AN ESTIMATE OF QUASI-ARITHMETIC MEAN FOR CONVEX FUNCTIONS

Jadranka Mićić Hot*, Josip Pečarić** and Yuki Seo***

Received March 25, 2011

Abstract

For a selfadjoint operator A on a Hilbert space H and a normalized positive linear map Φ, a quasi-arithmetic mean is defined by $\varphi^{-1}(\Phi(\varphi(A))$) for a strictly monotone function φ. In this paper, we shall show an order relation among quasi-arithmetic means for convex functions through positive linear maps and its complementary problems, in which we use the Mond-Pečarić method for convex functions.

1 Introduction. Let Φ be a normalized positive linear map from $B(H)$ to $B(K)$, where $B(H)$ is a C^{*}-algebra of all bounded linear operators on a Hilbert space H and the symbol I stands for the identity operator. A real valued function φ is said to be operator convex on an interval J if

$$
\varphi((1-\lambda) A+\lambda B) \leq(1-\lambda) \varphi(A)+\lambda \varphi(B)
$$

holds for each $\lambda \in[0,1]$ and every pair of selfadjoint operators A, B in $B(H)$ with spectra in $J . \varphi$ is operator concave if $-\varphi$ is operator convex. Davis-Choi-Jensen inequality [3, 1] asserts that if a real valued continuous function f is operator convex on an interval J, then

$$
\begin{equation*}
f(\Phi(A)) \leq \Phi(f(A)) \tag{1.1}
\end{equation*}
$$

for every selfadjoint operator A with the spectrum $\sigma(A) \subset J$. A real valued function φ is said to be operator monotone on an interval J if it is monotone with respect to the operator order, i.e.,

$$
A \leq B \quad \text { with } \sigma(A), \sigma(B) \subset J \quad \text { implies } \quad f(A) \leq f(B)
$$

To relate them, Mond-Pečarić [8] showed the following order among power means, also see [9, 10, 11]:

Theorem A. Let A be a positive operator on a Hilbert space H. Then

$$
\begin{equation*}
\Phi\left(A^{r}\right)^{1 / r} \leq \Phi\left(A^{s}\right)^{1 / s} \tag{1.2}
\end{equation*}
$$

holds for either $r \leq s, r \notin(-1,1), s \notin(-1,1)$ or $1 / 2 \leq r \leq 1 \leq s$ or $r \leq-1 \leq s \leq-1 / 2$.
For positive invertible operators A and B, the chaotic order $A \gg B$ is defined by $\log A \geq$ $\log B$. In [4], Fujii, Nakamura and Takahasi introduced a chaotically quasi-arithmetic mean of positive operators A and B : For each $t \in[0,1]$

$$
\varphi^{-1}((1-t) \varphi(A)+t \varphi(B))
$$

for a non-constant operator monotone function φ on $(0, \infty)$ such that φ^{-1} is chaotically monotone, that is, $0 \leq A \leq B$ implies $\varphi^{-1}(A) \ll \varphi^{-1}(B)$. They discussed an order among this class like Cooper's classical results [2]:

[^0]Theorem B. If ψ is operator monotone and $\psi \circ \varphi^{-1}$ is operator convex, then

$$
\begin{equation*}
\varphi^{-1}((1-t) \varphi(A)+t \varphi(B)) \ll \psi^{-1}((1-t) \psi(A)+t \psi(B)) \tag{1.3}
\end{equation*}
$$

for all $t \in[0,1]$.
We want to consider orders of (1.2) and (1.3) under a more general situation. We recall that a quasi-arithmetic mean of a selfadjoint operator A is defined by

$$
\varphi^{-1}(\Phi(\varphi(A)))
$$

for a strictly monotone continuous function φ. Matsumoto and Tominaga [6] investigated the relation between the quasi-arithmetic mean $\varphi^{-1}(\Phi(\varphi(A))$ and $\Phi(A)$ for a convex function φ.

In this paper, we shall show an order relation among quasi-arithmetic means for convex functions through positive linear maps and its complementary problems, in which we use the Mond-Pečarić method for convex functions in [5, 7].

2 Order among quasi-arithmetic mean First of all, we shall show an order relation among quasi-arithmetic means of selfadjoint operators for convex functions. Let $C[m, M]$ be a set of all real valued continuous functions on a closed interval $[m, M]$
Theorem 1. Let Φ be a normalized positive linear map, A a selfadjoint operator with the spectrum $\sigma(A) \subset[m, M]$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions. If one of the following conditions is satisfied:
(i) $\psi \circ \varphi^{-1}$ is operator convex and ψ^{-1} is operator monotone,
(i), $\psi \circ \varphi^{-1}$ is operator concave and $-\psi^{-1}$ is operator monotone,
(ii) φ^{-1} is operator convex and ψ^{-1} is operator concave,
then

$$
\begin{equation*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \psi^{-1}(\Phi(\psi(A))) \tag{2.1}
\end{equation*}
$$

Proof. (i): Since $\psi \circ \varphi^{-1}$ is operator convex, it follows from Davis-Choi-Jensen inequality (1.1) that

$$
\psi \circ \varphi^{-1}(\Phi(\varphi(A))) \leq \Phi\left(\psi \circ \varphi^{-1} \circ \varphi(A)\right)=\Phi(\psi(A))
$$

Since ψ^{-1} is operator monotone, it follows that

$$
\varphi^{-1}(\Phi(\varphi(A)))=\psi^{-1} \circ \psi \circ \varphi^{-1}\left(\Phi(\varphi(A)) \leq \psi^{-1}(\Phi(\psi(A)))\right.
$$

which is the desired inequality (2.1).
(i)': We have (2.1) under the assumption (i)' by a similar method as in (i).
(ii): Since φ^{-1} is operator convex, it follows that

$$
\varphi^{-1}(\Phi(\varphi(A))) \leq \Phi\left(\varphi^{-1} \circ \varphi(A)\right)=\Phi(A)
$$

Similarly, since ψ^{-1} is operator concave, we have

$$
\Phi(A) \leq \psi^{-1}(\Phi(\psi(A)))
$$

Using two inequalities above, we have (2.1).

Remark 2. Notice that the condition (i) is equivalent to (i)' in Theorem 1: In fact, it follows that $\psi \circ \varphi^{-1}$ is operator concave if and only if $-\psi \circ \varphi^{-1}$ is operator convex, and $-\psi^{-1}$ is operator monotone if and only if $(-\psi)^{-1}$ is operator monotone.

The following corollary is a complementary result to Theorem 1.
Corollary 3. Let Φ be a normalized positive linear map, A a selfadjoint operator with the spectrum $\sigma(A) \subset[m, M]$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions. If one of the following conditions is satisfied:
(i) $\psi \circ \varphi^{-1}$ is operator concave and ψ^{-1} is operator monotone,
(i) $\psi \circ \varphi^{-1}$ is operator convex and $-\psi^{-1}$ is operator monotone,
(ii) φ^{-1} is operator concave and ψ^{-1} is operator convex,
then

$$
\psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A)))
$$

Remark 4. Theorem 1 and Corollary 3 are a generalization of (1.2) in Theorem A: In fact, if we put $\varphi(t)=t^{r}$ and $\psi(t)=t^{s}$ in Theorem 1 and $\varphi(t)=t^{s}$ and $\psi(t)=t^{r}$ in Corollary 3, then we have (1.2) in Theorem A.

3 Ratio type complementary order among quasi-arithmetic means Let A be a positive operator on a Hilbert space H such that $m I \leq A \leq M I$ for some scalars $0<m<$ M, let $\varphi \in C[m, M]$ be convex and $\varphi>0$ on $[m, M]$. By using the Mond-Pečarić method for convex functions, Mond-Pečarić [7] showed that

$$
\begin{equation*}
\varphi((A x, x)) \leq(\varphi(A) x, x) \leq \lambda(m, M, \varphi) \varphi((A x, x)) \tag{3.1}
\end{equation*}
$$

holds for every unit vector $x \in H$, where

$$
\begin{equation*}
\lambda(m, M, \varphi)=\max \left\{\frac{1}{\varphi(t)}\left(\frac{\varphi(M)-\varphi(m)}{M-m}(t-m)+\varphi(m)\right): t \in[m, M]\right\}>0 \tag{3.2}
\end{equation*}
$$

If φ is concave and $\varphi>0$ on $[m, M]$, then

$$
\begin{equation*}
\mu(m, M, \varphi) \varphi((A x, x)) \leq(\varphi(A) x, x) \leq \varphi((A x, x)) \tag{3.3}
\end{equation*}
$$

holds for every unit vector $x \in H$, where

$$
\begin{equation*}
\mu(m, M, \varphi)=\min \left\{\frac{1}{\varphi(t)}\left(\frac{\varphi(M)-\varphi(m)}{M-m}(t-m)+\varphi(m)\right): t \in[m, M]\right\}>0 \tag{3.4}
\end{equation*}
$$

In particular, if $\varphi(t)=t^{p}$, then the constant $\lambda\left(m, M, t^{p}\right)$ (resp. $\mu\left(m, M, t^{p}\right)$) concides with a generalized Kantorovich constant $K(m, M, p)$ for $p \notin[0,1]$ (resp. $p \in[0,1]$) defined by

$$
K(m, M, p)=\frac{m M^{p}-M m^{p}}{(p-1)(M-m)}\left(\frac{p-1}{p} \frac{M^{p}-m^{p}}{m M^{p}-M m^{p}}\right)^{p} \quad \text { for any } p \in \mathbb{R}
$$

also see [5, Chapter 2]. We remark that $K(m, M, 1)=\lim _{p \rightarrow 1} K(m, M, p)=1$ and $K(m, M, 0)=\lim _{p \rightarrow 0} K(m, M, p)=1$. We use the following notations:

$$
\begin{equation*}
\varphi_{m}=\min \{\varphi(m), \varphi(M)\} \quad \text { and } \quad \varphi_{M}=\max \{\varphi(m), \varphi(M)\} \tag{3.5}
\end{equation*}
$$

for a strictly monotone function $\varphi \in C[m, M]$.
In (i) of Theorem 1, suppose that $\psi \circ \varphi^{-1}$ is operator convex. What happened if ψ^{-1} is not operator monotone? An order among quasi-arithmetic mean (2.1) doe not always holds. By using the Mond-Pečarić method, we show a complementary order to (2.1).

Theorem 5. Let Φ be a normalized positive linear map, A a positive operator such that $m I \leq A \leq M I$ for some scalars $0<m<M$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions such as $\psi>0$ on $[m, M]$. Suppose that $\psi \circ \varphi^{-1}$ is operator convex.
(i) If ψ^{-1} is increasing convex (resp. decreasing convex), then

$$
\begin{gather*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \lambda\left(\psi(m), \psi(M), \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A))) \tag{3.6}\\
\left(\text { resp. } \quad \frac{1}{\lambda\left(\psi(M), \psi(m), \psi^{-1}\right)} \psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A)))\right.
\end{gather*}
$$

(ii) If ψ^{-1} is increasing concave (resp. decreasing concave), then

$$
\begin{gather*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \frac{1}{\mu\left(\psi(m), \psi(M), \psi^{-1}\right)} \psi^{-1}(\Phi(\psi(A))) \tag{3.7}\\
\left(\text { resp. } \quad \mu\left(\psi(M), \psi(m), \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A)))\right.
\end{gather*}
$$

where the constants $\lambda(m, M, \varphi)$ and $\mu(m, M, \varphi)$ are defined as (3.2) and (3.4) respectively. Proof. Since $\psi \circ \varphi^{-1}$ is operator convex, we have

$$
\begin{equation*}
\psi \circ \varphi^{-1}\left(\Phi(\varphi(A)) \leq \Phi\left(\psi \circ \varphi^{-1} \circ \varphi(A)\right)=\Phi(\psi(A))\right. \tag{3.8}
\end{equation*}
$$

(i): Suppose that ψ^{-1} is increasing convex. Since φ is strictly monotone, we have $m I \leq \varphi^{-1}(\Phi(\varphi(A))) \leq M I$ and hence

$$
0<\psi(m) I \leq \psi \circ \varphi^{-1}(\Phi(\varphi(A))) \leq \psi(M) I
$$

by the increase of ψ and $\psi>0$. Since $\psi^{-1}>0$, it follows that for each unit vector $x \in H$

$$
\begin{aligned}
& \left(\varphi^{-1}(\Phi(\varphi(A))) x, x\right)=\left(\psi^{-1} \circ \psi \circ \varphi^{-1}(\Phi(\varphi(A))) x, x\right) \\
& \leq \lambda\left(\psi(m), \psi(M), \psi^{-1}\right) \psi^{-1}\left(\psi \circ \varphi^{-1}(\Phi(\varphi(A))) x, x\right) \quad \text { by convexity of } \psi^{-1} \text { and (3.1) } \\
& \leq \lambda\left(\psi(m), \psi(M), \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A)) x, x) \quad \text { by increase of } \psi^{-1} \text { and (3.8) } \\
& \leq \lambda\left(\psi(m), \psi(M), \psi^{-1}\right)\left(\psi^{-1}(\Phi(\psi(A))) x, x\right) \quad \text { by convexity of } \psi^{-1} \text { and (3.1) }
\end{aligned}
$$

and hence we have the desired inequality (3.6).
Suppose that ψ^{-1} is decreasing convex. Then it follows that ψ is decreasing and $0<$ $\psi(M) I \leq \psi(A) \leq \psi(m) I$ by $\psi>0$. Therefore, it follows that for each unit vector $x \in H$

$$
\begin{aligned}
& \left(\varphi^{-1}(\Phi(\varphi(A))) x, x\right)=\left(\psi^{-1} \circ \psi \circ \varphi^{-1}(\Phi(\varphi(A))) x, x\right) \\
& \geq \psi^{-1}\left(\psi \circ \varphi^{-1}(\Phi(\varphi(A))) x, x\right) \quad \text { by convexity of } \psi^{-1} \text { and (3.1) } \\
& \geq \psi^{-1}(\Phi(\psi(A)) x, x) \quad \text { by decrease of } \psi^{-1} \text { and }(3.8) \\
& \geq \frac{1}{\lambda\left(\psi(M), \psi(m), \psi^{-1}\right)}\left(\psi^{-1}(\Phi(\psi(A))) x, x\right) \quad \text { by convexity of } \psi^{-1} \text { and }(3.1)
\end{aligned}
$$

and hence

$$
\varphi^{-1}(\Phi(\varphi(A))) \geq \frac{1}{\lambda\left(\psi(M), \psi(m), \psi^{-1}\right)} \psi^{-1}(\Phi(\psi(A)))
$$

(ii): Suppose that ψ^{-1} is increasing concave. Then it follows that ψ is increasing and $0<\psi(m) I \leq \Phi(\psi(A)) \leq \psi(M) I$. Hence for each unit vector $x \in H$

$$
\begin{aligned}
& \left(\varphi^{-1}(\Phi(\varphi(A))) x, x\right)=\left(\psi^{-1} \circ \psi \circ \varphi^{-1}(\Phi(\varphi(A))) x, x\right) \\
& \leq \psi^{-1}\left(\psi \circ \varphi^{-1}(\Phi(\varphi(A))) x, x\right) \quad \text { by concavity of } \psi^{-1} \text { and (3.3) } \\
& \leq \psi^{-1}(\Phi(\psi(A)) x, x) \quad \text { by increase of } \psi^{-1} \text { and }(3.8) \\
& \leq \frac{1}{\mu\left(\psi(m), \psi(M), \psi^{-1}\right)}\left(\psi^{-1}(\Phi(\psi(A))) x, x\right) \quad \text { by concavity of } \psi^{-1} \text { and }(3.3)
\end{aligned}
$$

and hence we have the desired inequality (3.7). In the case of decreasing concavity, we have our result by a similar method as in (i).

Remark 6. The upper bound $\lambda\left(\psi(m), \psi(M), \psi^{-1}\right)$ in (3.6) of Theorem 5 is sharp in the following sense: Define a normalized positive linear map $\Phi: M_{2}(\mathbb{C}) \mapsto \mathbb{C}$ by

$$
\Phi(X)=\theta x_{11}+(1-\theta) x_{22} \quad \text { for } \quad X=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right) \text { with } 0<\theta<1
$$

and put $A=\left(\begin{array}{cc}m & 0 \\ 0 & M\end{array}\right)$ with $M>m>0$. Obviously $0<m I \leq A \leq M I$. By definition, there exists $t^{*} \in[\psi(m), \psi(M)]$ such that

$$
\lambda\left(\psi(m), \psi(M), \psi^{-1}\right)=\frac{1}{\psi^{-1}\left(t^{*}\right)}\left(\frac{M-m}{\psi(M)-\psi(m)}\left(t^{*}-\psi(m)\right)+m\right)
$$

Put

$$
\theta=\frac{\psi(M)-t^{*}}{\psi(M)-\psi(m)}
$$

and we have $0<\theta<1$.
Suppose that

$$
\varphi((1-\theta) M+\theta m)=(1-\theta) \varphi(M)+\theta \varphi(m)
$$

Then we can show that

$$
\varphi^{-1}(\Phi(\varphi(A)))=\lambda\left(\psi(m), \psi(M), \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A)))
$$

Indeed, it follows that

$$
\begin{aligned}
\psi^{-1}(\Phi(\psi(A))) & =\psi^{-1}\left(\Phi\left(\left(\begin{array}{cc}
\psi(m) & 0 \\
0 & \psi(M)
\end{array}\right)\right)\right) \\
& =\psi^{-1}(\theta \psi(m)+(1-\theta) \psi(M)) \\
& =\psi^{-1}\left(t^{*}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\varphi^{-1}(\Phi(\varphi(A))) & =\varphi^{-1}(\theta \varphi(m)+(1-\theta) \varphi(M)) \\
& =(1-\theta) M+\theta m \\
& =\frac{(M-m) t^{*}+m \psi(M)-M \psi(m)}{\psi(M)-\psi(m)} \\
& =\lambda\left(\psi(m), \psi(M), \psi^{-1}\right) \psi^{-1}\left(t^{*}\right) \\
& =\lambda\left(\psi(m), \psi(M), \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A))) .
\end{aligned}
$$

The following theorem is a complementary result to (i)' of Theorem 1 under the assumption that $\psi \circ \varphi^{-1}$ is operator concave.
Theorem 7. Let Φ be a normalized positive linear map, A a positive operator such that $m I \leq A \leq M I$ for some scalars $0<m<M$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions such as $\psi>0$ on $[m, M]$. Suppose that $\psi \circ \varphi^{-1}$ is operator concave.
(i) If ψ^{-1} is decreasing concave (resp. increasing concave), then

$$
\left.\begin{array}{c}
\varphi^{-1}(\Phi(\varphi(A))) \leq \frac{1}{\mu\left(\psi(M), \psi(m), \psi^{-1}\right)} \psi^{-1}(\Phi(\psi(A))) \\
(\text { resp. }
\end{array} \quad \mu\left(\psi(m), \psi(M), \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A))) . \quad\right) ~
$$

(ii) If ψ^{-1} is decreasing convex (resp. increasing convex), then

$$
\begin{gathered}
\varphi^{-1}(\Phi(\varphi(A))) \leq \lambda\left(\psi(M), \psi(m), \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A))) \\
\left(\text { resp. } \quad \frac{1}{\lambda\left(\psi(m), \psi(M), \psi^{-1}\right)} \psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A)))\right.
\end{gathered}
$$

where the constants $\lambda(m, M, \varphi)$ and $\mu(m, M, \varphi)$ are defined as (3.2) and (3.4) respectively.
The following theorem is a complementary result to (ii) of Theorem 1.
Theorem 8. Let Φ be a normalized positive linear map, A a positive operator such that $m I \leq A \leq M I$ for some scalars $0<m<M$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions.
(i) If φ^{-1} is operator convex and ψ^{-1} is concave and $\psi>0$ on $[m, M]$, then

$$
\begin{equation*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \frac{1}{\mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right)} \psi^{-1}(\Phi(\psi(A))) \tag{3.9}
\end{equation*}
$$

(ii) If φ^{-1} is convex and $\varphi>0$ on $[m, M]$, and ψ^{-1} is operator concave, then

$$
\begin{equation*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \lambda\left(\varphi_{m}, \varphi_{M}, \varphi^{-1}\right) \psi^{-1}(\Phi(\psi(A))) \tag{3.10}
\end{equation*}
$$

(iii) If φ^{-1} is convex and $\varphi>0$ on $[m, M]$ and ψ^{-1} is concave and $\psi>0$ on $[m, M]$, then

$$
\begin{equation*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \frac{\lambda\left(\varphi_{m}, \varphi_{M}, \varphi^{-1}\right)}{\mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right)} \psi^{-1}(\Phi(\psi(A))) \tag{3.11}
\end{equation*}
$$

where the constants $\lambda(m, M, \varphi)$ and $\mu(m, M, \varphi)$ are defined as (3.2) and (3.4) respectively.
Proof. (i): Since a C^{*}-algebra $C^{*}(A)$ generated by A and the identity operator I is abelian, it follows from Stinespring decomposition theorem [12] that Φ restricted to $C^{*}(A)$ admits a decomposition $\Phi(X)=V^{*} \pi(X) V$ for all $X \in C^{*}(A)$, where π is a representation of $C^{*}(A) \subset B(H)$, and V is an isometry from K into H. Since ψ^{-1} is monotone and $\psi>0$, we have $0<\psi_{m} I \leq \Phi(\psi(A)) \leq \psi_{M} I$. Since $\psi^{-1}>0$, it follows that for each unit vector $x \in H$

$$
\begin{aligned}
& \left(\psi^{-1}(\Phi(\psi(A))) x, x\right) \\
& \geq \mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right) \psi^{-1}(\Phi(\psi(A)) x, x) \quad \text { by concavity of } \psi^{-1} \text { and (3.3) } \\
& =\mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right) \psi^{-1}(\pi(\psi(A)) V x, V x) \\
& \geq \mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right)\left(\psi^{-1}(\pi(\psi(A))) V x, V x\right) \quad \text { by }\|V x\|=1 \text { and }(3.3) \\
& =\mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right)(\pi(A) V x, V x) \\
& =\mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right)(\Phi(A) x, x)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\mu\left(\psi_{m}, \psi_{M}, \psi^{-1}\right) \Phi(A) \leq \psi^{-1}(\Phi(\psi(A))) \tag{3.12}
\end{equation*}
$$

On the other hand, the operator convexity of φ^{-1} implies

$$
\begin{equation*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \Phi(A) \tag{3.13}
\end{equation*}
$$

Combining two inequalities (3.12) and (3.13), we have the desired inequality (3.9).
(ii): We have (3.10) by a similar method as in (i).
(iii): We have (3.11) by combining (i) and (ii).

The following theorem is a complementary result to (i) or (i)' of Theorem 1 under the assumption that $\psi \circ \varphi^{-1}$ is only convex or concave, respectively.

Theorem 9. Let Φ be a normalized positive linear map, A a positive operator such that $m I \leq A \leq M I$ for some scalars $0<m<M$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions such that $\varphi>0$ on $[m, M]$. If one of the following conditions is satisfied:
(i) $\psi \circ \varphi^{-1}$ is convex (resp. concave) and ψ^{-1} is operator monotone,
(i) $\psi \circ \varphi^{-1}$ is concave (resp. convex) and $-\psi^{-1}$ is operator monotone,
then

$$
\begin{array}{cc}
\psi^{-1}(\Phi(\psi(A))) \leq \tilde{\lambda}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right) \varphi^{-1}(\Phi(\varphi(A))) \tag{3.14}\\
(\text { resp. } & \psi^{-1}(\Phi(\psi(A))) \geq \tilde{\mu}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right) \varphi^{-1}(\Phi(\varphi(A)))
\end{array}
$$

where

$$
\begin{aligned}
& \tilde{\lambda}(m, M, \varphi, \psi)=\max \left\{\frac{1}{\psi \circ \varphi(t)} \cdot \psi\left(\frac{\varphi(M)-\varphi(m)}{M-m}(t-m)+\varphi(m)\right): t \in[m, M]\right\} \\
& \tilde{\mu}(m, M, \varphi, \psi)=\min \left\{\frac{1}{\psi \circ \varphi(t)} \cdot \psi\left(\frac{\varphi(M)-\varphi(m)}{M-m}(t-m)+\varphi(m)\right): t \in[m, M]\right\}
\end{aligned}
$$

Proof. (i): We will prove only the convex case. Since the inequality

$$
f(z) \leq \frac{f(M)-f(m)}{M-m}(z-m)+f(m), \quad z \in[m, M]
$$

holds for every convex function $f \in \mathcal{C}[m, M]$, then we have that inequality

$$
f(\varphi(t)) \leq \frac{f\left(\varphi_{M}\right)-f\left(\varphi_{m}\right)}{\varphi_{M}-\varphi_{m}}\left(\varphi(t)-\varphi_{m}\right)+f\left(\varphi_{m}\right), \quad t \in[m, M]
$$

holds for every convex function $f \in \mathcal{C}\left[\varphi_{m}, \varphi_{M}\right]$. Then for a convex function $\psi \circ \varphi^{-1} \in$ $\mathcal{C}\left[\varphi_{m}, \varphi_{M}\right]$, we obtain

$$
\psi(t) \leq \frac{\psi\left(\varphi^{-1}\left(\varphi_{M}\right)\right)-\psi\left(\varphi^{-1}\left(\varphi_{m}\right)\right)}{\varphi_{M}-\varphi_{m}}\left(\varphi(t)-\varphi_{m}\right)+\psi\left(\varphi^{-1}\left(\varphi_{m}\right)\right), \quad t \in[m, M]
$$

Using the functional calculus and applying a normalized positive linear map Φ, we obtain that

$$
\Phi(\psi(A)) \leq \frac{\psi(M)-\psi(m)}{\varphi(M)-\varphi(m)}\left(\Phi(\varphi(A))-\varphi_{m} I\right)+\psi\left(\varphi^{-1}\left(\varphi_{m}\right)\right) I
$$

holds for every operator A such that $0<m I \leq A \leq M I$. Applying an operator monotone function ψ^{-1}, it follows

$$
\psi^{-1}(\Phi(\psi(A))) \leq \psi^{-1}\left(\frac{\psi(M)-\psi(m)}{\varphi(M)-\varphi(m)}\left(\Phi(\varphi(A))-\varphi_{m} I\right)+\psi\left(\varphi^{-1}\left(\varphi_{m}\right)\right) I\right)
$$

Using that $0<\varphi_{m} I \leq \Phi(\varphi(A)) \leq \varphi_{M} I$, we obtain

$$
\begin{aligned}
& \psi^{-1}(\Phi(\psi(A))) \\
\leq & \max _{\varphi_{m} \leq t \leq \varphi_{M}}\left\{\frac{1}{\varphi^{-1}(t)} \cdot \psi^{-1}\left(\frac{\psi(M)-\psi(m)}{\varphi(M)-\varphi(m)}\left(t-\varphi_{m}\right)+\psi\left(\varphi^{-1}\left(\varphi_{m}\right)\right)\right)\right\} \varphi^{-1}(\Phi(\varphi(A))) \\
= & \tilde{\lambda}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right) \varphi^{-1}(\Phi(\varphi(A)))
\end{aligned}
$$

and hence we have the desired inequality (3.14).
In the case (i)', the proof is essentially same as in the previous case.
Remark 10. The upper bound $\tilde{\lambda}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right)$ in (3.14) of Theorem 9 is sharp in the sense that for any strictly monotone functions ψ and φ there exist a positive operator A and a positive linear map Φ such that the equality holds in (3.14).

It is obvious that

$$
\begin{aligned}
& \tilde{\lambda}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right) \\
= & \max _{\varphi_{m} \leq t \leq \varphi_{M}}\left\{\frac{1}{\varphi^{-1}(t)} \cdot \psi^{-1}\left(\frac{\psi(M)-\psi(m)}{\varphi(M)-\varphi(m)}\left(t-\varphi_{m}\right)+\psi\left(\varphi^{-1}\left(\varphi_{m}\right)\right)\right)\right\} \\
= & \max _{0 \leq \theta \leq 1}\left\{\frac{\psi^{-1}(\theta \psi(M)+(1-\theta) \psi(m))}{\varphi^{-1}(\theta \varphi(M)+(1-\theta) \varphi(m))}\right\} .
\end{aligned}
$$

Since a function $f(\theta)=\frac{\psi^{-1}(\theta \psi(M)+(1-\theta) \psi(m))}{\varphi^{-1}\left(\theta \varphi_{M}+(1-\theta) \varphi_{m}\right)}$ is continuous on $[0,1]$, there exists $\theta^{*} \in[0,1]$ such that

$$
\tilde{\lambda}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right)=\frac{\psi^{-1}\left(\theta^{*} \psi(M)+\left(1-\theta^{*}\right) \psi(m)\right)}{\varphi^{-1}\left(\theta^{*} \varphi(M)+\left(1-\theta^{*}\right) \varphi(m)\right)}
$$

Let Φ and A be as in Remark 6. Then the equality

$$
\psi^{-1}(\Phi(\psi(A)))=\tilde{\lambda}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right) \varphi^{-1}(\Phi(\varphi(A)))
$$

holds. Indeed,

$$
\begin{aligned}
\psi^{-1}(\Phi(\psi(A))) & \left.=\psi^{-1}\left(\Phi\left(\begin{array}{cc}
\psi(m) & 0 \\
0 & \psi(M)
\end{array}\right)\right)\right) \\
& =\frac{\psi^{-1}\left(\left(1-\theta^{*}\right) \psi(m)+\theta^{*} \psi(M)\right)}{\varphi^{-1}\left(\left(1-\theta^{*}\right) \varphi(m)+\theta^{*} \varphi(M)\right)} \cdot \varphi^{-1}\left(\left(1-\theta^{*}\right) \varphi(m)+\theta^{*} \varphi(M)\right) \\
& =\tilde{\lambda}\left(\varphi_{m}, \varphi_{M}, \psi \circ \varphi^{-1}, \psi^{-1}\right) \varphi^{-1}(\Phi(\varphi(A)))
\end{aligned}
$$

4 Difference type complementary order among quasi-arithmetic means Let A be a selfadjoint operator on a Hilbert space H such that $m I \leq A \leq M I$ for some scalars $m<M$, let $\varphi \in C[m, M]$ be a convex function. By using the Mond-Pečarić method for convex functions, Mond-Pečarić [7] showed that

$$
\varphi((A x, x)) \leq(\varphi(A) x, x) \leq \varphi((A x, x))+\nu(m, M, \varphi)
$$

holds for every unit vector $x \in H$, where

$$
\begin{equation*}
\nu(m, M, \varphi)=\max \left\{\frac{\varphi(M)-\varphi(m)}{M-m}(t-m)+\varphi(m)-\varphi(t): t \in[m, M]\right\} \geq 0 \tag{4.1}
\end{equation*}
$$

If φ is concave on $[m, M]$, then

$$
\xi(m, M, \varphi)+\varphi((A x, x)) \leq(\varphi(A) x, x) \leq \varphi((A x, x))
$$

holds for every unit vector $x \in H$, where

$$
\begin{equation*}
\xi(m, M, \varphi)=\min \left\{\frac{\varphi(M)-\varphi(m)}{M-m}(t-m)+\varphi(m)-\varphi(t): t \in[m, M]\right\} \geq 0 \tag{4.2}
\end{equation*}
$$

In particular, if $\varphi(t)=t^{p}$, then the constant $\nu\left(m, M, t^{p}\right)$ (resp. $\left.\xi\left(m, M, t^{p}\right)\right)$ coincides with a generalized Kantorovich constant for the difference $C(m, M, p)$ for $p \notin[0,1]$ (resp. $p \in[0,1]$) defined by

$$
C(m, M, p)=(p-1)\left(\frac{1}{p} \frac{M^{p}-m^{p}}{M-m}\right)^{\frac{p}{p-1}}+\frac{M m^{p}-m M^{p}}{M-m} \quad \text { for any } p \in \mathbb{R}
$$

also see [5, Chapter 2]. We remark that $C(m, M, 1)=\lim _{p \rightarrow 1} C(m, M, p)=0$.
Similarly as in the previous section, we can obtain the complementary order to (2.1) for the difference case. When $\psi \circ \varphi^{-1}$ is operator convex and ψ^{-1} is not operator monotone, we obtain the following theorem corresponding to Theorem 5 .

Theorem 11. Let Φ be a normalized positive linear map, A a selfadjoint operator such that $m I \leq A \leq M I$ for some scalars $m<M$ and $\varphi, \psi \in C[m, M]$ strictly monotone functions.
(I) Suppose that $\psi \circ \varphi^{-1}$ is operator convex.
(i) If ψ^{-1} is increasing convex (resp. decreasing convex), then

$$
\begin{gather*}
\varphi^{-1}(\Phi(\varphi(A))) \leq \psi^{-1}(\Phi(\psi(A)))+\nu\left(\psi(m), \psi(M), \psi^{-1}\right) \tag{4.3}\\
(\text { resp. } \\
\quad \psi^{-1}(\Phi(\psi(A)))-\nu\left(\psi(M), \psi(m), \psi^{-1}\right) \leq \varphi^{-1}(\Phi(\varphi(A)))
\end{gather*}
$$

(ii) If ψ^{-1} is increasing concave (resp. decreasing concave), then

$$
\begin{array}{cc}
& \varphi^{-1}(\Phi(\varphi(A))) \leq \psi^{-1}(\Phi(\psi(A)))-\xi\left(\psi(m), \psi(M), \psi^{-1}\right) \\
(\text { resp. } & \xi\left(\psi(M), \psi(m), \psi^{-1}\right)+\psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A))) .
\end{array}
$$

(II) Suppose that $\psi \circ \varphi^{-1}$ is operator concave.
(i)' If ψ^{-1} is decreasing concave (resp. increasing concave), then

$$
\begin{array}{cc}
\varphi^{-1}(\Phi(\varphi(A))) \leq \psi^{-1}(\Phi(\psi(A)))-\xi\left(\psi(M), \psi(m), \psi^{-1}\right) \\
(\text { resp. } & \xi\left(\psi(m), \psi(M), \psi^{-1}\right)+\psi^{-1}(\Phi(\psi(A))) \leq \varphi^{-1}(\Phi(\varphi(A)))
\end{array}
$$

(ii)' If ψ^{-1} is decreasing convex (resp. increasing convex), then

$$
\begin{gathered}
\varphi^{-1}(\Phi(\varphi(A))) \leq \psi^{-1}(\Phi(\psi(A)))+\nu\left(\psi(M), \psi(m), \psi^{-1}\right) \\
\left(\text { resp. } \quad \psi^{-1}(\Phi(\psi(A)))-\nu\left(\psi(m), \psi(M), \psi^{-1}\right) \leq \varphi^{-1}(\Phi(\varphi(A))),\right.
\end{gathered}
$$

where the constants $\nu(m, M, \varphi)$ and $\xi(m, M, \varphi)$ are defined as (4.1) and (4.2) respectively.
The proof of this theorem is quite similar to one of Theorem 5 and we omit it.

Remark 12. The inequalities in Theorem 11 are sharp in the sense of Remark 6. In (4.3), there exists $\theta^{*} \in[0,1]$ such that

$$
\begin{aligned}
\nu\left(\psi(m), \psi(M), \psi^{-1}\right) & =\theta^{*} M+\left(1-\theta^{*}\right) m-\psi^{-1}\left(\theta^{*} \psi(M)+\left(1-\theta^{*}\right) \psi(m)\right) \\
& =\max _{0 \leq \theta \leq 1}\left\{\theta M+(1-\theta) m-\psi^{-1}(\theta \psi(M)+(1-\theta) \psi(m))\right\}
\end{aligned}
$$

since

$$
\begin{aligned}
& \left.\max _{\psi(m) \leq t \leq \psi(M)}\left\{\frac{M-m}{\psi(M)-\psi(m)}(t-\psi(m))+m\right)-\psi^{-1}(t)\right\} \\
= & \max _{0 \leq \theta \leq 1}\left\{\theta M+(1-\theta) m-\psi^{-1}(\theta \psi(M)+(1-\theta) \psi(m))\right\} .
\end{aligned}
$$

Let Φ, A and φ be as in Remark 6. Then the equality

$$
\varphi^{-1}(\Phi(\varphi(A)))=\psi^{-1}(\Phi(\psi(A)))+\nu\left(\psi(m), \psi(M), \psi^{-1}\right)
$$

holds. Indeed,

$$
\begin{aligned}
\varphi^{-1}(\Phi(\varphi(A))) & =\varphi^{-1}\left(\theta^{*} \varphi(m)+\left(1-\theta^{*}\right) \varphi(M)\right) \\
& =\theta^{*} m+\left(1-\theta^{*}\right) M \\
& =\psi^{-1}\left(\theta^{*} \psi(m)+\left(1-\theta^{*}\right) \psi(M)\right)+\nu\left(\psi(m), \psi(M), \psi^{-1}\right) \\
& =\psi^{-1}(\Phi(\psi(A)))+\nu\left(\psi(m), \psi(M), \psi^{-1}\right)
\end{aligned}
$$

Remark 13. If we put $\varphi(t)=t^{r}$ and $\psi(t)=t^{s}$ in inequalities involving the complementary order among quasi-arithmetic means given in Section 3 and 4, we obtain the same bound as in [5, Theorem 4.4]. For instance, using Theorem 9, we obtain that

$$
\Phi\left(A^{s}\right)^{1 / s} \leq \max _{0 \leq \theta \leq 1}\left\{\frac{\sqrt[r]{\left(\theta M^{r}+(1-\theta) m^{r}\right)}}{\sqrt[s]{\left(\theta M^{s}+(1-\theta) m^{s}\right)}}\right\} \Phi\left(A^{r}\right)^{1 / r}=\Delta(h, r, s) \Phi\left(A^{r}\right)^{1 / r}
$$

holds for $r \leq s, s \geq 1$ or $r \leq s \leq-1$, where $\Delta(h, r, s)$ is the generalized Specht ratio defined by (see $[5,(2.97)])$

$$
\Delta(h, r, s)=\left\{\frac{r\left(h^{s}-h^{r}\right)}{(s-r)\left(h^{r}-1\right)}\right\}^{\frac{1}{s}}\left\{\frac{s\left(h^{r}-h^{s}\right)}{(r-s)\left(h^{s}-1\right)}\right\}^{-\frac{1}{r}}, \quad h=\frac{M}{m}
$$

Indeed, a function $f(\theta):=\sqrt[r]{\left(\theta M^{r}+(1-\theta) m^{r}\right)} / \sqrt[s]{\left(\theta M^{s}+(1-\theta) m^{s}\right)}$ has one stationary point

$$
\theta_{0}=\frac{r\left(h^{s}-1\right)-s\left(h^{r}-1\right)}{(s-r)\left(h^{r}-1\right)\left(h^{s}-1\right)}
$$

and we have

$$
\max _{0 \leq \theta \leq 1} f(\theta)=f\left(\theta_{0}\right)=\Delta(h, s, r)
$$

References

[1] M.D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math., 18 (1974), 565-574.
[2] R. Cooper, Notes on certain inequalities, II, J. London Math. Soc., 2 (1927), 159-163.
[3] C. Davis, A Schwartz inequality for convex operator functions, Proc. Amer. Math. Soc., 8 (1957), 42-44.
[4] J.I. Fujii, M. Nakamura and S.-E. Takahasi, Cooper's approach to chaotic operator means, Sci. Math. Japon., 63 (2006), 319-324.
[5] T. Furuta, J. Mićić Hot, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
[6] A. Matsumoto and M. Tominaga, Mond-Pečarić method for a mean-like transformation of operator functions, Sci. Math. Japon., 61 (2005), 243-247.
[7] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19 (1993), 405-420.
[8] B. Mond and J. Pečarić, Converses of Jensen's inequality for several operators, Rev. Anal. Numer. Theor. Approx., 23 (1994), 179-183.
[9] J. Mićić Hot and J. Pečarić, Order among power means of positive operators, Sci. Math. Japon., 61 (2005), 25-46.
[10] J. Mićić Hot and J. Pečarić, Order among power means of positive operators, II, Sci. Math. Japon., 71 (2010), 93-109.
[11] J. Mićić Hot, J. Pečarić, Y. Seo and M. Tominaga, Inequalities for positive linear maps on Hermitian matrices, Math. Inequal. Appl., 3 (2000), 559-591.
[12] W.F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc., 6 (1955), 211216.

Communicated by Masatoshi Fujii

* Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia.
E-mail address : jmicic@fsb.hr
** Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 30, 10000 Zagreb, Croatia.
E-mail address : pecaric@hazu.hr
*** Department of Mathematics Education, Osaka Kyoiku University, 4-698-1 Asahigaoka Kashiwara Osaka 582-8582 Japan.
E-mail address: yukis@cc.osaka-kyoiku.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47A63, 47A64.
 Key words and phrases. Quasi-Arithmetic mean, positive linear map, positive operator, Jensen inequality, Mond-Pečarić method.

