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Abstract. For a selfadjoint operator A on a Hilbert space H and a normalized positive
linear map Φ, a quasi-arithmetic mean is defined by ϕ−1 (Φ(ϕ(A))) for a strictly mono-
tone function ϕ. In this paper, we shall show an order relation among quasi-arithmetic
means for convex functions through positive linear maps and its complementary prob-
lems, in which we use the Mond-Pečarić method for convex functions.

1 Introduction. Let Φ be a normalized positive linear map from B(H) to B(K), where
B(H) is a C∗-algebra of all bounded linear operators on a Hilbert space H and the symbol
I stands for the identity operator. A real valued function ϕ is said to be operator convex
on an interval J if

ϕ((1 − λ)A + λB) ≤ (1 − λ)ϕ(A) + λϕ(B)

holds for each λ ∈ [0, 1] and every pair of selfadjoint operators A,B in B(H) with spectra
in J . ϕ is operator concave if −ϕ is operator convex. Davis-Choi-Jensen inequality [3, 1]
asserts that if a real valued continuous function f is operator convex on an interval J , then

(1.1) f(Φ(A)) ≤ Φ(f(A))

for every selfadjoint operator A with the spectrum σ(A) ⊂ J . A real valued function ϕ is
said to be operator monotone on an interval J if it is monotone with respect to the operator
order, i.e.,

A ≤ B with σ(A), σ(B) ⊂ J implies f(A) ≤ f(B).

To relate them, Mond-Pečarić [8] showed the following order among power means, also see
[9, 10, 11]:

Theorem A. Let A be a positive operator on a Hilbert space H. Then

(1.2) Φ(Ar)1/r ≤ Φ(As)1/s

holds for either r ≤ s, r 6∈ (−1, 1), s 6∈ (−1, 1) or 1/2 ≤ r ≤ 1 ≤ s or r ≤ −1 ≤ s ≤ −1/2.

For positive invertible operators A and B, the chaotic order A À B is defined by log A ≥
log B. In [4], Fujii, Nakamura and Takahasi introduced a chaotically quasi-arithmetic mean
of positive operators A and B: For each t ∈ [0, 1]

ϕ−1((1 − t)ϕ(A) + tϕ(B))

for a non-constant operator monotone function ϕ on (0,∞) such that ϕ−1 is chaotically
monotone, that is, 0 ≤ A ≤ B implies ϕ−1(A) ¿ ϕ−1(B). They discussed an order among
this class like Cooper’s classical results [2]:
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Theorem B. If ψ is operator monotone and ψ ◦ ϕ−1 is operator convex, then

(1.3) ϕ−1((1 − t)ϕ(A) + tϕ(B)) ¿ ψ−1((1 − t)ψ(A) + tψ(B))

for all t ∈ [0, 1].

We want to consider orders of (1.2) and (1.3) under a more general situation. We recall
that a quasi-arithmetic mean of a selfadjoint operator A is defined by

ϕ−1(Φ(ϕ(A)))

for a strictly monotone continuous function ϕ. Matsumoto and Tominaga [6] investigated
the relation between the quasi-arithmetic mean ϕ−1(Φ(ϕ(A)) and Φ(A) for a convex func-
tion ϕ.

In this paper, we shall show an order relation among quasi-arithmetic means for convex
functions through positive linear maps and its complementary problems, in which we use
the Mond-Pečarić method for convex functions in [5, 7].

2 Order among quasi-arithmetic mean First of all, we shall show an order relation
among quasi-arithmetic means of selfadjoint operators for convex functions. Let C[m, M ]
be a set of all real valued continuous functions on a closed interval [m,M ]

Theorem 1. Let Φ be a normalized positive linear map, A a selfadjoint operator with the
spectrum σ(A) ⊂ [m,M ] and ϕ,ψ ∈ C[m, M ] strictly monotone functions. If one of the
following conditions is satisfied:

(i) ψ ◦ ϕ−1 is operator convex and ψ−1 is operator monotone,

(i)’ ψ ◦ ϕ−1 is operator concave and −ψ−1 is operator monotone,

(ii) ϕ−1 is operator convex and ψ−1 is operator concave,

then

(2.1) ϕ−1(Φ(ϕ(A))) ≤ ψ−1(Φ(ψ(A))).

Proof. (i): Since ψ ◦ ϕ−1 is operator convex, it follows from Davis-Choi-Jensen inequality
(1.1) that

ψ ◦ ϕ−1(Φ(ϕ(A))) ≤ Φ(ψ ◦ ϕ−1 ◦ ϕ(A)) = Φ(ψ(A)).

Since ψ−1 is operator monotone, it follows that

ϕ−1(Φ(ϕ(A))) = ψ−1 ◦ ψ ◦ ϕ−1(Φ(ϕ(A)) ≤ ψ−1(Φ(ψ(A))),

which is the desired inequality (2.1).
(i)’: We have (2.1) under the assumption (i)’ by a similar method as in (i).
(ii): Since ϕ−1 is operator convex, it follows that

ϕ−1(Φ(ϕ(A))) ≤ Φ(ϕ−1 ◦ ϕ(A)) = Φ(A).

Similarly, since ψ−1 is operator concave, we have

Φ(A) ≤ ψ−1(Φ(ψ(A))).

Using two inequalities above, we have (2.1).
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Remark 2. Notice that the condition (i) is equivalent to (i)′ in Theorem 1: In fact, it
follows that ψ ◦ ϕ−1 is operator concave if and only if −ψ ◦ ϕ−1 is operator convex, and
−ψ−1 is operator monotone if and only if (−ψ)−1 is operator monotone.

The following corollary is a complementary result to Theorem 1.

Corollary 3. Let Φ be a normalized positive linear map, A a selfadjoint operator with the
spectrum σ(A) ⊂ [m,M ] and ϕ,ψ ∈ C[m,M ] strictly monotone functions. If one of the
following conditions is satisfied:

(i) ψ ◦ ϕ−1 is operator concave and ψ−1 is operator monotone,

(i)’ ψ ◦ ϕ−1 is operator convex and −ψ−1 is operator monotone,

(ii) ϕ−1 is operator concave and ψ−1 is operator convex,

then
ψ−1(Φ(ψ(A))) ≤ ϕ−1(Φ(ϕ(A))).

Remark 4. Theorem 1 and Corollary 3 are a generalization of (1.2) in Theorem A: In fact,
if we put ϕ(t) = tr and ψ(t) = ts in Theorem 1 and ϕ(t) = ts and ψ(t) = tr in Corollary 3,
then we have (1.2) in Theorem A.

3 Ratio type complementary order among quasi-arithmetic means Let A be a
positive operator on a Hilbert space H such that mI ≤ A ≤ MI for some scalars 0 < m <
M , let ϕ ∈ C[m,M ] be convex and ϕ > 0 on [m,M ]. By using the Mond-Pečarić method
for convex functions, Mond-Pečarić [7] showed that

(3.1) ϕ((Ax, x)) ≤ (ϕ(A)x, x) ≤ λ(m,M,ϕ) ϕ((Ax, x))

holds for every unit vector x ∈ H, where

(3.2) λ(m,M,ϕ) = max
{

1
ϕ(t)

(
ϕ(M) − ϕ(m)

M − m
(t − m) + ϕ(m)

)
: t ∈ [m,M ]

}
> 0.

If ϕ is concave and ϕ > 0 on [m, M ], then

(3.3) µ(m, M,ϕ) ϕ((Ax, x)) ≤ (ϕ(A)x, x) ≤ ϕ((Ax, x))

holds for every unit vector x ∈ H, where

(3.4) µ(m,M,ϕ) = min
{

1
ϕ(t)

(
ϕ(M) − ϕ(m)

M − m
(t − m) + ϕ(m)

)
: t ∈ [m,M ]

}
> 0.

In particular, if ϕ(t) = tp, then the constant λ(m,M, tp) (resp. µ(m,M, tp)) concides with
a generalized Kantorovich constant K(m,M, p) for p 6∈ [0, 1] (resp. p ∈ [0, 1]) defined by

K(m, M, p) =
mMp − Mmp

(p − 1)(M − m)

(
p − 1

p

Mp − mp

mMp − Mmp

)p

for any p ∈ R,

also see [5, Chapter 2]. We remark that K(m,M, 1) = limp→1 K(m,M, p) = 1 and
K(m,M, 0) = limp→0 K(m,M, p) = 1. We use the following notations:

(3.5) ϕm = min{ϕ(m), ϕ(M)} and ϕM = max{ϕ(m), ϕ(M)}
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for a strictly monotone function ϕ ∈ C[m, M ].

In (i) of Theorem 1, suppose that ψ ◦ ϕ−1 is operator convex. What happened if ψ−1

is not operator monotone? An order among quasi-arithmetic mean (2.1) doe not always
holds. By using the Mond-Pečarić method, we show a complementary order to (2.1).

Theorem 5. Let Φ be a normalized positive linear map, A a positive operator such that
mI ≤ A ≤ MI for some scalars 0 < m < M and ϕ,ψ ∈ C[m, M ] strictly monotone
functions such as ψ > 0 on [m,M ]. Suppose that ψ ◦ ϕ−1 is operator convex.
(i) If ψ−1 is increasing convex (resp. decreasing convex), then

(3.6) ϕ−1(Φ(ϕ(A))) ≤ λ(ψ(m), ψ(M), ψ−1) ψ−1(Φ(ψ(A))).

( resp.
1

λ(ψ(M), ψ(m), ψ−1)
ψ−1(Φ(ψ(A))) ≤ ϕ−1(Φ(ϕ(A))). )

(ii) If ψ−1 is increasing concave (resp. decreasing concave), then

(3.7) ϕ−1(Φ(ϕ(A))) ≤ 1
µ(ψ(m), ψ(M), ψ−1)

ψ−1(Φ(ψ(A))),

( resp. µ(ψ(M), ψ(m), ψ−1) ψ−1(Φ(ψ(A))) ≤ ϕ−1(Φ(ϕ(A))), )

where the constants λ(m,M,ϕ) and µ(m,M,ϕ) are defined as (3.2) and (3.4) respectively.

Proof. Since ψ ◦ ϕ−1 is operator convex, we have

(3.8) ψ ◦ ϕ−1(Φ(ϕ(A)) ≤ Φ(ψ ◦ ϕ−1 ◦ ϕ(A)) = Φ(ψ(A)).

(i): Suppose that ψ−1 is increasing convex. Since ϕ is strictly monotone, we have
mI ≤ ϕ−1(Φ(ϕ(A))) ≤ MI and hence

0 < ψ(m)I ≤ ψ ◦ ϕ−1(Φ(ϕ(A))) ≤ ψ(M)I

by the increase of ψ and ψ > 0. Since ψ−1 > 0, it follows that for each unit vector x ∈ H

(ϕ−1(Φ(ϕ(A)))x, x) = (ψ−1 ◦ ψ ◦ ϕ−1(Φ(ϕ(A)))x, x)

≤ λ(ψ(m), ψ(M), ψ−1) ψ−1(ψ ◦ ϕ−1(Φ(ϕ(A)))x, x) by convexity of ψ−1 and (3.1)

≤ λ(ψ(m), ψ(M), ψ−1) ψ−1(Φ(ψ(A))x, x) by increase of ψ−1 and (3.8)

≤ λ(ψ(m), ψ(M), ψ−1) (ψ−1(Φ(ψ(A)))x, x) by convexity of ψ−1 and (3.1)

and hence we have the desired inequality (3.6).

Suppose that ψ−1 is decreasing convex. Then it follows that ψ is decreasing and 0 <
ψ(M)I ≤ ψ(A) ≤ ψ(m)I by ψ > 0. Therefore, it follows that for each unit vector x ∈ H

(ϕ−1(Φ(ϕ(A)))x, x) = (ψ−1 ◦ ψ ◦ ϕ−1(Φ(ϕ(A)))x, x)

≥ ψ−1(ψ ◦ ϕ−1(Φ(ϕ(A)))x, x) by convexity of ψ−1 and (3.1)

≥ ψ−1(Φ(ψ(A))x, x) by decrease of ψ−1 and (3.8)

≥ 1
λ(ψ(M), ψ(m), ψ−1)

(ψ−1(Φ(ψ(A)))x, x) by convexity of ψ−1 and (3.1)

and hence
ϕ−1(Φ(ϕ(A))) ≥ 1

λ(ψ(M), ψ(m), ψ−1)
ψ−1(Φ(ψ(A))).
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(ii): Suppose that ψ−1 is increasing concave. Then it follows that ψ is increasing and
0 < ψ(m)I ≤ Φ(ψ(A)) ≤ ψ(M)I. Hence for each unit vector x ∈ H

(ϕ−1(Φ(ϕ(A)))x, x) = (ψ−1 ◦ ψ ◦ ϕ−1(Φ(ϕ(A)))x, x)

≤ ψ−1(ψ ◦ ϕ−1(Φ(ϕ(A)))x, x) by concavity of ψ−1 and (3.3)

≤ ψ−1(Φ(ψ(A))x, x) by increase of ψ−1 and (3.8)

≤ 1
µ(ψ(m), ψ(M), ψ−1)

(ψ−1(Φ(ψ(A)))x, x) by concavity of ψ−1 and (3.3)

and hence we have the desired inequality (3.7). In the case of decreasing concavity, we have
our result by a similar method as in (i).

Remark 6. The upper bound λ(ψ(m), ψ(M), ψ−1) in (3.6) of Theorem 5 is sharp in the
following sense: Define a normalized positive linear map Φ : M2(C) 7→ C by

Φ(X) = θx11 + (1 − θ)x22 for X =
(

x11 x12

x21 x22

)
with 0 < θ < 1

and put A =
(

m 0
0 M

)
with M > m > 0. Obviously 0 < mI ≤ A ≤ MI. By definition,

there exists t∗ ∈ [ψ(m), ψ(M)] such that

λ(ψ(m), ψ(M), ψ−1) =
1

ψ−1(t∗)

(
M − m

ψ(M) − ψ(m)
(t∗ − ψ(m)) + m

)
.

Put

θ =
ψ(M) − t∗

ψ(M) − ψ(m)
and we have 0 < θ < 1.

Suppose that
ϕ((1 − θ)M + θm) = (1 − θ)ϕ(M) + θϕ(m).

Then we can show that

ϕ−1(Φ(ϕ(A))) = λ(ψ(m), ψ(M), ψ−1) ψ−1(Φ(ψ(A))).

Indeed, it follows that

ψ−1(Φ(ψ(A))) = ψ−1(Φ(
(

ψ(m) 0
0 ψ(M)

)
))

= ψ−1(θψ(m) + (1 − θ)ψ(M))

= ψ−1(t∗)

and hence

ϕ−1(Φ(ϕ(A))) = ϕ−1(θϕ(m) + (1 − θ)ϕ(M))
= (1 − θ)M + θm

=
(M − m)t∗ + mψ(M) − Mψ(m)

ψ(M) − ψ(m)
= λ(ψ(m), ψ(M), ψ−1)ψ−1(t∗)

= λ(ψ(m), ψ(M), ψ−1) ψ−1(Φ(ψ(A))).
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The following theorem is a complementary result to (i)’ of Theorem 1 under the assump-
tion that ψ ◦ ϕ−1 is operator concave.

Theorem 7. Let Φ be a normalized positive linear map, A a positive operator such that
mI ≤ A ≤ MI for some scalars 0 < m < M and ϕ,ψ ∈ C[m, M ] strictly monotone
functions such as ψ > 0 on [m,M ]. Suppose that ψ ◦ ϕ−1 is operator concave.
(i) If ψ−1 is decreasing concave (resp. increasing concave), then

ϕ−1(Φ(ϕ(A))) ≤ 1
µ(ψ(M), ψ(m), ψ−1)

ψ−1(Φ(ψ(A))).

( resp. µ(ψ(m), ψ(M), ψ−1) ψ−1(Φ(ψ(A))) ≤ ϕ−1(Φ(ϕ(A))). )

(ii) If ψ−1 is decreasing convex (resp. increasing convex), then

ϕ−1(Φ(ϕ(A))) ≤ λ(ψ(M), ψ(m), ψ−1) ψ−1(Φ(ψ(A))),

( resp.
1

λ(ψ(m), ψ(M), ψ−1)
ψ−1(Φ(ψ(A))) ≤ ϕ−1(Φ(ϕ(A))), )

where the constants λ(m,M,ϕ) and µ(m,M,ϕ) are defined as (3.2) and (3.4) respectively.

The following theorem is a complementary result to (ii) of Theorem 1.

Theorem 8. Let Φ be a normalized positive linear map, A a positive operator such that
mI ≤ A ≤ MI for some scalars 0 < m < M and ϕ,ψ ∈ C[m, M ] strictly monotone
functions.
(i) If ϕ−1 is operator convex and ψ−1 is concave and ψ > 0 on [m,M ], then

(3.9) ϕ−1(Φ(ϕ(A))) ≤ 1
µ(ψm, ψM , ψ−1)

ψ−1(Φ(ψ(A))).

(ii) If ϕ−1 is convex and ϕ > 0 on [m,M ], and ψ−1 is operator concave, then

(3.10) ϕ−1(Φ(ϕ(A))) ≤ λ(ϕm, ϕM , ϕ−1) ψ−1(Φ(ψ(A))).

(iii) If ϕ−1 is convex and ϕ > 0 on [m, M ] and ψ−1 is concave and ψ > 0 on [m, M ], then

(3.11) ϕ−1(Φ(ϕ(A))) ≤ λ(ϕm, ϕM , ϕ−1)
µ(ψm, ψM , ψ−1)

ψ−1(Φ(ψ(A))),

where the constants λ(m,M,ϕ) and µ(m,M,ϕ) are defined as (3.2) and (3.4) respectively.

Proof. (i): Since a C∗-algebra C∗(A) generated by A and the identity operator I is abelian,
it follows from Stinespring decomposition theorem [12] that Φ restricted to C∗(A) admits
a decomposition Φ(X) = V ∗π(X)V for all X ∈ C∗(A), where π is a representation of
C∗(A) ⊂ B(H), and V is an isometry from K into H. Since ψ−1 is monotone and ψ > 0,
we have 0 < ψmI ≤ Φ(ψ(A)) ≤ ψMI. Since ψ−1 > 0, it follows that for each unit vector
x ∈ H

(ψ−1(Φ(ψ(A)))x, x)

≥ µ(ψm, ψM , ψ−1) ψ−1(Φ(ψ(A))x, x) by concavity of ψ−1 and (3.3)

= µ(ψm, ψM , ψ−1) ψ−1(π(ψ(A))V x, V x)

≥ µ(ψm, ψM , ψ−1) (ψ−1(π(ψ(A)))V x, V x) by ‖ V x ‖= 1 and (3.3)

= µ(ψm, ψM , ψ−1) (π(A)V x, V x)

= µ(ψm, ψM , ψ−1) (Φ(A)x, x)
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and hence

(3.12) µ(ψm, ψM , ψ−1)Φ(A) ≤ ψ−1(Φ(ψ(A))).

On the other hand, the operator convexity of ϕ−1 implies

(3.13) ϕ−1(Φ(ϕ(A))) ≤ Φ(A).

Combining two inequalities (3.12) and (3.13), we have the desired inequality (3.9).
(ii): We have (3.10) by a similar method as in (i).
(iii): We have (3.11) by combining (i) and (ii).

The following theorem is a complementary result to (i) or (i)’ of Theorem 1 under the
assumption that ψ ◦ ϕ−1 is only convex or concave, respectively.

Theorem 9. Let Φ be a normalized positive linear map, A a positive operator such that
mI ≤ A ≤ MI for some scalars 0 < m < M and ϕ,ψ ∈ C[m,M ] strictly monotone
functions such that ϕ > 0 on [m,M ]. If one of the following conditions is satisfied:

(i) ψ ◦ ϕ−1 is convex (resp. concave) and ψ−1 is operator monotone,

(i)’ ψ ◦ ϕ−1 is concave (resp. convex) and −ψ−1 is operator monotone,

then

(3.14) ψ−1(Φ(ψ(A))) ≤ λ̃(ϕm, ϕM , ψ ◦ ϕ−1, ψ−1) ϕ−1(Φ(ϕ(A))).

(resp. ψ−1(Φ(ψ(A))) ≥ µ̃(ϕm, ϕM , ψ ◦ ϕ−1, ψ−1) ϕ−1(Φ(ϕ(A))). )

where

λ̃(m,M,ϕ, ψ) = max
{

1
ψ ◦ ϕ(t)

· ψ
(

ϕ(M) − ϕ(m)
M − m

(t − m) + ϕ(m)
)

: t ∈ [m,M ]
}

,

µ̃(m,M,ϕ, ψ) = min
{

1
ψ ◦ ϕ(t)

· ψ
(

ϕ(M) − ϕ(m)
M − m

(t − m) + ϕ(m)
)

: t ∈ [m,M ]
}

.

Proof. (i): We will prove only the convex case. Since the inequality

f(z) ≤ f(M) − f(m)
M − m

(z − m) + f(m), z ∈ [m,M ]

holds for every convex function f ∈ C[m,M ], then we have that inequality

f(ϕ(t)) ≤ f(ϕM ) − f(ϕm)
ϕM − ϕm

(ϕ(t) − ϕm) + f(ϕm), t ∈ [m, M ]

holds for every convex function f ∈ C[ϕm, ϕM ]. Then for a convex function ψ ◦ ϕ−1 ∈
C[ϕm, ϕM ], we obtain

ψ(t) ≤ ψ(ϕ−1(ϕM )) − ψ(ϕ−1(ϕm))
ϕM − ϕm

(ϕ(t) − ϕm) + ψ(ϕ−1(ϕm)), t ∈ [m, M ].

Using the functional calculus and applying a normalized positive linear map Φ, we obtain
that

Φ(ψ(A)) ≤ ψ(M) − ψ(m)
ϕ(M) − ϕ(m)

(Φ(ϕ(A)) − ϕmI) + ψ(ϕ−1(ϕm))I
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holds for every operator A such that 0 < mI ≤ A ≤ MI. Applying an operator monotone
function ψ−1, it follows

ψ−1(Φ(ψ(A))) ≤ ψ−1

(
ψ(M) − ψ(m)
ϕ(M) − ϕ(m)

(Φ(ϕ(A)) − ϕmI) + ψ(ϕ−1(ϕm))I
)

.

Using that 0 < ϕmI ≤ Φ(ϕ(A)) ≤ ϕMI, we obtain

ψ−1(Φ(ψ(A)))

≤ max
ϕm≤t≤ϕM

{
1

ϕ−1(t)
· ψ−1

(
ψ(M) − ψ(m)
ϕ(M) − ϕ(m)

(t − ϕm) + ψ(ϕ−1(ϕm))
)}

ϕ−1(Φ(ϕ(A)))

= λ̃(ϕm, ϕM , ψ ◦ ϕ−1, ψ−1) ϕ−1(Φ(ϕ(A)))

and hence we have the desired inequality (3.14).
In the case (i)’, the proof is essentially same as in the previous case.

Remark 10. The upper bound λ̃(ϕm, ϕM , ψ ◦ϕ−1, ψ−1) in (3.14) of Theorem 9 is sharp in
the sense that for any strictly monotone functions ψ and ϕ there exist a positive operator
A and a positive linear map Φ such that the equality holds in (3.14).

It is obvious that

λ̃(ϕm, ϕM , ψ ◦ ϕ−1, ψ−1)

= max
ϕm≤t≤ϕM

{
1

ϕ−1(t)
· ψ−1

(
ψ(M) − ψ(m)
ϕ(M) − ϕ(m)

(t − ϕm) + ψ(ϕ−1(ϕm))
)}

= max
0≤θ≤1

{
ψ−1 (θψ(M) + (1 − θ)ψ(m))
ϕ−1 (θϕ(M) + (1 − θ)ϕ(m))

}
.

Since a function f(θ) = ψ−1(θψ(M)+(1−θ)ψ(m))
ϕ−1(θϕM+(1−θ)ϕm) is continuous on [0, 1], there exists θ∗ ∈ [0, 1]

such that

λ̃(ϕm, ϕM , ψ ◦ ϕ−1, ψ−1) =
ψ−1 (θ∗ψ(M) + (1 − θ∗)ψ(m))
ϕ−1 (θ∗ϕ(M) + (1 − θ∗)ϕ(m))

.

Let Φ and A be as in Remark 6. Then the equality

ψ−1(Φ(ψ(A))) = λ̃(ϕm, ϕM , ψ ◦ ϕ−1, ψ−1) ϕ−1(Φ(ϕ(A)))

holds. Indeed,

ψ−1(Φ(ψ(A))) = ψ−1

(
Φ(

(
ψ(m) 0

0 ψ(M)

)
)
)

=
ψ−1 ((1 − θ∗)ψ(m) + θ∗ψ(M))
ϕ−1 ((1 − θ∗)ϕ(m) + θ∗ϕ(M))

· ϕ−1 ((1 − θ∗)ϕ(m) + θ∗ϕ(M))

= λ̃(ϕm, ϕM , ψ ◦ ϕ−1, ψ−1) ϕ−1(Φ(ϕ(A))).

4 Difference type complementary order among quasi-arithmetic means Let A
be a selfadjoint operator on a Hilbert space H such that mI ≤ A ≤ MI for some scalars
m < M , let ϕ ∈ C[m,M ] be a convex function. By using the Mond-Pečarić method for
convex functions, Mond-Pečarić [7] showed that

ϕ((Ax, x)) ≤ (ϕ(A)x, x) ≤ ϕ((Ax, x)) + ν(m,M,ϕ)



AN ESTIMATE OF QUASI-ARITHMETIC MEAN 245

holds for every unit vector x ∈ H, where

(4.1) ν(m,M,ϕ) = max
{

ϕ(M) − ϕ(m)
M − m

(t − m) + ϕ(m) − ϕ(t) : t ∈ [m,M ]
}

≥ 0.

If ϕ is concave on [m,M ], then

ξ(m, M,ϕ) + ϕ((Ax, x)) ≤ (ϕ(A)x, x) ≤ ϕ((Ax, x))

holds for every unit vector x ∈ H, where

(4.2) ξ(m,M,ϕ) = min
{

ϕ(M) − ϕ(m)
M − m

(t − m) + ϕ(m) − ϕ(t) : t ∈ [m,M ]
}

≥ 0.

In particular, if ϕ(t) = tp, then the constant ν(m,M, tp) (resp. ξ(m, M, tp)) coincides with a
generalized Kantorovich constant for the difference C(m,M, p) for p 6∈ [0, 1] (resp. p ∈ [0, 1])
defined by

C(m,M, p) = (p − 1)
(

1
p

Mp − mp

M − m

) p
p−1

+
Mmp − mMp

M − m
for any p ∈ R,

also see [5, Chapter 2]. We remark that C(m, M, 1) = limp→1 C(m,M, p) = 0.

Similarly as in the previous section, we can obtain the complementary order to (2.1) for
the difference case. When ψ ◦ ϕ−1 is operator convex and ψ−1 is not operator monotone,
we obtain the following theorem corresponding to Theorem 5.

Theorem 11. Let Φ be a normalized positive linear map, A a selfadjoint operator such that
mI ≤ A ≤ MI for some scalars m < M and ϕ,ψ ∈ C[m,M ] strictly monotone functions.

(I) Suppose that ψ ◦ ϕ−1 is operator convex.

(i) If ψ−1 is increasing convex (resp. decreasing convex), then

(4.3) ϕ−1(Φ(ϕ(A))) ≤ ψ−1(Φ(ψ(A))) + ν(ψ(m), ψ(M), ψ−1).

( resp. ψ−1(Φ(ψ(A))) − ν(ψ(M), ψ(m), ψ−1) ≤ ϕ−1(Φ(ϕ(A))). )

(ii) If ψ−1 is increasing concave (resp. decreasing concave), then

ϕ−1(Φ(ϕ(A))) ≤ ψ−1(Φ(ψ(A))) − ξ(ψ(m), ψ(M), ψ−1).

( resp. ξ(ψ(M), ψ(m), ψ−1) + ψ−1(Φ(ψ(A))) ≤ ϕ−1(Φ(ϕ(A))). )

(II) Suppose that ψ ◦ ϕ−1 is operator concave.

(i)’ If ψ−1 is decreasing concave (resp. increasing concave), then

ϕ−1(Φ(ϕ(A))) ≤ ψ−1(Φ(ψ(A))) − ξ(ψ(M), ψ(m), ψ−1).

( resp. ξ(ψ(m), ψ(M), ψ−1) + ψ−1(Φ(ψ(A))) ≤ ϕ−1(Φ(ϕ(A))). )

(ii)’ If ψ−1 is decreasing convex (resp. increasing convex), then

ϕ−1(Φ(ϕ(A))) ≤ ψ−1(Φ(ψ(A))) + ν(ψ(M), ψ(m), ψ−1),

( resp. ψ−1(Φ(ψ(A))) − ν(ψ(m), ψ(M), ψ−1) ≤ ϕ−1(Φ(ϕ(A))), )
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where the constants ν(m,M,ϕ) and ξ(m,M,ϕ) are defined as (4.1) and (4.2) respectively.

The proof of this theorem is quite similar to one of Theorem 5 and we omit it.

Remark 12. The inequalities in Theorem 11 are sharp in the sense of Remark 6. In (4.3),
there exists θ∗ ∈ [0, 1] such that

ν(ψ(m), ψ(M), ψ−1) = θ∗M + (1 − θ∗)m − ψ−1 (θ∗ψ(M) + (1 − θ∗)ψ(m))
= max

0≤θ≤1

{
θM + (1 − θ)m − ψ−1 (θψ(M) + (1 − θ)ψ(m))

}
,

since

max
ψ(m)≤t≤ψ(M)

{
M − m

ψ(M) − ψ(m)
(t − ψ(m)) + m) − ψ−1(t)

}
= max

0≤θ≤1

{
θM + (1 − θ)m − ψ−1 (θψ(M) + (1 − θ)ψ(m))

}
.

Let Φ, A and ϕ be as in Remark 6. Then the equality

ϕ−1(Φ(ϕ(A))) = ψ−1(Φ(ψ(A))) + ν(ψ(m), ψ(M), ψ−1)

holds. Indeed,

ϕ−1(Φ(ϕ(A))) = ϕ−1(θ∗ϕ(m) + (1 − θ∗)ϕ(M))
= θ∗m + (1 − θ∗)M

= ψ−1(θ∗ψ(m) + (1 − θ∗)ψ(M)) + ν(ψ(m), ψ(M), ψ−1)

= ψ−1(Φ(ψ(A))) + ν(ψ(m), ψ(M), ψ−1).

Remark 13. If we put ϕ(t) = tr and ψ(t) = ts in inequalities involving the complementary
order among quasi-arithmetic means given in Section 3 and 4, we obtain the same bound
as in [5, Theorem 4.4]. For instance, using Theorem 9, we obtain that

Φ(As)1/s ≤ max
0≤θ≤1

{
r
√

(θMr + (1 − θ)mr)
s
√

(θMs + (1 − θ)ms)

}
Φ(Ar)1/r = ∆(h, r, s)Φ(Ar)1/r

holds for r ≤ s, s ≥ 1 or r ≤ s ≤ −1, where ∆(h, r, s) is the generalized Specht ratio defined
by (see [5, (2.97)])

∆(h, r, s) =
{

r(hs − hr)
(s − r)(hr − 1)

} 1
s

{
s(hr − hs)

(r − s)(hs − 1)

}− 1
r

, h =
M

m
.

Indeed, a function f(θ) := r
√

(θMr + (1 − θ)mr)/ s
√

(θMs + (1 − θ)ms) has one station-
ary point

θ0 =
r(hs − 1) − s(hr − 1)

(s − r)(hr − 1)(hs − 1)

and we have
max

0≤θ≤1
f(θ) = f(θ0) = ∆(h, s, r).
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[7] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993),
405–420.
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[11] J. Mićić Hot, J. Pečarić, Y. Seo and M. Tominaga, Inequalities for positive linear maps on
Hermitian matrices, Math. Inequal. Appl., 3 (2000), 559–591.

[12] W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc., 6 (1955), 211–
216.

Communicated by Masatoshi Fujii

∗ Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb,
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