequalities are valid in (7) and
(8) with min instead of max.

If we put φ(t) = tr and ψ(t) = ts or φ(t) = ts and ψ(t) = tr in Theorem 2.1 we obtain the monotonicity of
power means.

Corollary 2.4. Let (xt)t∈T, (Φt)t∈T be as in the definition of the power mean (3). It r ≤ s, r < (−1, 1), s < (−1, 1) or
1/2 ≤ r ≤ 1 ≤ s or r ≤ −1 ≤ s ≤ −1/2 then

M[r](x,Φ) ≤ M[s](x,Φ).

Further, putting power functions in (8) we obtain the following ratio type inequalities among power
means.

Corollary 2.5. Let (xt)t∈T, (Φt)t∈T be as in the definition of the power mean (3). Let r, s ∈ R, r ≤ s and rs , 0 and
m[r] and and M[r], m[r] < M[r], are bounds of the meanM[r](x,Φ).
(i) If r ≤ s, s < (−1, 1), r < (−1, 1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤ −1 ≤ s ≤ −1/2 then

∆(h[r], r, s)−1M[s](x,Φ) ≤ M[r](x,Φ) ≤ M[s](x,Φ).

(ii) If 1 ≤ s, −1 < r < 1/2, r , 0 or r ≤ −1, −1/2 < s < 1, s , 0 then

∆(h[r], r, s)−1M[s](x,Φ) ≤ M[r](x,Φ) ≤ ∆(h[r], r, s)M[s](x,Φ).

(iii) If −1 ≤ −s ≤ r ≤ s ≤ 1, r , 0 or −1 ≤ r ≤ s ≤ r/2 < 0 then

∆(h[r], r, 1)−1∆(h[r], r, s)−1M[s](x,Φ) ≤ M[r](x,Φ) ≤ ∆(h[r], r, 1)M[s](x,Φ).

(iv) If −1/2 ≤ r/2 < s < −r ≤ 1, s , 0 then

∆(h[r], s, 1)−1∆(h[r], r, s)−1M[s](x,Φ) ≤ M[r](x,Φ) ≤ ∆(h[r], s, 1)M[s](x,Φ),

where h[r] =M[r]/h[r] and ∆(h, r, s) is a generalized Specht ratio defined by

∆(h, r, s) :=
{

r(hs − hr)
(s − r)(hr − 1)

} 1
s
{

s(hr − hs)
(r − s)(hs − 1)

}− 1
r

, h > 0.

The proof is similar to [4, Theorem 4.4] and we omit it.
In the same way, we can obtain the difference type inequality for power means.

Remark 2.6. The bounds given in Corollary 2.4 are better than the corresponding bounds given in [4,
Theorem 4.4] for s ≥ 0. We give the short proof. Since

K(h, p) :=
hp − h

(p − 1)(h − 1)

(
p − 1

p
hp − 1
hp − h

)p

= max
m≤t≤M

M−t
M−m Mp + t−m

M−m mp

tp , h =
M
m
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and m ≤ m[r] ≤M[r] ≤M, then K(h[r], p) ≤ K(h, p). Taking into account that K(h, p) ≥ 1 for p < (0, 1) it follows

K(h[r],
s
r

)1/s ≤ K(h,
s
r

)1/s for s ≥ 0.

Replacing h[r] and h in the above inequality by
(
h[r]

)r
and hr, respectively, and taking into account that

∆(h, r, s) := K(h, r
s )1/s we obtain

∆(h[r], r, s) ≤ ∆(h, r, s).

Then for s ≥ 0 in the case (i) and (ii) of Corollary 2.4 we have

∆(h, r, s)−1M[s](x,Φ) ≤ ∆(h[r], r, s)−1M[s](x,Φ) ≤ M[r](x,Φ) ≤ M[s](x,Φ)

and

∆(h, r, s)−1M[s](x,Φ) ≤ ∆(h[r], r, s)−1M[s](x,Φ) ≤ M[r](x,Φ) ≤ ∆(h[r], r, s)M[s](x,Φ) ≤ ∆(h, r, s)M[s](x,Φ),

respectively. Similarly, we can evaluate bounds in the other cases of Corollary 2.4.

3. Inequalities without operator convexity

In this section we give inequalities among quasi-arithmetic operator means with conditions on spectra
of the operators.

In the next theorem we obtain the monotonicity of among quasi-arithmetic means without operator
convexity in Theorem 2.1. This is a generalization of [10, Theorem 3].

Theorem 3.1. Let (xt)t∈T, (Φt)t∈T be as in the definition of the quasi-arithmetic mean (2). Let mt and Mt, mt ≤ Mt
are bounds of xt, t ∈ T. Let φ,ψ : I → R be continuous strictly monotone functions on an interval I which contains
all mt,Mt. Let (

mφ,Mφ

)
∩ [mt,Mt] = Ø, t ∈ T,

where mφ and and Mφ, mφ ≤Mφ, are bounds of the meanMφ(x,Φ).
If one of the following conditions
(i) ψ ◦ φ−1 is convex and ψ−1 is operator monotone,
(i’) ψ ◦ φ−1 is concave and −ψ−1 is operator monotone,
is satisfied then

Mφ(x,Φ) ≤ Mψ(x,Φ). (9)

But, if one of the following conditions
(ii) ψ ◦ φ−1 is concave and ψ−1 is operator monotone,
(ii’) ψ ◦ φ−1 is convex and −ψ−1 is operator monotone
is satisfied, then the reverse inequality is valid in (9).

Proof. We will prove only the case (i).
Let mφ < Mφ. Since Sp

(∫
T Φt(φ(xt)) dµ(t)

)
⊆ φ([mφ,Mφ]) and ψ ◦ φ−1 is convex on φ([mφ,Mφ]), then by

using the functional calculus we obtain

ψ ◦ φ−1
(∫

T
1
kΦt(φ(xt)) dµ(t)

)
≤ φ(Mφ)1K−

∫
T

1
kΦt(φ(xt)) dµ(t)

φ(Mφ)−φ(mφ) ψ(mφ) +
∫

T
1
kΦt(φ(xt)) dµ(t)−φ(mφ)1K

φ(Mφ)−φ(mφ) ψ(Mφ)

=
∫

T
1
kΦt

(
φ(Mφ)−φ(xt)
φ(Mφ)−φ(mφ) ψ(mφ) + φ(xt)−φ(mφ)

φ(Mφ)−φ(mφ) ψ(Mφ)
)

dµ(t).

(10)
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On the other hand, since φ is monotone, then(
mφ,Mφ

)
∩ [mt,Mt] = Ø =⇒ φ((mφ,Mφ)) ∩ φ([mt,Mt]) = Ø, t ∈ T.

By using the above condition and that mt1H ≤ xt ≤Mt1H, t ∈ T, then it follows

ψ ◦ φ−1 (
φ(xt)

) ≥ φ(Mφ)1H − φ(xt)
φ(Mφ) − φ(mφ)

ψ ◦ φ−1(φ(mφ)) +
φ(xt) − φ(mφ)1H

φ(Mφ) − φ(mφ)
f (φ(Mφ))

for t ∈ T. Applying a positive linear mapping Φt and integrating, we obtain∫
T

1
kΦt(ψ ◦ φ−1(φ(xt)) dµ(t) =

∫
T

1
kΦt(ψ(xt)) dµ(t)

≥
∫

T
1
kΦt

(
φ(Mφ)−φ(xt)
φ(Mφ)−φ(mφ) ψ(mφ) + φ(xt)−φ(mφ)

φ(Mφ)−φ(mφ) ψ(Mφ)
)

dµ(t).
(11)

Combining the two inequalities (10) and (11), and applying operator monotonicity of ψ−1 we obtain the
desired inequality (9).
In the case mφ = Mφ we use supporting line of a convex functions ψ ◦ φ−1 in the point z = φ(mφ) and
similarly as above we obtain (9).

An example of the condition of spectra in the discrete case is shown in Figure 1.b).

m1 m2 M2M1
m1 m2 M2M1

a) b)

m
j M

j
m

j M
j

Figure 1: Spectral conditions for a convex function and T = {1, 2}

It is interesting to study the case when (9) holds only under the condition placed on the bounds of
operators whose means we are considering. We give it in the next corollary.

Corollary 3.2. Let (xt)t∈T, (Φt)t∈T be as in the definition of the quasi-arithmetic mean (2). Let mt and Mt, mt ≤ Mt
are bounds of xt, t ∈ T and let φ,ψ : I→ R be continuous strictly monotone functions on an interval I which contains
all mt,Mt. Let

(mx,Mx) ∩ [mt,Mt] = Ø, t ∈ T,

where mx and Mx, mx ≤Mx, are the bounds of the operator x =
∫

T Φt(xt) dµ(t).
If one of the following conditions
(i) φ is convex, φ−1 is operator monotone, ψ is concave, ψ−1 is operator monotone,
(ii) φ is convex, φ−1 is operator monotone, ψ is convex, −ψ−1 is operator monotone,
(iii) φ is concave, −φ−1 is operator monotone, ψ is convex, −ψ−1 is operator monotone,
(iv) φ is concave, −φ−1 is operator monotone, ψ is concave, ψ−1 is operator monotone
is satisfied, then

Mφ(x,Φ) ≤ Mψ(x,Φ). (12)

But, if one of the following conditions
(i’) φ is convex, −φ−1 is operator monotone, ψ is concave, −ψ−1 is operator monotone,
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(ii’) φ is convex, −φ−1 is operator monotone, ψ is convex, ψ−1 is operator monotone,
(iii’) φ is concave, φ−1 is operator monotone, ψ is convex, ψ−1 is operator monotone,
(iv’) φ is concave, φ−1 is operator monotone, ψ is concave, −ψ−1 is operator monotone
is satisfied, then the reverse inequality is valid in (12).

Proof. We will prove only the case (i). Replacingφ by the identity functionI in Theorem 3.1(i) and replacing
φ by I and ψ by φ in Theorem 3.1(ii), we obtain (12).

Using the condition on spectra we obtain the following generalization of Theorem 2.2.

Theorem 3.3. Let (xt)t∈T, (Φt)t∈T be as in the definition of the quasi-arithmetic mean (2). Let mt and Mt, mt ≤ Mt
are bounds of xt, t ∈ T. Let φ,ψ : [m,M] → R be continuous strictly monotone functions, where m = inf

t∈T
{mt} and

M = sup
t∈T
{Mt}. Let (

mφ,Mφ

)
∩ [mt,Mt] = Ø, t ∈ T,

where mφ and Mφ, mφ < Mφ, are bounds of the meanMφ(x,Φ). Let 1 : φ([mφ,Mφ])→ R and F : [m,M]×V → R
be functions such that 1(φ([mφ,Mφ])) ⊆ V and F be bounded and operator monotone function in its first variable.
If one of the following conditions
(i) ψ ◦ φ−1 is convex and ψ−1 is operator monotone,
(i’) ψ ◦ φ−1 is concave and −ψ−1 is operator monotone,
is satisfied then

inf
mφ≤z≤Mφ

F
[
ψ−1

(
φ(Mφ)−φ(z)
φ(Mφ)−φ(mφ) ψ(mφ) + φ(z)−φ(mφ)

φ(Mφ)−φ(mφ) ψ(Mφ)
)
, 1(φ(z))

]
1K

≤ F

Mψ(x,Φ), 1

∫
T

1
kΦt(φ(xt)) dµ(t)


≤ sup

mφ≤z≤Mφ

F
[
ψ−1

(
φ(M)−φ(z)
φ(M)−φ(m) ψ(m) + φ(z)−φ(m)

φ(M)−φ(m) ψ(M)
)
, 1(φ(z))

]
1K.

(13)

But, if one of the following conditions
(ii) ψ ◦ φ−1 is concave and ψ−1 is operator monotone,
(ii’) ψ ◦ φ−1 is convex and −ψ−1 is operator monotone
is satisfied, then the reverse inequalities are valid in (13) with replace sup and inf by inf and sup, respectively.

Proof. We will prove only the case (i).
By using the inequality (see (6) in the proof of Theorem 2.2)

Mψ ≤ ψ−1

(
φ(M)1K − φ(Mφ)
φ(M) − φ(m)

ψ(m) +
φ(Mφ) − φ(m)1K

φ(M) − φ(m)
ψ(M)

)
and operator monotonicity of F(·, v) we obtain RHS of (13).

Applying an operator monotone function ψ−1 on the inequality (see (11) in the proof of Theorem 3.1)∫
T

1
k
Φt

(
φ(Mφ) − φ(xt)
φ(Mφ) − φ(mφ)

ψ(mφ) +
φ(xt) − φ(mφ)
φ(Mφ) − φ(mφ)

ψ(Mφ)
)

dµ(t) ≤ ψ
(
Mψ

)
,

we obtain

ψ−1

(
φ(Mφ)1K − φ(Mφ)
φ(Mφ) − φ(mφ)

ψ(mφ) +
φ(Mφ) − φ(mφ)1K

φ(Mφ) − φ(mφ)
ψ(Mφ)

)
≤ Mψ.

By using operator monotonicity of F(·, v) we obtain LHS of (13).

Putting 1 ≡ φ−1 and F(u, v) = u − αv or F(u, v) = v−1/2uv−1/2, we obtain the next corollary.
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Corollary 3.4. Let (xt)t∈T, (Φt)t∈T be as in the definition of the quasi-arithmetic mean (2). Let mt and Mt, mt ≤ Mt
are bounds of xt, t ∈ T and φ,ψ : [m,M]→ R be continuous strictly monotone functions, where m = inft∈T{mt} and
M = supt∈T{Mt}. Let (

mφ,Mφ

)
∩ [mt,Mt] = Ø, t ∈ T,

where mφ and Mφ, mφ < Mφ, are bounds of the meanMφ(x,Φ).
If one of the following conditions

(i) ψ ◦ φ−1 is convex and ψ−1 is operator monotone,
(i’) ψ ◦ φ−1 is concave and −ψ−1 is operator monotone,
is satisfied then for any real number α the following sequence of inequalities

min
mφ≤z≤Mφ

{
ψ−1

(
φ(Mφ)−φ(z)
φ(Mφ)−φ(mφ) ψ(mφ) + φ(z)−φ(mφ)

φ(Mφ)−φ(mφ) ψ(Mφ)
)
− αz

}
1K

≤ Mψ(x,Φ) − αMφ(x,Φ) (14)

≤ max
mφ≤z≤Mφ

{
ψ−1

(
φ(M)−φ(z)
φ(M)−φ(m) ψ(m) + φ(z)−φ(m)

φ(M)−φ(m) ψ(M)
)
− αz

}
1K.

If in addition ψ−1 > 0 on [mψ,Mψ], then

min
mφ≤z≤Mφ

ψ−1
(
φ(Mφ )−φ(z)
φ(Mφ )−φ(mφ) ψ(mφ)+

φ(z)−φ(mφ )
φ(Mφ)−φ(mφ) ψ(Mφ)

)
z

 Mφ(x,Φ) (15)

≤ Mψ(x,Φ) ≤ max
mφ≤z≤Mφ

{
ψ−1

(
φ(M)−φ(z)
φ(M)−φ(m) ψ(m)+ φ(z)−φ(m)

φ(M)−φ(m) ψ(M)
)

z

}
Mφ(x,Φ).

But, if one of the following conditions
(ii) ψ ◦ φ−1 is concave and ψ−1 is operator monotone,
(ii’) ψ ◦ φ−1 is convex and −ψ−1 is operator monotone
is satisfied, then for any real number α the reverse inequalities are valid in (14) and (15) (for ψ−1 > 0) with replace
sup and inf by inf and sup, respectively.

If we put φ(t) = tr and ψ(t) = ts in Theorem 3.1 and Corollary 3.4 we obtain the order among power
means as follows. These results are a generalization of [10, Corollary 7] and [11, Theorem 1].
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1/2
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1 1
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s
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,r r,s
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D

D
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( 6 )

( 7 )
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,s ,r r,s

in (1), (2), (4) or (1), (3), (5)

= K(h ) or = K(h ) , for in (6), (7)D D
[r] [s]-1/s -1/r

Figure 2: Regions for the inequalityM[r](A,Φ) ≤ ∆M[s](A,Φ)

Corollary 3.5. Let (xt)t∈T, (Φt)t∈T be as in the definition of the power mean (3). Let mt and Mt, 0 < mt ≤ Mt be the
bounds of xt, t ∈ T.
If one of the following conditions
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(i) r ≤ s, s ≥ 1 or r ≤ s ≤ −1 (Figure 2.b (1)–(4)) and(
m[r],M[r]

)
∩ [mt,Mt] = Ø, t ∈ T, (16)

where m[r] and M[r], m[r] ≤M[r] are the bounds ofM[r](x,Φ),

(ii) r ≤ s, r ≤ −1 or 1 ≤ r ≤ s (Figure 2.b (1)–(3),(5)) and(
m[s],M[s]

)
∩ [mt,Mt] = Ø, t ∈ T, (17)

where m[s] and M[s], m[s] ≤M[s] are the bounds ofM[s](x,Φ)

is satisfied, then

M[r](x,Φ) ≤ M[s](x,Φ). (18)

(iii) If r, s ∈ (−1, 1), r ≤ s (Figure 2. (6),(7)) and (16) is valid, then

M[r](x,Φ) ≤ ∆(h[r], s)M[s](x,Φ), h[r] =M[r]/m[r]. (19)

(iv) If r, s ∈ (−1, 1), r ≤ s (Figure 2. (6),(7)) and (17) is valid, then

M[r](x,Φ) ≤ ∆(h[s], r)M[s](x,Φ), h[s] =M[s]/m[s]. (20)

A constant ∆(h, p) ≡ ∆(h, p, 1) is defined as follows

∆(h, p) :=


p(h−hp)

(1−p)(hp−1)

( (p−1)(h−1)
hp−h

) 1
p
, h , 1 and p , 0,

(h−1)h
1

h−1

e ln h , h , 1 and p = 0,

1, h = 1 and p ∈ R,

where h =M/m.

Proof. The proof is quite similar to the ones [10, Corollary 7] and [11, Theorem 1]. We give it for the
convenience of the reader.

(i): We put φ(t) = tr and ψ(t) = ts for t > 0.
Then ψ ◦ φ−1(t) = ts/r is concave for r ≤ s, s ≤ 0 and r , 0. Since −ψ−1(t) = −t1/s is operator monotone

for s ≤ −1 and
(
m[r],M[r]

)
∩ [mt,Mt] = Ø is satisfied, then by applying Theorem 3.1-(i’) we obtain (18) for

r ≤ s ≤ −1.
But, ψ ◦ φ−1(t) = ts/r is convex for r ≤ s, s ≥ 0 and r , 0. Since ψ−1(t) = t1/s is operator monotone for

s ≥ 1, then by applying Theorem 3.1-(i) we obtain (18) for r ≤ s, s ≥ 1, r , 0.
If r = 0 and s ≥ 1, we put φ(t) = ln t and ψ(t) = ts, t > 0. Since ψ ◦ φ−1(t) = exp(st) is convex, then

similarly as above we obtain the desired inequality.

(ii): We put φ(t) = ts and ψ(t) = tr for t > 0 and we use the same technique as in the case (i).

(iii)–a): Let m[r] < M[r]. Suppose that 0 < r ≤ s ≤ 1. Then(
m[r],M[r]

)
∩ [mt,Mt] = Ø =⇒

(
(m[r])r, (M[r])r

)
∩ [mr

t ,M
r
t] = Ø, t ∈ T.

Putting f (t) = ts/r, which is convex, in the two inequalities (10) and (11), we obtain(∫
T
Φt(xr

t) dµ(t)
)s/r

≤
∫

T
Φt

(
xs

t
)

dµ(t).
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Now, applying results about the function order (see [18, Corollary 6.5]) for the power function t 7→ tp,
p = 1

s ≥ 1, we obtain the desired inequality (19).
the remaining the remaining combinations for r, s ∈ (−1, 1) we use the same technique as above.
(iii)–b): If m[r] = M[r], we put m[r] → M[r] in inequalities (iii)–a), and we use that limh→1 C(h, p) = 1 for

p , 1 and limh→1 C(h, 0) = 1.

(iv): We use the same technique as in the case (iii).

4. Refined inequalities

In this section we give a refinement of the inequality (9).

For convenience we introduce the following denotations:

δφ,ψ(m,M) = ψ(m) + ψ(M) − 2ψ ◦ φ−1
(
φ(m)+φ(M)

2

)
,

x̃φ(m,M) = 1
2 1K − 1

|φ(M)−φ(m)|

∣∣∣∣∫T
1
kΦt

(
φ(xt)

)
dµ(t) − φ(M)+φ(m)

2 1K

∣∣∣∣ , (21)

where (xt)t∈T is a bounded continuous field of operators in a C∗-algebra B(H) with spectra in I, (Φt)t∈T is a
field of positive linear mappings Φt : B(H) → B(K), such that

∫
T Φt(1K) dµ(t) = k1K for some positive scalar

k, φ,ψ : I → R are continuous strictly monotone functions and m,M ∈ I, m < M. Of course, we include
implicitly that x̃φ(m,M) ≡ x̃φ,x(m,M), where x =

∫
T Φt

(
φ(xt)

)
dµ(t).

To obtain our main result we need the following result.

Lemma 4.1. ([14, Lemma 2]) Let x be a self-adjoint element in B(H) with Sp(x) ⊆ [m,M], for some scalars m < M.
Then

f (x) ≤ M1H − x
M −m

f (m) +
x −m1H

M −m
f (M) − δ f x̃ (22)

holds for every continuous convex function f : [m,M]→ R, where

δ f = f (m) + f (M) − 2 f
(m +M

2

)
and x̃ =

1
2

1H −
1

M −m

∣∣∣∣∣x − m +M
2

1H

∣∣∣∣∣ .
If f is concave, then the reverse inequality is valid in (22).

The next theorem is a generalization of [14, Theorem 7].

Theorem 4.2. Let (xt)t∈T and (Φt)t∈T be as in the definition of the quasi-arithmetic mean (2). Let mt and Mt, mt ≤Mt
be the bounds of xt, t ∈ T. Letφ,ψ : I→ R be continuous strictly monotone functions on an interval I which contains
all mt,Mt. Let (

mφ,Mφ

)
∩ [mt,Mt] = Ø, t ∈ T, and m < M,

where mφ and and Mφ, mφ ≤ Mφ, are bounds of the mean Mφ(x,Φ) and m = sup
{
Mt : Mt ≤ mφ, t ∈ T

}
, M =

inf
{
mt : mt ≥Mφ, t ∈ T

}
.

(i) If ψ ◦ φ−1 is convex and ψ−1 is operator monotone, then

Mφ(x,Φ) ≤ ψ−1

(∫
T

1
k
Φt

(
ψ(xt)

)
dµ(t) − δφ,ψx̃φ

)
≤ Mψ(x,Φ), (23)

where δφ,ψ ≥ 0 and x̃φ ≥ 0.
(i′) If ψ ◦ φ−1 is convex and −ψ−1 is operator monotone, then the reverse inequality is valid in (23), where

δφ,ψ ≥ 0 and x̃φ ≥ 0.
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(ii) If ψ ◦ φ−1 is concave and −ψ−1 is operator monotone, then (23) holds, where δφ,ψ ≤ 0 and x̃φ ≥ 0.

(ii′) If ψ ◦ φ−1 is concave and ψ−1 is operator monotone, then the reverse inequality is valid in (23), where
δφ,ψ ≤ 0 and x̃φ ≥ 0.

In all the above cases, we assume that δφ,ψ ≡ δφ,ψ(m̄, M̄), x̃φ ≡ x̃φ(m̄, M̄) are defined by (21) and m̄ ∈ [m,mφ],
M̄ ∈ [Mφ,M], m̄ < M̄, are arbitrary numbers.

Proof. The proof of Theorem 4.2 is similar to the ones of Theorem 3.1, but in addition we use Lemma C.
We only prove the case (i). Putting a convex function f ≡ ψ◦φ−1 (onφ([m̄, M̄])) and x =

∫
T

1
kΦt(φ(xt)) dµ(t)

(
= φ(Mφ)

)
in (22) we obtain

ψ(Mφ) ≤
φ(M̄)1K − φ(Mφ)

φ(M̄) − φ(m̄)
ψ(m̄) +

φ(Mφ) − φ(m̄)1K

φ(M̄) − φ(m̄)
ψ(M̄) − δφ,ψx̃φ, (24)

where δφ,ψ and x̃φ are defined by (21).
On the other hand, since(

mφ,Mφ

)
∩ [mt,Mt] = Ø =⇒ (

m̄, M̄
) ∩ [mt,Mt] = Ø =⇒

=⇒ φ
((

m̄, M̄
)) ∩ φ ([mt,Mt]) = Ø, t ∈ T,

then

ψ(xt) = ψ ◦ φ−1 (
φ(xt)

) ≥ φ(M̄)1H − φ(xt)
φ(M̄) − φ(m̄)

ψ(m̄) +
φ(xt) − φ(m̄)1H

φ(M̄) − φ(m̄)
ψ(M̄).

Applying a positive linear mapping Φt, integrating and adding −δφ,ψx̃φ, we obtain∫
T

1
kΦi

(
ψ(xt)

)
dµ(t) − δφ,ψx̃φ

≥ φ(M̄)1K−φ(Mφ)
φ(M̄)−φ(m̄) ψ(m̄) + φ(Mφ)−φ(m̄)1K

φ(M̄)−φ(m̄) ψ(M̄) − δφ,ψx̃φ.
(25)

Combining the two inequalities (24) and (25), and considering that δφ,ψ ≥ 0 and x̃φ ≥ 0 holds, we obtain

ψ(Mφ) ≤ ψ(Mψ) − δφ,ψx̃φ ≤ ψ(Mψ).

Applying the operator monotone function ψ−1 we obtain (23).

m1 m2=M M2
M1=m mj Mj

m M
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Figure 3: Refinement for two operators and a convex function ψ ◦ φ−1

Example 4.3. We give a small example of a refined inequality among means for the matrix cases and
T = {1, 2} (see Figure 3).

We put φ(t) = t1/3, ψ(t) = t5 and we defineΦ1,Φ2 : M2(C)→M2(C) byΦ1(B) = Φ2(B) = 1
2 B for B ∈M2(C).
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If x1 =

(
13 8
8 5

)
and x2 = 125

(
1 0
0 1

)
, then

M[1/3] =
(

1
2

3
√

x1 +
1
2

3
√

x2

)3
=

(
45.375 16

16 29.375

)
,

M[5] = 5
√

1
2 x5

1 +
1
2 x5

2 =

(
108.81978 0.00059
0.00059 108.81919

)
and m1 = 0.05573, M1 = 17.9443, m2 = M2 = 125, m1/3 = 19.4865 and M1/3 = 55.2635 (rounded to five
decimal places).

It follows that m = 17.94427, M = 125, m̄ ∈ [17.9443, 19.4865] and M̄ ∈ [55.2635, 125].
Let m̄ = 17.94427, M̄ = 125.

Then we get δ1/3,5 = 2.94885 × 1010, x̃1/3 =

(
0.37027 0.20991
0.20991 0.16036

)
and

M[1/3] <
5

√
1
2

x5
1 +

1
2

x5
2 − δ1/3,5x̃1/3 =

(
69.70109 −23.36045
−23.36045 93.06154

)
< M[5].

Putting the identity function in Theorem 4.2 we obtain another refinement of (9).

Corollary 4.4. Let (xt)t∈T and (Φt)t∈T be as in the definition of the quasi-arithmetic mean (2). Let mt and Mt, mt ≤Mt
be the bounds of xt, t ∈ T. Letφ,ψ : I→ R be continuous strictly monotone functions on an interval I which contains
all mt,Mt, such that φ−1 is convex, ψ−1 is concave. We denote I the identity function on I.

If (
mφ,Mφ

)
∩ [mt,Mt] = Ø, t ∈ T, and m[φ] < M[φ],(

mψ,Mψ

)
∩ [mt,Mt] = Ø, t ∈ T, and m[ψ] < M[ψ]

are valid, where mφ and Mφ, mφ ≤ Mφ are the bounds of Mφ(x,Φ) and m[φ] = sup
{
Mt : Mt ≤ mφ, t ∈ T

}
,

M[φ] = inf
{
mt : mt ≥Mφ, t ∈ T

}
and analogously for ψ, then the following inequality

Mφ(x,Φ) ≤ Mφ(x,Φ) + ∆φ,ψ(m̄, M̄, ¯̄m, ¯̄M) ≤ Mψ(x,Φ), (26)

for every m̄ ∈ [m[φ],mφ], M̄ ∈ [Mφ,M[φ]], m̄ < M̄ and every ¯̄m ∈ [m[ψ],mψ], ¯̄M ∈ [Mψ,M[ψ]], ¯̄m < ¯̄M, where

∆φ,ψ(m̄, M̄, ¯̄m, ¯̄M) = δφ,I(m̄, M̄)x̃φ(m̄, M̄) − δψ,I( ¯̄m, ¯̄M)x̃ψ( ¯̄m, ¯̄M) ≥ 0

and δφ,I, δψ,I, x̃φ and x̃ψ are defined by (21).

Proof. Putting ψ = I in Theorem 4.2 (i), we obtain

Mφ(x,Φ) ≤MI(x,Φ) − δφ,I(m̄, M̄)x̃φ(m̄, M̄) ≤MI(x,Φ), (27)

where δφ,I(m̄, M̄) ≥ 0. Putting ψ = I and replacing φ by ψ in Theorem 4.2 (ii’), we obtain

Mψ(x,Φ) ≥MI(x,Φ) − δψ,I( ¯̄m, ¯̄M)x̃ψ( ¯̄m, ¯̄M) ≥MI(x,Φ), (28)

where δψ,I( ¯̄m, ¯̄M) ≤ 0.
Adding

δφ,I(m̄, M̄)x̃φ(m̄, M̄) − δψ,I( ¯̄m, ¯̄M)x̃ψ( ¯̄m, ¯̄M)

in (27) and taking into account (28), we obtain (26).
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As an application of results given in Theorem 4.2 we study a refinement of inequality (18).
For convenience we introduce denotations as a special case of (21) as follows

δr,s(m,M) =

 ms +Ms − 2
(

mr+Mr

2

)s/r
, r , 0,

ms +Ms − 2 (mM)s/2 , r = 0,

x̃r(m,M) =

 1
2 1K − 1

|Mr−mr |
∣∣∣∫

T Φt(xr
t) dµ − Mr+mr

2 1K

∣∣∣ , r , 0,
1
2 1K − | ln

(
M
m

)
|−1

∣∣∣∫
T Φt(ln xt) dµ − ln

√
Mm1K

∣∣∣ , r = 0,

(29)

where m,M ∈ R, 0 < m < M and r, s ∈ R, r ≤ s. Of course, we include implicitly that x̃r(m,M) ≡ x̃r,x(m,M),
where x =

∫
T Φt(xr

t) dµ for r , 0 and x =
∫

T Φt(ln xt) dµ for r = 0.

The next corollary is a generalization of [10, Corollary 12].

Corollary 4.5. Let (xt)t∈T, (Φt)t∈T be as in the definition of the power mean (3). Let mt and Mt, 0 < mt ≤ Mt be the
bounds of xt, t ∈ T.

(i) If r ≤ s, s ≥ 1 or r ≤ s ≤ −1,(
m[r],M[r]

)
∩ [mt,Mt] = Ø, t ∈ T, and m < M,

where m[r] and M[r], m[r] ≤M[r] are the bounds ofM[r](x,Φ) and
m = sup

{
Mt : Mt ≤ m[r], t ∈ T

}
, M = inf

{
mt : mt ≥M[r], t ∈ T

}
, then

M[r](x,Φ) ≤
(∫

T
Φt

(
xs

t
)

dµ − δr,sx̃r

)1/s

≤ M[s](x,Φ), (30)

where δr,s ≥ 0 for s ≥ 1, δr,s ≤ 0 for s ≤ −1 and x̃r ≥ 0. Here we assume that δr,s ≡ δr,s(m̄, M̄), x̃r ≡ x̃r(m̄, M̄) are
defined by (29) and m̄ ∈ [m,m[r]], M̄ ∈ [M[r],M], m̄ < M̄, are arbitrary numbers.

(ii) If r ≤ s, r ≤ −1 or 1 ≤ r ≤ s,(
m[s],M[s]

)
∩ [mt,Mt] = Ø, t ∈ T, and m < M,

where m[s] and M[s], m[s] ≤M[s] are the bounds ofM[s](x,Φ) and
m = sup

{
Mt : Mt ≤ m[s], t ∈ T

}
, M = inf

{
mt : mt ≥M[s], t ∈ T

}
, then

M[r](x,Φ) ≤
(∫

T
Φt

(
xr

t
)

dµ − δs,rx̃s

)1/r

≤ M[s](x,Φ),

where δs,r ≥ 0 for r ≤ −1, δs,r ≤ 0 for r ≥ 1 and x̃s ≥ 0. Here we assume that δs,r ≡ δs,r(m̄, M̄), x̃s ≡ x̃s(m̄, M̄) are
defined by (29) and m̄ ∈ [m,m[s]], M̄ ∈ [M[s],M], m̄ < M̄, are arbitrary numbers.

In the proof we use the same technique as in the proof of Corollary 3.5. We omit it.

Figure 4 shows regions (1),(2),(4),(6),(7) in which the monotonicity of the power mean holds true (see
Corollary 2.4), also Figure 4 shows regions (1)-(7) which this holds true with condition on spectra (see
Corollary 3.5). We show in [10, Example 2] that the order among power means does not hold generally
without a condition on spectra in regions (3),(5). Now, by using Corollary 4.5 we obtain a refined inequality
in the regions (2)-(6) (see Corollary 4.6).

Corollary 4.6. Let (xt)t∈T, (Φt)t∈T be as in the definition of the power mean (3). Let mt and Mt, 0 < mt ≤ Mt be the
bounds of xt, t ∈ T. Let (

m[r],M[r]
)
∩ [mt,Mt] = Ø, t ∈ T, m[r] < M[r],(

m[s],M[s]
)
∩ [mt,Mt] = Ø, t ∈ T, m[s] < M[s],
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Figure 4: Regions describing inequalities among power means

where m[r], M[r], m[r] ≤M[r] and m[s], M[s], m[s] ≤M[s] are the bounds ofM[r](x,Φ) andM[s](x,Φ), respectively, and

m[r] = max
{
Mt : Mt ≤ m[r], t ∈ T

}
, M[r] = min

{
mt : mt ≥M[r], t ∈ T

}
,

m[s] = max
{
Mt : Mt ≤ m[s], t ∈ T

}
, M[s] = min

{
mt : mt ≥M[s], t ∈ T

}
.

Let m̄ ∈ [m[r],m[r]], M̄ ∈ [M[r],M[r]], m̄ < M̄, and ¯̄m ∈ [m[s],m[s]], ¯̄M ∈ [M[s],M[s]], ¯̄m < ¯̄M be arbitrary numbers.

If r ≤ 1 ≤ s, then

M[r](x,Φ) ≤ M[r](x,Φ) + δr,1(m̄, M̄)x̃r(m̄, M̄)
− δs,1( ¯̄m, ¯̄M)x̃s( ¯̄m, ¯̄M) ≤ M[s](x,Φ).

If r ≤ −1 ≤ s, then

M[r](x,Φ) ≤ M[r](x,Φ) +
(∫

T Φt

(
x−1

t

)
dµ − δs,−1( ¯̄m, ¯̄M)x̃s( ¯̄m, ¯̄M)

)−1

−
(∫

T Φt

(
x−1

t

)
dµ − δr,−1(m̄, M̄)x̃r(m̄, M̄)

)−1
≤ M[s](x,Φ).

If r ≤ −1, s ≥ 1, then

M[r](x,Φ) ≤ M[r](x,Φ) +M[1](x,Φ) − δs,1( ¯̄m, ¯̄M)x̃s( ¯̄m, ¯̄M)

−
(∫

T Φt

(
x−1

t

)
dµ − δr,−1(m̄, M̄)Ãr(m̄, M̄)

)−1
≤ M[s](x,Φ).

The proof is similar to that of Corollary 4.4 and we omit it.

References
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