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ABSTRACT. For a selfadjoint operator A on a Hilbert space H and a normalized positive
linear map @, a quasi-arithmetic mean is defined by ¢! (®(p(A))) for a strictly mono-
tone function . In this paper, we shall show an order relation among quasi-arithmetic
means for convex functions through positive linear maps and its complementary prob-
lems, in which we use the Mond-Pecari¢ method for convex functions.

1 Introduction. Let ® be a normalized positive linear map from B(H) to B(K), where
B(H) is a C*-algebra of all bounded linear operators on a Hilbert space H and the symbol
I stands for the identity operator. A real valued function ¢ is said to be operator convex
on an interval J if

(1 =AA+AB) < (1= A)p(A) + Ap(B)

holds for each A € [0,1] and every pair of selfadjoint operators A, B in B(H) with spectra
in J. ¢ is operator concave if —y is operator convex. Davis-Choi-Jensen inequality [3, 1]
asserts that if a real valued continuous function f is operator convex on an interval J, then

(L.1) f(2(4)) < @(f(4))

for every selfadjoint operator A with the spectrum o(A) C J. A real valued function ¢ is
said to be operator monotone on an interval J if it is monotone with respect to the operator
order, i.e.,

A< B with o(A),0(B) CJ implies f(A) < f(B).

To relate them, Mond-Pecari¢ [8] showed the following order among power means, also see
[9, 10, 11]:

Theorem A. Let A be a positive operator on a Hilbert space H. Then

(1.2) B(ANVT < B(A%)V/¢

holds for either r < s, r & (—=1,1), s ¢ (-1,1) or1/2<r<1<sorr<-1<s<-1/2.

For positive invertible operators A and B, the chaotic order A > B is defined by log A >
log B. In [4], Fujii, Nakamura and Takahasi introduced a chaotically quasi-arithmetic mean
of positive operators A and B: For each ¢ € [0, 1]

¢ H((1 = t)p(A) + ty(B))

for a non-constant operator monotone function ¢ on (0,00) such that ¢~ is chaotically
monotone, that is, 0 < A < B implies ¢~ !(A) < ¢~ }(B). They discussed an order among
this class like Cooper’s classical results [2]:
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1

Theorem B. If ¢ is operator monotone and 1 o o™+ is operator convex, then

(1.3) 7 (1= 1)p(A) +tp(B)) < v~ ((1 = t)p(A) + ty(B))
for all t €10,1].

We want to consider orders of (1.2) and (1.3) under a more general situation. We recall
that a quasi-arithmetic mean of a selfadjoint operator A is defined by

¢~ (2((4)))

for a strictly monotone continuous function ¢. Matsumoto and Tominaga [6] investigated
the relation between the quasi-arithmetic mean =1 (®(¢(A)) and ®(A) for a convex func-
tion (.

In this paper, we shall show an order relation among quasi-arithmetic means for convex
functions through positive linear maps and its complementary problems, in which we use
the Mond-Pecari¢ method for convex functions in [5, 7].

2 Order among quasi-arithmetic mean First of all, we shall show an order relation
among quasi-arithmetic means of selfadjoint operators for convex functions. Let C[m, M]
be a set of all real valued continuous functions on a closed interval [m, M]

Theorem 1. Let ® be a normalized positive linear map, A a selfadjoint operator with the
spectrum o(A) C [m, M] and p,v € C[m, M] strictly monotone functions. If one of the
following conditions is satisfied:

(i) o™t is operator convexr and 1! is operator monotone,
(i)’ o™t is operator concave and —p~" is operator monotone,
(ii) ¢! is operator convexr and 1~1 is operator concave,

then

(2.1) P H(@(p(A4) S vTH@(Y(A))).

Proof. (i): Since 1 o p~1 is operator convex, it follows from Davis-Choi-Jensen inequality
(1.1) that

Yo (B(p(A) < P(Y o™t op(A)) = B(P(A)).
Since ¢! is operator monotone, it follows that
e THP(p(A) =9 oo (B(p(A)) < PTHR(Y(A))),

which is the desired inequality (2.1).
(i)’: We have (2.1) under the assumption (i)’ by a similar method as in (i).
(ii): Since ¢! is operator convex, it follows that

P (D(p(A) < D(p" 0 p(A)) = B(A).

Similarly, since 1 ~! is operator concave, we have

®(A) < v H(D((A)))-

Using two inequalities above, we have (2.1). O
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Remark 2. Notice that the condition (i) is equivalent to (i)’ in Theorem 1: In fact, it
follows that 1) o ¢! is operator concave if and only if —1) o ¢! is operator convex, and
—1~! is operator monotone if and only if (—)~! is operator monotone.

The following corollary is a complementary result to Theorem 1.

Corollary 3. Let ® be a normalized positive linear map, A a selfadjoint operator with the
spectrum o(A) C [m, M] and ¢, € Clm, M] strictly monotone functions. If one of the
following conditions is satisfied:

(i) Yot is operator concave and 1)~ is operator monotone,
(i)’ ¢ o™t is operator convex and —~' is operator monotone,
(ii) ¢! is operator concave and 1~ is operator conver,

then
PHB(Y(A))) < o~ 1 (D((A))).

Remark 4. Theorem 1 and Corollary 3 are a generalization of (1.2) in Theorem A: In fact,
if we put ¢(t) =¢" and ¢(t) = ¢* in Theorem 1 and ¢(t) = t* and 1 (¢t) = t" in Corollary 3,
then we have (1.2) in Theorem A.

3 Ratio type complementary order among quasi-arithmetic means Let A be a
positive operator on a Hilbert space H such that mI < A < M1 for some scalars 0 < m <
M, let ¢ € C[m, M] be convex and ¢ > 0 on [m, M]. By using the Mond-Pecari¢ method
for convex functions, Mond-Pecarié¢ [7] showed that

3.1) e((Az,2)) < (p(A)z,2) < A(m, M, ¢) o((Az, z))

holds for every unit vector x € H, where

(3.2)  A(m,M,p) = max{ ! (‘p(M) =) )+ gp(m)) St € [m, M]} > 0.

o(t) M—-—m
If ¢ is concave and ¢ > 0 on [m, M], then
(3.3) p(m, M, ) o((Az,x)) < (p(A)z, v) < o((Az, z))
holds for every unit vector x € H, where

(M) — p(m)
M —m

(34)  wu(m,M,p) =min { wzt) < (t—m)+ <p(m)> item, M]} > 0.

In particular, if ¢(t) = tP, then the constant A(m, M, t?) (resp. p(m, M,t?)) concides with
a generalized Kantorovich constant K (m, M, p) for p & [0,1] (resp. p € [0,1]) defined by

K(m,M,p) =

mMP — MmP [(p—1 MP—mP p for an cR
(p—1)(M —m) p mMP — MmpP yp ’

also see [5, Chapter 2]. We remark that K(m,M,1) = lim, 4 K(m,M,p) = 1 and
K(m,M,0) =lim,_,o K(m, M,p) = 1. We use the following notations:

(3.5) om = min{p(m),p(M)}  and @y = max{p(m), (M)}
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for a strictly monotone function ¢ € C[m, M].

In (i) of Theorem 1, suppose that 1) o ¢! is operator convex. What happened if 1)~}

is not operator monotone? An order among quasi-arithmetic mean (2.1) doe not always
holds. By using the Mond-Pecari¢ method, we show a complementary order to (2.1).

Theorem 5. Let ® be a normalized positive linear map, A a positive operator such that
ml < A < MI for some scalars 0 < m < M and p,% € C[m,M] strictly monotone
functions such as v > 0 on [m, M]. Suppose that 1 o ¢~ is operator convexr.

(i) If =1 is increasing convex (resp. decreasing convez), then

(3.6) e HD(p(A))) < A (m), (M), 1) = H(@(¥(A))).
1

AW (M), p(m),¢~1)

(i) If =1 is increasing concave (resp. decreasing concave), then

1
p(p(m), (M), 1)

(resp.  p(p(M),d(m), v ™) ¥ H(@(¥(A)) < ¢ (B(p(4)), )
where the constants AX(m, M, ) and pu(m, M, @) are defined as (3.2) and (3.4) respectively.

PTHR(W(A))) < o7 (2(p(4)). )

( resp.

(3.7) ¢ ((p(4))) < P THR(D(A))),

Proof. Since 1) o p~! is operator convex, we have

(3.8) Yo (B(p(A)) < B(Y o~ 0p(A)) = B(y(A)).

(i): Suppose that ¥~1 is increasing convex. Since ¢ is strictly monotone, we have
ml < ¢ 1 (®(p(A))) < MI and hence

0 <y(m)I < pop™ (B(p(A))) < Y(M)I

by the increase of 1 and 1 > 0. Since ¥»~! > 0, it follows that for each unit vector z € H

(e~ H(@(p(A))z,2) = (b~ oh o o~ 1 (B(p(A)))z, )

SAW(m), (M), ™) ™ o (@(p(A)))z,x) by convexity of )~ and (3.1)
< AW(m), (M), ™) ™ HD(p(A))x, x) by increase of 1~! and (3.8)

< ANW(m), (M), ") (v 1 (®(¥(A)))z,z) by convexity of ! and (3.1)

and hence we have the desired inequality (3.6).

Suppose that 1! is decreasing convex. Then it follows that 9 is decreasing and 0 <
Y(M)I < p(A) <(m)I by ¢ > 0. Therefore, it follows that for each unit vector z € H

(e~ (@(p(A)z,x) = (P~ o h o™ 1 (D(p(A)))z, x)
> o o H(@(p(A)))z, x) by convexity of 1~! and (3.1)
> H®(Y(A))x, x) by decrease of ¢»~! and (3.8)

1

> AW (M), b (m), 1) (v~ (®((A)))x,x) by convexity of »~! and (3.1)

and hence
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ii): Suppose that ¢~1 is increasing concave. Then it follows that 1) is increasing and
0 <¢(m)I < D(p(A)) <¢(M)I. Hence for each unit vector x € H
(e H(@(p(A)z,2) = (V™ oo™ H(B(p(A)))x, z)
< o H(®(p(A)))x,2) by concavity of ! and (3.3)
<Y H®((A))z,xz) by increase of 1»~! and (3.8)
1
= J(m) (), o1

and hence we have the desired inequality (3.7). In the case of decreasing concavity, we have
our result by a similar method as in (i). O

(Y~ H@((A)))z,z) by concavity of ¢p~! and (3.3)

Remark 6. The upper bound A(¢(m),¥(M),v~1) in (3.6) of Theorem 5 is sharp in the
following sense: Define a normalized positive linear map ® : M5(C) — C by

O(X) =0x11 + (1 — 0)xae for X = ("1 "12) witho<f<1
To1 To2a

and put A = %l ]8[) with M > m > 0. Obviously 0 < mI < A < MI. By definition,

there exists t* € [1p(m), ¥ (M)] such that

AW w0057 = e (g v +m)
Put . S(M) — t*
D) — 0(m)

and we have 0 < 0 < 1.
Suppose that

e((1=0)M +6m) = (1 — 0)p(M) + p(m).

Then we can show that

and hence

P (2(p(A))) = ¢~ (Bp(m) + (1 - 0)p(M))
(

; 1-0)M +0m
(M = m)t* + mp(M) — Mip(m)
(M) = p(m)

(
Ah(m), (M), =)~ (t7)
A@(m), (M), ™) v~ H (@ ((A))).
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The following theorem is a complementary result to (i)’ of Theorem 1 under the assump-
tion that 1) o ¢! is operator concave.

Theorem 7. Let ® be a normalized positive linear map, A a positive operator such that
ml < A < MI for some scalars 0 < m < M and p,% € C[m,M)] strictly monotone
functions such as v > 0 on [m, M]. Suppose that 1) o o~ is operator concave.

(i) If =1 is decreasing concave (resp. increasing concave), then

. 1
oD = LG, e, e

(resp. p((m), (M), 07" v™H(@(W(A))) < ¢~ (D(p(A)). )
(ii) If 1 is decreasing convex (resp. increasing convez), then

P H(@((A))) < AW (M), 9 (m), ¢~ 1) v H(@(¥(A))),

1 B »
A(w(m)7z/J(J\4)7¢—1)1/’ (@(¥(A)) <o (2(p(4), )

where the constants A(m, M, @) and p(m, M, @) are defined as (3.2) and (3.4) respectively.

VH(@(1(4))).

( resp.

The following theorem is a complementary result to (ii) of Theorem 1.

Theorem 8. Let ® be a normalized positive linear map, A a positive operator such that
ml < A < MI for some scalars 0 < m < M and p,% € C[m,M)] strictly monotone
functions.

(i) If =1 is operator convex and =1 is concave and 1) > 0 on [m, M], then

—1 1 —1
39) A € s T @A),
(ii) If ¢~ is conver and p > 0 on [m, M|, and =1 is operator concave, then
(3.10) ¢ H(@((A))) < Mpm,oar, 071) ¥ H(D(1(A))).
(iii) If ¢~ is convex and ¢ > 0 on [m, M] and = is concave and 1) > 0 on [m, M|, then
) o @A) < AEmELL) o apya),

where the constants A(m, M, @) and p(m, M, @) are defined as (3.2) and (3.4) respectively.

Proof. (i): Since a C*-algebra C*(A) generated by A and the identity operator I is abelian,
it follows from Stinespring decomposition theorem [12] that & restricted to C*(A) admits
a decomposition ®(X) = V*r(X)V for all X € C*(A), where 7 is a representation of
C*(A) C B(H), and V is an isometry from K into H. Since 1! is monotone and v > 0,
we have 0 < ¥, I < ®((A)) < Yarl. Since =1 > 0, it follows that for each unit vector
rc H
(1/1_1(@(1#(14)))% 90)
1/’m7 wMa
Yms ur,

> p( x) by concavity of 1~ and (3.3)
=

> p(Pm, Y,

= u(

=

DT )z,

DT (@ (p(A)Va, V)
Y @ M r(p(A))WVr, V) by || Vo |=1 and (3.3)

Gms Par, 71) (1(A)Va, V)

D (

wmvaa
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and hence

(3.12) (W Yar, o™ @(A) < YTH@(Y(A))).
On the other hand, the operator convexity of ¢ ~! implies

(3.13) P 1 (@(p(A)) < ©(A).

Combining two inequalities (3.12) and (3.13), we have the desired inequality (3.9).
(ii): We have (3.10) by a similar method as in (i).
(iii): We have (3.11) by combining (i) and (ii). O

The following theorem is a complementary result to (i) or (i)’ of Theorem 1 under the
assumption that 1 o ¢! is only convex or concave, respectively.

Theorem 9. Let ® be a normalized positive linear map, A a positive operator such that
mlI < A < MI for some scalars 0 < m < M and ¢,¢ € C[m,M] strictly monotone
functions such that ¢ > 0 on [m, M]. If one of the following conditions is satisfied:

(i) o !is convex (resp. concave) and v~1 is operator monotone,

(i)’ o™t is concave (resp. convex) and —~ is operator monotone,

then
(319 UL BWA)) < Moo o1 1) 7 (B(o(4).

resp. 6 @A) > Al oar o) o (@(o(A). )
where
~ SO G 2] e ) P W,
o, 8, 0) = max { o (DA ) ) <€ )},
. i (PAD) —e(m) Y e
it M) = min { L (A0 ¢y o))t )}

Proof. (i): We will prove only the convex case. Since the inequality

fM) — f(m)

f(Z)S M—m (Z_m)+f(m)7 ZE[’ITL,M]

holds for every convex function f € C[m, M], then we have that inequality

flom) = flom)

flp(e)) < RO

(0(t) = om) + f(pm), t€[m,M]
holds for every convex function f € C[pm,n]. Then for a convex function ¢ o =1 €
Clem, ), we obtain

V(e (om)) — (e (om))

v (o(t) — om) + V(@ (pm)), t e [m,M].

P(t) <

Using the functional calculus and applying a normalized positive linear map ®, we obtain

that
Y(M) —1p(m)

(M) — o(m) (@(p(A)) — o) + (9™ (pm))]

(y(4)) <
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holds for every operator A such that 0 < ml < A < MI. Applying an operator monotone
function 11, it follows

(M) — p(m)
P(M) — p(m)

Using that 0 < ¢, ] < ®(p(A)) < opl, we obtain

b (@((A)))
1 _1 (VM) = p(m) -1 -1
b (L (1= pm) + 0l on)) ) | 7 @A)

max { —
Pm <t<pum "2
= Mem,oa, o™t ™) o7 (®(p(A)))

and hence we have the desired inequality (3.14).
In the case (i)', the proof is essentially same as in the previous case. O

5 (@((A))) < p° ( ((p(A)) — o) + ww—lwm))z) .

<

Remark 10. The upper bound )\(cpm, o, Yop~t 9p71) in (3.14) of Theorem 9 is sharp in
the sense that for any strictly monotone functions ¢ and ¢ there exist a positive operator
A and a positive linear map ® such that the equality holds in (3.14).

It is obvious that

:\(SOTTM $PM, 1/1 o @_lﬂﬁ_l)

1 WM

mX{ v (e = o) + (e ) ) |
-0

)
) — ¢
_ max{ V(09 (M) + (1 — 0)3)( ))}
0<6<1 LOp(M)+ (1 —0)p(m)) |-

Since a function f(6) = wilf?%(ﬁig_g))z(";)) is continuous on [0, 1], there exists 6* € [0, 1]

el VL (O 9(M) + (1= 0)5(m))
- — * _|_ _ * m
AM@m, ¢ 7¢O‘P717w71 = .
(P oar )T T @D+ (1 8)5(m)
Let ® and A be as in Remark 6. Then the equality

PTHR(Y(A)) = Meoms pan ¥ o™, 071 (B(p(4)))

_ P(m)

1(@*( > i)

(= 67)¢p(m )+9*w 1 ) .
“1T((1 = 6%)p(m) + 0% (M) o7 (A= 0%)p(m) + 6 p(M))

(‘pmﬂva/(b _17’(/}_1) QP_I((I)(CP(A)))

3

holds. Indeed,

<

T R(Y(A) =

‘GG

>/l

4 Difference type complementary order among quasi-arithmetic means Let A
be a selfadjoint operator on a Hilbert space H such that mI < A < M for some scalars
m < M, let ¢ € C[m, M] be a convex function. By using the Mond-Pecari¢ method for
convex functions, Mond-Pecari¢ 7] showed that

p((Az, z)) < (p(A)z,2) < p((Az, ) + v(m, M, p)
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holds for every unit vector x € H, where

(4.1) v(im, M, p) = max{W(t—m) +o(m)—p(t):te [m7M]} > 0.

If ¢ is concave on [m, M], then

§(m, M, ) + ¢((Az, 7)) < (p(A)z, ) < o((Az,x))
holds for every unit vector x € H, where

p(M) — p(m)

(4.2) &(m, M, ) min{ M —m

(t—m)+o(m)—(t):te [m,M]} > 0.

In particular, if ¢(t) = t?, then the constant v(m, M, t?) (resp. {(m, M, tP)) coincides with a
generalized Kantorovich constant for the difference C'(m, M, p) for p & [0,1] (resp. p € [0,1])
defined by

1 MP —mP

C(m, M,p) = (p—1) <pM_m>J_1 +

MmP — mMP f cR
—_— or an
also see [5, Chapter 2]. We remark that C'(m, M, 1) = lim,_.; C(m, M, p) = 0.

Similarly as in the previous section, we can obtain the complementary order to (2.1) for
the difference case. When ) o ¢~ ! is operator convex and ! is not operator monotone,
we obtain the following theorem corresponding to Theorem 5.

Theorem 11. Let ® be a normalized positive linear map, A a selfadjoint operator such that
ml < A< MI for some scalars m < M and ¢, € C[m, M| strictly monotone functions.

(1) Suppose that 1) o o1 is operator conver.
(i) If 9~1 is increasing convex (resp. decreasing convez), then
(4.3) P H(@(p(A))) < YTHR(WP(A))) + v(p(m), p(M),y ).
(resp.  YTHOW(A))) — v((M),(m), ™) < o7 (B(p(A)). )
(i3) If p=1 is increasing concave (resp. decreasing concave), then
¢TH@(p(A))) < YTHR(Y(A))) — (W (m), (M), 7).
(resp. €M), (m), ™" + ¢ H(D(W(A))) < ¢ H(D(0(4))). )
(I1) Suppose that 1) o p~1 is operator concave.

(i)” If Y= is decreasing concave (resp. increasing concave), then
¢ (@(p(A) S YTHR(WU(A))) = EW (M), 9 (m), v ).
(resp. E(W(m), (M), v ™) + o7 H(2(¥(A))) < 0~ (B((4))). )
(ii)” If =1 is decreasing convex (resp. increasing convex), then
P 1 (@(0(A))) < YTHRW(A)) + v(¥(M), (m),v™),
(resp.  ¥7H@(W(A))) — v(W(m), (M), d™") < ¢ (@(p(4)), )
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where the constants v(m, M, ) and {(m, M, ) are defined as (4.1) and (4.2) respectively.

The proof of this theorem is quite similar to one of Theorem 5 and we omit it.

Remark 12. The inequalities in Theorem 11 are sharp in the sense of Remark 6. In (4.3),
there exists 8* € [0, 1] such that

v((m), p(M),™") = "M+ (1 =0 )m — ¢~ (0")(M) + (1 = §%)y(m))
Bax {60M + (1~ 0)m — T (OP(M) + (1= 0)y(m))},

since

M—m )
D(m) Shep(a) {w(M)w(m) (t —p(m)) +m) — o (t)}
1

= max {0M +( — 0)m — = (0(M) + (1 — 6)p(m))} .

Let @, A and ¢ be as in Remark 6. Then the equality

(@ (p(A)) = ¥ THR(WU(A))) + v(¥(m), p(M), ")
holds. Indeed,

o (D(p(A))) = ¢ (0" p(m) + (1 — 6" )p(M))

=0'm+(1- 6" )M
“HO*p(m) + (1 — 0% (M) + v((m), (M), ™)
“H@(P(A))) + v(h(m), p(M), ).

Remark 13. If we put ¢(t) = t" and ¢(t) = ¢° in inequalities involving the complementary
order among quasi-arithmetic means given in Section 3 and 4, we obtain the same bound
as in [5, Theorem 4.4]. For instance, using Theorem 9, we obtain that

s\1/s max \T/(QMT+(1 79)mr) ™1/r _ rs r\1/7
2(4) <«K1{was+amma}¢“” Alh7,9)B(A)

holds for r < s, s > 1orr < s < —1, where A(h,r, s) is the generalized Specht ratio defined
by (see [5, (2.97)])

o=

A(h,r,s) = {(Sr_(}f)(;fhr—) 1)}

Indeed, a function f(6) := {/(0M" + (1 — 0)m")/3/(OM* + (1 — 0)m*) has one station-
ary point

{<f_“f><;"?1) } , h= %

r(h®—1) —s(h" —1)

LA P T ) [

and we have

max f(0) = f(6p) = A(h,s,r).

0<6<1
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