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Abstract 

A relativistic Hamiltonian of the nanorobot 
motion in a multipotential field that includes 
external artificial control potential field has been 
presented by Novakovic et al. in 2009. Starting with 
the non-relativistic approximation of that 
Hamiltonian, the canonical differential equations of 
the nanorobot motion in a multipotential field has 
been derived (Novakovic et al., 2010). In this paper 
we continue to investigate the related control 
algorithms for a nanorobot motion in a 
multipotential field. In that sense the concept of the 
external linearization has been introduced to the 
canonical differential equations of the nanorobot 
motion in a multipotential field. We use the 
nonlinear control algorithm that in the closed loop 
with the nonlinear canonical differential equations 
of the nanorobot motion is resulting in the linear 
behavior of the whole system. In that case the well 
known procedures for control synthesis of the 
linear systems can be applied to the control of a 
nanorobot motion in a multipotential field. 
 
1. INTRODUCTION 

As it is the well known, the nanorobotics is the 
multidisciplinary field that deals with the controlled 
manipulation with atomic and molecular-sized 
objects and therefore sometimes is called 
molecular robotics (A. A. G. Requicha, 2008). The 
state of the art in nanorobotics has been presented 
by Novakovic et al. in 2009. Generally, there are 
two main approaches for building useful devices 
from nanoscale components. The first one is based 
on self-assembly, and is a natural evolution of 
traditional chemistry and bulk processing (Gómez-
López et al. 1996). The second approach is based 
on control of the positions and velocities of 
nanoscale objects by direct application of 
mechanical forces, electromagnetic fields, and the 
other potential fields. The research in nanorobotics 
in the second approach has proceeded along two 
lines. The first one is devoted to the design and 
computational simulation of robots with nanoscale 

dimensions (Drexler 1992). These nanorobots have 
various mechanical components such as 
nanogears built primarily with carbon atoms in a 
diamondoid structure. A big problem is how to build 
these nanoscale devices.  

The second line of nanorobotics research 
involves manipulation of nanoscale objects with 
macroscopic instruments and related potential 
fields. Here it is pointed out the nanorobotics 
research that involves controlled manipulation of 
nanoscale objects with macroscopic instruments 
and related control potential fields. It is being 
studied by researchers, who are focusing on 
techniques based on Scanning Probe Microscopy 
(SPM). Experimental work has been focused on 
this area, especially through the use of SPMs as 
robots. This experimental approach follows the 
technique of the Scanning Tunneling Microscope 
(STM) that was invented by Binnig and Rohrer at 
the IBM Zürich laboratory in the early 1980s. The 
STM is useful at Ångstrom-scale distances (1 Å = 
0.1 nm = 10-10 m), where a quantum-mechanical 
effect, called tunneling, and the piezoelectric 
actuators can be employed for the position control. 
The major limitation of the STM is that it only 
worked with conducting materials such as metals 
or semiconductors, but not with insulators or 
biological structures such as DNA. To remedy this 
situation, Binning, Quate and Gerber developed in 
1986 the Atomic Force Microscope (AFM) which is 
sensitive directly to the forces between the tip and 
the sample (particle), rather than a tunneling 
current. Therefore, the all instruments, based on 
the interatomic forces (Stroscio and Eigler 1991), 
are called the Atomic Force Microscope (AFM).  

The AFM does not require conducting tips and 
samples, and therefore has wider applicability than 
the STM. An AFM can operate in at least three 
modes. In attractive or non-contact mode the tip is 
held some tens of nanometers above the sample 
surface where it experiences the attractive 
combination of van der Waals, electrostatic, or 
magnetostatic forces. In repulsive or contact mode 
the tip is pressed close enough to the surface for 
tip and sample electron clouds to overlap, 
generating a repulsive electrostatic force (about 
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10nN), much like the stylus riding a groove in 
record player. There is also intermittent - contact 
mode, which is sometimes called tapping mode. All 
of these instruments are collectively known as 
Scanning Probe Microscopes (SPMs). For more 
information on SPM technology one can see the 
references (Wiesendanger 1994 and Freitas Jr. 
1999). Although the SPM is not even twenty years 
old, it has had a large scientific impact. There are a 
lot of references on SPM applications, scattered 
through many journals such as Science and the 
Journal of Vacuum Science and Technology, and 
also in proceedings of meetings such as the 
biennial conference on Scanning Tunneling 
Microscopy. It is expected that nanomanipulation 
will be coupled with self-assembly in order to build 
true nanorobots, that is devices with overall 
dimensions in the nanometer range and capable of 
sensing, thinking and acting (A. A. G. Requicha, 
2008). 

The spatial region in nanorobotics is the 
bionanorobotics. The main goal in this region is to 
develop novel and revolutionary biomolecular 
machine components that can be assembled and 
form multi-degree of freedom nanodevices (M. 
Hamdi, A. Fereira, G. Sharma and C. Mavroidis, 
2007). These bionanodevices should be able to 
apply forces and manipulate objects in the 
nanoworld, transfer information from the nano to 
the macro world, receive the information from the 
macro world and also be able to travel in the nano 
environment. Such ultra-miniature robotic systems 
and nano-mechanical devices should be the 
biomolecular electro-mechanical hardware of future 
manufacturing and biomedical and planetary 
applications (A. Dubey, C. Mavroidis and S.M. 
Tomassone, 2006). It is also expected that the 
modern bionanomachines will be employed for 
space applications in the NASA space traveling 
advanced concepts (C. Mavroidis, 2006). 

Potential applications of the nanorobots are 
expected in the tree important regions: 
nanomedicine, nanotechnology and space 
applications. In nanomedicine the nanorobots can 
be employed for surgery, early diagnoses, drug 
delivery at the right place (for destroy a cancer 
cell),biomedical instrumentation, pharmacokinetics, 
monitoring of diabetes and genome applications by 
reading and manipulating DNA (Freitas Jr. 1999). 
In nanotechnology the nanorobots can be utilized 
for creation of new materials, nanofabrics for 
different products, cell probes with small 
dimensions, computer memory, near field optics, x-
ray fabrication, very small batteries and optical 
antennas. In the space applications it is expected 
that nanorobots replace of human being in the 
intergalactic space missions, be hardware and 
software to fly on satellites and have a high level of 

an artificial intelligence. The complex tasks of the 
future nanorobots are sensing, thinking, acting and 
working cooperatively with the other nanorobots. 
     In order to control nanorobots in mechanics, 
electronics, electromagnetic, photonics, chemical 
and biomaterials regions we have to have the 
ability to construct the related artificial control 
potential fields. At the nanoscale the control 
dynamics is very complex because there are very 
strong interaction between nano robots and 
nanoenvironment.  Thus, the first step in designing 
the control dynamics for nanorobots is the 
development of the relativistic Hamiltonian that will 
include external artificial potential field. This 
Hamiltonian has been derived and presented by 
Novakovic et al. in 2009. Starting with the non-
relativistic approximation of that Hamiltonian, the 
canonical differential equations of the nanorobot 
motion in a multipotential field have been derived 
(Novakovic et al., 2010).  
     In this paper we continue to investigate the 
related control algorithms for a nanorobot motion in 
a multipotential field. This paper has been written 
by consideration of the related contributions and 
propositions given in the references [1-44]. The 
problem is to design the nonlinear control of the 
nonlinear system that in the closed loop with the 
nonlinear canonical differential equations of the 
nanorobot motion is resulting in the linear behavior 
of the whole system. In that case the well known 
procedures for control synthesis of the linear 
systems can be applied to the control of a 
nanorobot motion in a multipotential field. The 
mentioned problem has been solved in this paper 
by employing the so called concept of the external 
linearization [35-41]. This concept is introduced 
and presented in the section 3. This has been done 
for a general case with applications to control of a 
nanorobot motion in a multipotential field. As en 
example the general approach is elaborated in 
detail in the section 4 by application to control of a 
nanorobot motion in the two potential 
electromagnetic and gravitational field.   
     The presented control procedures in this paper 
are related only to the control of nanorobots in the 
regions where the quantum effects are not present. 
In the case where the quantum effects are present 
one should apply dynamics of the quantum 
feedback systems and control concepts and 
applications presented by Yanagisawa and Kimura 
in 2003. Recently, it has been proposed coherent 
H∞ control for a class of annihilation operator linear 
quantum systems (Maalouf and Petersen, 2011). 
This control can be applied to the quantum 
systems that can be described by complex 
quantum stochastic differential equations in terms 
of annihilation operators only. For this class of 
quantum systems, the related control problem can 
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be solved in terms of a pair of complex algebraic 
Riccati equations. In addition, the question of 
physical realizability of the resulting quantum 
controllers is related to a bounded real property.      
     The organization of this paper is as follows. The 
second section presents system and problem 
statements. It is started with the non-relativistic 
approximation of the Hamiltonian for a nanorobot 
motion in a multipotential field. It follows the 
transformation of that Hamiltonian into the 
canonical differential equations of the nanorobot 
motion in a multipotential field. The mentioned 
control problem is defined related to these 
canonical differential equations. The third section 
shows the derivation of the concept of the external 
linearization and its application to control of 
nanorobot motion in multipotential field. In the 
fourth section the procedure of the external 
linearization has been applied to control of a 
nanorobot motion in the two potential 
electromagnetic and gravitational field. Finally, the 
conclusion of the paper with some comments and 
the reference list are presented in the fifth and sixth 
sections, respectively.  

 
2. SYSTEM AND PROBLEM STATEMENTS 

Let the non-relativistic approximation of the 
Hamiltonian H  for a nanorobot motion in a 
multipotential field is given by the relation derived 
in [2]:  

22
yx

x y2 2
2

0 20
z

z 2

v Uv Up p
c c1m c U.

2m v Up
c

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥− + −⎜ ⎟⎜ ⎟⎢⎝ ⎠ ⎝ ⎠≅ + +⎢
⎢ ⎛ ⎞+ −⎢ ⎜ ⎟

⎝ ⎠⎣ ⎦

H
⎥
⎥
⎥
⎥

z .

                                                                            (1) 

Here m0 is a rest mass of a nanorobot, c is a speed 
of the light in a vacuum, px, py, and pz, as well as 
vx, vy and vz are momentums and velocities, 
respectively, in x, y, and z directions and U is a 
total potential energy of a nanorobot in a 
multipotential field. The momentums of the 
nanorobot motion can be calculated by the 
equations:

          (2)  x 0 x y 0 y z 0p m v , p m v , p m v= = =

At the nanoscale control of a nanorobot motion we 
usually have the multi-potential field with n-
potentials, plus an artificial control potential field of 
the nanorobot that influents to the nanorobot with a 
potential energy Uc. Thus, the related total potential 
energy of a nanorobot in a multipotential field is 
described by the following relation: 

1 2 n c j cU U U .. U U U U ,

j 1,2,.., n.

= + + + + Σ +

=

=
             (3)  

In the relation (3) Uj  is a potential energy of the 
nanorobot in the j-th potential field. In the case 
where there are no quantum mechanical effects 
one can employ classic Hamiltonian canonic forms 
for designing equations of the nanorobot motion 
[29]: 

x y z

x y

p , p , p
x y

x , y , z .
p p pz

,
z

∂ ∂ ∂
= − = − = −

∂ ∂ ∂
∂ ∂ ∂

= = =
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& & &

& & &

H H

H H H

H

            (4)   

Now, one can define the so called interaction terms 
of a nanorobot motion in a multipotential field: 

yx z
x y z

v Uv U v U
I , I , I

c c
= = = .

c
                      (5)  

It follows the definition of the interaction forces as 
functions of the interaction terms: 

x y z

y yz x z
I I I

I II I I
F , F , F

y z z x x y
∂ ∂ xI .∂ ∂ ∂ ∂

= − = − = −
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(6) 

The next definition is related to the time-varying 
forces as the functions of the interaction terms:                          

x y z

yx z
t t t

II I1 1F , F , F
c t c t c t

∂ 1 .∂ ∂
= − = − = −

∂ ∂ ∂
        (7)    

Finally, one can define the potential forces as the 
function of the total potential energy of a nanorobot 
in a multipotential field:                                               

x y zp p p
U UF , F , F
x y

U .
z

∂ ∂
= − = − = −

∂
∂ ∂ ∂

                (8) 

     Applying (1) to (4) and including the relations 
(5), (6), (7) and (8), one obtains the compact form 
of the canonical differential equations of the 
nanorobot motion in a multipotential field as the 
functions of the mentioned forces:  

( )
( )

( )

x x z y

y y x z

z z y x

0 p t I I

0 p t I I

0 p t I I

1m x F F yF zF ,
c
1m y F F z F x F ,
c
1m z F F x F yF .
c

= + + −

= + + −

= + + −

&& & &

&& & &

&& & &

                         (9) 

Following the previous consideration one can 
introduces the following vectors: 
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[ ] [ ] [ ]

x y z x y z

x y z

T T
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I I I I t t t t

T

p p p p

X x y z , X x y z , X x y z

F F F F , F F F F ,
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& &&& & & && && &&
T ,

 (10)  

Including the vectors (10) into the relations (9) one 
generates the vector-matrix form of the canonical 
differential equations of the nanorobot motion in a 
multipotential field:    

0 p t I

0 z y
1m X F F NF , N z 0 x .
c

y x 0

−⎡ ⎤
⎢ ⎥= + + = −⎢ ⎥
⎢ ⎥−⎣ ⎦

& &

&& &

& &

&      (11)  

As one can see from the relations (18) the matrix N 
is an anti-symmetric matrix.  
     Now, the problem is to design the nonlinear 
control of the nonlinear system (11) that in the 
closed loop with the nonlinear canonical differential 
equations of the nanorobot motion (11) is resulting 
in the linear behavior of the whole system. In that 
case the well known procedures for control 
synthesis of the linear systems can be applied to 
the control of a nanorobot motion in a multipotential 
field. The mentioned problem can be solved by 
employing the so called concept of the external 
linearization [35-41]. This concept is introduced 
and presented in the section 3.  
 
3. CONTROL WITH EXTERNAL LINEARIZATION  
     In order to solve the control problem that is 
postulated in the section 2, the concept of the 
external linearization [35-41] can be employed. In 
that sense, let the position control error e(t) of a 
nanorobot motion in a multipotential field and the 
related derivatives are given by the relations:   

w w we X X, e X X, e X X.= − = − = −& & && &&& &&             (12)  

Here desired nanorobot motion is defined by the 
vector triplet: 

w w w(X ,X ,X ).& &&                                                    (13)  
On the other side, real nanorobot motion is 
presented by the following vector triplet: 
(X, X, X).& &&                                                         (14)  
Applying (12) to the canonical differential equations 
of the nanorobot motion in a multipotential field 
(11), one obtains control error model of nanorobot 
motion in the form: 

w w w

p t I
0

w p t w I
0

1 1e(t) r(t) F F NF ,
m c
1 1r(t) X F F N F .

m c

⎡ ⎤= − + +⎢ ⎥⎣ ⎦

⎡ ⎤= = + +⎢ ⎥⎣ ⎦

&&

&&
               (15)  

Here r(t) is a vector of desired (or nominal) 
nanorobot acceleration and subscript w denotes 
desired values of the related variables.  
     Now, following the ideas of the external 
linearization [35-41], one can introduce the next  
substitution: 

p t
0

1 1u(t) e(t) r(t) F F NF .
m c I

⎡ ⎤= = − + +⎢ ⎥⎣ ⎦
&&              (16)  

In the relation (16) u(t) is an internal control vector. 
From the relation (16) one obtains the equivalent 
linear control error model of nanorobot motion. 

T
x y ze(t) u(t), u(t) (u u u ) .= =&&                      (17)  

Here ux, uy and uz are the related components of 
the internal control vector u(t). The phase state 
variables of the system (17) are determined by the 
following relations:  

T T
I 1 2 3 x y z

T
II 4 5 6 x y z

Z (z z z ) (e e e ) e,

Z (z z z ) (e e e ) e.T

= = =

= = =& & & &
                     (18)  

The related state space model of a nanorobot 
motion is given by matrix form: 

[I I

IIII

Z Z0 I 0
u(t), I diag 1, 1, 1 .

0 0 Z IZ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦

&

&
]  (19)  

This model can be transformed into the well known 
form of the dynamical models in the state space: 

TT T
I IIZ(t) A Z(t) Bu(t), Z Z Z .⎡ ⎤= + = ⎣ ⎦

&            (20)  

Here A and B are constant matrices that are 
determined by (19) and have dimensions: 

dim.A (6x6), dim.B (6x3).= =                         (21)  

Now, one can suppose that the only disturbances 
to the system (20) are of the initial condition types. 
The other possibilities will be presented in the next 
paper. In order to eliminate the control error of a 
nanorobot motion, caused by disturbances of the 
initial condition types, one can introduced the 
following internal control [41]: 

I I II IIu(t) (K Z K Z ).= − +                                    (22)  

Here KI and KII are real control gain matrices of 
nanorobot position and velocities, respectively. 
Both of these matrices are of the dimension (3x3). 
In fact KI and KII are the components of the state 
controller K of a nanorobot motion in a 
multipotential field. Thus, the relation (22) can be 
transformed into the second form: 
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Z
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      (23)                                   

Applying internal control relation (22) to (16) one 
obtains the following relation: 

[ ]p 0 I I II II t
NF m r(t) K Z K Z F F
c

⎡= + + − +⎢⎣ ⎦
I .⎤⎥        (24)  

From the equations (3) and (8), the next forms 
have been derived: 
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(25)    

Here Fdp is a disturbance potential force that is 
caused by influences of n-potential fields to the 
nanorobot motion. On the other side, Fcp is a 
control force derived by the artificial control field 
with potential energy Uc. Now, including (25) into 
the relation (24) one obtains the nonlinear control 
of the nanorobot motion in a multipotential field: 

[ ]cp 0 I I II II dp t I
NF m r(t) K Z K Z F F F
c

⎡= + + − + +⎢⎣
.⎤⎥⎦
   

                                                                          (26)  
Taking into account the relations in (25), the 
canonical differential equations of the nanorobot 
motion in a multipotential field (11) can be rewritten 
into the form:  

cp dp t I
0

1X F F F NF
m c

⎡= + + +⎢⎣ ⎦
&& 1 .⎤⎥                          (27)  

Applying the nonlinear control Fcp from (26) to the 
nonlinear dynamical model of the nanorobot motion 
(27) we obtain the closed loop system of the linear 
form: 

I I II IIX r(t) K Z K Z .= + +&&                                     (28)  

The relation (26) is the nonlinear control that in the 
closed loop with the nonlinear canonical differential 
equations of the nanorobot motion (27) is resulting 
in the linear behavior of the whole system (28). 
Thus, the mentioned problem in the section 2 has 
been solved by employing the so called concept of 
the external linearization [35-41]. This is the 
general approach that can be applied to the special 
situation. 
 

4. NANOROBOT CONTROL IN TWO POTENTIAL 
ELECTROMAGNETIC AND GRAVITATIONAL 
FIELD 

     In order to apply of the general approach given 
in the section 3, the derived general control (26) of 
a nanorobot motion in a multipotential field is 
applied to two-potential electromagnetic and 
gravitational field. Let a nanorobot is an electric 
charged particle with charge q and rest mass m0 
that is moving with a non-relativistic velocity (v << 
c) in a combined electromagnetic and gravitational 
potential field. It is also assumed that a 
gravitational potential field belongs to a spherically 
symmetric non-charged body with a mass M. In 
that case the total potential energy of a nanorobot 
in that two-potential field is determined by the 
following equation: 

e 0 g e 0
GMU q V m V q V m

r
⎛= + = + −⎜
⎝ ⎠

.⎞⎟             (29)  

In the relation (29) Ve and Vg are the related scalar 
potentials of an electromagnetic and a gravitational 
field. Parameter G is a gravitational constant, M is 
gravitational mass and r is a gravitational radius 
between a nanorobot and a center of a mass M. 
Applying (29) and including the notations for an 
electromagnetic field (Ee,He) from [18] and a 
gravitomagnetic field (Eg,Hg) from [42,43], the 
relation (11) can be transformed into the related 
vector equation as the explicit function of the 
Lorentz forces [12]: 

[ ] [ ]
e g

x y z x y z

x y z x y z

0 e e 0 g g

T T
0 L L

T T

e e e e g g g g

T T

e e e e g g g g

1 1m X q E v H m E v H ,
c c

m X F F , X x y z , v x y z ,

E E E E , E E E E .

H H H H , H H H H
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⎝ ⎠ ⎝

= + = =

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
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⎞
⎟
⎠

⎡ ⎤ ⎡= = ⎤
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&&

&& && && && && & & &

⎦

 (30)    

Here is an acceleration vector, v is a velocity 
vector, F

&&X
Le and FLg are the related Lorentz forces 

and the vector pairs (Ee,He) and (Eg,Hg) determine  
an electromagnetic and a gravitomagnetic field, 
respectively [12,42]. In this example a nanorobot is 
a particle with charge q and rest mass m0. 
Therefore this nanorobot has the interactions with 
both an electromagnetic and a gravitational field. 
Thus, the relations (30) describe the dynamics of 
the related nanorobot that is moving in the two-
potential electromagnetic and gravitational field. 
The components of the vectors Ee and Eg can be 
calculated by using the following equations:  
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                                                                          (31) 
On the other side, the components of the vectors 
Ae and Ag can be calculated by the relations:  
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Finally, the components of the vectors He and Hg 
can be calculated by employing the equations:  

y yz z
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z x z x
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x y x y
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∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= − = −
∂ ∂ ∂ ∂

∂ ∂∂
= − = −

∂ ∂ ∂ ∂

z

y xg

,

,

A
.

∂

    (33)  

 
     Now, for control synthesis of a nanorobot 
motion in a two potential electromagnetic and 
gravitational field one can follow the procedure 
from the section 3. Applying (12) to the canonical 
differential equations of the nanorobot motion in the 
mentioned two-potential field (30), one obtains 
control error model of nanorobot motion in the 
form: 

w w w

e e g g
0

e w e g w g
0

q 1 1e(t) r(t) E v H E v H ,
m c c

q 1 1r(t) E v H E v H .
m c c

⎛ ⎞ ⎛= − + × − + ×⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎛ ⎞ ⎛= + × − + ×⎜ ⎟ ⎜
⎝ ⎠ ⎝

&&

w

⎞
⎟
⎠

⎞
⎟
⎠

  

                                                                          (34)  
Here r(t) is a vector of desired (or nominal) 
nanorobot acceleration and subscript w denotes 
desired values of the related variables.  
     Now, following the ideas of the external 
linearization [35-41], the first equation in (34) can 
be transformed into the relation: 

e e g
0

q 1 1u(t) r(t) E v H E v H .
m c c

⎛ ⎞ ⎛= − + × − + ×⎜ ⎟ ⎜
⎝ ⎠ ⎝

g
⎞
⎟
⎠

 

                                                                          (35) 

In the relation (35) u(t) is an internal control vector. 
From the relations (34) and (35) one obtains the 
equivalent linear control error model of nanorobot 
motion, given by (17). The phase state variables of 
the system (17) are determined by (18). The 
related state space model of a nanorobot motion is 
given by matrix form in (19) and (20). In order to 
eliminate the control error of a nanorobot motion, 
caused by disturbances of the initial condition 
types, one can introduced the internal control in the 
form (22) or (23) [41]. Applying internal control 
relation (22) to (35) one obtains the following 
relation: 

[ ]0
e I I II II

0
g g

m 1E r(t) K Z K Z v H
q c

m 1E v H .
q c

⎛ ⎞
e= + + − ×⎜ ⎟

⎝
⎛ ⎞− + ×⎜ ⎟
⎝ ⎠

−
⎠

.

      (36)  

Let the electric field Ee is consisting of the two 
electric fields:  

e de ceE E E= +                                                   (37)    

Here Ede is a disturbance electric field that is 
caused by influences of two potential field to the 
nanorobot motion. On the other side, Ece is the 
artificial electric control field that should be control 
the nanorobot motion in the two potential field. 
Now, including (37) into the relation (36) one 
obtains the nonlinear electric control of the 
nanorobot motion in the two potential field: 

[ ]0
ce I I II II de e

0
g g

m 1E r(t) K Z K Z E v H
q c

m 1E v H .
q c

⎛ ⎞= + + − + ×⎜ ⎟
⎝ ⎠

⎛ ⎞− + ×⎜ ⎟
⎝ ⎠

−
   

                                                                          (38)  
Taking into account the relation in (37), the 
canonical differential equations of the nanorobot 
motion in the two potential fields (30) can be 
rewritten into the form:  

de ce e g g
0

q 1 1X E E v H E v H
m c c

⎛ ⎞ ⎛= + + × + + ×⎜ ⎟ ⎜
⎝ ⎠ ⎝

&& .⎞⎟
⎠

(39)                

Applying the nonlinear control Ece from (38) to the 
nonlinear dynamical model of the nanorobot motion 
(39) we obtain the closed loop system of the linear 
form that is the same as in the general case (28): 

I I II IIX r(t) K Z K Z .= + +&&                                     (40)  

The relation (38) is the nonlinear control that in the 
closed loop with the nonlinear canonical differential 
equations of the nanorobot motion (39) is resulting 
in the linear behavior of the whole system (40). 
Thus, the mentioned problem in the section 2 has 
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been solved also for the two potential field, i.e. for  
an electromagnetic and a gravitational field, by 
employing the so called concept of the external 
linearization [35-41]. 
 
5. CONCLUSION 
     The problem of designing of the nonlinear 
control that in the closed loop with the nonlinear 
dynamic model of the nanorobot motion is resulting 
in the linear behavior of the whole system is 
solved. For this purpose the concept of the external 
linearization [35-41] has been used.  In that case 
the well known procedures for control synthesis of 
the linear systems can be applied to the control of 
a nanorobot motion in a multipotential field. This 
has been done for a general case with applications 
to control of a nanorobot motion in a multipotential 
field (section 3). As en example the general 
approach is elaborated in detail in the section 4 by 
application to control of a nanorobot motion in the 
two potential electromagnetic and gravitational 
field.   
     In the case where the quantum effects are 
present one should apply dynamics of the quantum 
feedback systems and control concepts and 
applications presented by Yanagisawa and Kimura 
in 2003. Recently, it has been proposed coherent 

control for a class of annihilation operator linear 
quantum systems (Maalouf and Petersen, 2011). 
This control can be applied to the quantum 
systems that can be described by complex 
quantum stochastic differential equations in terms 
of annihilation operators only. The presented 
approach to control of a nanorobot motion in a 
multipotential field will be continued in the next 
papers by synthesis of the related controllers K

H∞

I 
and KII in the relations (28) and (40). 
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