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Abstract: At the nanoscale the control dynamics is very 

complex because there are very strong interactions between 

nanorobots, manipulated objects and nanoenvironment. 

Therefore the main problems in nanorobotic control are: (i) 

design of relevant dynamical model of nanorobot motion, (ii) 

create of the related control algorithm and (iii) measurement at 

the nanoscale. The main intention in this paper is to highlight 

the possible ways for solutions of the mentioned problems.  
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1. INTRODUCTION 
 

The state of the art in the field of nanorobotics has been 

presented in detail by Novakovic et al., in 2009a. As it is the 

well known, the nanorobotics is the multidisciplinary field that 

deals with the controlled manipulation with atomic and 

molecular-sized objects and therefore sometimes is called 

molecular robotics (Requicha, 2008). Generally, there are two 

main approaches for building useful devices from nanoscale 

components. The first one is based on self-assembly, and is a 

natural evolution of traditional chemistry and bulk processing 

(Gómez-López et al., 1996). The second approach is based on 

control of the positions and velocities of nanoscale objects by 

direct application of mechanical forces, electromagnetic fields, 

and the other potential fields. The research in nanorobotics in 

the second approach has proceeded along two lines. The first 

one is devoted to the design and computational simulation of 

robots with nanoscale dimensions (Drexler, 1992). These 

nanorobots have various mechanical components such as 

nanogears built primarily with carbon atoms in a diamondoid 

structure. A big problem is how to build these nanoscale 

devices.  

     The second line of nanorobotics research involves 

manipulation of nanoscale objects with macroscopic 

instruments and related potential fields. To this approach 

belong techniques based on Scanning Probe Microscopy 

(SPM), Scanning Tunneling Microscope (STM, Binnig and 

Rohrer 1980) and Atomic Force Microscope (AFM, Binning, 

Quate and Gerber 1986, Stroscio and Eigler 1991). All of these 

instruments are collectively known as Scanning Probe 

Microscopes (SPMs). For more information on SPM 

technology one can see the references (Wiesendanger 1994 and 

Freitas Jr. 1999). The spatial region in nanorobotics is the 

bionanorobotics ( Novakovic et al., 2009a and 2009b). 

Potential applications of the nanorobots are expected in the tree 

important regions: nanomedicine, nanotechnology and space 

applications. The complex tasks of the future nanorobots are 

sensing, thinking, acting and working cooperatively with the 

other nanorobots. 

This paper is organized as follows. The second section 

presents a design of dynamical model of nanorobot motion in a 

multipotential field. The third section shows the creation of the 

related control algorithms. It follows the fourth section where 

the measurement at the nanoscale has been pointed out.  

Finally, the conclusion of the paper with some comments and 

the reference list are presented in the fifth and sixth sections, 

respectively.  

 

2. DESIGN OF DYNAMICAL MODEL OF 

NANOROBOT MOTION 
 

In order to control nanorobots in mechanics, electronics, 

electromagnetic, photonics, chemical and biomaterials regions 

we have to have the ability to construct the related artificial 

control potential fields. Thus, the first step in designing the 

dynamics model of nanorobot is the development of the 

relativistic Hamiltonian H that will include external artificial 

potential field. This has been done by Novakovic et al,. in 

2009a, generally for a multipotential alpha field: 
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Here v is a nanorobot velocity and c is the speed of the light 

both in vacuum without any potential field. Parameters  and ' 

are dimensionless field parameters of a multipotential field in 

which a nanorobot is propagating and  is an observation 

parameter. Further, m0 is a nanorobot rest mass and H is a 

relativistic parameter. The field parameters α and α′ can be 

determined as the dimensionless functions of the total potential 

energy U. This potential energy includes the all potential 

energies in the multipotential field that influents to the 

nanorobot motion, including also the related artificial control 

potential energy. The notion an alpha field is associated to any 

potential field that can be described by two dimensionless field 

parameters  and '. 

     In the nonrelativistic case (v << c) and a weak potential field 

the relation (1) is reduced to the nonrelativistic approximation 

of the Hamiltonian in an alpha field: 
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Here P = mov is a momentum. In the case where quantum 

mechanical effects are not present one can employ (2) and 

classic Hamiltonian canonic forms for designing equations of 

nanorobot motion in a multipotential field: 
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In the relation (3) qi and Pi are generalized coordinates and 

momentums, respectively.  

     In the case where quantum mechanical effects are present 

for modeling of a nanorobot motion in a multipotential field 

one should use the following two steps. The first one is to 

reduce the Hamiltonian from (2) into the kinetic and potential 

energy only: 
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The second step is to introduce the related Hamiltonian 

operator: 
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Here 
2
e  is the extended Laplacian operator, ħ is the reduced 

Planck's constant and r = (x, y, z) is the nanorobot position in 
three-dimensional space. For a general quantum system one can 
employ time dependent Schrödinger equation (Griffiths, 2004):  
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Here Ψ(r,t) is the wave function, which is the probability 
amplitude for different configurations of the system. The 
presented Schrödinger equation describes a particle dynamics 
without spin effects. For inclusion of the spin effects one 
should employ the related Dirac's equations (Dirac, 1978). 
 

3. CREATION OF CONTROL ALGORITHMS   
 
     In the creation of the control algorithms for nanorobot 
control one should distinguish the two different situations. The 
first one is the situation where quantum mechanical effects are 
not present. In that case one can start with the dynamic model 
of nanorobot motion in a multipotential field (3) and apply any 
control strategy for control of the nonlinear multivariable 
dynamical systems. In that sense a very efficient concept of the 
external linearization in the multipotential field can be applied 
(Novakovic, 2010): 
 

                           c w wU f(U ,U,K(U U)).                     (7) 

 
In this relation Uc is a control potential energy, U is the total 
potential energy of the nanorobot in the multipotential field, Uw 
is the desired potential energy of the nanorobot in that field and 
K is the related controller of the nanorobot motion. Applying 
the nonlinear control algorithm (7) to the closed loop with the 
canonical nonlinear differential equations (3) one obtains the 
linear behavior of the whole system. That is why it is called the 
external linearization of the nonlinear system. In that case, for 
design of the controller K, one can use any of the well known 
procedures for control synthesis of the linear systems (optimal, 
adaptive and so on).  
     The second situation is occurred when quantum mechanical 
effects are present. In that case one can start with the 
Schrödinger equation (6), or related Dirac's equations (Dirac, 
1978) and Dirac's like equations (Novakovic, 2010) and apply 
the control strategies for control of the quantum mechanical 
systems. In that sense, dynamics of the quantum feedback 
systems and control concepts and applications are presented by 

Yanagisawa and Kimura in 2003. 
 

4. MEASUREMENT AT THE NANOSCALE  
 
     The main problems in the measurement at the nanoscale are 
the perturbative effects of the measurement instruments to the 
nanostructure being investigated. There are several tricks of the 
trade in atomic force microscopy (AFM) for obtaining images 
of surface with atomic level resolution. Recently, scientists 
added a new approach to this toolkit when they showed that 
terminating an AFM tip in a single carbon monoxide allowed 
them to image individual atoms in pentacene. This relatively 
new technique to map out (in three dimensions) the chemical 
forces between two carbon monoxide molecules has been 
applied by Sun et al. in 2011. As the oscillating tip of an AFM 
approaches to the atoms or molecules on a surface, it is 
experiences both attractive (van der Waals) and repulsive 
(Pauli) forces. Measuring these forces with sufficient accuracy 
(one of many applications of AFM) requires that the tip be 
sufficiently near the surface that these forces exert a sizable 
shift on its resonance frequency, but not so close that the tip 

actually bends or moves the molecules. Sun et al. in 2011 
identify the optimal distance range within the AFM tip should 
be moved. A new demonstration of the nonperturbative use of 
diffraction-limited optics and photon localization microscopy to 
visualize the controlled nanoscale shifts of zeptoliter mode 
volumes within plasmonic nanostructures has been presented 
by McLeod et al. in 2011. Unlike tip or coating based methods 
for mapping near fields, these measurements do not affect the 
electromagnetic properties of the structure being investigated. 
 

5. CONCLUSION 
 
     Some important problems and the related solutions in the 
region of a nanorobotic control have been pointed out in this 
paper. For design of the relevant dynamical model of a 
nanorobot motion we introduced the Hamiltonian for a 
multipotential field and related canonical equations. In the case 
where quantum mechanical effects are present this Hamiltonian 
is transformed into the related Hamiltonian operator and 
Schrödinger's, or Dirac's equations should be employed. For 
control of nanorobot motion the external linearization concept 
has been proposed. Problems and solutions of the measurement 
at the nanoscale are also discussed in this paper. The further 
research will be devoted to application of the presented ideas. 
The limitations of the research and the authors approach are 
related to the non-quantum systems. 
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