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Abstract. This paper explores the possibility of tool wear classification in stone drilling. Wear 

model is based on Radial Basis Function Neural Network which links tool wear features extracted 

from motor drive current signals and acoustic emission signals with two wear levels – sharp and 

worn drill. Signals were measured during stone drilling under different cutting conditions, and then 

filtered before tool wear features extraction. Features were obtained from time and frequency 

domain. They have been analyzed individually and in combinations. The results indicate tool wear 

monitoring capacity of the proposed model in stone drilling, and its potential for simple and cost-

effective integration with CNC machine tools. 

Introduction 

Tool wear monitoring is one of the most important segments in the development of fully automated 

and highly autonomous CNC machine tools. Except in machine tool diagnostics, it is also necessary 

in the implementation of machining process control systems which could prevent tool breakage 

and/or maintain predefined tool wear dynamic [1, 2]. Tool wear monitoring in drilling has been 

continuously in the research focus for the past 20 years. A number of machine learning algorithms, 

sensor combinations and tool wear features have been analyzed and proposed, mainly using metal 

and composite materials [3]. Only a few studies considered wear monitoring in stone machining. 

They have usually included wear identification of diamond tools applied in cutting and/or milling 

using cutting forces sensors [4-7].  

The aim of this study was to analyze capabilities of neural network-based tool wear classification 

model in stone drilling using cost-effective combination of internal drive signals or currents (instead 

of cutting forces) and acoustic emission sensor. For this purpose, a type of Radial Basis Function 

Neural Network (RBF NN) algorithm for solving classification types of problems has been chosen. 

This type of neural network is known for its learning in one step and a capability of simple and 

quick hidden layer structure adaptation. Experiments were conducted using a custom-made machine 

tool testbed with open architecture control platform. 

Experimental Work 

Machine Tool Testbed. Experimental work has been performed using the three-axis bench-top 

CNC mini milling machine with an internal and external measurement systems (Fig. 1). The 

machine has been retrofitted with the 0.4 kW (1.27 Nm) permanent magnet synchronous motors 

with integrated incremental encoders (Mecapion SB04A), corresponding motor controllers 

(DPCANIE-030A400 and DPCANIE-060A400), ball screw assemblies, and LinuxCNC open 

architecture control (OAC) system [8]. Considering the nature of the drilling process, two types of 

signals were sampled from those controllers: vertical or Z-axis feed drive current (IZ) and main 

spindle current (IMS). Beside motor drive currents, acoustic emission signals (AE) were also 

measured using 8152B piezoelectric AE sensor and 5125 coupler (Kistler) connected to PCI-
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DAS4020/12 data acquisition board. Customized measurement software developed in the LabView 

environment was used for cutting conditions setup, storage of the acquired signals and NC drilling 

cycle program generation. Each measurement started by issuing the trigger signal from the CNC 

control system to the measurement systems. Direct observations of the drill cutting edges were 

made using the industrial camera type DMK41AF02 equipped with the telecentric lenses type 

TC2309. Twist drill type BOSCH CYL-9 (5 mm in diameter) was used to drill 10 mm deep holes in 

Adria Grigio Machiato stone samples. 
 

 
 

Fig. 1. Experimental setup - work area and sensor placement. (1) X axis feed drive; (2) Y axis feed 

drive; (3) Z axis feed drive; (4) main spindle drive; (5) workpiece fixture; (6) three axis force 

sensor; (7) test drill; (8) stone workpiece; (9) AE sensor 

 

Data Acquisition and Signal Processing. Motor drive current signals were sampled continuously 

at 1 kHz, and AE signals at 2 MHz (0.1s sample duration per hole). Signals were measured with 

sharp (SD) and worn drill (WD) using 9 combinations of cutting speeds (10; 30; 50 m/min), and 

feed rates (0.05; 0.1; 0.15 mm/rev), which were chosen according to the tool manufacturer 

recommendations for this type of drill. Those cutting speeds correspond to spindle speeds of 636.6 

rpm, 1909.8 rpm and 3183.09 rpm, respectively. For each combination of machining parameters 

experiment was randomly repeated 10 times. Measurements are first taken while drilling with 

completely sharp drill and then repeated using the worn drill. After completing the measurements 

with the sharp drill, it was then used to drill a number of cycles until it completely worn out. Flank 

wear and cracks were observed as a dominant wear features (Fig. 2).  

 

 
Fig. 2. Images of cutting edges after drilling with sharp (SD) and worn drill (WD) with observable 

(arrows pointing to) flank wear area 
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Before extracting tool wear features, both types of signals were filtered. In the case of current 

signals, Butterworth low-pass filter with 2 Hz cut-off frequency was applied. This frequency was 

chosen after spectral analyzes of signals using Fast Fourier Transform (FFT). AE signals were 

filtered with the Butterworth band-pass filter (frequency range 40-500 kHz), which was in 

accordance with the specified frequency or measurement range of the utilized sensor. 

 

Tool Wear Features. After filtration, 8 features were extracted from current signals. First two 

features were maximum values of both types of signals (Max_IZ, Max_IMS). They were calculated 

based on an average value of the 10% of the highest current values, thus neutralizing eventual 

occurrence of transient spikes. The next two features (Area_IZ, Area_IMS) were areas under current 

curves related to the machining time. This type of features is closely related to the total amount of 

electric energy used in the cutting process. The remaining four features were from the frequency 

domain: power of spectral components related to the rotation frequency - RF (P_RF_IZ, P_RF_IMS) 

and cutting edges frequency - CF (P_CEF_IZ, P_CEF_IMS) [9]. Since drill has two cutting edges, 

CEF was twice as high as RF. Those features were obtained using the FFT algorithm.  

Features from AE signals were all extracted from the frequency domain. Measured frequency 

range (40-500 kHz) was divided into 7 frequency ranges (50-100 kHz; 100-150 kHz; …; 350-400 

kHz), and energy of every range has been taken as a drill wear feature [10] 

 
fh
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S dfψ = ∫ ,  (1) 

 

where Sy is the one-sided PSD function of the AE signal, while fl and fh are lower and upper 

frequency values chosen to reflect the energy in the range of interest. Altogether, 15 features have 

been extracted from both types of signals (Table 1). 

 

Table 1. List of Drill Wear Features 

Type of 

 signal 
Feature Description 

C
u
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(I1) 

 

Max_IZ Average of a group of 10% highest absolute IZ current values 

obtained from feed motor drive (vertical or Z-axis) 

(I2) Max_IMS Average of a group of 10% highest IMS current values obtained 

from main spindle motor drive  

(I3) Area_IZ Area under the IZ=f(time) curve 

(I4) Area_IMS Area under the IMS=f(time) curve  

(I5) P_RF_IZ Power of rotational frequency component of the IZ signal 

(I6) P_RF_IMS Power of rotational frequency component of the IMS signal 

(I7) P_CEF_IZ Power of cutting edges frequency component of the IZ signal 

(I8) P_CEF_IMS Power of cutting edges frequency component of the IMS signal 
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(AE1) ψ
2
 (AE50-100) Energy of the AE signal in the frequency range 50-100 [kHz] 

(AE2) ψ
2
 (AE100-150) Energy of the AE signal in the frequency range 100-150 [kHz] 

(AE3) ψ
2
 (AE150-200) Energy of the AE signal in the frequency range 150-200 [kHz] 

(AE4) ψ
2
 (AE200-250) Energy of the AE signal in the frequency range 200-250 [kHz] 

(AE5) ψ
2
 (AE250-300) Energy of the AE signal in the frequency range 250-300 [kHz] 

(AE6) ψ
2
 (AE300-350) Energy of the AE signal in the frequency range 300-350 [kHz] 

(AE7) ψ
2
 (AE350-400) Energy of the AE signal in the frequency range 350-400 [kHz] 
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RBF Neural Network 

Chosen NN algorithm is based upon a well-known feedforward three-layered RBF NN architecture, 

where the matrix/vector of synaptic weights c is calculated in the learning phase using the 

expression 
+=c H y , (2) 

 

where y stands for the matrix/vector of desired output values and H
+
 is Moore – Penrose 

pseudoinverse of the matrix of hidden layer neuron RBF outputs or activation function outputs (H). 

The pseudoinverse is defined as follows 

 

( )
1

T T
−+ =H H H H . (3) 

 

In the testing phase, the matrix of desired output values y is obtained from the expression 

  

=y Hc . (4) 

 

Elements of matrix H are determined according to the expression 
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where rij is the Mahalanobis distance between vector composed from ith element of all input vectors 

(tool wear features) and jth hidden layer neuron (or hidden layer neuron center). Squared 

Mahalanobis distance is calculated using the expression  

 

( ) ( )
T

2 1

ij i j j i jr
−= − −x t Σ x t ,  (6) 

 

where ΣΣΣΣj is a covariance matrix belonging to the group of learning samples that are connected to the 

jth hidden layer neuron, xi is the L-dimensional vector composed from ith element of all L input 

vectors and tj is L-dimensional vector of the jth hidden layer neuron center. Covariance matrix is 

quadratic matrix with non-zero elements (squared σσσσ vector components) on main diagonal and 

zeros elsewhere, 
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Since every center is defined in the learning phase based on the group of network input elements, 

vector σσσσ is composed from the maximal Euclidian distances between learning samples belonging to 

the analyzed group and the center of that group, regarding to all (L) dimensions separately, 

 

{ }g j pg g G jσ max z t , p 1,..., LK ,g 1,..., L = − =  = ,  (8) 

 

where zpg is the gth component of the pth sample of the jth group which is defined with LKG 

numbers of samples, and tg is gth component of the jth group center vector (jth hidden layer neuron 

center vector). 

Hidden layer neuron centers are defined using a method which helps teacher to quickly 

determine network structure regarding to the nature of the learning problem and desirable network 
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generalization characteristics. Grouping of tool wear features or network input elements and centers 

calculations are based on the parameter βC. Higher βC reduces the number of hidden layer neurons 

and vice versa (for βC=0 every input vector forms one hidden layer neuron or its center). Hidden 

layer configuration method is in detail explained in [11]. 

Results  

With 9 combinations of machining parameters, 10 measurements for each combination, and 2 drill 

wear levels or classification groups, 180 sets of samples were collected in total. Five out of 10 

samples of repetitive measurements for each combination of machining parameters were used in the 

learning phase, and the remaining five participated in the formation of data sets used in the testing 

phase of the RBF NN classifier. 

 In order to analyze capacity of chosen features for drill wear classification, and to find 

combination(s) which provide the best classification performance, learning/testing procedure was 

divided into several steps. In the first step, every feature has been analyzed separately using full 

hidden layer structure (βC=0). Based on these first results, further analyzes of different feature 

combinations have been performed (also with βC=0). Feature combinations have expectedly 

achieved higher classification accuracy than the individual features, and the results of chosen 

combinations are presented in Table 2. All presented results were achieved using cutting speed and 

feed rate as two additional NN inputs, and classification success rate in the learning phase was 

100%. 

  

Table 2. Classification Results – Accurately Classified Samples, (%) 

Feature 
TEST RBF NN 

structure T1 T2 T3 T4 T5 Avg. 

I1+I2+I3+I4 88.9 94.4 88.9 94.4 100 93.3 6-90-2 

I5+I6+I7+I8 66.7 83.3 83.3 66.7 83.3 76.7 6-90-2 

I1+I2+...+I8=ΣI 83.3 88.9 94.4 72.2 94.4 86.6 10-90-2 

AE4+AE5 88.9 77.8 83.3 72.2 88.9 82.2 4-90-2 

AE1+AE2+…+AE7=ΣΑΕ 77.8 77.8 77.8 77.8 61.1 74.5 9-90-2 

I1+I2+I3+I4+AE4+AE5 83.3 94.4 94.4 100 94.4 93.3 8-90-2 

ΣI+ ΣAE 83.3 88.9 94.4 72.2 83.3 84.4 17-90-2 

I1+I2+I3+I4+AE4+AE5 88.9 94.4 88.9 94.4 88.9 91.1 8-58-2 (βC≠0) 

 

Combination of time domain features extracted from IZ and IMS current signals has shown the 

highest average classification accuracy based on 5 analyzed tests (93.3%). The same result was 

achieved when this combination was further extended by two extra features from AE signals (AE4, 

AE5). These two features accomplished the best individual classification accuracy among the 

features from AE signals. Other combinations did not manage to reduce average classification error 

below 10%, but their results are still more than acceptable.  

At the end, the best combination of features extracted from both types of signals was analyzed 

once more with the reduced number of hidden layer neurons (βC>0) to find out the RBF NN 

structure still capable to provide satisfactory generalization characteristics. It can be noticed that 

RBF NN with the number of hidden layer neurons decreased by 30% (58 vs. 90) managed to 

maintain classification accuracy higher than 90%. 

Summary 

In this work a type of Radial Basis Function Neural Network algorithm has been applied for tool 

wear classification under different cutting conditions in stone drilling. Tool wear features were 

obtained from Z-axis (vertical axis) feed drive current, main spindle drive current, and acoustic 
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emission signals. They were then used for classification of drill wear into two groups: sharp and 

completely worn drill. Every feature was analyzed separately and in combinations.  

The accomplished results suggest potential of the analyzed model for tool wear monitoring 

during stone drilling. Most successful model outputs were achieved using only features from 

servomotor current signals, thus supporting the idea of reliable and cost-effective monitoring 

system without the usage of force sensor. Practically identical result has been achieved using the 

combination of selected features from current and acoustic emission signals. This is also very 

important, since it is a wide known fact that tool wear is highly non-linear and partially stochastic 

process which cannot be reliably identified and monitored in the real industrial environment using 

only one type of signal. Furthermore, AE sensors are low-cost and easily integrated into the 

machine tool structure.  

The proposed tool wear model is very simple to implement in the CNC control system and 

shows the potential for tool wear monitoring in drilling. It was analyzed with experimental data 

obtained while drilling a single type of stone material with a single type of twist drill. Future 

experimental work will therefore be extended to different types of stone materials, drill diameters 

and geometries, as well as more than two drill wear levels. 

References 

[1] S. Liang, R.L. Hecker, and R.G. Landers: ASME Journal of Manufacturing Science and 

Engineering, Vol. 126 (2004), pp. 297–310. 

[2] R. Teti, K. Jemielniak, G. O’Donnell, and D. Dornfeld: CIRP Annals - Manufacturing 

Technology, Vol. 59 (2010), pp. 717-739. 

[3] E. Jantunen: Journal of Machine Tools and Manufacture, Vol. 42 (2002), pp. 997-1010. 

[4] W. Polini and S. Turchetta: The International Journal of Advanced Manufacturing Technology, 

Vol. 35 (2007), pp 454-467. 

[5] W. Polini and S. Turchetta: Advances in Mechanical Engineering, Vol. 2009 (2009). 

[6] S. Turchetta: The International Journal of Advanced Manufacturing Technology, Vol. 61 

(2012), pp. 441-448. 

[7] J. Kenda and J. Kopac: Strojniški vestnik - Journal of Mechanical Engineering, Vol. 55 (2009), 

pp. 775-780. 

[8] T. Staroveski, D. Brezak, T. Udiljak, and D. Majetic: Annals of DAAAM International 2011, 

Vol. 22 (2011), pp. 0023-0024. 

[9] P.W. Prickett, C. Johns: International Journal of Machine Tools & Manufacture, Vol. 1 (1999), 

pp.105-122. 

[10] C. Scheffer, P.S. Heyns, and F. Klocke: International Journal of Machine Tools & 

Manufacture, Vol. 43 (2003), pp. 973–985. 

[11] D. Brezak, T. Udiljak, K. Mihoci, D. Majetic, B. Novakovic, and J. Kasac: Proceedings of 

International Joint Conference on Neural Networks - IJCNN (2004), pp. 1859-1863. 

Applied Mechanics and Materials Vol. 772 273


