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Abstract. This paper presents the implementation of fatigue crack growth power law equations 

based on ∆K, ∆J-integral and ∆CTOD fracture mechanics parameters determined in an FE analysis, 

to plates with multiple site damage (MSD). Results of fatigue tests with constant amplitude tensile 

loading carried out on mild steel plate specimens damaged with a single central crack and with three 

collinear cracks are presented. A relatively larger plastic zone occurred in the crack tip region at 

higher fatigue crack growth rate (FCGR), from 10
-7

 to 10
-6

 m/cycle. The crack growth models based 

on the elastic-plastic fracture mechanics (EPFM) parameters describe better fatigue crack growth in 

this range as compared to the liner elastic models.  

Introduction 

In thin-walled structures, fatigue cracks may initiate under a variety of loading and environmental 

conditions, at sites of stress concentration due to geometrical discontinuities. In ship deck structures 

very long cracks can occur due to the multisite damage (MSD), as the accident of Castor tanker 

showed [1]. The multisite damage can cause a disaster if allowed to progress [2]. From a damage 

tolerance design point of view, it is important to determine the fatigue crack growth in damaged 

structural parts. 

A common approach to fatigue crack propagation analysis is to describe the crack growth rate 

by a differential equation, which is called a fatigue crack growth law or model. By integrating the 

differential equation one can obtain the crack length versus number of cycles, a-N curve, and 

predict the number of cycles required for the crack to grow from an initial to the final size. The 

well-known Paris law is based on the stress intensity factor (SIF) range, ∆K, which represents the 

difference of the maximum and minimum K value, ∆K = Kmax – Kmin, associated with the maximum 

and minimum applied nominal stress in a loading cycle, σmin and σmax, respectively [3]. Excessive 

plasticity during fatigue violates linear elastic fracture mechanics (LEFM) assumptions and the SIF 

K no longer characterizes the crack tip conditions. In such cases the elastic plastic fracture 

mechanics (EPFM) parameters J-integral and CTOD can be considered as a crack driving force. 

Dowling and Begley [4] used ∆J-integral for fatigue crack growth modelling under large scale 

yielding conditions. Gasiak and Rozumek [5] presented a crack growth model based on ∆J-integral 

and implemented it to various structural steel materials. Tanaka [6] demonstrated that CTOD can be 

a suitable parameter for fatigue crack growth modelling under elastic-plastic conditions. 

In this paper calculated fracture mechanics parameters K, J-integral and CTOD are presented, by 

using linear elastic (LE) and elastic plastic (EP) FE analysis for plate specimens with a single crack 

and an array of collinear cracks. The experiments carried out on mild steel specimens showed 

higher crack growth rates and relatively larger plastic zones in the vicinity of a crack tip for longer 

cracks. The intention was to implement fatigue crack growth models based on EPFM parameters J-

integral and CTOD in modelling of higher crack growth rates observed in the experiment. 
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Fatigue Crack Growth Models 

In a typical fatigue crack growth rate curve, da/dN versus stress intensity factor range, ∆KI, one can 

distinguish three regions, commonly called region I, II and III. Region I is associated with an early 

fatigue crack development with FCGR typically of the order 10
-9

 m/cycle or smaller. Region II 

represents a stable growth zone for long cracks where the data follow a linear relationship between 

log da/dN and log ∆K, and the FCGR is typically in the range from 10
-9

 up to 10
-6

 m/cycle. Region 

III represents a zone of very high FCGR, da/dN > 10
-6

 m/cycle, associated with rapid and unstable 

crack growth.  

Various fatigue crack growth prediction models have been developed to analyze propagation of 

long cracks. Paris used the ∆K parameter to explain FCGR behaviour based on the LEFM 

assumption. The Paris model does not take account of the SIF threshold, ∆Kth, a ∆K value below 

which crack growth practically does not occur. The ∆Kth can be taken into account considering the 

effective part of the SIF range ∆Keff, as given by Eq. (1). This equation is also known as the Klesnil-

Lukáš model [7]. In LEFM the parameters K and J-integral are correlated. Assuming the plane 

stress conditions, the following relation exists between the two parameters: J=K
2
/E, where E is 

Young’s modulus. The modified Dowling and Begley model which takes into account the J-integral 

threshold, ∆Jth, is represented by Eq. (2), where Cdb eff and mdb eff are the material constants and     

∆J = Jmax – Jmin, is the J-integral range. The crack growth model based on ∆CTOD parameter, 

which includes threshold ∆CTODth values, is represented by Eq. (3).  
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The number of constant amplitude loading cycles due to which a crack grows from an initial crack 

length to a final crack length is determined by the integration of the Eq. (1-3).  

Experimental and Numerical Simulation Results  

A plate specimen with a single central crack P1 and a plate specimen with three collinear cracks 

P3 were exposed to cyclic tension using a hydraulic fatigue testing machine. The specimen 

geometry is shown in Fig. 1.  

a)     b)  

Figure 1 Fatigue test specimens P1 and P3: a) scantlings; b) FE mesh of P3 specimen. 
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The material used for the specimens is conventional mild steel for welded structures with the 

material properties specified as follows: ultimate strength is over 400MPa, yield strength is over 

235MPa, Young’s modulus is 206GPa, Poisson’s ratio is 0.3, and the ∆Kth=6.8MPam
1/2

. The 

applied average stress range related to a cross-section in the intact area was ∆σo = 80 MPa, with the 

loading frequency of 5 Hz, and the stress ratio, R = Kmin /Kmax = 0.025. The initial crack length was 

2a = 8mm. Crack length data presented here were measured by using an optical microscope.  

Fracture mechanics parameters: the Mode I SIF values, KI, J-integral and CTOD were calculated 

by ANSYS [8] FEM software, where eight node quadratic isoparametric elements assuming plane 

stress conditions were used. Calculated ∆KI values for P1 specimens and for the crack tip 1 of P3 

are given in Fig. 2. ∆J-integral calculated by linear elastic and elastic plastic FEA for P1 and for the 

crack tip 1 of P3 is given in Fig. 3. In Fig. 4 ∆CTOD values for P1 and P3 specimens are given as 

obtained from the EP FEA. In Fig. 5 plastic zone size values are compared which were determined 

analytically under LEFM assumptions and numerically in the EP FEA. Elastic-plastic FEA results 

for J-integral values agree well with the values obtained from LE FEA for lower FCGR. A larger 

plastic zone in the crack tip region is generated at higher FCGR. The material constants for the    

Eq. (1-3) were determined from the rate diagrams given in Figs. 6-9.  

Based on the fracture mechanics parameters given in Figs. 2-4, and in Eqs. (1-3), fatigue crack 

growth life curves have been simulated, as given in Fig. 10. The models based on the EPFM 

parameters describe better fatigue crack growth at higher FCGR in comparison with the LEFM 

models, since they provide a steeper a-N curve, as observed in the experiment.  

                                 
Figure 2 ∆KI for P1 and the crack tip 1 of P3 specimen.       Figure 3 ∆J for P1 and the crack tip 1 of P3 specimen. 

                                  
Figure 4 ∆CTOD for P1 and the crack tip 1 of P3.                 Figure 5 Plastic zone size Rp. 

  
 

            Figure 6  Rate diagram with respect to ∆Keff.           Figure 7  Rate diagram with respect to LE ∆Jeff. 
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           Figure 8  Rate diagram with respect to EP ∆Jeff.              Figure 9  Rate diagram with respect to  ∆CTODeff. 

 

 
Figure 10 Fatigue life simulation results in comparison to experimental results for P1 and P3 specimens. 

Conclusion 

Experiments on mild steel plate specimens damaged with a single central crack and with three 

collinear cracks showed a high fatigue crack growth rate prior to unstable crack growth and final 

collapse. Elastic-plastic FEA results for J-integral were close with linear elastic analyses results at 

lower FCGR. A relatively larger plastic zone is generated in the crack tip region at higher FCGR, 

from 10
-7

 to 10
-6

 m/cycle.  The models based on the EPFM parameters describe better fatigue crack 

growth in this range as compared to the LEFM models.  
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